Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/25116
Registo completo
Campo DCValorIdioma
dc.contributor.authorSilva, F.-
dc.contributor.authorCorreia, L.-
dc.contributor.authorChristensen, A.-
dc.contributor.editorGerhard Weiss, Pınar Yolum-
dc.date.accessioned2022-04-12T10:39:52Z-
dc.date.available2022-04-12T10:39:52Z-
dc.date.issued2015-
dc.identifier.isbn978-1-4503-3413-6-
dc.identifier.urihttp://hdl.handle.net/10071/25116-
dc.description.abstractNeuroevolution, the optimisation of artificial neural networks (ANNs) through evolutionary computation, is a promising approach to the synthesis of controllers for autonomous agents. Traditional neuroevolution approaches employ direct encodings, which are limited in their ability to evolve complex or large-scale controllers because each ANN parameter is independently optimised. Indirect encodings, on the other hand, facilitate scalability because each gene can be reused multiple times to construct the ANN, but are biased towards regularity and can become ineffective when irregularity is required. To address such limitations, we introduce a novel algorithm called R-HybrID. In R-HybrID, controllers have both indirectly encoded and directly encoded structure. Because the portion of structure following a specific encoding is under evolutionary control, R-HybrID can automatically find an appropriate encoding combination for a given task. We assess the performance of R-HybrID in three tasks: (i) a high-dimensional visual discrimination task that requires geometric principles to be evolved, (ii) a challenging benchmark for modular robotics, and (iii) a memory task that has proven difficult for current algorithms because it requires effectively accumulating neural structure for cognitive behaviour to emerge. Our results show that R-HybrID consistently outperforms three stateof-the-art neuroevolution algorithms, and effectively evolves complex controllers and behaviours.eng
dc.language.isoeng-
dc.publisherACM-
dc.relationinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F89573%2F2012/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/EXPL%2FEEI-AUT%2F0329%2F2013/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMulti%2F04046%2F2013/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50008%2F2013/PT-
dc.rightsopenAccess-
dc.subjectAgent controllereng
dc.subjectArtificial neural networkeng
dc.subjectEvolutionary computationeng
dc.subjectGenetic encodingeng
dc.subjectNeuroevolutioneng
dc.titleR-HybrID: Evolution of agent controllers with a hybridisation of indirect and direct encodingseng
dc.typeconferenceObject-
dc.event.typeConferênciapt
dc.event.locationIstanbuleng
dc.event.date2015-
dc.pagination735 - 744-
dc.peerreviewedyes-
dc.journalProceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015)-
dc.volume1-
degois.publication.firstPage735-
degois.publication.lastPage744-
degois.publication.locationIstanbuleng
degois.publication.titleR-HybrID: Evolution of agent controllers with a hybridisation of indirect and direct encodingseng
dc.date.updated2022-04-12T11:39:03Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Físicaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-26616-
iscte.alternateIdentifiers.scopus2-s2.0-84945231477-
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
conferenceobject_26616.pdfVersão Editora720,84 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.