Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35633
Registo completo
Campo DCValorIdioma
dc.contributor.authorSanchez-Gomez, J. M.-
dc.contributor.authorBatista, F.-
dc.contributor.authorVega-Rodríguez, M. A.-
dc.contributor.authorPérez, C. J.-
dc.date.accessioned2025-11-25T09:30:14Z-
dc.date.available2025-11-25T09:30:14Z-
dc.date.issued2025-
dc.identifier.citationSanchez-Gomez, J. M., Batista, F., Vega-Rodríguez, M. A., & Pérez, C. J. (2025). A transformer-based deep learning approach for detecting online hate speech in Spanish. Applied Soft Computing, 187, Article 114259. https://doi.org/10.1016/j.asoc.2025.114259-
dc.identifier.issn1568-4946-
dc.identifier.urihttp://hdl.handle.net/10071/35633-
dc.description.abstractThe amount of content published on the Internet has grown exponentially in recent times. Social networks have enabled this content to reach an even wider audience. However, the freedom of communication provided by these networks can consequently facilitate the spread of offensive language and hate speech. Although social media platforms have attempted to implement mechanisms for detecting and addressing such content, it remains an ongoing challenge, particularly for languages other than English, such as Spanish. One promising approach to tackle this problem is the application of Natural Language Processing (NLP) tools, which rely on the use of language models and deep learning for text classification. In this work, an approach for detecting Spanish Hate Speech with ALBETO (SHS-ALBETO) is proposed. Experimentation is conducted with HatEval dataset. The performance of SHS-ALBETO is compared with other competing models, such as BERT, BETO, and DistilBETO, along with other proposals from the state-of-the-art. SHS-ALBETO has improved the existing results in the scientific literature, simultaneously providing reduced computing times. Additionally, analyses of the results have revealed its advantages together with challenging aspects that must be addressed to further improve the performance of this kind of approach.eng
dc.language.isoeng-
dc.publisherElsevier-
dc.relationPD18057-
dc.relationRED2022-134540-T-
dc.relationPID2022-137275NA-I00-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50021%2F2020/PT-
dc.relationMICIU/AEI/10.13039/501100011033-
dc.relationGR24013-
dc.relationPID2023-148577OB-C21-
dc.relationGR24017-
dc.relationPID2021-122209OB-C32-
dc.rightsopenAccess-
dc.subjectHate speecheng
dc.subjectNatural language processingeng
dc.subjectDeep learningeng
dc.subjectTransformer modelseng
dc.titleA transformer-based deep learning approach for detecting online hate speech in Spanisheng
dc.typearticle-
dc.peerreviewedyes-
dc.volume187-
dc.date.updated2025-11-25T09:29:35Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1016/j.asoc.2025.114259-
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.subject.fosDomínio/Área Científica::Humanidades::Línguas e Literaturaspor
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsPaz, justiça e instituições eficazespor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-113677-
iscte.journalApplied Soft Computing-
Aparece nas coleções:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_113677.pdf1,99 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.