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Pricing and Static Hedging of American-style Options

under the Jump to Default Extended CEV Model

Abstract

This paper prices (and hedges) American-style options through the static hedge approach

(SHP) proposed by Chung and Shih (2009) and extends the literature in two directions.

First, the SHP approach is adapted to the jump to default extended CEV (JDCEV) model

of Carr and Linetsky (2006), and plain-vanilla American-style options on defaultable equity

are priced. The robustness and efficiency of the proposed pricing solutions are compared with

the optimal stopping approach offered by Nunes (2009), under both the JDCEV framework

and the nested constant elasticity of variance (CEV) model of Cox (1975), using different

elasticity parameter values. Second, both the SHP and the optimal stopping approaches are

extended to the valuation of American-style capped options.

JEL Classification: G13.
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1. Introduction

The valuation (and hedging) of American-style option contracts remains as one of the most

challenging problems in the financial economics literature, given the difficulty, if not impossi-

bility, of achieving elegant analytical pricing solutions as those offered in the prominent work

of Black and Scholes (1973) and Merton (1973) (hereafter, BSM). The absence of an exact

and closed-form pricing solution for the American-style put (or call, but on a dividend-paying

asset) stems from the fact that the option price and the early exercise boundary must be

determined simultaneously as the solution of the same free boundary problem that has been

set up by McKean (1965). These difficulties have thus lead to the development of several

alternative valuation methodologies, ranging from numerical solution methods to analytical

approximations, all attempting to efficiently price a variety of financial products with early

exercise features.1

The numerical methods include, for instance, the finite difference schemes introduced

by Brennan and Schwartz (1977), the binomial models of Cox et al. (1979) and Rendleman

and Bartter (1979), the trinomial lattice schemes of Boyle (1988) and Tian (1993), and the

least-squares Monte Carlo scheme of Longstaff and Schwartz (2001). Even though these

numerical methods are flexible, simple to implement, and generally convergent, they are also

too time consuming and do not provide the comparative statics attached to an analytical

representation of the option pricing solution.

One of the first analytical approximations is offered by Barone-Adesi and Whaley (1987),

using the quadratic method of MacMillan (1986), but its convergence properties are still

weak, especially for long maturity options. Johnson (1983) and Broadie and Detemple (1996)

provide lower and upper bounds for American options, but these are based on regression

coefficients that are estimated through a time-demanding calibration to a large set of options

contracts.

Carr (1998) proposes a fast and accurate randomization approach that uses Richardson

extrapolation. Geske and Johnson (1984) approximate the American option price through

1See Barone-Adesi (2005) for a general overview of the literature.
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an infinite series of Bermudan-style options exercisable at a finite number of exercise points,

and use also Richardson extrapolation. Several extensions of the original Geske-Johnson

methodology have been proposed in the literature to overcome its non-uniform convergence

feature. For instance, Bunch and Johnson (1992) implement a modified two-point Geske-

Johnson scheme, Chang et al. (2007) propose a repeated-Richardson extrapolation procedure,

and Chung and Shackleton (2007) generalize the Geske and Johnson (1984) method through

a two-point scheme based not only on the inter-exercise time dimension, but also on the

time to maturity of the option contract. However, one of the main disadvantages of all these

extrapolation schemes is the indetermination of the sign for the approximation error.

Kim (1990), Jacka (1991), Carr et al. (1992), and Jamshidian (1992) initiated another

stream of the option pricing literature: The so-called integral representation method. Howe-

ver, the numerical efficiency of this approach depends on the specification that is adopted

for the unknown early exercise boundary. For example, Huang et al. (1996) adopt a time

consuming step function approximation, while Ju (1998) proposes a multipiece exponential

representation of the early exercise boundary.

All the aforementioned studies are based on the usual lognormal assumption of BSM, and

most of them differ only in the specification adopted for the early exercise boundary. Kim and

Yu (1996), Detemple and Tian (2002), and Nunes (2009) constitute three notable exceptions.

The former two studies extend the integral representation method to alternative diffusion

processes. However, and in opposition to the standard geometric Brownian motion case, such

an extension does not offer an analytic representation for the integral equation representing

the early exercise premium, which undermines its computational efficiency. Based on the

optimal stopping approach of Bensoussan (1984) and Karatzas (1988), Nunes (2009) proposes

an alternative characterization of the standard American-style option price that is valid for

any continuous representation of the exercise boundary and for any Markovian price process

describing the dynamics of the underlying asset price, including the jump to default constant

elasticity of variance (JDCEV) model of Carr and Linetsky (2006).

Chung and Shih (2009) tackle the American-style option pricing problem through the

static hedge approach (hereafter, SHP) initially developed by Bowie and Carr (1994), Der-
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man et al. (1995), and Carr et al. (1998) for hedging European-style exotic options (in which

case the boundary is known ex-ante). Bowie and Carr (1994) and Carr et al. (1998) hedge

via static positions of European-style options for a continuum of strikes (but with the same

maturity date as the exotic option), while Derman et al. (1995) use a continuum of stan-

dard European-style options with subsequent maturities and strikes equaling the (known)

boundary until the maturity of the exotic option. The pricing methodology proposed by

Chung and Shih (2009) for valuing American-style options combines both methods: It uses

standard European-style options with multiple strikes and multiple maturities, because the

optimal exercise boundary is not known ex-ante. This approach creates a static portfo-

lio of European-style options whose values match the payoff of the American-style option

being hedged at expiration and along the boundary, by applying the value-matching and

smooth-pasting conditions on the early exercise boundary.

This paper offers three contributions for the existent option pricing literature. First, and

most importantly, we generalize the SHP approach for pricing American-style standard and

capped options under the JDCEV model. Such extension should prove useful to researchers

and practitioners in corporate debt and equity derivatives markets, because the JDCEV

model is consistent with three well-known facts that have found empirical support in the

literature, namely: the existence of a negative correlation between stock returns and realized

volatility (leverage effect), as observed, for instance, by Bekaert and Wu (2000); the inverse

relation between the implied volatility and the strike price of an option contract (implied

volatility skew), as documented, for example, in Dennis and Mayhew (2002); and the empi-

rical evidence of a positive relationship between default probabilities and equity volatility,

documented, for instance, in Campbell and Taksler (2003).

Second, we extend the optimal stopping approach of Nunes (2009) for the pricing of

American-style capped options, assuming that the recovery value associated to the put can

be paid at the default time—as in Nunes (2009, Section VII)—or at the maturity date of

the option. Our numerical results show that the SHP methodology is more efficient (and as

accurate as) the optimal stopping approach of Nunes (2009).
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Third, we implement the SHP approach to price American-style options under the constant

elasticity of variance (CEV) model of Cox (1975) for other values of the elasticity parameter

(beta) besides the 4/3 benchmark used by Chung and Shih (2009), thus accommodating

both direct and indirect leverage effects observed across a wide variety of options markets.

As argued in Nunes (2009, page 1250), the optimal stopping approach offers a better speed-

accuracy trade-off than the pricing methodology of Detemple and Tian (2002)—which is

based on the (very time consuming) full recursive method of Huang et al. (1996)—and the

accelerated recursive scheme of Kim and Yu (1996), for valuing option contracts under the

CEV assumption. Therefore, the accuracy and efficiency of the SHP approach for valuing

American-style options under the CEV model will be compared against the option pricing

framework proposed by Nunes (2009).

Additionally, we offer analytical solutions to efficiently compute the hedge ratios of the

European-style pricing solutions proposed by Carr and Linetsky (2006), which contain an

embedded credit derivative (i.e. a European-style default claim) in the case of the put

contracts. Given the recent market practitioners’ concerns of linking equity derivatives

markets and credit markets, such closed-form solutions should be a viable alternative for

implementing efficient schemes to jointly hedge equity and credit derivatives under this class

of hybrid credit-equity models.

