Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/16104
acessibilidade
Title: Fully kinetic large-scale simulations of the collisionless magnetorotational instability
Authors: Inchingolo, G.
Grismayer, T.
Loureiro, N. F.
Fonseca, R. A.
Silva, L. O.
Keywords: Accretion
Accretion disks
Instabilities
Agnetic reconnection
Plasmas
Turbulence
Issue Date: 2018
Publisher: IOP Publishing Ltd
Abstract: We present two-dimensional particle-in-cell simulations of the fully kinetic collisionless magnetorotational instability (MRI) in weakly magnetized (high ?) pair plasma. The central result of this numerical analysis is the emergence of a self-induced turbulent regime in the saturation state of the collisionless MRI, which can only be captured for large enough simulation domains. One of the underlying mechanisms for the development of this turbulent state is the drift-kink instability (DKI) of the current sheets resulting from the nonlinear evolution of the channel modes. The onset of the DKI can only be observed for simulation domain sizes exceeding several linear MRI wavelengths. The DKI and ensuing magnetic reconnection activate the turbulent motion of the plasma in the late stage of the nonlinear evolution of the MRI. At steady-state, the magnetic energy has an MHD-like spectrum with a slope of k ?5/3 for k? < 1 and k ?3 for sub-Larmor scale (k? > 1). We also examine the role of the collisionless MRI and associated magnetic reconnection in the development of pressure anisotropy. We study the stability of the system due to this pressure anisotropy, observing the development of mirror instability during the early-stage of the MRI. We further discuss the importance of magnetic reconnection for particle acceleration during the turbulence regime. In particular, consistent with reconnection studies, we show that at late times the kinetic energy presents a characteristic slope of epsilon ?2 in the high-energy region.
Description: WOS:000434264500003
Peer reviewed: yes
URI: http://hdl.handle.net/10071/16104
https://ciencia.iscte-iul.pt/id/ci-pub-48585
DOI: 10.3847/1538-4357/aac0f2
ISSN: 0004-637X
Appears in Collections:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
acessibilidade
File Description SizeFormat 
Inchingolo_2018_ApJ_859_149.pdf3.24 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.