Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/10505
Registo completo
Campo DCValorIdioma
dc.contributor.authorBaleia, J.-
dc.contributor.authorSantana, P.-
dc.contributor.authorBarata, J.-
dc.date.accessioned2016-01-04T12:30:38Z-
dc.date.available2016-01-04T12:30:38Z-
dc.date.issued2015-
dc.identifier.issn0921-0296-
dc.identifier.urihttp://hdl.handle.net/10071/10505-
dc.description.abstractThis article presents a method for online learning of robot navigation affordances from spatiotemporally correlated haptic and depth cues. The method allows the robot to incrementally learn which objects present in the environment are actually traversable. This is a critical requirement for any wheeled robot performing in natural environments, in which the inability to discern vegetation from non-traversable obstacles frequently hampers terrain progression. A wheeled robot prototype was developed in order to experimentally validate the proposed method. The robot prototype obtains haptic and depth sensory feedback from a pan-tilt telescopic antenna and from a structured light sensor, respectively. With the presented method, the robot learns a mapping between objects' descriptors, given the range data provided by the sensor, and objects' stiffness, as estimated from the interaction between the antenna and the object. Learning confidence estimation is considered in order to progressively reduce the number of required physical interactions with acquainted objects. To raise the number of meaningful interactions per object under time pressure, the several segments of the object under analysis are prioritised according to a set of morphological criteria. Field trials show the ability of the robot to progressively learn which elements of the environment are traversable.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relationLISBOA-01-0202-FEDER-024961-
dc.rightsopenAccesspor
dc.subjectAutonomous robotseng
dc.subjectSelf-supervised learningeng
dc.subjectAffordanceseng
dc.subjectTerrain assessmenteng
dc.subjectDepth sensingeng
dc.subjectTactile sensingeng
dc.titleOn exploiting haptic cues for self-supervised learning of depth-based robot navigation affordanceseng
dc.typearticle-
dc.pagination455 - 474-
dc.publicationstatusPublicadopor
dc.peerreviewedyes-
dc.journalJournal of Intelligent and Robotic Systems-
dc.distributionInternacionalpor
dc.volume80-
dc.number3-
degois.publication.firstPage455-
degois.publication.lastPage474-
degois.publication.issue3-
degois.publication.titleOn exploiting haptic cues for self-supervised learning of depth-based robot navigation affordanceseng
dc.date.updated2019-03-26T17:27:42Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/s10846-015-0184-4-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-23051-
iscte.alternateIdentifiers.wosWOS:000363981000009-
iscte.alternateIdentifiers.scopus2-s2.0-84945460924-
Aparece nas coleções:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
J_Intellligent_Robotic.pdfPós-print1,01 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.