Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35734
Registo completo
Campo DCValorIdioma
dc.contributor.authorSarwar, Fareeha-
dc.contributor.authorGarrido, Nuno Miguel de Figueiredo-
dc.contributor.authorSebastiao, Pedro-
dc.contributor.authorSilveira, Margarida-
dc.date.accessioned2025-12-11T18:46:55Z-
dc.date.available2025-12-11T18:46:55Z-
dc.date.issued2025-07-
dc.identifier.citationSarwar, F., Garrido, N. M. F., Sebastiao, P., & Silveira, M. (2025). Enhanced multiple instance learning for breast cancer detection in mammography: Adaptive patching, advanced pooling, and deep supervision. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2025, 1–6. https://doi.org/10.1109/EMBC58623.2025.11254317por
dc.identifier.isbn979-8-3315-8618-8por
dc.identifier.issn2375-7477por
dc.identifier.issn2694-0604por
dc.identifier.urihttp://hdl.handle.net/10071/35734-
dc.description.abstractThis paper addresses the challenge of weakly supervised learning for breast cancer detection in mammography by introducing an Enhanced Embedded Space MI-Net model with deep supervision. The framework integrated adaptive patch creation, convolution feature extraction, and pooling methods -max, mean, log-sum-expo, attention, and gated attention pooling - evaluated in three MIL models, Instance Space mi-Net, Embedded Space MI-Net and Enhanced Embedded Space MI-Net. A key contribution is the incorporation of deep supervision, improving feature learning across network layers and enhancing bag-level classification performance. Experimental results on the CBIS / DDSM dataset demonstrate that the Enhanced MI-Net model achieves the highest AUC of 86% with attention pooling. This work addresses the gap in leveraging MIL techniques for high-resolution medical imaging without requiring detailed annotations, offering a robust and scalable solution for breast cancer detection.Clinical Relevance-This study highlights the potential of MIL-based models with attention pooling to accurately detect breast cancer in mammographic images without requiring detailed ROI annotations, offering a scalable and efficient diagnostic tool for clinical practice.por
dc.language.isoengpor
dc.publisherIEEEpor
dc.rightsopenAccesspor
dc.subjectHumanspor
dc.subjectFemalepor
dc.subjectAlgorithmspor
dc.subjectMultiple-instance learning algorithmspor
dc.subjectBreast neoplasmspor
dc.subjectMammographypor
dc.subjectDeep learningpor
dc.titleEnhanced multiple instance learning for breast cancer detection in mammography: Adaptive patching, advanced pooling, and deep supervisionpor
dc.typeconferenceObjectpor
dc.event.titleAnnu Int Conf IEEE Eng Med Biol Soc . 2025por
dc.event.typeconferênciapor
dc.event.locationDinamarca, Copenhagapor
dc.pagination1-6por
dc.peerreviewedyespor
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/11254317por
dc.distributioninternacionalpor
dc.number41336723por
degois.publication.firstPage1-
degois.publication.lastPage6-
degois.publication.titleAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference-
dc.identifier.doi10.1109/EMBC58623.2025.11254317por
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Outras Ciências Médicaspor
iscte.identifier.cienciaci-pub-1072por
iscte.journalAnnual International Conference of the IEEE Engineering in Medicine and Biology Societypor
dc.event.startdate2025-07-
dc.event.enddate2025-07-
Aparece nas coleções:CTI-AC - Atas de congresso/Proceedings (organização, edição literária, ...)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
conferenceObject_hdl35734.pdf1,06 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.