Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/14584
acessibilidade
Title: Credit scoring: uma metodologia de gestão para a prevenção e redução do crédito malparado
Other Titles: Credit scoring: a management methodology for the prevention and reduction of bad credit
Authors: Batista, António Manuel Sarmento
Orientador: Gonçalves, Carlos
Curto, J. Dias
Keywords: Gestão empresarial
Risco de crédito
Metodologia de gestão
Métodos estatísticos
Redução de custos
Credit scoring
Credit of doubtful collection
Revolving credit
Issue Date: 11-Dec-2009
Citation: BATISTA, António Manuel Sarmento - Credit scoring: uma metodologia de gestão para a prevenção e redução do crédito malparado [Em linha]. Lisboa: ISCTE-IUL, 2009. Tese de doutoramento. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/14584>.
Abstract: O crescimento do crédito malparado ou crédito de cobrança duvidosa tem merecido das instituições financeiras uma atenção permanente na melhoria do controlo do risco de crédito. Este controlo visa regular a concessão de crédito segundo práticas que minimizem a probabilidade de incumprimento. Quando a gestão do risco de crédito adopta políticas de crédito mais liberais, a probabilidade de ocorrerem créditos de cobrança duvidosa aumenta. Uma parte do crédito malparado converte-se em incobrável, provocando prejuízos avultados. A constatação deste problema há muito que foi reconhecida e consagrada pelo Acordo de Basileia II (Anexo 1) que entre várias recomendações sugeriu aos Bancos formas mais rigorosas de controlar o risco de crédito. Segundo o European Payment Index (Anexo 3) o risco de pagamento na Europa evidenciou em 2008 um agravamento dos incobráveis, situando-se em 2% do total do crédito concedido. De acordo com este estudo, “Portugal, Grécia e Chipre são os países onde se demora mais tempo a pagar” (EPI 2008, p.4, Anexo 3). Para mitigar este problema têm sido propostas diversas práticas, entre elas a quantificação probabilística do incumprimento traduzida por uma pontuação de risco, cuja identificação na gíria do discurso financeiro se designa por scoring ou credit scoring. Neste contexto, o objectivo deste estudo é identificar factores explicativos capazes de prever a probabilidade de um devedor ser no futuro um Bom ou Mau pagador e avaliar a robustez preditiva do modelo utilizado para este efeito. O projecto de investigação incidiu sobre o crédito ao consumo tendo a identificação daqueles factores explicativos sido feita através da utilização de uma base de dados de 4000 utilizadores de cartões de crédito, cujos hábitos de pagamento se conhecem a priori. A metodologia de investigação empírica seguida neste projecto consistiu na aplicação do modelo de regressão logística binária aos dados em análise, por ser especialmente adequado ao estudo em causa e devido à sua simplicidade. A identificação dos factores explicativos (atributos) mais relevantes foi realizada através do método iterativo forward stepwise (Likelihood Ratio) e que consiste em seleccionar entre as variáveis independentes aquelas cuja capacidade preditiva do comportamento de Bom ou Mau pagador é estatisticamente significativa. A presente tese está estruturada em cinco capítulos: o Capítulo 1 faz a introdução da investigação; o Capítulo 2 trata a Revisão da Literatura; o Capítulo 3 descreve o referencial metodológico; o Capítulo 4 apresenta os resultados da metodologia aplicada; e o Capítulo 5 fecha o estudo com conclusões, contribuições esperadas e sugestões.
The increasing of bad debts or credits of doubtful collection has deserved a constant attention from financial institutions in order to improve credit risk control. This control aim to guide credit granting process in accordance with practices that can minimize the probability default (PD). When credit risk management reduces the appraisal risk methods the probability to get more credits of doubtful collections increases. Part of bad debts turns into loans loss provoking huge damages to lenders. The observation of such problem was recognized by Basel II Accord (Attached 1) who among several recommendations, was suggested to Banks to be more accurate in credit granting process and its risk control. According to European Payment Index (Attached 3) the non-payment risk in Europe shown in 2008 an increase of loans losses getting 2% of total credit granting. In that survey “Portugal, Greece and Cyprus are the countries where it (payment) take longest to be paid…” (EPI 2008, p.4, Attached 3). The mitigation of this problem will apply on several practices among them the quantification of a probability default translated by a risk measure, whose identification among financial institutions is known by scoring or credit scoring. In this particular context, the aim of this study is to identify explanatory factors which are able to predict the likelihood of a borrower to be in a near future a Good or Bad payer and to evaluate the predictive robustness of the model used in this application. The research project was focused on consumer credit segment and the identification of above explanatory factors was made through 4000 credit card users data base, whose payment behavior is a priori known. The research methodology followed in this project lay in the application of the binary logistic regression model once this is especially suitable to this study and also due to its simplicity. The identification of the explanatory factors (attributes) has been carried out by forward stepwise (Likelihood Ratio) iterative method. This consists in selecting among the independent variables the most powerful predictive attribute, adding afterwards the following attributes according to their predictive power until no more attributes under certain level of significance were found. The study comprises five chapters: Chapter 1 introduces the subject of the research presenting a review of the work done; Chapter 2 shows the Literature Review presenting some researches using statistical methods on credit scoring methodology; Chapter 3 describes the state of the art of credit scoring processes; Chapter 4 presents the Results of the study and the applied methodology; Chapter 5 makes the Conclusions and Suggestions for further woks. The second part is divided into two chapters dealing with the empirical side: the fourth chapter reports the way how the data was collected, how this was analyzed and transformed in order to be integrated in the statistical model; the fifth chapter deals with the application of logistic regression algorithm in the in-sample set data and a holdout sample was used as a final test of model performance
Description: Classificação JEL: G17, G21, G32 e C13.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/14584
ISBN: 978-989-8876-98-0
Designation: Doutoramento em Gestão Empresarial Aplicada
Appears in Collections:T&D-TD - Teses de doutoramento

Files in This Item:
acessibilidade
File Description SizeFormat 
Tese Doutoramento Antonio MS Batista.pdf1.48 MBAdobe PDFView/Open
PhD Antonio MS Batista Eng.pdf.pdf2.21 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.