Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/32580
Registo completo
Campo DCValorIdioma
dc.contributor.authorNoetzold, D.-
dc.contributor.authorRossetto, A. G. D. M.-
dc.contributor.authorLeithardt, V. R. Q.-
dc.contributor.authorCosta, H. J. de M.-
dc.date.accessioned2024-11-04T13:15:13Z-
dc.date.available2024-11-04T13:15:13Z-
dc.date.issued2024-
dc.identifier.citationNoetzold, D., Rossetto, A. G. D. M., Leithardt, V. R. Q., & Costa, H. J. de M. (2024). Enhancing infrastructure observability: Machine learning for proactive monitoring and anomaly detection. Journal of Internet Services and Applications, 15(1), 508-522. https://doi.org/10.5753/jisa.2024.4509-
dc.identifier.issn1867-4828-
dc.identifier.urihttp://hdl.handle.net/10071/32580-
dc.description.abstractThis study addresses the critical challenge of proactive anomaly detection and efficient resource man-agement in infrastructure observability. Introducing an innovative approach to infrastructure monitoring, this workintegrates machine learning models into observability platforms to enhance real-time monitoring precision. Employ-ing a microservices architecture, the proposed system facilitates swift and proactive anomaly detection, addressingthe limitations of traditional monitoring methods that often fail to predict potential issues before they escalate. Thecore of this system lies in its predictive models that utilize Random Forest, Gradient Boosting, and Support VectorMachine algorithms to forecast crucial metric behaviors, such as CPU usage and memory allocation. The empiri-cal results underscore the system’s efficacy, with the GradientBoostingRegressor model achieving an R² score of0.86 for predicting request rates, and the RandomForestRegressor model significantly reducing the Mean SquaredError by 2.06% for memory usage predictions compared to traditional monitoring methods. These findings not onlydemonstrate the potential of machine learning in enhancing observability but also pave the way for more resilientand adaptive infrastructure management.eng
dc.language.isoeng-
dc.publisherSociedade Brasileira de Computação-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT-
dc.rightsopenAccess-
dc.subjectMachine learningeng
dc.subjectInfrastructure monitoringeng
dc.subjectAnomaly detectioneng
dc.subjectProactive maintenanceeng
dc.titleEnhancing infrastructure observability: Machine learning for proactive monitoring and anomaly detectioneng
dc.typearticle-
dc.pagination508 - 522-
dc.peerreviewedyes-
dc.volume15-
dc.number1-
dc.date.updated2024-11-04T13:13:42Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.5753/jisa.2024.4509-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-106319-
iscte.journalJournal of Internet Services and Applications-
Aparece nas coleções:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_106319.pdf810,25 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.