Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/18478
acessibilidade
Title: ProShot: assistente pessoal de fotografia
Authors: Brosque, Pedro Miguel da Luz Cabrita de Sousa
Orientador: Almeida, Alexandre Manuel de Castro Passos de
Silva, João Pedro Afonso Oliveira da
Keywords: Redes neuronais
Fotografia digital
Processamento de imagens
Telemóvel
Convolutional neural networks
Image processing
Facial detection
Eye detection
Photography
Real-time detection
Android
Issue Date: 20-Nov-2018
Citation: BROSQUE, Pedro Miguel da Luz Cabrita de Sousa - ProShot: assistente pessoal de fotografia [Em linha]. Lisboa: ISCTE-IUL, 2018. Dissertação de mestrado. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/18478>.
Abstract: Neste trabalho é proposta a criação de uma aplicação Android que sugere ao utilizador como melhorar a captura da fotografia, especificamente retratos de pessoas em tempo real, tendo por base a iluminação, o tipo de plano fotográfico presente e as características específicas para cada um, tal como o enquadramento. De forma a determinar qual o tipo de plano presente, é utilizada uma rede neuronal convolucional (CNN), sendo que para tal foram efetuados testes com várias redes diferentes e feita uma comparação para determinar que arquitetura se adequa melhor ao problema. A rede final atinge uma precisão de 99%, utilizando uma técnica de "transfer learning". Estes resultados foram obtidos num conjunto de imagens recolhidas e classificadas manualmente segundo cada tipo de plano fotográfico, tendo sido usado parte deste conjunto de dados no treino das próprias redes. Para determinar o enquadramento fotográfico, é proposto um método que utiliza um algoritmo de deteção facial seguido de um algoritmo de deteção de olhos que, com base na regra dos terços dá indicações ao utilizador sobre como corrigir o enquadramento. Foram comparados vários algoritmos de deteção facial tanto ao nível da eficácia de deteção como do tempo de processamento, onde a solução final assegura o equilíbrio entre os dois atingindo uma taxa de deteção de 91%. Foi também analisada a posição dos olhos num conjunto de imagens consideradas como tendo um bom enquadramento, as quais serviram para determinar um valor de tolerância que serviu como complemento para a regra dos terços.
In this work we propose the creation of an Android application that gives suggestions to the user on how to improve the capture of photography, specifically portraits in real time, based on lighting, the present type of photographic shot and their specific characteristics, such as framing. In order to determine what’s the present type of photographic shot, a convolutional neural network (CNN) is used. For this, tests were performed with several different networks and a comparison was made to determine which architecture best fits the problem. The final network obtains an accuracy of 99% using a transfer learning technique. These results were obtained on a data set of images, manually collected and classified according to each type of photographic shot, where part of this data set was also used in the training of the convolutional neural networks. To determine the photographic framing, we propose a method that uses a facial detection algorithm followed by an eye detection algorithm which, based on the rule of thirds, gives the user instructions on how to correct the framing. Several facial detection algorithms were compared in terms of detection effectiveness as well as processing time, where the final solution ensures a balance between the two reaching 91% of accuracy. The position of the eyes on a set of images considered as having a good framing was also analyzed, which helped to determine a tolerance value that served as a complement to the rule of thirds.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/18478
Thesis identifier: 202127443
Designation: Mestrado em Engenharia Informática
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
acessibilidade
File Description SizeFormat 
master_pedro_sousa_brosque.pdf2.79 MBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.