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1. Motivation

Nowadays, fiscal policy is usually accompanied by legislation and implementa-

tion lags. These lags create a non-negligible span of time between the announce-

ment and effective date of a fiscal policy change. This gives individuals in the

economy the opportunity to anticipate the tax changes. The economic literature

denotes this aspect of fiscal policy either anticipated fiscal policy or fiscal fore-

sight. From our reading, those two terms are equivalents and will be used as

such.1

When agents anticipate, their resulting actions may to some extent depend

on the way they form expectations about the future. The standard assumption

of expectations in economics is perfect-foresight / rational expectations (RE).

This assumption might be questioned. One prominent deviation of RE that

imposes weaker requirements on the agent’s information set when making his

decisions, is the learning literature (see Evans and Honkapohja (2001) for the

foundations of this approach). The main idea is that agents form expectations

about future values of variables they cannot observe by engaging in a kind of

statistical inference when making their economic choices.

Although the learning approach has gained significant popularity in some

areas of macroeconomics, anticipated fiscal policy has, until recently, been ne-

glected. A pioneering contribution to the study of the consequences of antici-

pated fiscal policy when agents learn factor prices, has been made by Evans et al.

(2009). They demonstrate the adaptive constant gain learning approach in sev-

eral deterministic economic environments, taking changes in lump-sum taxation

1Recently Leeper (2009, p.11ff.) has listed empirical evidence for fiscal foresight and reem-
phasized the relevance of expectations for sound fiscal policy. Furthermore, Leeper et al. (2009)
is another good example of empirical evidence of fiscal foresight. Therein they also demonstrate
the challenges for econometricians that aim to quantify the impact of fiscal policy actions and
at the same time account adequately for fiscal foresight.
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as an example. The choice of a constant gain therein is motivated by the fact

that fiscal policy moves may state structural change. First Evans et al. (2009,

p.932ff.) consider permanent, temporary and repeated tax changes in an endow-

ment economy with a balanced-budget policy. The core message of their results

is that under learning, anticipated fiscal policy changes have instant effects on

key variables as in the perfect foresight case, but the transition paths are remark-

ably different from the latter. This result, at least with regard to the volatility

of key variables’ time paths may not come as a surprise. It is well known that

constant gain learning causes excess volatility compared to the case of RE (see

Evans and Honkapohja (2001, p.49) for an illustration). Thereafter, Evans et al.

(2009, p.941ff.) turn attention to the scenario of debt financing of anticipated

fiscal policy changes and find that, given agents understand the structure of gov-

ernment financing but have to forecast factor-prices on decentralized markets,

the so-called “near Ricardian equivalence” holds under learning. Finally, Evans

et al. (2009, p.943ff.) introduce the adaptive learning approach to the basic Ram-

sey model. For an anticipated balanced-budget permanent tax change they once

more confirm that under learning the time paths of key variables are strikingly

different from their perfect foresight counterparts.

In subsequent work, Evans et al. (2010) focus on Ricardian equivalence in

the basic Ramsey model with anticipated fiscal policy under learning. Most

important, Evans et al. (2010, p.8ff.) formally proof that the assumption of RE

is not necessary for the classic Ricardian equivalence result. Furthermore, Evans

et al. (2010, p.10ff.) provide new departures from the Ricardian equivalence

proposition. First, if government expenditures are endogenous, i.e. depend on

a fiscal rule, then Ricardian equivalence holds only under RE but fails under

learning. Second, Ricardian equivalence breaks down, if the expected interest
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rates depend on changes in the level of public debt.

Building on the contribution of Evans et al. (2009), we aim to generalize their

analysis of anticipated fiscal policy under learning into an economy featuring

distortionary taxes and elastic labour supply. Thus, our theoretical key contri-

bution is to derive the dynamic paths of key variables for permanent changes in

distortionary taxes in a deterministic version of the prominent Ramsey model.

In addition, our second key contribution is to numerically examine fiscal policy

reforms, in the presence of several tax instruments.

Note that there are fundamental differences between lump-sum taxation and

distortionary taxation: a labour income tax under inelastic labour supply does

not affect household margins and therefore causes no distortion, but under elastic

labour supply the labour income tax affects the intra-temporal choice between

consumption and leisure of the household and may cause an intra-temporal dis-

tortion. Next, a capital income tax has the potential to cause up to two types

of distortion. First, the capital income tax in any case affects the inter-temporal

household Euler equation. In case of elastic labour supply, the capital income

tax also affects the intra-temporal choice between consumption and leisure of the

household due to its distortion of the consumption choice. Finally, a consump-

tion tax may also cause an inter-temporal distortion by affecting the household

Euler equation, but there is an important difference compared to capital income

taxation. The consumption tax affects the price of consumption in both periods

considered in the household Euler equation whereas the capital income tax al-

ways affects only the price of next period’s consumption in the household Euler

equation. Loosely speaking, a consumption tax can distort consumption and in-

vestment decision via the household’s Euler equation, only when it is changed,

i.e. time-varying, whereas a capital income tax always causes distortions in the
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Ramsey economy. Thus, we may expect that the dynamics of the economy for

a capital income tax reform may be fundamentally different from the economic

dynamics for a consumption tax reform.2

Furthermore, the assumption of elastic labour supply implies that endogenous

variables such as factor prices as well as employment and consumption are not

predetermined as in Evans et al. (2009, p.943ff.) or in Evans et al. (2010), but

determined simultaneously in each period.

Next to the analytical derivations, we also calibrate our model and calculate

welfare consequences for several policy experiments under perfect foresight as well

as under learning. For this purpose, we make use of the welfare measure proposed

by Lucas (1990) and also applied by Cooley and Hansen (1992) (for discrete time),

which takes into account the whole transition path between the initial and new

steady-states associated with initial and changed tax rates. Thus, putting it

differently, we ask, to what extent the excess volatility caused by constant gain

learning affects the well-being of households compared to the perfect foresight

case. Using such a measure of welfare consequences, may even allow comparison

of results for learning dynamics to previous studies such as Lucas (1990), Cooley

and Hansen (1992) or Garcia-Milà et al. (2010). All these studies evaluate and

rank various distortionary tax reforms according to their welfare consequences

under perfect foresight, but do not consider the case of learning.

Our main results are as follows. When we assume that agents use adaptive

learning rules to forecast factor prices, our model predicts oscillatory dynamic

responses to anticipated permanent tax changes. The source of the oscillations

are expectational errors. In addition, policy experiments indicate that these

2Note that a consumption tax may also be a desirable subject of study, as it has special
stability properties. See Giannitsarou (2007) for the details.

4



volatile responses may have a major impact on the welfare consequences of tax

reforms. In particular we consider experiments that improve welfare but do so to

a much lower extent under learning compared to perfect foresight.

Note that our approach links the learning literature to that part of the public

finance literature that is concerned with the welfare consequences of different

types of taxation. See Chamley (1981) for an example of a comparative statics

analysis or Judd (1987) for differences in unanticipated and anticipated changes

in factor taxes. In addition, there have been studies in stochastic set-ups, like

Cooley and Hansen (1992). With regard to the implementation of anticipated

optimal fiscal policy an example is Domeij and Klein (2005) or its extension

for public goods and capital by Trabandt (2007). Moreover, Garcia-Milà et al.

(2010) have recently conducted research on welfare consequences of fiscal policy

experiments in the spirit of Cooley and Hansen (1992) in a heterogeneous agents

model.

The remainder of the paper is organized as follows. In Section 2 we outline the

economic model, derive optimality conditions and detail our approach of learning.

Section 3 compares the dynamics with and without elastic labour supply for the

case of lump-sum tax changes. This section also provides sensitivity analysis for

some structural parameters. In Section 4 we consider changes in distortionary

taxation and present a numerical welfare analysis of selected policy experiments.

Section 5 concludes and points out directions for further research.