The remainder of this article is organized as follows. Section 2 presents a brief summary

of the JDCEV framework. Section 3 extends the optimal stopping and SHP approaches for

the valuation of American-style standard and capped options under the JDCEV model. Both

valuation methods are numerically tested in Section 4, under both the CEV and JDCEV

setups. Finally, Section 5 summarizes the results and contains concluding remarks. All

accessory results are relegated to the Appendix.
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2. JDCEV model

For the analysis to remain self-contained, the next three subsections provide, respectively, a

brief summary of the building blocks for the general JDCEV setup, the closed-form solutions

for pricing European-style options under the time-homogeneous JDCEV model with constant

parameters, and a specialization of the JDCEV modeling architecture to the classic CEV

model.

2.1. Model setup

Carr and Linetsky (2006) construct a unified framework for the valuation of corporate liabi-

lities, credit derivatives, and equity derivatives as contingent claims written on a defaultable

stock. The price of the defaultable stock is modeled as a time-inhomogeneous diffusion

process solving the stochastic differential equation

dSt

St

= [rt − qt + λ (t, S)] dt + σ (t, S) dWQ
t , (1)

with St0 > 0, and where the risk-free interest rate rt and the dividend yield qt are deter-

ministic functions of time, while the instantaneous volatility of equity returns σ (t, S) and

the default intensity λ (t, S) can also be state-dependent. WQ
t ∈ R is a standard Wiener

process generating the filtration F = {Ft, t ≥ t0}, and the martingale probability measure

Q, associated to the “money market account” numéraire, is taken as given.2

The pricing model proposed by Carr and Linetsky (2006) can either diffuse or jump to

default. In the first case, bankruptcy occurs at the first passage time of the stock price to 0:

τ0 := inf {t > t0 : St = 0} . (2)

2Note that the inclusion of the hazard rate λ(t, S) in the drift of equation (1) compensates the stockholders

for default (with zero recovery) and insures, under the risk-neutral measure Q, an expected rate of return

equal to the risk-free interest rate. Nevertheless, such an equivalent martingale measure will not be unique

because the arbitrage-free market considered by Carr and Linetsky (2006) is incomplete in the sense that

the jump to default will not be modeled as a stopping time of F.
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Alternatively, the stock price can also jump to default at the first jump time

ζ̃ := inf

{
t > t0 :

1

11{t<τ0}

∫ t

t0

λ (u, S) du ≥ Θ

}
(3)

of the integrated hazard process to the level drawn from an exponential random variable Θ

independent of WQ
t and with unit mean. Therefore, the time of default is simply given by3

ζ = τ0 ∧ ζ̃ , (4)

and D = {Dt, t ≥ t0} is the filtration generated by the default indicator process Dt = 11{t>ζ}.

As in the classical CEV model of Cox (1975), Carr and Linetsky (2006) accommodate the

leverage effect and the implied volatility skew by specifying the instantaneous stock volatility

as a power function:

σ (t, S) = atS
β̄
t , (5)

where β̄ < 0 is the volatility elasticity parameter and at > 0, ∀t, is a deterministic volatility

scale function. Yet, to be consistent with the empirical evidence of a positive relationship

between default probabilities and equity volatility, Carr and Linetsky (2006) further assume

that the default intensity is an increasing affine function of the instantaneous stock variance:

λ (t, S) = bt + c σ (t, S)2 , (6)

where c ≥ 0, and bt ≥ 0, ∀t, is a deterministic function of time.

Following the hybrid credit-equity modeling framework of Carr and Linetsky (2006),

taking Gt = Ft ∨ Dt, and assuming no default by time t0 (i.e. ζ > t0), the time-t0 value

of a European-style call (if φ = −1) or put (if φ = 1) on the stock price S, with strike K,

recovery value R (i.e. the amount that the owner of a defaulted claim receives upon default),

and maturity date T (≥ t0), can be represented by the following building blocks:

vt0 (St0 , K, T, R; φ, η) = v0
t0

(St0 , K, T ; φ) + vD
t0

(St0 , R, T ; φ, η) , (7)

where

v0
t0

(St0 , K, T ; φ) := EQ
[
e
− ∫ T

t0
rldl

(φK − φST )+ 11{ζ>T}
∣∣∣Gt0

]
(8)

3For any two real numbers x and y, we denote by x ∨ y and x ∧ y, respectively, their maximum and

minimum.
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is the option value but conditional on no default by time T , and

vD
t0

(St0 , R, T ; φ, η) := EQ
[
e
− ∫ η

t0
rldl

(φR)+11{ζ≤T}
∣∣∣Gt0

]
, (9)

for η ∈ {ζ, T}. In the case of a European call, there is no recovery if the firm defaults.

However, for the European put, equation (9) corresponds to a recovery payment equal to

the strike (i.e. R = K), that can be paid at the default time ζ or at the maturity date T ,

depending on the recovery assumption.4 In the latter case, equation (9) can be rewritten as

vD
t0

(St0 , R, T ; φ, T ) = (φR)+e
− ∫ T

t0
rldl

[1− SP (St0 , t0; T )] , (10)

where

SP (St0 , t0; T ) := EQ
(
11{ζ>T}

∣∣Gt0

)
= EQ

(
e
− ∫ T

t0
λ(l,S)dl

11{τ0>T}
∣∣∣Ft0

)
(11)

is understood as the risk-neutral probability of surviving beyond time T > t0, and is defined

in Carr and Linetsky (2006, Equation 3.1).

2.2. Pricing solutions for European-style options

For constant r, q, a, b, and c, and assuming that ζ > t0, Carr and Linetsky (2006, Proposition

5.5) show that the t0-price of a European-style call option with strike price K and expiry

date at time T (≥ t0) is given by5

vt0 (St0 , K, T, 0;−1, η) = e−q(T−t0) St0 Φ+1

(
0,

k2

ρ
; δ+,

x2

ρ

)
(12)

−e−(r+b)(T−t0) K

(
x2

ρ

) 1
2|β̄|

Φ+1

(
− 1

2|β̄| ,
k2

ρ
; δ+,

x2

ρ

)
,

4Note that recovery claims with η = T and η = ζ correspond to defaultable zero-coupon bonds under frac-

tional recovery of treasury and fractional recovery of face value, respectively—see, for instance, Schönbucher

(2003, Section 6.1), Bélanger et al. (2004, Section 3), and Lando (2004, Section 5.7).
5Note that the recovery component of the European-style call, vD

t0 (St0 , R, T ;−1, η), is zero, and, therefore,

vt0 (St0 ,K, T, 0;−1, η) = v0
t0 (St0 ,K, T ;−1).
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whereas the t0-price of the corresponding European-style put, but conditional on no default

by time T , is given by

v0
t0

(St0 , K, T ; 1) = e−(r+b)(T−t0) K

(
x2

ρ

) 1
2|β̄|

Φ−1

(
− 1

2|β̄| ,
k2

ρ
; δ+,

x2

ρ

)
(13)

−e−q(T−t0) St0 Φ−1

(
0,

k2

ρ
; δ+,

x2

ρ

)
,

where

x :=
1

|β̄|S
|β̄|
t0 , (14)

k :=
1

|β̄|K
|β̄|e−|β̄|(r−q+b)(T−t0), (15)

δ+ :=
2c + 1

|β̄| + 2, (16)

and

ρ ≡ ρ(t0, T ) :=





a2 (T − t0) ⇐ r − q + b = 0

a2

2|β̄|(r−q+b)

(
1− e−2|β̄|(r−q+b)(T−t0)

)
⇐ r − q + b 6= 0

. (17)

The functions Φθ (p, y; v, λ) := Eχ2(v,λ)
(
Xp11{θX≥θy}

)
represent, for θ ∈ {−1, 1}, the trunca-

ted p-th moments of a noncentral chi-square random variable X with v degrees of freedom

and noncentrality parameter λ, as defined in Carr and Linetsky (2006, Equations 5.11 and

5.12).

The time-t0 value of the recovery part of the European-style put option, to be paid at

the maturity date T , is given by equation (10) with

SP (St0 , t0; T ) = e−b(T−t0)

(
x2

ρ

) 1
2|β̄|

M

(
− 1

2|β̄| ; δ+,
x2

ρ

)
(18)

and where M (p; v, λ) := Eχ2(v,λ) (Xp) is the p-th raw moment of a noncentral chi-square

random variable X with v degrees of freedom and noncentrality parameter λ, as defined in

Carr and Linetsky (2006, Equation 5.10).

