Skip navigation
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/15297
acessibilidade
Title: A text-mining based model to detect unethical biases in online reviews: a case-study of Amazon.com
Authors: Costa, Ana Rebello de Andrade da
Orientador: Guerreiro, João
Moro, Sérgio
Keywords: Online reviews
Text mining
Sentiment analysis
VADER
Comércio eletrónico
Criação de valor
Text mining
Satisfação do cliente
Issue Date: 7-Nov-2017
Citation: COSTA, Ana Rebello de Andrade da - A text-mining based model to detect unethical biases in online reviews: a case-study of Amazon.com [Em linha]. Lisboa: ISCTE-IUL, 2017. Dissertação de mestrado. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/15297>.
Abstract: The rapid growth of social media in the last decades led e-commerce into a new era of value co-creation between the seller and the consumer. Since there is no contact with the product, people have to rely on the description of the seller, knowing that sometimes it may be biased and not entirely truth. Therefore, reviewing systems emerged in order to provide more trustworthy sources of information, since customer opinions may be less biased. The problem was, once sellers realized the importance of reviews and their direct impact on sales, the need to control this key factor arose. One of the methods developed was to offer customers a certain product in exchange for an honest review. However, in the light of the results of some studies, these "honest" reviews were proved to be biased and skew the overall rating of the product. The purpose of this work is to find patterns in these incentivized reviews and create a model that may predict whether a new review is biased or not. To study this subject, besides the sentiment analysis performed on the data, some other characteristics were taken into account, such as the overall rating, helpfulness rate, review length and the timestamp when the review was written. Results show that some of the most significant characteristics when predicting an incentivized review are the length of a review, its helpfulness rate and the overall polarity score, calculated through VADER algorithm, as the most important sentiment-related factor.
O rápido crescimento das redes sociais nas últimas décadas levaram o comércio electrónico a uma nova era de co-criação de valor entre o vendedor e o consumidor. Uma vez que não há contacto com o produto, os clientes têm de se basear na descrição do vendedor, mesmo sabendo que por vezes tal descrição pode ser tendenciosa e não totalmente verdadeira. Deste modo, surgiu um sistema de reviews com o propósito de disponibilizar um meio de informação de maior confiança, uma vez que se trata de partilha de informação entre clientes e por isso mais imparcial. No entanto, quando os vendedores se aperceberam da importância das "reviews" e o seu impacto direto nas vendas, surgiu a necessidade de controlar este fator chave. Uma das formas de o fazer foi através da oferta de determinados produtos em troca de "reviews" honestas. Contudo, à luz dos resultados de alguns estudos, foi demonstrado que estas "reviews" "honestas" são tendenciosas e enviesam a classificação geral do produto. O objetivo deste estudo foi o de encontrar padrões na forma como estas "reviews" incentivadas são escritas e criar um modelo para prever se uma determinada review seria enviesada. Para esta análise, além da análise de sentimentos realizada sobre os dados, outras características foram tidas em conta, tal como a classificação geral, a taxa de "helpfulness", o tamanho da "review" e a hora a que foi escrita. Os modelos gerados mostraram que as características mais importantes na previsão de parcialidade numa "review" são o tamanho e a taxa de utilidade e como característica sentimental mais relevante a pontuação geral da "review", calculada através do algoritmo VADER.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/15297
Thesis identifier: 201760517
Designation: Mestrado em Informática e Gestão
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
acessibilidade
File Description SizeFormat 
ana_andrade_costa_diss_mestrado.pdf2.31 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.