2. The Model

Our economy is a version of the Ramsey economy outlined in detail in Ljungqvist

and Sargent (2000, p.305ff.). The capital stock kt evolves according to the
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economy-wide resource constraint

kt+1 = F (kt, nt)− ct − gt + (1− δ)kt, (1)

where F (kt, nt) is the economy’s production function (equalling output) showing

that the firm sector uses capital kt and labour nt as inputs to produce the single

good of the economy (see Section 2.2 for the details). Output can either be

consumed by households (ct) or the government (gt) or added to the capital

stock. Capital is assumed to depreciate at a constant rate δ.

2.1. Households

With regard to the household sector, we assume a continuum of households,

where we normalize the size of the economy to unity and each household faces

the problem

max
ct,nt

E∗t

{
∞∑
t=0

βt
[
log(ct) + η log(L̄− nt)

]}
(2)

s.t.

kt+1 +
bt+1

Rt

+ (1 + τ ct )ct = (1− τ lt )wtnt + (1− τ kt )rtkt + (1− δ)kt

+bt − τt + πt, (3)

where all variables are in per capita terms. Thus, the variable kt+1 denotes the

stock of capital in period t+ 1 and bt+1 is the level of government debt holdings

chosen in period t. Furthermore, rt is the rental rate of capital and Rt is the

gross real interest rate in period t. The level of consumption chosen in period t

is indicated by ct. Next, τ •t denotes a distortionary tax either on consumption,
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labour income or capital income3. The real wage in period t is given by wt and

lt = L̄−nt denotes leisure. In consequence, nt is labour supply of the household.

τt is a per capita lump-sum tax and πt = 0 is the profit under perfect competition

among firms. Furthermore, the parameter η ≥ 0 measures the elasticity of labour

supply and the parameter β is the common discount rate.

E∗t {•} denotes subjective period t expectations for future values of variables.

Households apply this operator, if they do not have perfect foresight.4 This as-

sumption is commonly used in the learning literature. Furthermore, note that we

abstract from aggregate uncertainty, i.e. we conduct our analysis in a determinis-

tic economy. Thus, if households do not have perfect foresight, their expectations

are so-called point expectations, i.e. agents base their economic choices on the

mean of their expectations, see Evans and Honkapohja (2001, p.61). In Sec-

tion 2.4 below we outline our concept of learning. An important aspect of this

concept is that forecasts of single variables are independent of each other. In

consequence, we can assume that for any two variables X and Y it is true that

E∗t {XY } = E∗t {X}E∗t {Y } holds.

Now, we detail the household’s decisions. Each household solves the La-

grangian

L = E∗t

∞∑
t=0

βt{log(ct) + η log(L̄− nt)

−λt[kt+1 +
bt+1

Rt

+ (1 + τ ct )ct − (1− τ lt )wtnt − (1− τ kt )rtkt − (1− δ)kt

−bt + τt]}

3We use the symbol • as a placeholder throughout our analysis.
4Recall that under perfect foresight agents fix their current and future choices once and for

all. This will no longer be the case under the assumption of learning, as we outline in what
follows.
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with first-order conditions

∂L
∂ct

: βt
{
c−1t − λt(1 + τ ct )

} !
= 0 (4)

∂L
∂kt+1

: βt {−λt}+ βt+1E∗t
{
λt+1

[
(1− δ) + (1− τ kt+1)rt+1

]} !
= 0 (5)

∂L
∂bt+1

: βt
{
−λtR−1t

}
+ βt+1E∗t {λt+1}

!
= 0 (6)

∂L
∂nt

: βt
{
−η(L̄− nt)−1 − λt[−(1− τ lt )wt]

} !
= 0. (7)

From (4) and (6) we get the household Euler condition

c−1t = βRtE
∗
t

{
c−1t+1

(1 + τ ct )

(1 + τ ct+1)

}
, (8)

(5) and (6) yield the no-arbitrage condition for capital and bonds

Rt =
[
(1− δ) + (1− E∗t

{
τ kt+1

}
)E∗t {rt+1}

]
, (9)

and from (4) and (7) we get the consumption leisure trade-off

nt = L̄− η(1 + τ ct )ct
(1− τ lt )wt

. (10)

2.2. Firms

In our economy, there is a unit continuum of firms who compete perfectly.

Each firm in each period t rents capital at given price rt and labour at given price

wt and produces the numeraire good with constant returns to scale production
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function

yt = F (kt, nt) = Akαt n
(1−α)
t (11)

where α ∈ (0, 1). The optimal firm behaviour requires that

rt
!

=
∂yt
∂kt

= Aαkα−1t n1−α
t , (12)

as well as

wt
!

=
∂yt
∂nt

= A(1− α)kαt n
−α
t , (13)

i.e. each production factor earns its marginal product. Finally, we have the per

capita national income identity

yt = rtkt + wtnt,

πt = yt − rtkt − wtnt = 0, (14)

which means zero profits, as one can expect from perfect competition.

2.3. Government

The government finances its expenses on goods and debt repayment by tax

revenues and the issuance of new bonds in each period t

gt + bt = τ ct ct + τ ltwtnt + τ kt rtkt + τt +
bt+1

Rt

.

For the remainder, we will assume that the government operates a balanced-

budget rule in each period t, thus tax revenues will fully cover expenses such that
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bonds are in zero net supply as a direct consequence. Thus the government sets

gt, τ
c
t , τ

l
t , τ

k
t and τt constrained by

gt = τ ct ct + τ ltwtnt + τ kt rtkt + τt (15)

in each period t.

2.4. Learning

Now, we aim to detail our concept of learning that was elaborated in Evans

et al. (2009, p.943ff.). For completeness we restate the crucial assumptions on

learning. Under learning, households are supposed to know the entire history of

endogenous variables. They observe the current period value of exogenous vari-

ables and they know the state variables. Furthermore, they know the structure

of the economy with regard to the fiscal policy sector. Agents understand the im-

plications of the announced policy change for the government budget constraint.

They are also convinced that the intertemporal government budget constraint

will always hold (see Evans et al. (2009, p.944)). It is decentralized markets for

labour and capital, where agents are not in possession of perfect foresight. Ac-

tual factor prices are not observable. Thus, agents forecast factor prices such as

interest rates and wages ret+j(t), w
e
t+j(t), j ≥ 1, by making use of constant-gain

steady-state adaptive learning rules5

ret+j(t) = re(t) and wet+j(t) = we(t), (16)

5Here we apply the same short-hand notation as Evans et al. (2009). Thus for any variable
say z, its period t expected future value in period t + j derived by a learning rule may either
be denoted E∗

t {zt+j} or equivalently zet+j(t). An additional notation we introduce is zpt+j(t)
which denotes the agent’s planned choice of the variable z in period t + j based on expected
values formed via the learning rule in period t.
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where

re(t) = re(t− 1) + γ(rt−1 − re(t− 1))

(17)

we(t) = we(t− 1) + γ(wt−1 − we(t− 1)),

where 0 < γ ≤ 1 is the gain parameter.6 Our choice of this specific learning rule is

motivated by two well known arguments in the learning literature. First, as Evans

and Honkapohja (2001, p.332) outline, choosing a constant gain learning rule is

the appropriate choice for agents, when they are aware of structural change, as in

such a learning rule agents discount past data exponentially. Note that rules (17)

are equivalent to re(t) = γ
∑∞

i=0(1−γ)irt−i−1 and we(t) = γ
∑∞

i=0(1−γ)iwt−i−1.
7

Second, the timing of the learning rule, i.e. that agents’ update in period t uses

data up to period t−1, is chosen in order to avoid simultaneity between re(t) and

rt as well as we(t) and wt (see for example Evans and Honkapohja (2001, p.51)).

Think of simultaneity in this context as a situation in which agents’ expectations

affect current values of aggregate endogenous variables and vice versa, which may

potentially introduce some strategic behaviour.