There may be, however, put option contracts paying also the fixed recovery value R,

but at the default time ζ (i.e. considering the fractional recovery of face value assumption).

8



Following Carr and Linetsky (2006, Equation 5.15), the value of a claim that pays R dollars

at the default time ζ is given by

vD
t0

(St0 , R, T ; 1, ζ) (19)

= R

∫ T

t0

e−(r+b)(u−t0)

[
b

(
x2

ρ (t0, u)

) 1
2|β̄|

M

(
− 1

2|β̄| ; δ+,
x2

ρ (t0, u)

)

+c a2 S2β̄
t0 e−2|β̄| (r−q+b)(u−t0)

(
x2

ρ (t0, u)

) 1
2|β̄|+1

M

(
− 1

2|β̄| − 1; δ+,
x2

ρ (t0, u)

) ]
du.

Remark 1 In all numerical computations presented in this paper, and to enhance the ef-

ficient computation of the pricing solutions (12) and (13), we use the algorithm recently

offered by Dias and Nunes (2012) for valuing the truncated p-th moments Φθ (p, y; v, λ), with

θ ∈ {−1, 1}. The raw moments M (p; v, λ) contained in the right-hand side of equations (18)

and (19) are computed also using the same algorithm via the identity provided by Carr and

Linetsky (2006, Equation 5.13).

2.3. CEV model

As shown by Carr and Linetsky (2006, Remark 5.2), the (no bankruptcy and local volatility)

standard time-homogeneous CEV model of Cox (1975) can be nested into the aforementioned

modeling framework.6

Definition 1 The classic CEV model of Cox (1975) can be nested into the general framework

described by equations (1) to (6) through the following restrictions: rt = r, qt = q, λ(t, S) =

0, σ(t, S) = δS
β
2
−1

t , and τ0 = ∞, with δ, β ∈ R.

Remark 2 For all numerical experiments under the CEV assumption we adopt the Schroder

(1989) pricing solutions by expressing the time-t0 value of a European-style call option on the

asset price S, with strike K, and maturity at time T (≥ t0) in terms of the complementary

6For additional background on the CEV process, see, for instance, Cox (1975), Emanuel and MacBeth

(1982), Schroder (1989), Davydov and Linetsky (2001, 2003), Nunes (2009), Dias and Nunes (2011), and

Larguinho et al. (2012).
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distribution function of a noncentral chi-square law. As usual, the corresponding time-t0

value of a European-style put arises immediately if one applies the put-call parity.

Remark 3 The implementation of the SHP approach for valuing American-style options

under the CEV model requires the knowledge of the analytical solutions for the hedge ratios

of the corresponding European-style plain-vanilla options. Fortunately, the necessary delta

measures can be computed in closed-form and are given in Larguinho et al. (2012).

Remark 4 The valuation of option prices and deltas under the CEV model requires the

computation of the noncentral chi-square distribution function. There is an extensive litera-

ture devoted to the efficient computation of this cumulative distribution function (cdf). For

all numerical computations of option prices and hedge ratios under the CEV assumption we

use Benton and Krishnamoorthy (2003, Algorithm 7.3) for computing the cdf of a noncentral

probability law.7

3. Valuation of American-style options

To the authors knowledge, the valuation of American-style standard options under the JD-

CEV framework is only pursued by Nunes (2009, Section VII) under an optimal stopping

approach, and assuming the recovery payment at the default time (i.e. η = ζ). In this

section, we extend the optimal stopping approach of Nunes (2009) for the payment of the

recovery value at the maturity date T (i.e. η = T ), and for the valuation of American-style

capped options. More importantly, we also generalize the SHP approach proposed by Chung

and Shih (2009) for the pricing of both standard and capped American-style options under

the JDCEV model.

7See Larguinho et al. (2012) who have shown that this algorithm clearly offers the best speed-accuracy

trade-off for computing the cdf of a noncentral probability law in the context of the CEV model.
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3.1. Standard American-style contracts

Following Nunes (2009, Equation 53), and assuming that ζ > t0, the time-t0 value of an

American-style standard option under the JDCEV model, on the stock price S, with strike

K, recovery value R, and maturity date T (≥ t0), can be represented by the following Snell

envelope:

Vt0 (St0 , K, T, R; φ, η) = sup
τ∈T

{
EQ

[
e
− ∫ T∧τ

t0
rldl

(φK − φST∧τ )
+ 11{ζ>T∧τ}

∣∣∣Gt0

]
(20)

+EQ
[
e
− ∫ η

t0
rldl

(φR)+11{ζ≤T∧τ}
∣∣∣Gt0

] }
,

where φ ∈ {−1, 1}, η ∈ {ζ, T}, and T is the set of all stopping times (taking values in [t0,∞])

for the enlarged filtration G = {Gt, t ≥ t0}. In the case of an American call (φ = −1), there

is no recovery if the firm defaults. However, for the American put (φ = 1), the second

expectation on the right-hand side of equation (20) corresponds to a recovery payment equal

to the strike (i.e. R = K) at the default time ζ or at the maturity date T (as long as the

default event precedes both expiry and early exercise dates).

Given that the random variable Θ is independent of F, Carr and Linetsky (2006, Equa-

tions 3.2 and 3.4) or Schönbucher (2003, Proposition 5.3 and Equation 5.32) imply that

equation (20) can be rewritten in terms of the restricted filtration F:

Vt0 (St0 , K, T,R; φ, η) = sup
τ∈T

{
EQ

[
e
− ∫ T∧τ

t0
(rl+λ(l,S))dl

(φK − φST∧τ )
+ 11{τ0>T∧τ}

∣∣∣Ft0

]
(21)

+11{η=T}(φR)+e
− ∫ T

t0
rldl

[
1− EQ

(
e
− ∫ T∧τ

t0
λ(l,S)dl

11{τ0>T∧τ}
∣∣∣Ft0

)]

+11{η=ζ}(φR)+EQ
[∫ T∧τ

t0

e
− ∫ v

t0
(rl+λ(l,S))dl

λ(v, S)11{τ0>v}dv

∣∣∣∣Ft0

]}
.

Moreover, since S behaves as a pure diffusion process with respect to the filtration F, De-

temple and Tian (2002, Propositions 1 and 2) show that there exists (at each time t ∈ [t0, T ])

a critical asset price Et below (above) which the American-style put (call) price equals its

intrinsic value and, therefore, early exercise should occur. Consequently, the optimal policy

should be to exercise the American-style option when the underlying asset price first touches
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its critical level. Representing the first passage time of the underlying asset price S to its

early exercise boundary {Et, t0 ≤ t ≤ T} by

τe := inf {t ≥ t0 : St = Et} , (22)

equation (21) can be restated as:

Vt0 (St0 , K, T, R; φ, η) = V 0
t0

(St0 , K, T ; φ) + V D
t0

(St0 , R, T ; φ, η) , (23)

where

V 0
t0

(St0 , K, T ; φ) = EQ
[
e
− ∫ T∧τe

t0
(rl+λ(l,S))dl

(φK − φST∧τe)
+ 11{τ0>T∧τe}

∣∣∣Ft0

]
(24)

corresponds to Nunes (2009, Equation 55), i.e. to the American option price conditional on

no default (before the expiry and early exercise dates), and

V D
t0

(St0 , R, T ; φ, η) (25)

= 11{η=T}(φR)+e
− ∫ T

t0
rldl

[
1− EQ

(
e
− ∫ T∧τe

t0
λ(l,S)dl

11{τ0>T∧τe}
∣∣∣Ft0

)]

+11{η=ζ}(φR)+EQ
[∫ T∧τe

t0

e
− ∫ v

t0
(rl+λ(l,S))dl

λ(v, S)11{τ0>v}dv

∣∣∣∣Ft0

]

represents the present value of the recovery payment made at the maturity date or at the

default time.

Next proposition decomposes the American-style option price (23) into its European-style

counterpart and an early exercise premium, and generalizes Nunes (2009, Proposition 7) to

different recovery assumptions.

