Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/6933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRibeiro, R.-
dc.contributor.authorde Matos, D. M.-
dc.date.accessioned2014-04-14T13:47:54Z-
dc.date.available2014-04-14T13:47:54Z-
dc.date.issued2011-
dc.identifierhttp://dx.doi.org/10.1613/jair.3387en_US
dc.identifier.issn1076-9757por
dc.identifier.urihttp://jair.org/media/3387/live-3387-5920-jair.pdfen_US
dc.identifier.urihttps://ciencia.iscte-iul.pt/public/pub/id/6669en_US
dc.identifier.urihttp://hdl.handle.net/10071/6933-
dc.description“Prémio Científico ISCTE-IUL 2012”-
dc.description.abstractIn automatic summarization, centrality-as-relevance means that the most important content of an information source, or a collection of information sources, corresponds to the most central passages, considering a representation where such notion makes sense (graph, spatial, etc.). We assess the main paradigms, and introduce a new centrality-based relevance model for automatic summarization that relies on the use of support sets to better estimate the relevant content. Geometric proximity is used to compute semantic relatedness. Centrality (relevance) is determined by considering the whole input source (and not only local information), and by taking into account the existence of minor topics or lateral subjects in the information sources to be summarized. The method consists in creating, for each passage of the input source, a support set consisting only of the most semantically related passages. Then, the determination of the most relevant content is achieved by selecting the passages that occur in the largest number of support sets. This model produces extractive summaries that are generic, and language- and domainindependent. Thorough automatic evaluation shows that the method achieves state-of-theart performance, both in written text, and automatically transcribed speech summarization, including when compared to considerably more complex approaches.por
dc.language.isoengpor
dc.publisherAI Access Foundationpor
dc.rightsembargoedAccesspor
dc.titleRevisiting Centrality-as-Relevance: Support Sets and Similarity as Geometric Proximitypor
dc.typearticleen_US
dc.pagination275-308por
dc.publicationstatusPublicadopor
dc.peerreviewedSimpor
dc.relation.publisherversionThe definitive version is available at: http://dx.doi.org/10.1613/jair.3387por
dc.journalJournal of Artificial Intelligence Researchpor
dc.distributionInternacionalpor
dc.volume42por
degois.publication.firstPage275por
degois.publication.lastPage308por
degois.publication.titleJournal of Artificial Intelligence Researchpor
dc.date.updated2014-04-14T13:44:57Z-
Appears in Collections:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
Riberio 2011 JAIR.pdf
  Restricted Access
925,24 kBAdobe PDFView/Open Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.