Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35204
Registo completo
Campo DCValorIdioma
dc.contributor.authorSezavar, A.-
dc.contributor.authorBrites, C.-
dc.contributor.authorAscenso, J.-
dc.date.accessioned2025-09-23T12:08:36Z-
dc.date.issued2025-
dc.identifier.citationSezavar, A., Brites, C., & Ascenso, J. (2025). Low complexity learning-based lossless event-based compression. Proceedings - 2024 International Symposium on Multimedia, ISM 2024 (pp. 85-92). IEEE. https://doi.org/10.1109/ISM63611.2024.00018-
dc.identifier.isbn979-833151111-1-
dc.identifier.urihttp://hdl.handle.net/10071/35204-
dc.description.abstractEvent cameras are a cutting-edge type of visual sensors that capture data by detecting brightness changes at the pixel level asynchronously. These cameras offer numerous benefits over conventional cameras, including high temporal resolution, wide dynamic range, low latency, and lower power consumption. However, the substantial data rates they produce require efficient compression techniques, while also fulfilling other typical application requirements, such as the ability to respond to visual changes in real-time or near real-time. Additionally, many event-based applications demand high accuracy, making lossless coding desirable, as it retains the full detail of the sensor data. Learning-based methods show great potential due to their ability to model the unique characteristics of event data thus allowing to achieve high compression rates. This paper proposes a low-complexity lossless coding solution based on the quadtree representation that outperforms traditional compression algorithms in efficiency and speed, ensuring low computational complexity and minimal delay for real-time applications. Experimental results show that the proposed method delivers better compression ratios, i.e., with fewer bits per event, and lower computational complexity compared to current lossless data compression methods.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2020/PTDC%2FEEI-COM%2F7775%2F2020/PT-
dc.relation.ispartofProceedings - 2024 International Symposium on Multimedia, ISM 2024-
dc.rightsembargoedAccess-
dc.subjectEvent cameraseng
dc.subjectCompressioneng
dc.subjectLosslesseng
dc.subjectQuadtreeeng
dc.subjectRice codingeng
dc.subjectProbability model predictioneng
dc.titleLow complexity learning-based lossless event-based compressioneng
dc.typeconferenceObject-
dc.event.title26th International Symposium on Multimedia-ISM-Annual-
dc.event.typeConferênciapt
dc.event.locationTokyoeng
dc.event.date2024-
dc.pagination85 - 92-
dc.peerreviewedyes-
dc.date.updated2025-09-23T13:07:24Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doihttps://doi.ieeecomputersociety.org/10.1109/ISM63611.2024.00018-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.date.embargo2026-03-27-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-108754-
iscte.alternateIdentifiers.wosWOS:001481475900013-
iscte.alternateIdentifiers.scopus2-s2.0-105002730797-
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_108754.pdf
  Restricted Access
878,93 kBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.