Proposition 1 Under the JDCEV model described by equations (1) to (4), and assuming

that ζ > t0, the time-t0 value of an American-style standard option on the stock price S,

with strike K, recovery value R, and with maturity date T (≥ t0) is equal to

Vt0 (St0 , K, T, R; φ, η) = vt0 (St0 , K, T,R; φ, η) + EEPt0 (St0 , K, T, R; φ, η) , (26)
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where the corresponding European-style option price vt0 (St0 , K, T, R; φ, η) is given by equa-

tion (7),

EEPt0 (St0 , K, T,R; φ, η) (27)

=

∫ T

t0

{
e
− ∫ u

t0
rldl [

(φK − φEu)
+ − v0

u (Eu, K, T ; φ)
]
SP (St0 , t0; u)

−11{η=T}e
− ∫ u

t0
rldl

vD
u (Eu, R, T ; φ, T )− 11{η=ζ}v

D
u (Eu, R, T ; φ, ζ)

}
Q (τe ∈ du| Ft0)

is the early exercise premium of the American-style put (φ = 1) or call (φ = −1) option,

{Eu, t0 ≤ u ≤ T} is the (unknown) early exercise boundary, and functions v0
u (·), vD

u (·) and

SP (·) are defined by equations (8), (9) and (11), respectively.

Proof. Please see Appendix A. ¥

As usual, the time path {Eu, t0 ≤ u ≤ T} of critical asset prices is not known ex ante.

To implement Proposition 1, we must first parameterize such early exercise boundary, and

maximize (with respect to those parameters) the early exercise premium (27). For this

purpose, the density of the first passage time τe can be easily recovered by solving the non-

linear integral equation of Nunes (2009, Equation 35) through the standard partition method

proposed by Park and Schuurmann (1976).

3.2. SHP approach

This subsection provides an alternative pricing method to Proposition 1 as well as the main

theoretical contribution of this paper: The extension of the SHP approach of Chung and

Shih (2009) to the JDCEV model. Such extension is based on the fact that the process S

behaves as a pure diffusion process with respect to the filtration F. Therefore, the usual

value-matching and smooth-pasting conditions can be imposed to equations (24) and (25),

by including in the SHP portfolio the European-style contracts (8) and (9) with different

maturities and different strikes.

As in Chung and Shih (2009), we start at the maturity date of the American-style option

and proceed backwards until the valuation date. At time T , we start our static hedge

13



portfolio with one unit of the European-style option (7) with strike K, and expiry date at

time T . Note that such long position now includes two components: One long position on

the European-style contract (8) that assumes no default, as in Chung and Shih (2009); but

also a new long position on the recovery component (9), that will ensure that the portfolio

is worth the recovery value R if default occurs.

Similarly to Chung and Shih (2009), we divide the time to maturity of the option contract

into n evenly-spaced time points such that δt := (T − t0) /n. At each time ti := t0 + iδt (for

i = n − 1, . . . , 1, 0), the unkown early exercise boundary Ei is matched by adding wi units

of only the no-default component (8) with strike equal to Ei, and maturity at time ti+1. For

each time step, the unkowns Ei and wi are found by solving simultaneously the following

two recurrence conditions:

φK − φEn−i = vtn−i
(En−i, K, T, R; φ, η) +

i∑
j=1

wn−j × v0
tn−i

(En−i, En−j, tn−j+1; φ) , (28)

and

−φ = ∆vtn−i (En−i,K,T,R;φ,η) +
i∑

j=1

wn−j ×∆v0
tn−i

(En−i,En−j ,tn−j+1;φ), (29)

for i = 1, 2, ..., n, and where ∆ represents the delta (or hedge ratio) of the option.

After solving for all the unknowns Ei and wi (for i = n − 1, . . . , 1, 0), the time-t0 SHP

price of the American-style option, under the JDCEV model, is finally given by:

V shp
t0 (St0 , K, T,R; φ, η) =





V shpu
t0 (St0 , K, T,R; φ, η) ⇐ φSt0 > φEt0

φK − φSt0 ⇐ φSt0 ≤ φEt0

, (30)

where

V shpu
t0 (St0 , K, T,R; φ, η) := vt0 (St0 , K, T,R; φ, η)+

n∑
j=1

wn−j×v0
t0

(St0 , En−j, tn−j+1; φ) . (31)

Remark 5 Note that equation (31) constitutes only an upper bound for the true American-

style option price, and the true SHP price must be found through equation (30) whenever

the early exercise boundary has been crossed by the valuation date. Under such scenario,

Appendix B shows that equation (31) would overvalue the option contract.
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Remark 6 To simultaneously solve the two recurrence conditions (28) and (29), we must

provide an initial guess for En−1. Following, for instance, Huang et al. (1996, Footnote 5)

and Kim and Yu (1996, Page 67), we initialize the early exercise boundary at

En = φ

(
φK ∧ φ

rT K

qT

)
, (32)

and take En−1 = En as an initial guess.

3.3. Hedge ratios

As usual, the implementation of the SHP approach for valuing American-style options under

the JDCEV model requires the knowledge of the analytical solutions for the hedge ratios

of the corresponding European-style plain-vanilla options. The next proposition offers the

closed-form solutions for the hedge ratios of the pricing solutions proposed by Carr and

Linetsky (2006), which represent a novel contribution to the credit and equity derivatives

literature.8

Proposition 2 Let x, k, δ+, and ρ be defined as in equations (14), (15), (16), and (17),

respectively. Assume that default has not occurred by time t0 ≥ 0, that is ζ > t0, and take

St0 > 0.

i. The delta of the call option (12) is given by

∆vt0(St0 ,K,T,0;−1,η) = e−q(T−t0)

[
Φ+1

(
0,

k2

ρ
; δ+,

x2

ρ

)
+ 2 |β̄| x

2

ρ
p

(
k2

ρ
; 2 + δ+,

x2

ρ

)]
(33)

− K

St0

e−(r+b)(T−t0)

(
x2

ρ

) 1
2|β̄|

[
Φ+1

(
− 1

2|β̄| ,
k2

ρ
; δ+,

x2

ρ

)

(
1− |β̄| x

2

ρ

)
+ 2 |β̄| Φ̃+1

(
− 1

2|β̄| ,
k2

ρ
; δ+,

x2

ρ

)]
,

8Even though we are concentrating our analysis on the time-homogeneous JDCEV model with constant

parameters, it is straightforward to extend the analytical solutions of the hedge ratios proposed in Proposition

2 for the time-dependent JDCEV model.
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where p(.; v, λ) is the probability density function of a noncentral chi-square distribution

with v degrees of freedom and noncentrality parameter λ, as given in Johnson et al. (1995,

Equation 29.4), and

Φ̃+1 (p, w; v, λ) := 2p

∞∑
i=0

e−
λ
2

(
λ
2

)i

(i− 1)!

Γ
(
p + v

2
+ i, w

2

)

Γ
(

v
2

+ i
) , (34)

with Γ (a, z) and Γ (a) representing the upper incomplete gamma function and the Euler

gamma function given in Abramowitz and Stegun (1972, Equations 6.5.3 and 6.1.1), respec-

tively, for a, z ∈ R+.

ii. The delta of the put option conditional on no default (13) is given by

∆v0
t0
(St0 ,K,T ;1) =

K

St0

e−(r+b)(T−t0)

(
x2

ρ

) 1
2|β̄|

[
Φ−1

(
− 1

2|β̄| ,
k2

ρ
; δ+,

x2

ρ

)
(35)

(
1− |β̄| x

2

ρ

)
+ 2 |β̄| Φ̃−1

(
− 1

2|β̄| ,
k2

ρ
; δ+,

x2

ρ

)]

−e−q(T−t0)

[
Φ−1

(
0,

k2

ρ
; δ+,

x2

ρ

)
− 2 |β̄| x

2

ρ
p

(
k2

ρ
; 2 + δ+,

x2

ρ

)]
,

where

Φ̃−1 (p, w; v, λ) := 2p

∞∑
i=0

e−
λ
2

(
λ
2

)i

(i− 1)!