Such a learning rule yields a sequence of so-called temporary equilibria, which

consist of sequences of (planned) time paths for all endogenous variables. These

sequences satisfy the learning rule above, the expectation history, household and

firm optimality conditions, the government budget constraint and the economy-

6The gain parameter measures the responsiveness of the forecast to new observations, see
Evans and Honkapohja (2001, p.18). Be aware that in our model the gain parameter is ex-
ogenous. See Branch and Evans (2007) for a recent example where agents can choose the gain
parameter.

7Time series analysts may recognize that the learning rules are similar to a exponential
smoothing method.
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wide resource constraint given the exogenous variables as well as the current stock

of capital in each period. These plans are revisited and potentially altered in each

period after expectations have been updated.

3. Base Case: Lump-Sum Tax

Before pursuing our core issue, i.e. the case of distortionary taxation, we

would like to illustrate the applied methodology for the case of lump-sum taxation

for two reasons: first, we want to illustrate the consequences of the introduction of

elastic labour supply compared to the case of inelastic labour supply as assumed

in Evans et al. (2009, p.943ff.) and its effect on the dynamic paths of the key

variables such as consumption and capital, given their calibration (see Table 1

below); second, below in Subsection 3.2, we aim to present a sensitivity analysis

for the very basic version of the model under examination.

Let us now derive the dynamic paths under learning for an anticipated lump-

sum tax change. Consequently we assume all other types of taxation away, i.e.

τ ct = τ lt = τ kt = 0. The Euler equation (8) is standard

c−1t = β(cpt+1(t))
−1 [(1− δ) + ret+1(t)

]
and forward substitution of this yields

cpt+j(t) = βjDe
t,t+j(t)ct, (18)

where we define De
t,t+j(t) ≡ Πj

i=1[(1− δ) + ret+i(t)]. One can think of this term as

“expectations of the interest rate factor Dt,t+j at time t” (see Evans et al. (2009,
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p.933)). Next, we notice that the consumption leisure trade-off in this case is

nt = L̄− ηct
wt
. (19)

Given the adequate transversality condition for capital8

lim
T 7→∞

(
De
t,t+T (t)

)−1
kpt+T+1(t) = 0, (20)

the inter-temporal budget constraint of the consumer is

ct +
∞∑
j=1

1

De
t,t+j(t)

cpt+j(t) = [(1− δ) + rt]kt + wtnt − τt

+
∞∑
j=1

1

De
t,t+j(t)

[
wet+j(t)n

p
t+j(t)− τ et+j(t)

]
,

which by the virtue of (18) and (19) yields

ct
(1 + η)

(1− β)
= [(1− δ) + rt]kt + wtL̄− τt

+
∞∑
j=1

1

De
t,t+j(t)

wet+j(t)L̄︸ ︷︷ ︸
≡SW1

−
∞∑
j=1

1

De
t,t+j(t)

τ et+j(t)︸ ︷︷ ︸
≡ST1

. (21)

Equations (12) and (13) hold for firms. Finally, government faces the constraint

gt = τt (22)

in each period t and the economy-wide resource constraint is given by (1).

We now need to think about the policy experiment we will study. We are

looking at a scenario of a credible permanent change in taxes announced at the

8Note that agents plan to satisfy this condition.
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outset of period t = 1 and effective from period t = Tp onwards. In particular a

tax change from τ0 to τ1 at some point in time Tp. The dynamics under perfect

foresight are standard.9 Under learning we can directly follow Evans et al. (2009,

p.943ff.). The crucial step is to calculate the infinite sums on the right-hand side

of (21), i.e. SW1 and ST1. Directly following the appendix in Evans et al. (2009,

p.951ff.) we calculate

SW1 =
we(t)L̄

re(t)− δ
. (23)

With regard to ST1, we have10

ST1 =
τ0

re(t)− δ
+ (τ1 − τ0)

[(1− δ) + re(t)]t−Tp

1− [(1− δ) + re(t)]−1
(24)

for 1 ≤ t < Tp and

ST1 =
τ1

re(t)− δ
. (25)

for t ≥ Tp. From (21) follows that we have

ct =
(1− β)

(1 + η)
{[(1− δ) + rt]kt + wtL̄− τ0 +

we(t)L̄

re(t)− δ

− τ0
re(t)− δ

− (τ1 − τ0)
[(1− δ) + re(t)]t−Tp

1− [(1− δ) + re(t)]−1
} (26)

9Ljungqvist and Sargent (2000, p.305ff.) illustrate the analytical derivations and numerical
simulation alternatives for the perfect foresight case. We will simply make use of the DYNARE
toolbox throughout all calculations to compute dynamics under perfect foresight. Note that
this toolbox employs linearization methods.

10See Appendix A.2 for details on derivations and Appendix A.1 for an illustration of the
timing, which is relevant for all derivations.
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for 1 ≤ t < Tp and

ct =
(1− β)

(1 + η)

[
[(1− δ) + rt]kt + wtL̄− τ1 +

we(t)L̄

re(t)− δ
− τ1
re(t)− δ

]
(27)

for t ≥ Tp. Given a calibration, we can then compute the dynamics of consump-

tion and other endogenous variables.

3.1. Inelastic Labour Supply vs. Elastic Labour Supply

We believe that it is of importance to use a model that features elastic labour

supply in order to calculate welfare implications of fiscal policy reforms ade-

quately. Completely inelastic labour supply is a quite unrealistic assumption

itself and at least some moderately elastic labour supply should be considered.

Moreover, inelastic labour supply implies that agents’ choices of current period

endogenous variables are in fact predetermined as is pointed out in Evans et al.

(2009, p.944). In order to illustrate differences in the dynamics of endogenous

variables based on the assumption of inelastic and elastic labour supply, we

return to the simulation exercise of Evans et al. (2009, p.943ff.). Note that

τ ct = τ lt = τ kt = δ = 0 and η = 0 imply that nt = L̄ (i.e. inelastic labour supply)

for all t (see equation (19)). Therefore, we are exactly in the same scenario as in

Evans et al. (2009, p.943ff.). Although we do not fully agree with the calibration

of Evans et al. (2009), we will stick to their calibration in this subsection to keep

our results comparable. We will indicate, when we deviate from their calibration

later on. The basic reason for this disagreement is the combination of parame-

ters β = 0.95 and Tp = 20. These parameter choices imply that a government,

which in reality is usually in charge of a legislation period of four to six years,

may announce a tax policy change that will be effective in 20 years’ time. From

our perception of political execution and our confidence in fiscal policy makers’
15



ability to commit, this appears to be unrealistic in most cases.

For the moment, we calibrate the model according to Table 1 below.

Insert Table 1 here.

The policy experiment considered in Evans et al. (2009, p.943ff.) is a per-

manent increase in government purchases from g0 = τ0 = 0.9 to g1 = τ1 = 1.1

that is announced credibly in period t = 1 and will be effective from period

Tp = 20 onwards. It is assumed that the economy is in steady-state in period

t = 0. Simulations in Evans et al. (2009, p.943ff.) for consumption and capital

are recalculated (with η = 0, L̄ = 0.5182) and displayed in Figures 1(a) and 1(b)

below. Furthermore, Figures 1(c) and 1(d) exhibit the dynamics for elastic labour

supply with η = 2.00 and L̄ = 1.00, values that match n0 = 0.5182 and g0 = 0.9

in this set-up.11

Two distinct features emerge from Figure 1. First, when we compare the

dynamic paths of consumption (as well as capital) under perfect foresight and

learning, they are different from each other no matter with or without elastic

labour supply. Therefore, it may be quite important to consider learning when

evaluating fiscal policies as learning is a more realistic assumption of human

behaviour from our point of view.12 Second, obviously the learning paths in

Figures 1(a) and 1(b) for inelastic labour supply are strikingly different to the

ones under elastic labour supply in Figures 1(c) and 1(d). In particular, elastic

labour supply yields much more volatility in the time paths of consumption and

11Note that n0 = 0.5182 corresponds to 12.44 hours per day. This appears to be quite
unrealistic, but we choose those numbers in order to achieve comparable magnitudes in Figure
1 below.

