Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34291
Registo completo
Campo DCValorIdioma
dc.contributor.authorZubair, M.-
dc.contributor.authorNunes, P.-
dc.contributor.authorConti, C.-
dc.contributor.authorSoares, L. D.-
dc.date.accessioned2025-04-24T10:00:57Z-
dc.date.issued2024-
dc.identifier.citationZubair, M., Nunes, P., Conti, C., & Soares, L. D. (2024). Light field view synthesis using deformable convolutional neural networks. 2024 Picture Coding Symposium, PCS 2024, Proceedings. IEEE. https://doi.org/10.1109/PCS60826.2024.10566360-
dc.identifier.isbn979-835035848-3-
dc.identifier.urihttp://hdl.handle.net/10071/34291-
dc.description.abstractLight Field (LF) imaging has emerged as a technology that can simultaneously capture both intensity values and directions of light rays from real-world scenes. Densely sampled LFs are drawing increased attention for their wide application in 3D reconstruction, depth estimation, and digital refocusing. In order to synthesize additional views to obtain a LF with higher angular resolution, many learning-based methods have been proposed. This paper follows a similar approach to Liu et al. [1] but using deformable convolutions to improve the view synthesis performance and depth-wise separable convolutions to reduce the amount of model parameters. The proposed framework consists of two main modules: i) a multi-representation view synthesis module to extract features from different LF representations of the sparse LF, and ii) a geometry-aware refinement module to synthesize a dense LF by exploring the structural characteristics of the corresponding sparse LF. Experimental results over various benchmarks demonstrate the superiority of the proposed method when compared to state-of-the-art ones. The code is available at https://github.com/MSP-IUL/deformable lfvs.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.relationPTDC/EEICOM/ 7096/2020-
dc.relation.ispartof2024 Picture Coding Symposium, PCS 2024, Proceedings-
dc.rightsopenAccess-
dc.subjectLight field view synthesiseng
dc.subjectDeformable convolutioneng
dc.subjectDepth-wise separable convolutioneng
dc.subjectGeometry-aware networkeng
dc.titleLight field view synthesis using deformable convolutional neural networkseng
dc.typeconferenceObject-
dc.event.title2024 Picture Coding Symposium, PCS 2024-
dc.event.typeConferênciapt
dc.event.locationTaichung, Taiwaneng
dc.event.date2024-
dc.pagination1 - 5-
dc.peerreviewedyes-
dc.date.updated2025-04-24T10:59:35Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/PCS60826.2024.10566360-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.date.embargo2025-06-26-
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsReduzir as desigualdadespor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-104512-
iscte.alternateIdentifiers.wosWOS:WOS:001263891000017-
iscte.alternateIdentifiers.scopus2-s2.0-85197729209-
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_104512.pdf
  Restricted Access
1,6 MBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.