γ
(
p + v

2
+ i, w

2

)

Γ
(

v
2

+ i
) , (36)

with γ (a, z) being the lower incomplete gamma function given in Abramowitz and Stegun

(1972, Equation 6.5.2), for a, z ∈ R+.

iii. The delta of the recovery part of the put (10), under the fractional recovery of treasury

assumption, is given by

∆vD
t0
(St0 ,R,T ;1,T) = − R

St0

e−r(T−t0) SP (St0 , t0; T ) (37)


1 + |β̄| x

2

ρ




(
1− 1

|β̄| δ+

)
1F1

(
δ+
2

+ p + 1, δ+
2

+ 1, x2

2ρ

)

1F1

(
δ+
2

+ p, δ+
2

, x2

2ρ

) − 1





 ,

where

1F1 (a, b, z) :=
∞∑
i=0

(a)i

(b)i

zi

i!
(38)

is the Kummer confluent hypergeometric function of the first kind as given, for instance,

by Slater (1960, Equation 1.1.8), Abramowitz and Stegun (1972, Equation 13.1.2), or Lebe-
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dev (1972, Equation 9.9.1), and (a)i is the Pochhammer function defined, for example, in

Abramowitz and Stegun (1972, Equation 6.1.22).

iv. The delta of the recovery part of the put (19), under the fractional recovery of face value

assumption, is given by

∆vD
t0
(St0 ,R,T ;1,ζ) (39)

= R

∫ T

t0

e−(r+b)(u−t0)

[
bA

St0

(
x2

ρ (t0, u)

) 1
2|β̄|

M

(
− 1

2|β̄| ; δ+,
x2

ρ (t0, u)

)

+ca2BS2β−1
t0 e−2|β̄|(r−q+b)(u−t0)

(
x2

ρ (t0, u)

) 1
2|β̄|+1

M

(
− 1

2|β̄| − 1; δ+,
x2

ρ (t0, u)

) ]
du,

where

A := 1 + |β̄| x2

ρ (t0, u)




(
1− 1

|β̄| δ+

)
1F1

(
δ+
2

+ p + 1, δ+
2

+ 1, x2

2ρ(t0,u)

)

1F1

(
δ+
2

+ p, δ+
2

, x2

2ρ(t0,u)

) − 1


 , (40)

and

B := 1 + |β̄| x2

ρ (t0, u)




(
1− 1

|β̄| δ+

− 2

δ+

)
1F1

(
δ+
2

+ p, δ+
2

+ 1, x2

2ρ(t0,u)

)

1F1

(
δ+
2

+ p− 1, δ+
2

, x2

2ρ(t0,u)

) − 1


 . (41)

Proof. The delta of the recovery parts of the put (10) and (19) involve the derivative of the

Kummer confluent hypergeometric function (38) with respect to z, given, for instance, in

Slater (1960, Equation 2.1.1), Abramowitz and Stegun (1972, Equation 13.4.8), or Lebedev

(1972, Equation 9.9.4). The proof of the hedge ratios (33) and (35) involves straightforward

calculus and is omitted.¥

Remark 7 Note that, under the fractional recovery of treasury assumption, the delta of the

European-style put option (7) is given by the sum of equations (35) and (37). Alternatively,

such hedge ratio can be easily obtained through the put-call parity

∆vt0(St0 ,K,T,R;1,T) = ∆v0
t0
(St0 ,K,T ;−1) − e−q(T−t0), (42)

which avoids the need of computing the Kummer confluent hypergeometric function (38).
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Remark 8 One of the ingredients for efficiently compute the hedge ratios offered in Proposi-

tion 2 is the computation of the value function Φ̃θ (p, w; v, λ), with θ ∈ {−1, 1}. To enhance

the efficiency of the analytical formulas (33) and (35), we have adapted the algorithm offe-

red by Dias and Nunes (2012) for computing the series solutions (34) and (36). Details are

available upon request.

3.4. American-style capped contracts

Equation (23) can be interpreted as an American-style down-and-out option with the down-

and-out barrier set at zero (with the short-term interest rate replaced by an intensity-adjusted

short-rate, and with possible recovery at default). Therefore, the extension of the SHP

approach to the valuation of equation (23) highlights that the SHP method can also be

easily applied to the pricing of American-style barrier options under single factor diffusion

processes. Such task has been successfully undertaken by Chung et al. (2013) for American

knock-in put options under the CEV model (but only with β = 4
3
). To illustrate the extension

of the SHP approach to the pricing of American-style barrier options under the JDCEV

framework, we now consider the valuation of American-style capped call and put options.

Upon exercise, the payoff of a capped option on the asset price S, with strike K, and

constant cap H, is equal to (S ∧H −K)+, for a capped call, and to (K − S ∨H)+, for a

capped put. Therefore, and as argued, for instance, by Detemple (2006, Page 89), a capped

option is equivalent to “a knock-out barrier option with rebate equal to the option payoff at

the trigger date”.

Under the JDCEV model and assuming the automatic exercise at the constant cap level

H, the time-t0 value of an American-style capped option on the stock price S, with strike K,
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and with expiry date at time T (≥ t0) can be obtained through the following augmentation

of the Snell envelope (20):9

V̄t0 (St0 , K, H, T ; φ, η) (43)

= sup
τ∈T

{
EQ

[
e−

∫ T∧τ∧τH
t0

rldl (φK − φST∧τ∧τH
)+ 11{ζ>T∧τ∧τH}

∣∣∣Gt0

]

+EQ
[
e
− ∫ η

t0
rldl (

φ (K −H)+)+
11{ζ≤T∧τ∧τH}

∣∣∣Gt0

]}
,

where

τH := inf {t > t0 : St = H} (44)

is the first passage time of the underlying asset price to the cap level H, which is such that

φH < φSt0 , (45)

with φ = 1 for a put option, φ = −1 for a call option, and η ∈ {ζ, T}. Since the random

variable Θ is independent of F, because S behaves as a pure diffusion process with respect

to the filtration F, and following the same steps as in Subsection 3.1, equation (43) can be

simply restated as

V̄t0 (St0 , K, H, T ; φ, η) = V̄ 0
t0

(St0 , K, H, T ; φ) + V̄ D
t0

(St0 , K,H, T ; φ, η) , (46)

where

V̄ 0
t0

(St0 , K,H, T ; φ) = EQ
[
e−

∫ T∧τ̄e∧τH
t0

(rl+λ(l,S))dl (φK − φST∧τ̄e∧τH
)+ 11{τ0>T∧τ̄e∧τH}

∣∣∣Ft0

]
,

(47)

is the American-style capped option value conditional on no default, and

V̄ D
t0

(St0 , K, H, T ; φ, η) (48)

= 11{η=T}
(
φ (K −H)+)+

e
− ∫ T

t0
rldl

[
1− EQ

(
e−

∫ T∧τ̄e∧τH
t0

λ(l,S)dl11{τ0>T∧τ̄e∧τH}
∣∣∣Ft0

)]

+11{η=ζ}
(
φ (K −H)+)+ EQ

[∫ T∧τ̄e∧τH

t0

e
− ∫ v

t0
(rl+λ(l,S))dl

λ(v, S)11{τ0>v}dv

∣∣∣∣Ft0

]

is the present value of the recovery payment (made at the maturity date or at the default

time), and

τ̄e := inf
{

t > t0 : St = Ēφ
t

}
(49)

9As usual, for call options the recovery value upon default is zero. For American-style capped puts, such

recovery value is assumed to be equal to (K − 0 ∨H)+ = (K −H)+.
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is the optimal stopping time through the early exercise boundary
{

Ēφ
t , t0 ≤ t ≤ T

}
of the

capped put (if φ = 1) or call (if φ = −1).

Moreover, the early exercise boundary of both capped options can be easily recovered

from the boundary of the corresponding uncapped option, since Gao et al. (2000, Theorem

6) and Detemple and Tian (2002, Proposition 8) have shown that

Ē1
t = Et ∨H, (50)

and

Ē−1
t = Et ∧H, (51)

for all t ∈ [t0, T ], and where {Et, t0 ≤ t ≤ T} is the early exercise boundary of the correspon-

ding standard American-style option. Consequently, equation (46) can be simply rewritten

as equation (23) but with τe and R replaced by τ̄e ∧ τH and (K −H)+, respectively.