12This is the core message of Evans et al. (2009).
16
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Figure 1: Consumption (a) and capital (b) dynamics under learning (solid curve)
and perfect foresight (dashed curve) with inelastic labour supply as in
Evans et al. (2009, p.943ff.) as well as consumption (c) and capital (d)
dynamics under learning (solid curve) and perfect foresight (dashed
curve) with elastic labour supply. The dotted horizontal line indicates
the (new) steady state, the dotted vertical line indicates period Tp.
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capital (as well as other variables in the model) compared to the inelastic labour

supply case. In fact, the variables oscillate around their steady-state until they

converge to it.

In our opinion, the reason for the significant differences in the dynamics under

learning between elastic and inelastic labour supply can be explained by consid-

ering the initial responses of variables to the anticipated policy change and its

consequences for the expectations formation process of agents in turn.

In Figure 1 the decline of current wealth due to an anticipated higher lump-

sum tax rate from date Tp onwards causes households to save more instantly

which results in an initial drop in consumption, which can be seen from (26).

Given elastic labour supply, this drop in consumption leads to a rise of labour

supply via (10). As the stock of capital is predetermined and cannot respond

instantly, the increase of labour supply clearly implies a rise in the rental rate

of capital and a fall in the real wage via (12)-(13). The capital stock in the

subsequent period will be larger due to (1).

Note that under learning the expectations about factor prices as specified in

(16)-(17) do not initially respond. This causes a difference between the factor

price and its expectation, i.e. an expectational error. Exactly this error triggers

the oscillating learning process that starts in the subsequent period.

Next, consider the algebra of the learning rule (16)-(17). Although, expecta-

tions of factor prices may hit the new steady-state value, the agent simply does

not realize that it is the new steady-state value. Furthermore, the learning rule

(16)-(17) forces the agent to update expectations in each period and the second

term in the learning rule (16)-(17) will not be zero. Put differently, there is

some persistence of expectational errors. Therefore, if expectations of a factor

price used to be above (below) the new steady-state, then after hitting the new
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steady-state, the expectations will be below (above) the new steady-state until

the learning rule (16)-(17) again forces the expectations to hit the new steady-

state. Note that when the expectations of a factor price hit the new steady-state

from above (below) they do so because the actual value of this factor price must

be below (above) the new steady-state at this moment. Thus, unlike in the per-

fect foresight case, the expectations of a factor price cannot stop evolving when

they reach the steady state. In sum, the persistence of expectational errors is the

fundamental reason for the oscillations. If the expectational errors diminish over

time, the economy will converge to the new steady-state as it is the case under

perfect foresight. Otherwise, we may observe explosive paths of the economy.

Now, one can perfectly explain the evolution of actual variables in the subse-

quent periods. Recall that households own capital. Given the rise in the rental

rate of capital in the initial period, the expectational error in the related learning

rule (16)-(17) is positive. Thus, the expected value of the rental rate of capital

increases after the update in the subsequent period. This causes households to

save even more and to consume even less compared to the previous period. Thus,

next periods capital stock will be larger and the actual rental-rate of capital will

be lower than in the current period.

In analogy, households supply labour and given the fall of the real wage in

the initial period, the expectational error in the related learning rule (16)-(17) is

negative. Thus, the expected value of the real wage decreases after the update

in the subsequent period. The lower expected real wage causes households to

supply even more labour compared to the previous period.

Notice that these movements in actual variables continue until the signs of

the expectational errors change. Then the movements of actual variables proceed

in the opposite directions. Furthermore, the evolution of these variables in turn
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explains the evolution of all remaining variables such as output.

In addition, inspection of (10) and (26) makes clear that the oscillations are

not caused by the assumption of elastic labour supply. When we assume inelastic

labour supply the initial drop in consumption is simply larger as in the case of

elastic labour supply. The result of the sensitivity analysis below underlines this

fact.

In order to sum up, under learning an anticipated tax change will cause ini-

tial responses in non-predetermined variables. These responses inevitably cause

expectational errors. The magnitude of the expectational errors is related to the

model assumptions such as (in-)elastic labour supply, the type of the tax that

is changed, the magnitude of the tax change or the implementation date. Small

expectational errors mean fast convergence and small oscillations, while large

expectational errors result in large oscillations or even divergence. With regard

to the example in Figure 1, we conclude that it is not the different assumption

about labour supply per se that causes the differences in the dynamics, but the

fact that expectational errors in the two cases are different.

3.2. Sensitivity Analysis

Compared to the previous literature on welfare evaluation of tax reforms, our

learning approach introduces two additional structural parameters. One is γ, the

gain parameter and a second one is Tp, the period, in which the pre-announced

tax change becomes effective. Therefore, we are interested in how these two

parameters affect the dynamic properties of the model.

3.2.1. Sensitivity Analysis for the Gain Parameter

No matter what calibration, one usually has to choose a gain parameter γ

in the adaptive learning literature. In this subsection we would therefore like
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to illustrate the consequences of different choices of the gain parameter. The

sole empirical estimate we are aware of is provided by Milani (2007, p.2074) for

quarterly frequency and is γ = 0.0183. This number indicates that agents use

approximately 1/γ ≈ 55 quarters of data. But a reason to be cautious to use

the estimate of Milani (2007, p.2074) is that it is based on a data set containing

output, inflation and the nominal interest rate, whereas in our setting agents

forecast the rental rate of capital and the real wage. Next, Milani (2007, p.2074)

mentions that for constant gain learning a range of γ ∈ [0.01, 0.03] is commonly

used. Evans and Honkapohja (2009, p.154) note a range of γ ∈ [0.01, 0.06] as

known estimates.

Below we will present sensitivity of the dynamics under learning for γ ∈

{0.01, 0.02, 0.05, 0.08, 0.10}. We do so for the original numerical analysis of Evans

et al. (2009, p.943ff.) (L̄ = 1.00, η = 0.00), as in this case, there is inelastic labour

supply and we can focus solely on the possible fluctuations introduced by varying

the gain parameter γ. Note that the two thick lines in Figures 2(a) and 2(b)

exactly replicate the Figures 8 and 9 in Evans et al. (2009, p.943ff.).

In Figure 2(a) we observe that the smaller the gain γ, the smaller the increase

in consumption until the period of the tax change Tp (after the initial drop). Fur-

thermore, as we recognize from Figure 2(b), the smaller the gain γ, the larger the

increase in capital accumulation until the period of the tax change Tp. However,

in both Figure 2(a) and 2(b), we observe that with decreasing γ the dynamics

fluctuate around the steady-state with increasing amplitude and it takes an in-

creasing number of periods to converge to the steady-state. These observations

are partly at odds with what Evans and Honkapohja (2001, p.332) report: “a

larger gain is better at tracking changes but at the cost of a larger variance”. In

our case it holds, that, the smaller the gain, the larger the volatility.
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Figure 2: Consumption (a) and capital (b) dynamics under learning and perfect
foresight with inelastic labour supply as in Evans et al. (2009, p.943ff.)
for alternating values of γ. The dotted horizontal line indicates the
(new) steady state, the dotted vertical line indicates period Tp.

Inspection of the learning rule (16)-(17) explains this fact. In the alternative

representation the term (1 − γ)i one can observe that the smaller the gain, the

stronger the discounting of past data. Thus, the more unimportant is past data

for agents expectation formation. One can also think of this as agents having more

confidence in their initial expectations. But, if these expectations are wrong, and

they have to be once a tax change occurs, then they have bigger errors over time

and need longer to learn the new steady-state.

Summing up, we find that for the parameter range considered in this sensi-

tivity analysis, the choice of the gain parameter γ is not crucial for the shape of

the dynamic response.

