Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/32399
Registo completo
Campo DCValorIdioma
dc.contributor.authorMartins, A. A.-
dc.contributor.authorVaz, D. C.-
dc.contributor.authorSilva, T. A. N.-
dc.contributor.authorCardoso, M.-
dc.contributor.authorCarvalho, A.-
dc.date.accessioned2024-10-01T11:51:46Z-
dc.date.available2024-10-01T11:51:46Z-
dc.date.issued2024-
dc.identifier.citationMartins, A. A., Vaz, D. C., Silva, T. A. N., Cardoso, M., & Carvalho, A. (2024). Clustering of wind speed time series as a tool for wind farm diagnosis. Mathematical and Computational Applications, 29(3), Article 35. https://doi.org/10.3390/mca29030035-
dc.identifier.issn1300-686X-
dc.identifier.urihttp://hdl.handle.net/10071/32399-
dc.description.abstractIn several industrial fields, environmental and operational data are acquired with numerous purposes, potentially generating a huge quantity of data containing valuable information for management actions. This work proposes a methodology for clustering time series based on the K-medoids algorithm using a convex combination of different time series correlation metrics, the COMB distance. The multidimensional scaling procedure is used to enhance the visualization of the clustering results, and a matrix plot display is proposed as an efficient visualization tool to interpret the COMB distance components. This is a general-purpose methodology that is intended to ease time series interpretation; however, due to the relevance of the field, this study explores the clustering of time series judiciously collected from data of a wind farm located on a complex terrain. Using the COMB distance for wind speed time bands, clustering exposes operational similarities and dissimilarities among neighboring turbines which are influenced by the turbines’ relative positions and terrain features and regarding the direction of oncoming wind. In a significant number of cases, clustering does not coincide with the natural geographic grouping of the turbines. A novel representation of the contributing distances—the COMB distance matrix plot—provides a quick way to compare pairs of time bands (turbines) regarding various features.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00667%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05069%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00315%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00667%2F2020/PT-
dc.rightsopenAccess-
dc.subjectTime serieseng
dc.subjectWind dataeng
dc.subjectClusteringeng
dc.subjectK-medoidseng
dc.subjectCOMB distanceeng
dc.subjectVisual interpretation toolseng
dc.subjectWind farm diagnosiseng
dc.titleClustering of wind speed time series as a tool for wind farm diagnosiseng
dc.typearticle-
dc.peerreviewedyes-
dc.volume29-
dc.number3-
dc.date.updated2024-10-01T12:50:04Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/mca29030035-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Civilpor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-105710-
iscte.alternateIdentifiers.wosWOS:WOS:001256699000001-
iscte.alternateIdentifiers.scopus2-s2.0-85196837227-
iscte.journalMathematical and Computational Applications-
Aparece nas coleções:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_105710.pdf3,44 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.