Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/35734Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Sarwar, Fareeha | - |
| dc.contributor.author | Garrido, Nuno Miguel de Figueiredo | - |
| dc.contributor.author | Sebastiao, Pedro | - |
| dc.contributor.author | Silveira, Margarida | - |
| dc.date.accessioned | 2025-12-11T18:46:55Z | - |
| dc.date.available | 2025-12-11T18:46:55Z | - |
| dc.date.issued | 2025-07 | - |
| dc.identifier.citation | Sarwar, F., Garrido, N. M. F., Sebastiao, P., & Silveira, M. (2025). Enhanced multiple instance learning for breast cancer detection in mammography: Adaptive patching, advanced pooling, and deep supervision. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2025, 1–6. https://doi.org/10.1109/EMBC58623.2025.11254317 | por |
| dc.identifier.isbn | 979-8-3315-8618-8 | por |
| dc.identifier.issn | 2375-7477 | por |
| dc.identifier.issn | 2694-0604 | por |
| dc.identifier.uri | http://hdl.handle.net/10071/35734 | - |
| dc.description.abstract | This paper addresses the challenge of weakly supervised learning for breast cancer detection in mammography by introducing an Enhanced Embedded Space MI-Net model with deep supervision. The framework integrated adaptive patch creation, convolution feature extraction, and pooling methods -max, mean, log-sum-expo, attention, and gated attention pooling - evaluated in three MIL models, Instance Space mi-Net, Embedded Space MI-Net and Enhanced Embedded Space MI-Net. A key contribution is the incorporation of deep supervision, improving feature learning across network layers and enhancing bag-level classification performance. Experimental results on the CBIS / DDSM dataset demonstrate that the Enhanced MI-Net model achieves the highest AUC of 86% with attention pooling. This work addresses the gap in leveraging MIL techniques for high-resolution medical imaging without requiring detailed annotations, offering a robust and scalable solution for breast cancer detection.Clinical Relevance-This study highlights the potential of MIL-based models with attention pooling to accurately detect breast cancer in mammographic images without requiring detailed ROI annotations, offering a scalable and efficient diagnostic tool for clinical practice. | por |
| dc.language.iso | eng | por |
| dc.publisher | IEEE | por |
| dc.rights | openAccess | por |
| dc.subject | Humans | por |
| dc.subject | Female | por |
| dc.subject | Algorithms | por |
| dc.subject | Multiple-instance learning algorithms | por |
| dc.subject | Breast neoplasms | por |
| dc.subject | Mammography | por |
| dc.subject | Deep learning | por |
| dc.title | Enhanced multiple instance learning for breast cancer detection in mammography: Adaptive patching, advanced pooling, and deep supervision | por |
| dc.type | conferenceObject | por |
| dc.event.title | Annu Int Conf IEEE Eng Med Biol Soc . 2025 | por |
| dc.event.type | conferência | por |
| dc.event.location | Dinamarca, Copenhaga | por |
| dc.pagination | 1-6 | por |
| dc.peerreviewed | yes | por |
| dc.relation.publisherversion | https://ieeexplore.ieee.org/document/11254317 | por |
| dc.distribution | internacional | por |
| dc.number | 41336723 | por |
| degois.publication.firstPage | 1 | - |
| degois.publication.lastPage | 6 | - |
| degois.publication.title | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference | - |
| dc.identifier.doi | 10.1109/EMBC58623.2025.11254317 | por |
| dc.subject.fos | Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas | por |
| iscte.identifier.ciencia | ci-pub-1072 | por |
| iscte.journal | Annual International Conference of the IEEE Engineering in Medicine and Biology Society | por |
| dc.event.startdate | 2025-07 | - |
| dc.event.enddate | 2025-07 | - |
| Aparece nas coleções: | CTI-AC - Atas de congresso/Proceedings (organização, edição literária, ...) | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| conferenceObject_hdl35734.pdf | 1,06 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.