3.2.2. Sensitivity Analysis for the Implementation Date

Another issue that may be of interest is the implementation date Tp. As men-

tioned above a tax policy change that is going to be effective in 20 years time

appears to be unrealistic from our point of view. Therefore, we examine sensi-
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tivity of dynamics under learning for various implementation dates, in particular

Tp ∈ {3, 10, 20}. Figures 3(a) and 3(b) below display the results.
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Figure 3: Consumption (a) and capital (b) dynamics under learning with inelastic
labour supply as in Evans et al. (2009, p.943ff.) for alternating values
of Tp. The dotted horizontal line indicates the (new) steady state, the
dotted vertical line indicates period Tp = 20.

In Figure 3(a) we observe that the shorter the distance between the announce-

ment date and implementation date of the tax change, the higher the initial drop

in consumption and the lower the increase in consumption until the implemen-

tation date thereafter. Focusing on capital, in Figure 3(b) we observe that with

decreasing distance between the announcement date and implementation date of

the tax change, the level that capital reaches until the implementation date, is

also lower. Finally, for implementation in three years time, i.e. Tp = 3, learning

dynamics are not significantly different from Tp ∈ {10, 20}, but lower in scale.

Overall, we observe that the shorter the distance between announcement date

and implementation date of the tax change, the earlier the learning dynamics ap-

proach the steady-state, but, at least for the parameter range considered herein,

the nature of dynamics is not seriously affected.
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Thus, we learn that in the subsequent numerical analysis, next to the elasticity

of labour supply η (and the commonly known candidate parameters β and δ),

the choice of the gain parameter γ as well as the implementation date Tp may

also be crucial in achieving convergence on the one hand and determining the

magnitude of volatility of the dynamics on the other hand. But these choices

may not affect the general nature of the dynamics. Furthermore, our experience

with β and δ suggests that they strongly affect the scale of results, next to their

impact on convergence.

In order to summarize, there are three important insights from the analysis

above. First, there are at least qualitative differences between the case of inelas-

tic labour supply (η = 0) and elastic labour supply (η > 0). Therefore, if one

regards the latter assumption as more realistic, a model that allows for elastic

labour supply is a more appropriate framework to study anticipated fiscal policy

under learning. Second, our sensitivity analysis suggests that the choice of the

gain parameter γ and the implementation date Tp does not affect the nature of

transition paths so we consider ourselves free to choose any of the values consid-

ered in the sensitivity analysis.13 Finally and most notably, we observed at least

a qualitative difference in the dynamics under learning compared to the dynamics

under perfect foresight. The former appear to be much more volatile than the

latter. This stylized fact, from our point of view, justifies the quantification and

comparison of welfare cost of anticipated fiscal policy reforms under learning and

under perfect foresight. In order to be able to mimic, at least to some extent,

a realistic fiscal policy reform, we will introduce distortionary taxes. Before we

look at complex fiscal policy reforms, we qualitatively inspect isolated changes in

13In particular, in the subsequent analysis, we will choose γ = 0.08 and Tp = 8, which will
correspond to 8 quarters.

24



distortionary taxes and the resulting dynamics for each type of tax. Thereafter,

we analyze more sophisticated fiscal policy reforms with regard to their welfare

costs in a realistic calibration.

4. The Case of Distortionary Taxation

After the base case of lump-sum taxation, we now study the case of distor-

tionary taxes. In the remainder, we will assume elastic labour supply. We first

derive the dynamic paths of the economy in presence of multiple types of taxes.14

Thereafter, we evaluate some specific tax reforms with regard to welfare, given

our suggested calibration.

Let us now assume that τ ct , τ
l
t , τ

k
t ∈ [0, 1] and τt 6= 0 for all t. The Euler

equation (8) now changes to

c−1t = β(cpt+1(t))
−1
[

(1 + τ ct )

(1 + τ c,et+1(t))

]
[(1− δ) + (1− τ k,et+1(t))r

e
t+1(t)]

and forward substitution of this expression yields

cpt+j(t) = βjDk,e
t,t+j(t)

[
(1 + τ ct )

(1 + τ c,et+j(t))

]
ct, (28)

where we define Dk,e
t,t+j(t) ≡ Πj

i=1[(1−δ)+(1−τ k,et+i(t))r
e
t+i(t)]. Furthermore, notice

that the consumption leisure trade-off is now given by (10). Given the adequate

14Note that in an earlier version of this paper we also presented the dynamics for the case
where only one type of distortionary taxation is present. Each, labour income tax, capital
income tax or consumption tax was raised by 10%. For the labour income tax and capital
income tax we found that in both cases there are again oscillations. Compared to the lump-
sum case the magnitude is much larger and the it takes more time for convergence to the new
steady-state. The dynamics of the consumption tax reform coincide for perfect foresight and
learning. This result depends on our utility specification with regard to consumption, that is
log-utility.
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transversality condition for capital

lim
T 7→∞

(
Dk,e
t,t+T (t)

)−1
kpt+T+1(t) = 0, (29)

the inter-temporal budget constraint of the consumer is

(1 + τ ct )ct +
∞∑
j=1

1

Dk,e
t,t+j(t)

(1 + τ c,et+j(t))c
p
t+j(t) = [(1− δ) + (1− τ kt )rt]kt

+(1− τ lt )wtnt − τt

+
∞∑
j=1

1

Dk,e
t,t+j(t)

[(1− τ l,et+j(t))wet+j(t)n
p
t+j(t)− τ et+j(t)],

which by the virtue of (28) as well as (10) yields

(1 + η)

(1− β)
(1 + τ ct )ct = [(1− δ) + (1− τ kt )rt]kt + (1− τ lt )wtL̄− τt

+
∞∑
j=1

1

Dk,e
t,t+j(t)

[(1− τ l,et+j(t))wet+j(t)L̄− τ et+j(t)]

= [(1− δ) + (1− τ kt )rt]kt + (1− τ lt )wtL̄− τt

+
∞∑
j=1

1

Dk,e
t,t+j(t)

[wet+j(t)L̄− τ
l,e
t+j(t)w

e
t+j(t)L̄− τ et+j(t)]

= [(1− δ) + (1− τ kt )rt]kt + (1− τ lt )wtL̄− τt

+SW2 − ST2 − ST3. (30)

For firms nothing changes compared to the base case in Section 3. Finally govern-

ment now faces the constraint (15) in each period t. The economy-wide resource

constraint is again given by (1).

We now consider the scenario of a permanent (simultaneous) change in (some

of the) taxes at some point in time Tp. The dynamics under perfect foresight are

again standard. Under learning we again follow the approach Evans et al. (2009,
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p.943ff.). The infinite sum on the right-hand side of (30) is

SW2 =
∞∑
j=1

1

Dk,e
t,t+j(t)

wet+j(t)L̄. (31)

Given (16) and (17), for 1 ≤ t < Tp we calculate15

SW2 =
we(t)L̄

[(1− τ k0 )re(t)− δ]
+ we(t)L̄×

[
[(1− δ) + (1− τ k1 )re(t)]t−Tp

1− [(1− δ) + (1− τ k1 )re(t)]−1
− [(1− δ) + (1− τ k0 )re(t)]t−Tp

1− [(1− δ) + (1− τ k0 )re(t)]−1

]
(32)

and for t ≥ Tp we calculate

SW2 =
we(t)L̄

[(1− τ k1 )re(t)− δ]
. (33)

ST2 on the right-hand side of (30) is

ST2 =
∞∑
j=1

1

Dk,e
t,t+j(t)

τ l,et+j(t)w
e
t+j(t)L̄. (34)

Given (16) and (17), for 1 ≤ t < Tp we calculate16

ST2 =
τ l0 w

e(t)L̄

[(1− τ k0 )re(t)− δ]
+ we(t)L̄×

[
τ l1 [(1− δ) + (1− τ k1 )re(t)]t−Tp

1− [(1− δ) + (1− τ k1 )re(t)]−1
− τ l0 [(1− δ) + (1− τ k0 )re(t)]t−Tp

1− [(1− δ) + (1− τ k0 )re(t)]−1

]
(35)

15See Appendix A.3 for details on derivations of SW2.
16See appendices A.4 and A.5 for the details on derivations of ST2 and ST3.

