Skip navigation
User training | Reference and search service

Library catalog

Content aggregators
Please use this identifier to cite or link to this item:

Title: Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
Authors: Moro, S.
Rita, P.
Vala, B.
Keywords: Social networks
Social media
Data mining
Knowledge extraction
Sensitivity analysis
Brand building
Issue Date: 2016
Publisher: Elsevier
Abstract: This study presents a research approach using data mining for predicting the performance metrics of posts published in brands' Facebook pages. Twelve posts' performance metrics extracted from a cosmetic company's page including 790 publications were modeled, with the two best results achieving a mean absolute percentage error of around 27%. One of them, the "Lifetime Post Consumers" model, was assessed using sensitivity analysis to understand how each of the seven input features influenced it (category, page total likes, type, month, hour, weekday, paid). The type of content was considered the most relevant feature for the model, with a relevance of 36%. A status post captures around twice the attention of the remaining three types (link, photo, video). We have drawn a decision process flow from the "Lifetime Post Consumers" model, which by complementing the sensitivity analysis information may be used to support manager's decisions on whether to publish a post.
Peer reviewed: yes
DOI: 10.1016/j.jbusres.2016.02.010
ISSN: 0148-2963
Accession number: WOS:000378953200013
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica
CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
2016_JBR.pdfVersão Editora1.22 MBAdobe PDFView/Open    Request a copy

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.