Skip navigation
User training | Reference and search service

Library catalog

EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/17585
acessibilidade
Title: Automatization of incident categorization
Authors: Silva, Sara Alexandra Teixeira da
Orientador: Pereira, Rúben Filipe de Sousa
Ribeiro, Ricardo Daniel Santos Faro Marques
Keywords: Automated incident categorization
Incident categorization
Incident management process
Machine learning
Natural language
Text mining
Engenharia informática
Gestão da informação
Categorização
Linguagem natural
Processamento de texto
Algoritmo de aprendizagem
Issue Date: 4-Dec-2018
Citation: Silva, S. A. T. da (2018). Automatization of incident categorization [Dissertação de mestrado, Iscte - Instituto Universitário de Lisboa]. Repositório do Iscte. http://hdl.handle.net/10071/17585
Abstract: To be able to keep up with the grow of the created incidents quantity in an organization nowadays, there was the need to increase the resources to ensure the management of all incidents. Incident Management is composed by several activities, being one of them, Incident Categorization. Merging Natural Language and Text Mining techniques and Machine Learning algorithms, we propose improve this activity, specifically the Incident Management Process. For that, we propose replace the manual sub-process of Categorization inherent to the Incident Management Process by an automatic sub-process, without any human interaction. The goal of this dissertation is to propose a solution to categorize correctly and automatically the incidents. For that, there are real data provided by a company, which due to privacy questions will not be mention along dissertation. The datasets are composed by incidents correctly categorized, which leverage us to apply supervised learning algorithms. It is supposed to obtain as output a developed method through the merge of Natural Language Processing techniques and classification algorithms with better performance on the data. At the end, the proposed method is assessed comparatively with the current categorization done to conclude if our proposal really improves the Incident Management Process and which are the advantages brought by the automation.
De forma a acompanhar o crescimento da quantidade de incidentes criados no diaa-dia de uma organização, houve a necessidade de aumentar a quantidade de recursos, de maneira a assegurar a gestão de todos os incidentes. A gestão de incidentes é composta por várias atividades, sendo uma delas, a categorização de incidentes. Através da junção de técnicas de Linguagem Natural e Processamento de Texto e de Algoritmos de Aprendizagem Automática propomos melhorar esta atividade, especificamente o Processo de Gestão de Incidentes. Para tal, propomos a substituição do subprocesso manual de Categorização inerente ao Processo de Gestão de Incidentes por um subprocesso automatizado, sem qualquer interação humana. A dissertação tem como objetivo propor uma solução para categorizar corretamente e automaticamente incidentes. Para tal, temos dados reais de uma organização, que devido a questões de privacidade não será mencionada ao longo da dissertação. Os datasets são compostos por incidentes corretamente categorizados o que nos leva a aplicar algoritmos de aprendizagem supervisionada. Pretendemos ter como resultado final um método desenvolvido através da junção das diferentes técnicas de Linguagem Natural e dos algoritmos com melhor performance para classificar os dados. No final será avaliado o método proposto comparativamente à categorização que é realizada atualmente, de modo a concluir se a nossa proposta realmente melhora o Processo de Gestão de Incidentes e quais são as vantagens trazidas pela automatização.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/17585
Thesis identifier: 202133869
Designation: Mestrado em Engenharia Informática
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
acessibilidade
File Description SizeFormat 
master_sara_teixeira_silva.pdf1.06 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.