27



and for t ≥ Tp we calculate

ST2 =
τ l1 w

e(t)L̄

[(1− τ k1 )re(t)− δ]
. (36)

Finally, ST3 on the right-hand side of (30) is

ST3 =
∞∑
j=1

1

Dk,e
t,t+j(t)

τ et+j(t). (37)

Given (16) and (17), for 1 ≤ t < Tp we calculate

ST3 =
τ0

[(1− τ k0 )re(t)− δ]
+ [

[(1− δ) + (1− τ k1 )re(t)]t−Tp

1− [(1− δ) + (1− τ k1 )re(t)]−1
τ1

− [(1− δ) + (1− τ k0 )re(t)]t−Tp

1− [(1− δ) + (1− τ k0 )re(t)]−1
τ0 ] (38)

and for t ≥ Tp we calculate

ST3 =
τ1

[(1− τ k1 )re(t)− δ]
. (39)

Given (30) we can then compute the dynamics responses for consumption and

the other endogenous variables as before. Now, we will conduct several policy

experiments numerically and compute welfare measures following the approach

of Cooley and Hansen (1992, p.301ff.).17 Intuitively speaking, we compute the

increase in consumption that an individual would require to be as well off as under

the equilibrium allocation without taxes. We express that number in percentage

of output. First, we will do so for our initial choice of tax levels (see line 1 in

Table 3 below). Thereafter, we carry out policy reforms, where we change taxes

17We detail the computation in Appendix B.
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in a certain way and each time recalculate welfare measure both for learning and

perfect foresight. As a result we can then compare the welfare implications for a

tax change under perfect foresight against the case under learning. Note that we

use the measure of Cooley and Hansen (1992, p.301ff.) for the transition paths.

We do so because their measure for static comparison would lead to the same

number for perfect foresight and learning, as in both cases the initial and new

steady-states are identical.

An additional parameter needs to be chosen. That is the evaluation horizon

T . Cooley and Hansen (1992, p.301ff.) choose a horizon T ≥ 2000 and give no

further detail on the motivation of that choice. Garcia-Milà et al. (2010) use

T = 200 and give no motivation either. We will choose the latter in our welfare

evaluations as a time span of 200 quarters or 50 years respectively appears to be

more realistic from our point of view. For the series of experiments in Table 3

below, our calibration of the model is according to Table 2 below.

Insert Table 2 here.

We choose the initial tax rates to be τ0 = 0.0000, τ l0 = 0.2300, τ k0 = 0.5000 and

τ c0 = 0.0500. These non-zero tax rates lead to distortions. The first row in Table

3 reveals the welfare loss between the steady-state of the economy without taxes

and the steady-state of the economy with our initially chosen tax rates amounts

to 73.72%. This number tells us the change in consumption (in percentage of

output) which is required so that households in the economy with initial tax

levels are as well off as in the case with zero taxes is 73.72%. Be aware that Table

3 also indicates that without taxes our calibration yields a first best steady-state
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employment of nFB = 0.4024, which implies 9.66 hours. With the initial taxes in

place, the steady-state employment is n0 = 0.4326, which implies 10.38 hours.

Now we assume a credible pre-announced permanent tax reform that favours

capital accumulation, i.e. we lower the capital income tax to a level of τ k1 =

0.2500. As suggested by Judd (1987), Lucas (1990) and Cooley and Hansen

(1992) this is expected to reduce the welfare costs of distortionary taxation. In

each experiment reported lines 2 to 4 in Table 3 below, one of the other tax

instruments, τ•, τ
l
• or τ c• will be raised to a level that ensures that the periodic

tax revenue in the new steady-state is the same as in the initial steady-state.18

The second row of Table 3 indicates that compensating the cut in the capital

income tax to τ k1 by an increase in the labour income tax to τ l1 leads to a welfare

improvement under perfect foresight as well as under learning as both welfare

measures decrease. But the numbers also reveal that the magnitude of the im-

provement differs. Whereas under learning the welfare measure goes down from

73.72% to 72.12%, under perfect foresight it decreases much more to 64.47%.19

We can also observe that the new steady-state employment n1 is lower than the

initial steady-state employment n0.

The pattern just described is also true, if we compensate the cut in τ k• by an

increase in τ c• or τ• as the third and fourth row in Table 3 indicate. It is noteworthy

18Note, that as long as the dynamics under learning and perfect foresight differ, one is not
able to equalize present values of tax revenues under learning and perfect foresight to the present
value of tax revenues in the initial steady-state by manipulating tax rates in the same way. This
approach was used in the analysis of Cooley and Hansen (1992) for perfect foresight only, but
is not feasible in our case. In addition, we believe that keeping present values constant is not
the kind of fiscal policy change that governments conduct in reality. Moreover, we believe that
our comparison of welfare costs under learning to welfare costs under perfect foresight is valid
even without equalizing present values of the tax revenue.

19We would like to emphasize that we set the rate of depreciation to δ = 0 in order to
achieve convergence for the dynamics under learning. That might be the reason, why the scale
of W both under learning and perfect foresight is approximately twice the scale as the results
in Cooley and Hansen (1992).
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that using the the lump-sum tax to compensate for the cut in the capital income

tax yields the largest welfare improvement and keeps steady-state employment

at the highest level independent of the assumption about expectations.

Thus, experiments 2 to 4 indicate that the resulting welfare improvements of

an anticipated tax reform might be much smaller in magnitude under learning

compared to its improvements under perfect foresight.

Insert Table 3 here.

5. Conclusion

We demonstrate that the responses to anticipated permanent tax changes

when agents learn are remarkably different compared to their counterparts under

perfect foresight. The dynamics under learning appear to oscillate around the

steady-state to which they converge slowly. Thus, there is more volatility under

learning.

We argue that the observed oscillations are related to expectational errors.

The expectational errors are caused by the anticipated permanent tax change.

The persistence of the expectational error in the learning rule of the agents is the

fundamental reason for the oscillations.

Moreover, sensitivity analyses show that a smaller gain parameter leads to

higher volatility in our framework. This result is at odds with conventional

wisdom about the link between the gain parameter and the dynamic responses

in the learning literature.

In the subsequent analysis we derive the dynamics in the presence of multiple

tax instruments. Policy experiments in this set-up indicate that the magnitude
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of welfare improvements due to the tax reform considered herein appears to be

substantially lower under the assumption of learning compared to the case of

perfect foresight. The reason may be the oscillatory behaviour of the dynamics

under learning.

Form our point of view these results raise two major issues. First, oscilla-

tory dynamic responses to exogenous shocks are rarely found in actual economic

data. This fact questions the suitability of the model herein for policy analysis.

Second, given that this model would be suitable for policy analysis, our results

indicate that permanent tax changes may lead to lower welfare improvements

under learning compared to perfect foresight.

We believe that future research in this area needs to come up with convincing

empirical evidence on whether or how agents learn about fiscal policy. In addition,

we also need to clarify from actual economic data, how the dynamic responses to

anticipated permanent tax changes look like. Are they smooth or oscillatory?

With regard to theoretical considerations, it would also be desirable to derive

a version of the model that allows for changing different tax rates at different

points in time and therefore allows for public debt accumulation. But this task

is beyond the focus of this paper and we aim to pursue that idea in subsequent

research.

