Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/26539
Registo completo
Campo DCValorIdioma
dc.contributor.authorEsteves, S.-
dc.contributor.authorRebola, J.-
dc.contributor.authorSantana, P.-
dc.date.accessioned2022-12-05T16:36:01Z-
dc.date.available2022-12-05T16:36:01Z-
dc.date.issued2022-
dc.identifier.citationEsteves, S., Rebola, J. & Santana, P. (2022).Deep learning for BER prediction in optical connections impaired by inter-core crosstalk. In 13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022 (pp. 440-445). IEEE. https://doi.org/10.1109/CSNDSP54353.2022.9908035-
dc.identifier.isbn978-1-6654-1044-1-
dc.identifier.urihttp://hdl.handle.net/10071/26539-
dc.description.abstractFour-level pulse amplitude modulation (PAM4) signals transmission in short-haul intensity modulation-direct detection datacenters connections supported by homogeneous weakly-coupled multicore fibers is seen as a promising technology to meet the future challenge of providing enough bandwidth and achieve high data capacity in datacenter links. However, in multicore fibers, inter-core crosstalk (ICXT) limits significantly the performance of such short-reach connections by causing large bit error rate (BER) fluctuations. In this work, a convolutional neural network (CNN) is proposed for eye-pattern analysis and BER prediction in PAM4 inter-datacenter optical connections impaired by ICXT, with the aim of optical performance monitoring. The performance of the CNN is assessed by estimation of the root mean square error (RMSE) using a synthetic dataset created with Monte Carlo simulation. Considering PAM4 interdatacenter connections with one interfering core and for different skew-symbol rate products, extinction ratios and crosstalk levels, the obtained results show that the implemented CNN is able to predict the BER without surpassing a RMSE limit of 0.1.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.relation.ispartof2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)-
dc.rightsopenAccess-
dc.titleDeep learning for BER prediction in optical connections impaired by inter-core crosstalkeng
dc.typeconferenceObject-
dc.event.title13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022-
dc.event.typeConferênciapt
dc.event.locationPortoeng
dc.event.date2022-
dc.pagination440 - 445-
dc.peerreviewedyes-
dc.date.updated2022-12-05T16:33:36Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/CSNDSP54353.2022.9908035-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-89851-
iscte.alternateIdentifiers.scopus2-s2.0-85140455257-
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceobject_89851.pdf1,47 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.