Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/33347
Registo completo
Campo DCValorIdioma
dc.contributor.authorPhella, A.-
dc.contributor.authorGabriel, V. J.-
dc.contributor.authorMartins, L. F.-
dc.date.accessioned2025-02-10T14:59:07Z-
dc.date.issued2024-
dc.identifier.citationPhella, A., Gabriel, V. J., & Martins, L. F. (2024). Predicting tail risks and the evolution of temperatures. Energy Economics, 131, Article 107286. https://doi.org/10.1016/j.eneco.2023.107286-
dc.identifier.issn0140-9883-
dc.identifier.urihttp://hdl.handle.net/10071/33347-
dc.description.abstractThis paper explores a range of simple models to study the relationship between global temperature anomalies and climate forcings. In particular, we consider quantile regression models with potentially time-varying parameters (TVP), implemented by Bayesian methods. In its most general specification, this approach is flexible in that it models distinct regions of distribution of global temperature anomalies, while also allowing us to investigate changes in the relationship between (natural and anthropogenic) climate forcings and temperatures. Our results indicate that there is indeed considerable variation over time in the relationship between temperatures and its drivers, and that these effects may be heterogeneous across different quantiles. We then perform a long-range forecasting exercise for temperatures, which suggests that incorporating TVP or explicitly modelling quantile levels or the combination of both features can improve prediction for different parts of the temperature distribution. In addition, we produce forecasts for 2030 considering the intermediate RCP 4.5 scenario: given that no single specification dominates, we account for model uncertainty by considering forecast averaging across all specifications. Our approach allows us to make statements about the probability of temperature levels — for instance, we find that a scenario of +1.8 °C will occur with a non-negligible probability under RCP 4.5.eng
dc.language.isoeng-
dc.publisherElsevier-
dc.rightsembargoedAccess-
dc.subjectQuantile regressioneng
dc.subjectTime-varying parameterseng
dc.subjectGlobal temperature distributionseng
dc.subjectForecast averagingeng
dc.titlePredicting tail risks and the evolution of temperatureseng
dc.typearticle-
dc.peerreviewedyes-
dc.volume131-
dc.date.updated2025-02-10T14:57:44Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1016/j.eneco.2023.107286-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Outras Ciências Naturaispor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
dc.date.embargo2026-01-08-
iscte.subject.odsAção climáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-101778-
iscte.alternateIdentifiers.wosWOS:WOS:001176803300001-
iscte.alternateIdentifiers.scopus2-s2.0-85183451099-
iscte.journalEnergy Economics-
Aparece nas coleções:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_101778.pdf
  Restricted Access
2,25 MBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.