Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/13040
acessibilidade
Title: Análise de sentimento em microblogues com base em cascatas de classificacao
Authors: Rebelo, Fernando Manuel Dias
Orientador: Batista, Fernando Manuel Marques
Ribeiro, Ricardo Daniel Santos Faro Marques
Keywords: Arquitetura de computadores
Algoritmo de aprendizagem
Regressão logística
Rede social
Blogs
Cascatas de classificação
Aprendizagem automática
Analise de sentimento
WEKA
Classification cascades
Machine learning
Sentiment analysis
Issue Date: 2016
Citation: REBELO, Fernando Manuel Dias - Análise de sentimento em microblogues com base em cascatas de classificacao [Em linha]. Lisboa: ISCTE-IUL, 2016. Dissertação de mestrado. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/13040>.
Abstract: Esta dissertação descreve uma plataforma de classificação que permite utilizar e aplicar classificadores binários em cascata. A plataforma utiliza algoritmos de aprendizagem automática existentes no software WEKA que disponibiliza uma API para esse efeito, tendo sido testada na classificação de sentimento de tweets e blogues. Esta plataforma permitiu também analisar e comparar diferentes cascatas de classificação com os classificadores Naive Bayes, Regressão Logística e Support Vector Machines que implementa o algoritmo Sequential Minimal Optimization para otimização da fase de treino. Neste caso de estudo foram exploradas várias arquiteturas de classificação com um máximo de três níveis, combinando diversos classificadores binários, para classificação em quatro e seis classes. Como entrada para os classificadores, foram extraídas características de cada um dos documentos e utilizados léxicos de polaridade associados às palavras. Em geral, as arquiteturas que utilizam Support Vector Machines obtêm os melhores resultados. Os diferentes classificadores obtêm os seus melhores resultados com diferentes arquiteturas.
This thesis describes a classification platform that enables to use and apply binary classifiers in cascade. The platform uses existing machine learning algorithms from WEKA software that provides an API for this purpose, having been tested in sentiment classification of tweets and blogs. This platform allowed also to analyze and compare different classification cascades with the classifiers Naive Bayes, Logistic Regression and Support Vector Machines which implements the Sequential Minimal Optimization algorithm to optimize the training phase. In this case study were explored various classification architectures with a maximum of three levels, combining different binary classifiers for classification in four and six classes. As input for the classifiers, were extracted characteristics of each of the documents and utilized polarity lexicons associated to the words. In general, architectures based on Sequential Minimal Optimization get the best results. The different classifiers get their best results with different architectures.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/13040
Thesis identifier: 201542340
Designation: Mestrado em Engenharia Informática
Appears in Collections:T&D-DM - Dissertações de mestrado



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.