Furthermore, we think that perfect foresight and the implied once and for all

choices of agents on the one hand and learning which implies periodic revision of

current and future choices of agents on the other hand are extreme cases. One

could also imagine agents that use adaptive learning, but infrequently and with

differing interval length update their expectations and revise their current and

future choices. Alternatively, agents randomly receive a signal to update their

expectations.
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In addition, more sophisticated computational methods may allow to calibrate

the rate of depreciation different from zero or more realistic values of the elasticity

of labour supply and still ensure convergence for the dynamics under learning on

the other side. This could facilitate numerical results that are directly comparable

to the existing literature in public finance.

A. Model Derivations

A.1. Timing

We believe that the understanding of the timing is crucial to follow the deriva-

tions. For time periods indexed by t, discounting periods indexed by j, and an

implementation date Tp announced in t = 1 and T ≡ Tp− t denoting the number

of periods until Tp we got the following picture:

t = 1, 2, 3, 4, 5, 6, ...

j = 0, 1, 2, 3, 4, 5, ...

T ≡ Tp − t = 4, 3, 2, 1, 0,−1, ...,

thus for the infinite sum over index j

T−1∑
j=1

{•}+
∞∑
j=T

{•} (A.1.1)

from period t = 1 perspective, given exemplary Tp = 5 on the line 1 ≤ t ≤ Tp−1,

until j = 3 = T − 1 we have the old tax rate. Furthermore, on the line t ≥ Tp

from j = 4 = T onwards we have the new tax rate. Equivalently for the infinite
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sum

T−2∑
j=0

{•}+
∞∑

j=T−1

{•} (A.1.2)

from period t = 1 perspective, given exemplary Tp = 5 on the line 1 ≤ t ≤ Tp−1,

until j = 2 = T − 2 we have the old tax rate. Furthermore, on the line t ≥ Tp

from j = 3 = T − 1 onwards we have the new tax. This allows us later on to

replace T with Tp − t for 1 ≤ t ≤ Tp − 1 and T − 1 with 0 for t ≥ Tp.

A.2. Derivation of ST1

Here we want to illustrate the methodology we apply in all derivations under

learning for the example of ST1. Starting from

ST1 =
∞∑
j=1

1

De
t,t+j(t)

τ et+j(t)

we split this infinite sum into

ST1 =

[
T−1∑
j=1

1

De
t,t+j(t)

τ0 +
∞∑
j=T

1

De
t,t+j(t)

τ1

]
.

Next we go back to the definition of De
t,t+j(t). Given the learning rules (16) and

(17) we get

De
t,t+j(t) = Πj

i=1 [(1− δ) + re(t)] = [(1− δ) + re(t)]j . (A.2.1)

Consequently we get

ST1 =

[
T−1∑
j=1

(
[(1− δ) + re(t)]−1

)j
τ0 +

∞∑
j=T

(
[(1− δ) + re(t)]−1

)j
τ1

]
,
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or

ST1 = [(1− δ) + re(t)]−1 ×

[
T−2∑
j=0

(
[(1− δ) + re(t)]−1

)j
τ0 +

∞∑
j=T−1

(
[(1− δ) + re(t)]−1

)j
τ1

]
.

Given the property of a finite geometric series
∑n

j=m f
j = fn+1−fm

f−1 for some

constant f , we get

ST1 = [(1− δ) + re(t)]−1 ×

[(
[(1− δ) + re(t)]1−T − 1

[(1− δ) + re(t)]−1 − 1

)
τ0 +

(
− [(1− δ) + re(t)]1−T

[(1− δ) + re(t)]−1 − 1

)
τ1

]
,

which can be rewritten as

ST1 =
τ0

re(t)− δ
+

(τ1 − τ0)
[(1− δ) + re(t)]

[(1− δ) + re(t)]1−T

1− [(1− δ) + re(t)]−1
. (A.2.2)

Now, considering the timing outlined in Appendix A.1 above, for 1 ≤ t ≤ Tp − 1

we plug in Tp − t for T and get (24)

ST1 =
τ0

re(t)− δ
+ (τ1 − τ0)

[(1− δ) + re(t)]t−Tp

1− [(1− δ) + re(t)]−1
, (A.2.3)

and for t ≥ Tp we have T − 1 = 0, thus we get (25)

ST1 =
τ1

re(t)− δ
. (A.2.4)

35



A.3. Derivation of SW2

We start from (31)

SW2 =
∞∑
j=1

1

Dk,e
t,t+j(t)

wet+j(t)L̄.

Next, we recall the definition of Dk,e
t,t+j(t). Given the learning rules (16) and (17)

we get

Dk,e
t,t+j(t) = Πj

i=1

[
(1− δ) + (1− τ k0 )re(t)

]
=
[
(1− δ) + (1− τ k0 )re(t)

]j
(A.3.1)

for τ k,et+j(t) = τ k0 and

Dk,e
t,t+j(t) = Πj

i=1

[
(1− δ) + (1− τ k1 )re(t)

]
=
[
(1− δ) + (1− τ k1 )re(t)

]j
(A.3.2)

for τ k,et+j(t) = τ k1 . Thereafter, we split this infinite sum into

SW2 = L̄

[
T−1∑
j=1

1

Dk,e
t,t+j(t)

we(t) +
∞∑
j=T

1

Dk,e
t,t+j(t)

we(t)

]

= L̄[
T−1∑
j=1

(
[
(1− δ) + (1− τ k0 )re(t)

]j
)−1we(t) +

∞∑
j=T

(
[
(1− δ) + (1− τ k1 )re(t)

]j
)−1we(t) ],
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or

SW2 =
we(t)L̄[

(1− δ) + (1− τ k0 )re(t)
] T−2∑
j=0

([
(1− δ) + (1− τ k0 )re(t)

]−1)j

+
we(t)L̄[

(1− δ) + (1− τ k1 )re(t)
] ∞∑
j=T−1

([
(1− δ) + (1− τ k1 )re(t)

]−1)j
.

As in Section A.2 above, we exploit the properties of geometric series and derive

SW2 =
we(t)L̄[

(1− δ) + (1− τ k0 )re(t)
] (1−

[
(1− δ) + (1− τ k0 )re(t)

]1−T
1−

[
(1− δ) + (1− τ k0 )re(t)

]−1
)

+
we(t)L̄[

(1− δ) + (1− τ k1 )re(t)
] ( [

(1− δ) + (1− τ k1 )re(t)
]1−T

1−
[
(1− δ) + (1− τ k1 )re(t)

]−1
)
.

Now we get back to the timing outlined in Appendix A.1 above, for 1 ≤ t ≤ Tp−1

we plug in Tp − t for T and get (32)

SW2 =
we(t)L̄

[(1− τ k0 )re(t)− δ]
+ we(t)L̄×

[
[(1− δ) + (1− τ k1 )re(t)]t−Tp

1− [(1− δ) + (1− τ k1 )re(t)]−1
− [(1− δ) + (1− τ k0 )re(t)]t−Tp

1− [(1− δ) + (1− τ k0 )re(t)]−1

]
(A.3.3)

and for t ≥ Tp we have T − 1 = 0, thus we get (33)

SW2 =
we(t)L̄

[(1− τ k1 )re(t)− δ]
. (A.3.4)
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A.4. Derivation of ST2

Starting from (34)

ST2 =
∞∑
j=1

1

Dk,e
t,t+j(t)

τ l,et+j(t)w
e
t+j(t)L̄

for (A.3.1) and (A.3.2) and τ l,et+j(t) is either given by τ l0 or τ l1, we may once more

split the infinite sum into

ST2 = we(t)L̄×

[
T−1∑
j=1

([
(1− δ) + (1− τ k0 )re(t)

]j)−1
τ l0

+
∞∑
j=T

([
(1− δ) + (1− τ k1 )re(t)

]j)−1
τ l1 ],

or

ST2 =
τ l0 w

e(t)L̄[
(1− δ) + (1− τ k0 )re(t)

] T−2∑
j=0

([
(1− δ) + (1− τ k0 )re(t)

]−1)j
+

τ l1 w
e(t)L̄[

(1− δ) + (1− τ k1 )re(t)
] ∞∑

j=T−1

([
(1− δ) + (1− τ k1 )re(t)

]−1)j
.

