Skip navigation
User training | Reference and search service

Library catalog

Integrated Search
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/22964
acessibilidade
Title: Data Science na modelação e previsão de séries económico-financeiras: das metodologias clássicas ao Deep Learning
Authors: Ramos, Filipe Roberto de Jesus
Orientador: Mendes, Diana Elisabeta Aldea
Costa, Anabela Ribeiro da
Keywords: Data science
Deep learning
Séries temporais
Modelos ARMA, ETS e DNN
Previsão
Erro de previsão
Time series
ARMA, ETS and DNN models
Forecasting
Prediction error
Issue Date: 28-Jun-2021
Citation: Ramos, F. R. de J. (2021). Data Science na modelação e previsão de séries económico-financeiras: das metodologias clássicas ao Deep Learning [Tese de doutoramento, Iscte - Instituto Universitário de Lisboa]. Repositório do Iscte. http://hdl.handle.net/10071/22964
Abstract: A articulação de técnicas/ferramentas estatísticas, matemáticas e computacionais, no processo de análise, modelação e previsão de séries temporais, manifesta-se um claro suporte de apoio à tomada de decisão. O constante desafio na procura de previsões acuradas tem levado os investigadores à melhoraria das técnicas já existentes e a investir na procura de metodologias alternativas. Especificamente para séries económico-financeiras, a aplicação de metodologias baseadas em Inteligência Artificial, em particular de "Deep Learning", tem sido apontada com uma opção promissora. Neste estudo faz-se uma comparação crítica dos resultados obtidos por aplicação de metodologias clássicas de previsão (nomeadamente modelos autorregressivos e de alisamento exponencial) e de "Deep Learning" (mediante a implementação de algumas arquiteturas redes neuronais). O estudo empírico foi sustentando em quatro séries económico-financeiras distintas: "Consumer Price Index for All Urban Consumers: All Items in U.S. City Average" (CPIAUCSL); "Vehicle-Miles Travelled" (VMT); "Portuguese Stock Index 20" (PSI 20) e "Standard & Poor's 500 Exchange-Traded Fund" (SPY). A análise comparativa é feita tendo por base a qualidade preditiva e o custo computacional associado a cada um dos modelos de previsão. Reconhecidas vantagens na aplicação das metodologias de "Deep Learning", são discutidas possíveis alterações procurando melhorar a qualidade preditiva e reduzir o tempo de execução computacional. As alterações introduzidas em modelos de redes neuronais revelaram-se promissoras na redução do tempo computacional e nos valores da métrica de erro de previsão usada. Este sucesso é sobretudo evidente em séries que apresentam dinâmicas 'irregulares', como são exemplo as séries financeiras.
The articulation of statistical, mathematical and computational techniques/tools, in the process of analysis, modelling and forecasting time series, manifests clear support for decision making. The constant challenge in the quest for the most accurate results possible has led researchers not only to improve the existing techniques, but also to invest in the search for alternative methodologies. Specifically, for economic and financial series, the application of methodologies based on Artificial Intelligence, in particular Deep Learning, has been pointed out as a promising option. This study makes a critical comparison of the results obtained by applying classical forecasting methodologies (namely autoregressive models and exponential smoothing) and Deep Learning (through the implementation of some neural network architectures). The empirical study focused on four economic-financial series with different characteristics: Consumer Price Index for All Urban Consumers: All Items in U.S. City Average (CPIAUCSL); Vehicle-Miles Travelled (VMT); Portuguese Stock Index 20 (PSI 20) and Standard & Poor's 500 Exchange-Traded Fund (SPY). The comparative analysis is made based on both predictive quality and computational cost associated with each of the forecasting models. Recognized the advantages in the application of Deep Learning methodologies, we discuss some changes to introduce in the existing models to improve their predictive quality while reducing computational execution time. The changes introduced in neural network models proved to be promising in reducing the associated computational time but and the values of the error metric used. This success is especially evident in series with ‘irregular’ dynamics, as is the case with financial series.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/22964
Thesis identifier: 101594321
Designation: Doutoramento em Gestão
Appears in Collections:T&D-TD - Teses de doutoramento

Files in This Item:
acessibilidade
File Description SizeFormat 
phd_filipe_jesus_ramos.pdf10.74 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.