Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/28590
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Vicente, M. | - |
dc.contributor.author | Carvalho, J. P. | - |
dc.contributor.author | Batista, F. | - |
dc.contributor.editor | José-Luis Sierra-Rodríguez | - |
dc.contributor.editor | José-Paulo Leal | - |
dc.contributor.editor | Alberto Simões | - |
dc.date.accessioned | 2023-05-15T08:45:09Z | - |
dc.date.available | 2023-05-15T08:45:09Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Vicente, M., Carvalho, J. P., & Batista, F. (2015). Using unstructured profile information for gender classification of Portuguese and English. EM J. L. Sierra-Rodríguez, J. P. Leal, & A. Simões (Eds.). SLATE 2015: 4th International Symposium on Languages, Applications and Technologies: Languages, Applications and Technologies (pp. 57-64). Springer. https://doi.org/10.1007/978-3-319-27653-3_6 | - |
dc.identifier.isbn | 978-3-319-27653-3 | - |
dc.identifier.uri | http://hdl.handle.net/10071/28590 | - |
dc.description.abstract | This paper reports experiments on automatically detecting the gender of Twitter users, based on unstructured information found on their Twitter profile. A set of features previously proposed is evaluated on two datasets of English and Portuguese users, and their performance is assessed using several supervised and unsupervised approaches, including Naive Bayes variants, Logistic Regression, Support Vector Machines, Fuzzy c-Means clustering, and k-means. Results show that features perform well in both languages separately, but even best results were achieved when combining both languages. Supervised approaches reached 97.9 % accuracy, but Fuzzy c-Means also proved suitable for this task achieving 96.4 % accuracy. | eng |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | SLATE 2015: 4th International Symposium on Languages, Applications and Technologies: Languages, Applications and Technologies | - |
dc.rights | openAccess | - |
dc.subject | Twitter users | eng |
dc.subject | Gender detection | eng |
dc.subject | Fuzzy c-Means | eng |
dc.subject | Supervised methods | eng |
dc.subject | Unsupervised methods | eng |
dc.title | Using unstructured profile information for gender classification of Portuguese and English | eng |
dc.type | conferenceObject | - |
dc.event.type | Conferência | pt |
dc.event.date | 2015 | - |
dc.pagination | 57 - 64 | - |
dc.peerreviewed | yes | - |
dc.volume | 563 | - |
dc.date.updated | 2023-05-15T09:44:47Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.doi | 10.1007/978-3-319-27653-3_6 | - |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-26082 | - |
iscte.alternateIdentifiers.wos | WOS:000370191100006 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-84952685276 | - |
Aparece nas coleções: | IT-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_26082.pdf | 291,58 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.