Now, the properties of the geometric series allow us to rewrite this as

ST2 =
τ l0 w

e(t)L̄[
(1− δ) + (1− τ k0 )re(t)

] ([(1− δ) + (1− τ k0 )re(t)
]1−T − 1[

(1− δ) + (1− τ k0 )re(t)
]−1 − 1

)

+
τ l1 w

e(t)L̄[
(1− δ) + (1− τ k1 )re(t)

] (− [(1− δ) + (1− τ k1 )re(t)
]1−T[

(1− δ) + (1− τ k1 )re(t)
]−1 − 1

)
.
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For the timing outlined in Appendix A.1 above, for 1 ≤ t ≤ Tp − 1 we plug in

Tp − t for T and get (35)

ST2 =
τ l0 w

e(t)L̄

[(1− τ k0 )re(t)− δ]
+ we(t)L̄×

[
τ l1 [(1− δ) + (1− τ k1 )re(t)]t−Tp

1− [(1− δ) + (1− τ k1 )re(t)]−1
− τ l0 [(1− δ) + (1− τ k0 )re(t)]t−Tp

1− [(1− δ) + (1− τ k0 )re(t)]−1

]
(A.4.1)

and for t ≥ Tp we have T − 1 = 0, thus we get (36)

ST2 =
τ l1 w

e(t)L̄

[(1− τ k1 )re(t)− δ]
. (A.4.2)

A.5. Derivation of ST3

Starting from (37)

ST3 =
∞∑
j=1

1

Dk,e
t,t+j(t)

τ et+j(t)

given (A.3.1) and (A.3.2) are true and τ et+j(t) is either τ0 or τ1, we again split the

infinite sum into

ST3 = [
T−1∑
j=1

([
(1− δ) + (1− τ k0 )re(t)

]j)−1
τ0

+
∞∑
j=T

([
(1− δ) + (1− τ k1 )re(t)

]j)−1
τ1 ],
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or

ST3 =
[
(1− δ) + (1− τ k0 )re(t)

]−1 [T−2∑
j=0

([
(1− δ) + (1− τ k0 )re(t)

]−1)j
τ0

]

+
[
(1− δ) + (1− τ k1 )re(t)

]−1 [ ∞∑
j=T−1

([
(1− δ) + (1− τ k1 )re(t)

]−1)j
τ1

]
.

Given the properties of geometric series we can rewrite the latter as

ST3 =
[
(1− δ) + (1− τ k0 )re(t)

]−1([(1− δ) + (1− τ k0 )re(t)
]1−T − 1[

(1− δ) + (1− τ k0 )re(t)
]−1 − 1

τ0

)

+
[
(1− δ) + (1− τ k1 )re(t)

]−1(− [(1− δ) + (1− τ k1 )re(t)
]1−T[

(1− δ) + (1− τ k1 )re(t)
]−1 − 1

τ1

)
.

Now given the timing outlined in Appendix A.1 above, for 1 ≤ t ≤ Tp − 1 we

plug in Tp − t for T and get (38)

ST3 =
τ0

[(1− τ k0 )re(t)− δ]

+[
[(1− δ) + (1− τ k1 )re(t)]t−Tp

1− [(1− δ) + (1− τ k1 )re(t)]−1
τ1

− [(1− δ) + (1− τ k0 )re(t)]t−Tp

1− [(1− δ) + (1− τ k0 )re(t)]−1
τ0 ] (A.5.1)

and for t ≥ Tp we have T − 1 = 0, thus we get (39)

ST3 =
τ1

[(1− τ k1 )re(t)− δ]
. (A.5.2)
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B. Computing Welfare Changes

B.1. Comparative Statics

We follow the approach of Cooley and Hansen (1992, p.301ff.) based on Lucas

(1990). Their measure of welfare change for a given policy change is derived by

solving

U0 = log[c1(1 + x•)] + η log[1− n1] (B.1.1)

for x in our case.20 U0 is the utility a household obtains in the steady-state

without any tax and c1 and n1 are the values of consumption and employment

at the new steady-state after the tax change either under perfect foresight or

learning. It follows that

x• =
exp(U0)

c1(1− n1)η
− 1. (B.1.2)

Thus, in general, we need to solve for x for the perfect foresight dynamics and

another x∗ for the dynamics under learning.21 Given x• we can calculate

W =
4C
y1

=
x•c1
y1

, (B.1.3)

where 4C is the restoration value of consumption, which in our case may be

interpreted as the total change in consumption required to restore a household

to the level of utility obtained under the allocation associated with zero taxes.

y1 is the level of output at the new steady-state.

20x• is either x under perfect foresight or x∗ under learning.
21Of course we are aware that this must yield the same x = x∗ both under perfect-foresight

and under learning, but this number may be useful to compare different policy experiments.
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B.2. Transition Measure

Again we follow the approach of Cooley and Hansen (1992, p.301ff.) based on

Lucas (1990). Their measure of welfare change accounting for transition given a

policy change is derived by solving

T∑
t=1

βt {log[ct(1 + x•)] + η log[1− nt]− U0}
!

= 0 (B.2.1)

for x under perfect foresight and x∗ under learning. T is the terminal period, ct

is period t consumption either under perfect foresight or learning and yt is period

t output either under perfect foresight or learning.

x• =

 exp
(
U0

[
β1 + ...+ βT

])(
cβ

1

1 ... c
βT

T

)
×
[
(1− n1)

ηβ1

... (1− nT )ηβ
T
]
 1

[β1+...+βT ]

− 1.

x• =

 exp
(
U0

∑T
t=1 β

t
)

ΠT
t=1c

βt

t × ΠT
t=1 (1− nt)ηβ

t


1∑T

t=1 β
t

− 1. (B.2.2)

Given x• we can calculate

W• =

∑T
t=1 β

t {xct}∑T
t=1 β

t {yt}
, (B.2.3)

which will be reported asW for the perfect foresight dynamics and asW∗ for the

dynamics under learning.
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Figure Legends

Figure 1: Consumption and capital dynamics under learning and perfect foresight

for a change in lump-sum tax. Consumption (a) and capital (b) dynamics under

learning (solid curve) and perfect foresight (dashed curve) with inelastic labour

supply as in Evans et al. (2009, p.943ff.) as well as consumption (c) and capital

(d) dynamics under learning (solid curve) and perfect foresight (dashed curve)

with elastic labour supply. The dotted horizontal line indicates the (new) steady

state, the dotted vertical line indicates period Tp.

Figure 2: Sensitivity analysis for consumption and capital dynamics under learn-

ing and perfect foresight with regard to the gain parameter. Consumption (a) and

capital (b) dynamics under learning and perfect foresight with inelastic labour

supply as in Evans et al. (2009, p.943ff.) for alternating values of γ. The dotted

horizontal line indicates the (new) steady state, the dotted vertical line indicates

period Tp.

Figure 3: Sensitivity analysis for consumption and capital dynamics under learn-

ing and perfect foresight with regard to the implementation date. Consumption

(a) and capital (b) dynamics under learning with inelastic labour supply as in

Evans et al. (2009, p.943ff.) for alternating values of Tp. The dotted horizontal

line indicates the (new) steady state, the dotted vertical line indicates period

Tp = 20.
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Tables

Parameter Value Parameter Value

A 1.00 δ 0.00
α 0.33 Tp 20
β 0.95 γ 0.10

Table 1: Parameters similar as in Evans et al. (2009, p.945)
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Parameter Value Parameter Value

A 1.00 δ 0.00
α 0.33 Tp 8
β 0.99 γ 0.08
η 0.99 L̄ 1.00

Table 2: Model calibration for policy experiments 1.− 4.
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