Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/26539
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Esteves, S. | - |
dc.contributor.author | Rebola, J. | - |
dc.contributor.author | Santana, P. | - |
dc.date.accessioned | 2022-12-05T16:36:01Z | - |
dc.date.available | 2022-12-05T16:36:01Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Esteves, S., Rebola, J. & Santana, P. (2022).Deep learning for BER prediction in optical connections impaired by inter-core crosstalk. In 13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022 (pp. 440-445). IEEE. https://doi.org/10.1109/CSNDSP54353.2022.9908035 | - |
dc.identifier.isbn | 978-1-6654-1044-1 | - |
dc.identifier.uri | http://hdl.handle.net/10071/26539 | - |
dc.description.abstract | Four-level pulse amplitude modulation (PAM4) signals transmission in short-haul intensity modulation-direct detection datacenters connections supported by homogeneous weakly-coupled multicore fibers is seen as a promising technology to meet the future challenge of providing enough bandwidth and achieve high data capacity in datacenter links. However, in multicore fibers, inter-core crosstalk (ICXT) limits significantly the performance of such short-reach connections by causing large bit error rate (BER) fluctuations. In this work, a convolutional neural network (CNN) is proposed for eye-pattern analysis and BER prediction in PAM4 inter-datacenter optical connections impaired by ICXT, with the aim of optical performance monitoring. The performance of the CNN is assessed by estimation of the root mean square error (RMSE) using a synthetic dataset created with Monte Carlo simulation. Considering PAM4 interdatacenter connections with one interfering core and for different skew-symbol rate products, extinction ratios and crosstalk levels, the obtained results show that the implemented CNN is able to predict the BER without surpassing a RMSE limit of 0.1. | eng |
dc.language.iso | eng | - |
dc.publisher | IEEE | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT | - |
dc.relation.ispartof | 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) | - |
dc.rights | openAccess | - |
dc.title | Deep learning for BER prediction in optical connections impaired by inter-core crosstalk | eng |
dc.type | conferenceObject | - |
dc.event.title | 13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022 | - |
dc.event.type | Conferência | pt |
dc.event.location | Porto | eng |
dc.event.date | 2022 | - |
dc.pagination | 440 - 445 | - |
dc.peerreviewed | yes | - |
dc.date.updated | 2022-12-05T16:33:36Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.doi | 10.1109/CSNDSP54353.2022.9908035 | - |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-89851 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85140455257 | - |
Aparece nas coleções: | IT-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceobject_89851.pdf | 1,47 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.