Under the optimal stopping approach of Nunes (2009), the evaluation of equation (46) is

straightforward. First, the early exercise boundary {Et, t0 ≤ t ≤ T} is found via Proposition

1, by maximizing the early exercise premium (27) for R = (K −H)+ and with respect to a

polynomial parameterization of the boundary. Then, the capped boundary
{

Ēφ
t , t0 ≤ t ≤ T

}

is obtained through equations (50) or (51), and fed into equation (26) with R = (K −H)+.

Under the SHP approach, the evaluation of equation (46) is based on two steps that

combine the Derman et al. (1995) and the Chung and Shih (2009) approaches. Again, we

divide the time to maturity of the option contract into n evenly-spaced time points such

that δt := (T − t0) /n, and ti := t0 + iδt (for i = n − 1, ..., 1, 0). But now we only need to

find the unknown early exercise boundary Ēφ
i until Ēφ

i = H, since equations (50) and (51)

imply that the remaining boundary is simply given by H.

The recurrence conditions (28) and (29) are easily adapted to the valuation of American-

style capped options:

φK − φĒφ
n−i = vtn−i

(
Ēφ

n−i, K, T, (K −H)+; φ, η
)

(52)

+
i∑

j=1

wn−j × v0
tn−i

(
Ēφ

n−i, Ē
φ
n−j, tn−j+1; φ

)
,
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and

−φµ =

[
∆vtn−i(Ēφ

n−i,K,T,(K−H)+;φ,η) +
i∑

j=1

wn−j ×∆v0
tn−i

(Ēφ
n−i,Ē

φ
n−j ,tn−j+1;φ)

]
µ, (53)

with µ = 1 while Ēφ
n−i = Eφ

n−i and µ = 0 when Ēφ
n−i = H. Finally, the time-t0 SHP price of

the American-style capped option, under the JDCEV model, is given by:

V̄ shp
t0 (St0 , K, H, T ; φ, η) =





V̄ shpu
t0 (St0 , K, H, T ; φ, η) ⇐ φSt0 > φĒφ

t0

φK − φSt0 ⇐ φSt0 ≤ φĒφ
t0

, (54)

where

V̄ shpu
t0 (St0 , K,H, T ; φ, η) := vt0

(
St0 , K, T, (K −H)+; φ, η

)
(55)

+
n∑

j=1

wn−j × v0
t0

(
St0 , Ē

φ
n−j, tn−j+1; φ

)
.

Note that the procedure of Chung and Shih (2009) is only used until Ēφ
n−i = H; then, the

procedure of Derman et al. (1995) is applied to the remaining early exercise boundary, since

the boundary is known and we only have to find the weights of the hedging portfolio. Using

this two-step procedure, the valuation of American-style capped options is always faster than

the valuation of standard American-style options (except for the case when both contracts

share the same exercise boundary and, hence, the CPU time is the same).

4. Numerical experiments

To test the efficiency of the SHP and optimal stopping approaches under the CEV and

JDCEV frameworks, we divide the analysis in two parts: First, we consider the valuation

of standard American-style options; then we deal with the pricing of American-style capped

options.

4.1. American-style standard options

It is noteworthy to emphasize that Chung and Shih (2009) have successfully applied the SHP

approach to price (and hedge) American-style options under the lognormal assumption of
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BSM and for the CEV diffusion model of Cox (1975). For the latter model, however, they

consider only the case where the elasticity parameter of the CEV process (β) is equal to

4/3. As observed by Schroder (1989), the prices of plain-vanilla calls and puts under the

CEV assumption with β = 4/3 are easy to compute since the corresponding complemen-

tary noncentral chi-square distribution functions Q(.; 1, λ), Q(.; 3, λ), and Q(.; 5, λ) can be

determined using only the standard normal density and distribution functions.

4.1.1. CEV model

The main goal of our first numerical experiments is to further test the accuracy and efficiency

of the SHP method for pricing American-style options under the CEV model described in

Subsection 2.3 by extending the analysis for any β parameter, thus accommodating both

direct and indirect leverage effects commonly observed across a variety of options markets.

For this purpose, the pricing solutions of the SHP procedure will be compared against

the optimal stopping approach offered by Nunes (2009) for the parameter constellations

considered in Nunes (2009, Tables 2, 3, and 4).10 All numerical results in this paper are

obtained through Matlab (R2010a) running on an Intel Xeon X5680 3.33GHz processor.

Table 1 reports American-style put prices with a time to maturity of six months and

assuming an elasticity parameter β = 3, while Table 2 values American-style call options with

an expiry date of one year, and under a CEV square root process with β = 1.11 The proxy

of the exact American option price (4th column) is computed through the Crank-Nicolson

finite-difference scheme with 15, 000 time intervals and 10, 000 space steps. The optimal

stopping approach of Nunes (2009) is implemented with conditional minimization through

the Matlab “fmincon” algorithm, and using a four and five degree polynomial specification

10The use of the Nunes (2009) valuation methodology will also allow us to compare the SHP results to be

obtained under the JDCEV model proposed in Carr and Linetsky (2006).
11Note that the value of an American-style call option under the CEV model can be obtained also through

the put-call symmetry offered by Schroder (1999, Corollary 1).
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for the early exercise boundary (5th and 6th columns, respectively).12 As suggested by

Nunes (2009, page 1246), the parameters defining the exercise policy are first estimated by

discretizing both Nunes (2009, Propositions 1 and 5) using N = 24. Then, and based on this

approximation for the optimal exercise boundary, the early exercise premium is computed

via Nunes (2009, Proposition 6) using N = 28 time steps. The last four columns of Tables

1 and 2 contain the American-style option prices generated by the SHP method, which is

implemented using the Matlab “fsolve” algorithm for solving the recurrence conditions (28)

and (29), subject to the restrictions described in Definition 1, and with n ∈ {4, 12, 24, 52}.
Accuracy is measured by the mean average absolute percentage error (over the 20 contracts

considered) of each valuation approach and with respect to the exact American option price.

Efficiency is evaluated by the total CPU time (expressed in seconds) spent to value the whole

set of contracts considered.

[Please insert Table 1 about here.]

[Please insert Table 2 about here.]

There are four points that are noteworthy to highlight in these two tables. First, both

methods are accurate: the mean average absolute percentage errors (MAPE) in all tested

cases are well below the typical bid-ask spread observed in the market. Second, the SHP

method with n = 12 gives similar results in terms of accuracy to the Nunes (2009) approach

with a four degree polynomial specification for the early exercise boundary, but with less

than half of the computational burden. Third, the SHP method with n = 24 gives more

accurate results than the Nunes (2009) approach with a five degree polynomial specification

for the early exercise boundary, though using a similar CPU time. Fourth, the computational

expenses contained in Table 2 are about half of those presented in Table 1 essentially due to

the fact that more than half of the American-style options evaluated in Table 2 are equal to

their European-style counterparts, and in these cases both methods become faster.

12The early exercise premium (27) is maximized subject to the terminal condition (32), and imposing that

the optimal exercise boundary is non-negative and non-decreasing.
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Tables 1 and 2 compile 40 option prices which obviously do not represent a large enough

sample to take more robust conclusions, thus giving only a preliminary flavor of the results.

Hence, to better assess the speed-accuracy trade-off between the two methods tested we

follow the guidelines of Broadie and Detemple (1996) by conducting a careful large sample

evaluation of 1,250 randomly generated American-style put option prices.

Table 3 reproduces the pricing errors of the optimal stopping approach of Nunes (2009)

with a five and six polynomial specification for the early exercise boundary (2nd and 3rd

columns, respectively) and the pricing errors of the SHP approach for four different evenly-

spaced time grids (the last four columns), where all the option parameters, with the exception

of β and δ, are extracted from the same uniform distributions as in Ju (1998, Table 3). As

before, the true American-style put option price is computed through the Crank-Nicolson

finite-difference scheme with 15, 000 time intervals and 10, 000 space steps.13 Even though

both methods produce extremely accurate results, the SHP approach offers the best speed-

accuracy trade-off for pricing American-style standard options under the CEV model.

[Please insert Table 3 about here.]

4.1.2. JDCEV model

Armed with the closed-form solutions of European-style options and the corresponding hedge

ratios, the implementation of the SHP approach for valuing standard American-style options

under the JDCEV model (under both recovery assumptions) follows straightforwardly.

