Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/34291
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Zubair, M. | - |
dc.contributor.author | Nunes, P. | - |
dc.contributor.author | Conti, C. | - |
dc.contributor.author | Soares, L. D. | - |
dc.date.accessioned | 2025-04-24T10:00:57Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Zubair, M., Nunes, P., Conti, C., & Soares, L. D. (2024). Light field view synthesis using deformable convolutional neural networks. 2024 Picture Coding Symposium, PCS 2024, Proceedings. IEEE. https://doi.org/10.1109/PCS60826.2024.10566360 | - |
dc.identifier.isbn | 979-835035848-3 | - |
dc.identifier.uri | http://hdl.handle.net/10071/34291 | - |
dc.description.abstract | Light Field (LF) imaging has emerged as a technology that can simultaneously capture both intensity values and directions of light rays from real-world scenes. Densely sampled LFs are drawing increased attention for their wide application in 3D reconstruction, depth estimation, and digital refocusing. In order to synthesize additional views to obtain a LF with higher angular resolution, many learning-based methods have been proposed. This paper follows a similar approach to Liu et al. [1] but using deformable convolutions to improve the view synthesis performance and depth-wise separable convolutions to reduce the amount of model parameters. The proposed framework consists of two main modules: i) a multi-representation view synthesis module to extract features from different LF representations of the sparse LF, and ii) a geometry-aware refinement module to synthesize a dense LF by exploring the structural characteristics of the corresponding sparse LF. Experimental results over various benchmarks demonstrate the superiority of the proposed method when compared to state-of-the-art ones. The code is available at https://github.com/MSP-IUL/deformable lfvs. | eng |
dc.language.iso | eng | - |
dc.publisher | IEEE | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT | - |
dc.relation | PTDC/EEICOM/ 7096/2020 | - |
dc.relation.ispartof | 2024 Picture Coding Symposium, PCS 2024, Proceedings | - |
dc.rights | openAccess | - |
dc.subject | Light field view synthesis | eng |
dc.subject | Deformable convolution | eng |
dc.subject | Depth-wise separable convolution | eng |
dc.subject | Geometry-aware network | eng |
dc.title | Light field view synthesis using deformable convolutional neural networks | eng |
dc.type | conferenceObject | - |
dc.event.title | 2024 Picture Coding Symposium, PCS 2024 | - |
dc.event.type | Conferência | pt |
dc.event.location | Taichung, Taiwan | eng |
dc.event.date | 2024 | - |
dc.pagination | 1 - 5 | - |
dc.peerreviewed | yes | - |
dc.date.updated | 2025-04-24T10:59:35Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.doi | 10.1109/PCS60826.2024.10566360 | - |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | por |
dc.date.embargo | 2025-06-26 | - |
iscte.subject.ods | Educação de qualidade | por |
iscte.subject.ods | Indústria, inovação e infraestruturas | por |
iscte.subject.ods | Reduzir as desigualdades | por |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-104512 | - |
iscte.alternateIdentifiers.wos | WOS:WOS:001263891000017 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85197729209 | - |
Aparece nas coleções: | IT-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_104512.pdf Restricted Access | 1,6 MB | Adobe PDF | Ver/Abrir Request a copy |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.