Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/32876
Autoria: Alves, T.
Amador, J.
Gonçalves, F.
Data: 2022
Título próprio: Assessing the scoreboard of the EU macroeconomic imbalances procedure: (Machine) learning from decisions
Título da revista: Economics Bulletin
Volume: 42
Número: 4
Paginação: 2257 - 2266
Referência bibliográfica: Alves, T., Amador, J., & Gonçalves, F. (2022). Assessing the scoreboard of the EU macroeconomic imbalances procedure: (Machine) learning from decisions. Economics Bulletin, 42(4), 2257-2266. http://www.accessecon.com/pubs/eb/default.aspx?topic=Abstract&PaperID=eb-21-00584
ISSN: 1545-2921
Palavras-chave: European Union
Economic integration
Machine learning
Random forests
Resumo: This paper uses machine learning methods to identify the macroeconomic variables that are most relevant for the classification of countries along the categories of the EU Macroeconomic Imbalances Procedure (MIP). The random forest algorithm considers the 14 headline indicators of the MIP scoreboard and the set of past decisions taken by the European Commission when classifying countries along the MIP categories. The algorithm identifies the unemployment rate, the current account balance, the private sector debt and the net international investment position as key variables in the classification process. We explain how high vs low values for these variables contribute to classifying countries inside or outside each MIP category.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:DINÂMIA'CET-RI - Artigos em revistas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_104092.pdf1,55 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.