To illustrate the robustness and efficiency of the proposed pricing methodology, we focus

on the valuation of standard American-style puts under the JDCEV model, though the

13It is well-known—see, for instance, Schroder (1989) or Larguinho et al. (2012)—that option pricing

under the CEV assumption is computationally expensive especially when β is close to two (the lognormal

case), volatility is low, or the time to maturity is small. For this reason, we have excluded from the original

sample option contracts with an elasticity parameter β ∈ [1.75, 2.25], thus leaving 1,085 contracts to be

evaluated. Additional results, not reported here but available upon request, show that it takes almost the

same computational time to value the 165 contracts removed from the initial sample and the remaining 1,085

contracts.
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procedure is easily adapted for valuing their counterpart calls. To the best of our knowledge,

the optimal stopping approach of Nunes (2009) is the only available methodology, until now,

for pricing plain-vanilla American-style options under the JDCEV model—now extended for

the payment of the recovery value at the maturity date T—, and hence it will be used as

our benchmark.

Tables 4 and 5 test the efficiency of the SHP algorithm for valuing standard American-

style put options under the time-homogeneous JDCEV model for different parameter confi-

gurations borrowed from Carr and Linetsky (2006, Table 1), and assuming, respectively,

recovery at maturity (i.e. η = T ) and recovery at default time (i.e. η = ζ). The 4th,

5th, and 6th columns of both tables show the European-style put option price components

obtained via equations (13), (9), and (7), respectively. As expected, put options under the

fractional recovery of treasury assumption are worth less than the corresponding options

under the fractional recovery of face value assumption, due to the different discount effects

over the recovery value (equal to K). The optimal stopping approach of Nunes (2009) is

implemented with conditional minimization, using the Matlab “fmincon” algorithm, consi-

dering a six degree polynomial specification for the early exercise boundary. The parameters

defining the exercise policy are first estimated using N = 24 time steps. Then, and based

on this approximation for the optimal exercise boundary, the early exercise premium (7th

column of both tables), the American put option price conditional on no default before the

expiry and early exercise dates (8th column of both tables), and the present value of the

recovery payment made at the maturity date (9th column of Table 4) or at the default time

(9th column of Table 5) are computed via equations (27), (24), and (25), respectively, using

N = 28 time steps. The standard American-style put option price contained in the 10th

column of both tables is recovered through equations (23) or (26).14 Finally, columns 11

to 13 of Tables 4 and 5 report the values of the American-style put given in equation (30),

which are obtained through the SHP procedure using again the “fsolve” algorithm available

in Matlab for solving the recurrence conditions (28) and (29), with n ∈ {12, 24, 52}.
14Both tables highlight that when K = 120 the put is sufficiently in-the-money, so that the time-t0 spot

price (St0) is already below the critical asset price Et0 , and, therefore, the standard American-style put price

equals its intrinsic value.
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[Please insert Table 4 about here.]

[Please insert Table 5 about here.]

To sum up, the results computed via the SHP approach are shown to be robust along

both tables. For instance, it is possible to obtain extremely accurate option prices (for both

recovery assumptions) even using the SHP pricing procedure with only 12 evenly-spaced

time points n, but with much less computational burden. As expected, both pricing frame-

works require higher CPU times to compute standard American-style put option contracts

under the fractional recovery of face value assumption, because, in this case, one has to use

a numerical integration scheme for computing equations (19) and (25) under the optimal

stopping approach, and equations (19) and (39) under the SHP procedure.15

4.2. American-style capped options

This subsection aims to compare the optimal stopping and the SHP approaches for pricing

American-style capped put options under both the CEV and JDCEV models. The valuation

of the corresponding calls can be treated similarly.

Table 6 prices American-style capped put options under the CEV model using the para-

meter constellations considered in Table 1, but now augmented with a barrier level H = $75.

The 3rd and 4th columns of the table highlight the values obtained under the optimal stop-

ping approach of Nunes (2009), using equations (26), (27), and (50), with R = (K −H)+,

and considering a polynomial boundary specification with four and five degrees of free-

dom, respectively. Columns 5 to 8 report the results obtained via the SHP method with

n ∈ {4, 12, 24, 52}, and computed through the recurrence conditions (52) and (53), and

equation (54). Again, both valuation methodologies have been implemented subject to the

restrictions described in Definition 1.
15At the expense of a higher computational burden, both valuation methodologies have been implemented

through the Gauss-Kronrod integration method, using the “quadgk” algorithm available in Matlab. Even

though there are other numerical integration schemes that may be also applied to diminish the computational

effort, we do not pursue such numerical issues here.
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[Please insert Table 6 about here.]

Table 7 prices American-style capped put options under the JDCEV model (with recovery

at maturity) using the parameter constellations considered in Table 4 and a barrier H = $75.

The valuation of the corresponding put with recovery at the default time (and calls with both

recovery assumptions) can be treated similarly. Columns 4 to 6 value American-style capped

put options using the optimal stopping approach of Nunes (2009). The no default component

(column 4) is computed using equation (47), and the recovery component (column 5) is

computed through equation (48). Finally, column 6 gives the sum of these two components

obtained via equation (46).16 The last three columns report the results obtained via the

SHP method with n ∈ {12, 24, 52}, and computed through the recurrence conditions (52)

and (53), and equation (54).

[Please insert Table 7 about here.]

In summary, the tables reveal that both pricing methodologies produce results that are

almost indistinguishable, though the SHP procedure seems to be more efficient in terms

of computational burden. As expected, and as explained in Subsection 3.4, the CPU time

required to value these two sets of capped American-style put options contracts under the

SHP approach is smaller than the computational effort for valuing the corresponding stan-

dard American-style put options of Tables 1 and 4. On the contrary, the optimal stopping

approach of Nunes (2009) requires further CPU time, since we still need to find the whole

early exercise boundary of the standard American-style put option.

5. Conclusions

The most important theoretical contribution of this paper is the generalization of the SHP

procedure for valuing American-style standard and capped options under the JDCEV model

16Similarly to the standard American-style put option case, when K = 120 the capped put is sufficiently

in-the-money, so that the time-t0 spot price (St0) is already below the critical asset price E1
t0 , and, therefore,

the capped American-style put price equals its intrinsic value.
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of Carr and Linetsky (2006). To accomplish this purpose, novel analytical representations

were obtained for the hedge ratios of the corresponding European-style standard options,

which can be used to jointly price equity and credit derivatives under this general and

flexible modeling framework. The SHP approach is also implemented to price American-style

standard and capped options under the unrestricted CEV model, thus accommodating both

direct and indirect leverage effects typically observed by market practitioners. Furthermore,

we extend the optimal stopping approach of Nunes (2009) for the pricing of American-style

capped options, assuming that the recovery value associated to the put can be paid at the

default time or at the maturity date of the option.

Overall, the numerical experiments run have shown that the SHP pricing methodology

is as accurate as but (generally) faster than the optimal stopping approach, thus offering

a better speed-accuracy trade-off for pricing American-style standard and capped options

under both the (single-factor) CEV and JDCEV models. Nevertheless, and as shown by

Nunes (2011, Theorem 1), the optimal stopping approach should be easier to extend for

multifactor models (incorporating, for instance, stochastic volatility) because it only requires

a numerically tractable solution for both the corresponding European-style option and for

the transition density function of the underlying asset process.

Appendix A. Proof of Proposition 1

Nunes (2009, Equations 57 and 60) has already shown that

V 0
t0

(St0 , K, T ; φ) = v0
t0

(St0 , K, T ; φ) + EEP 0
t0

(St0 , K, T ; φ) , (A.1)

where the first term on the right-hand side of equation (A.1) is given by equation (8), and

EEP 0
t0

(St0 , K, T ; φ) (A.2)

=

∫ T

t0

e
− ∫ u

t0
rldl [

(φK − φEu)
+ − v0

u (Eu, K, T ; φ)
]
SP (St0 , t0; u)Q (τe ∈ du| Ft0) .

A similar decomposition must also be made to the recovery component (25), and will be

illustrated in the next lines for the case of recovery at the maturity date.17

17The recovery at default time case can be treated similarly, and the proof is available upon request.
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Assuming that η = T and ζ > t0, equation (25) can be rewritten as

V D
t0

(St0 , R, T ; φ, T ) = (φR)+e
− ∫ T

t0
rldl

[
1− EQ

(
e
− ∫ T

t0
λ(l,S)dl

11{τ0>T,τe≥T}
∣∣∣Ft0

)

−EQ
(

e
− ∫ τe

t0
λ(l,S)dl

11{τ0>τe,τe<T}
∣∣∣Ft0

)]
,

i.e.

V D
t0

(St0 , R, T ; φ, T ) (A.3)

= (φR)+e
− ∫ T

t0
rldl

[
1− EQ

(
e
− ∫ T

t0
λ(l,S)dl

11{τ0>T}
∣∣∣Ft0

)

+EQ
(

e
− ∫ T

t0
λ(l,S)dl

11{τ0>T,τe<T}
∣∣∣Ft0

)
− EQ

(
e
− ∫ τe

t0
λ(l,S)dl

11{τ0>τe,τe<T}
∣∣∣Ft0

)]
,

since 11{τe≥T} = 1− 11{τe<T}.

Equations (10) and (11), and the law of iterative expectations, imply that equation (A.3)

can be further simplified into

V D
t0

(St0 , R, T ; φ, T )

= (φR)+e
− ∫ T

t0
rldl [

1− EQ
(
11{ζ>T}

∣∣Gt0

)

+EQ
(
11{ζ>T,τe<T}

∣∣Gt0

)− EQ
(
11{ζ>τe,τe<T}

∣∣Gt0

)]

= (φR)+e
− ∫ T

t0
rldl {

1− SP (St0 , t0; T )− EQ
[(

11{ζ>τe} − 11{ζ>T}
)
11{τe<T}

∣∣Gt0

]}

= vD
t0

(St0 , R, T ; φ, T )− (φR)+e
− ∫ T

t0
rldlEQ

(
11{τe<ζ<T}11{τe<T}

∣∣Gt0

)

= vD
t0

(St0 , R, T ; φ, T )− (φR)+e
− ∫ T

t0
rldlEQ

[
EQ

(
11{τe<ζ<T}

∣∣Gτe

)
11{τe<T}

∣∣Gt0

]
. (A.4)

Using again definition (11), equation (A.4) can be restated in terms of the restricted filtration

F, with respect to which the asset price process S behaves as a pure diffusion process:

V D
t0

(St0 , R, T ; φ, T ) (A.5)

= vD
t0

(St0 , R, T ; φ, T )

−(φR)+e
− ∫ T

t0
rldlEQ

{[
1− EQ

(
e−

∫ T
τe

λ(l,S)dl11{τ0>T}
∣∣∣Fτe

)]
11{τe<T}

∣∣∣Ft0

}
.
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Taking advantage of the Markovian nature of the underlying price process S, the outer

expectation on the right-hand side of equation (A.5) can be written as a convolution against

the density of the first passage time τe, yielding

V D
t0

(St0 , R, T ; φ, T )

= vD
t0

(St0 , R, T ; φ, T )

−(φR)+e
− ∫ T

t0
rldl

∫ T

t0

[
1− EQ

(
e−

∫ T
u λ(l,S)dl11{τ0>T}

∣∣∣ Su = Eu

)]
Q (τe ∈ du| Ft0)

= vD
t0

(St0 , R, T ; φ, T )− (φR)+e
− ∫ T

t0
rldl

∫ T

t0

[1− SP (Eu, u; T )]Q (τe ∈ du| Ft0)

= vD
t0

(St0 , R, T ; φ, T )−
∫ T

t0

e
− ∫ u

t0
rldl

vD
u (Eu, R, T ; φ, T )Q (τe ∈ du| Ft0) , (A.6)

where the last two lines follow from equations (11) and (10), respectively.

Combining equations (7), (23), (A.1), (A.2), and (A.6), equations (26) and (27) arise for

η = T .¥

Appendix B. SHP method in the exercise region

This appendix shows that whenever φSt0 ≤ φEt0 (for φ ∈ {−1, 1}), the standard SHP

pricing equation (31) would overvalue the American-style option. This is explained by the

fact that all European-style options (conditional on no default) in the replicating portfolio

(with a strike price equal to the value of the exercise boundary) would end in-the-money until

the American-style option is exercised, i.e. until the spot price touches the early exercise

boundary. On the contrary, when φSt0 > φEt0 , all European-style options included in the

replicating portfolio end out-of-the-money until the American-style option is exercised. Next

proposition formalizes the aforementioned economic rationale.

Proposition B1 When φSt0 ≤ φEt0, then

V shpu
t0 (St0 , K, T,R; φ, η) > Vt0 (St0 , K, T, R; φ, η) , (B.1)

for φ ∈ {−1, 1}.
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Proof. Given that φSt0 ≤ φEt0 , let t∗ ≤ T denote the next passage time of the asset price

S through the early exercise boundary, i.e. St∗ = Et∗ . This date corresponds to the space

time point n − i∗. Replacing t0 and St0 by t∗ (or n − i∗) and St∗ ≡ En−i∗ , respectively, in

equation (31), the value of the SHP portfolio at time t∗ is equal to

V shpu
t∗ (Et∗ , K, T,R; φ, η) = vtn−i∗ (En−i∗ , K, T, R; φ, η) (B.2)

+
n∑

j=1

wn−j × v0
tn−i∗ (En−i∗ , En−j, tn−j+1; φ) .

Note, however, that all the European-style options with expiry date at times tn−j+1, for

j = i∗ + 1, ..., n, that is all the options with a time to maturity equal to (i∗ − j + 1) × δt,

have already expired by time t∗, and, therefore, their terminal payoff has been previously

reinvested until time t∗. Hence,

v0
tn−i∗ (En−i∗ , En−j, tn−j+1; φ) = (φEn−j − φSn−j+1)

+
n−i∗∏

k=n−j+2

erk×δt, (B.3)

for j = i∗ + 1, ..., n, and equation (B.2) can be rewritten as

V shpu
t∗ (Et∗ , K, T, R; φ, η) = vtn−i∗ (En−i∗ , K, T, R; φ, η) (B.4)

+
i∗∑

j=1

wn−j × v0
tn−i∗ (En−i∗ , En−j, tn−j+1; φ)

+
n∑

j=i∗+1

wn−j × (φEn−j − φSn−j+1)
+

n−i∗∏

k=n−j+2

erk×δt.

Using equation (28), equation (B.4) can be further rewritten as

V shpu
t∗ (Et∗ , K, T, R; φ, η) = φK − φEn−i∗ (B.5)

+
n∑

j=i∗+1

wn−j × (φEn−j − φSn−j+1)
+

n−i∗∏

k=n−j+2

erk×δt.

Finally, and since

φK − φEn−i∗ = Vt∗ (Et∗ , K, T, R; φ, η)

corresponds to the well known value-matching condition, then equation (B.5) becomes

V shpu
t∗ (Et∗ , K, T, R; φ, η) = Vt∗ (Et∗ , K, T, R; φ, η) (B.6)

+
n∑

j=i∗+1

wn−j × (φEn−j − φSn−j+1)
+

n−i∗∏

k=n−j+2

erk×δt.
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Given that φSt0 ≤ φEt0 , we have φSt < φEt for all t < t∗, which makes the last term on

the right-hand side of equation (B.6) almost surely strictly positive. Therefore,

V shpu
t∗ (Et∗ , K, T,R; φ, η) > Vt∗ (Et∗ , K, T,R; φ, η) . (B.7)

Since equation (B.7) holds at any t∗ along the early exercise boundary, equation (B.1) follows

immediately.

If t∗ > T , then all the European-style options in the replicating portfolio would end up

in-the-money, thus augmenting even further the positive difference between the option values

V shpu
t0 (St0 , K, T, R; φ, η) and Vt0 (St0 , K, T, R; φ, η).¥
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Table 6: Prices of capped American-style put options under the CEV model (β = 3, St0 = $100,
H = $75, and T − t0 = 0.5 years)

Parameters Strike 4d Pol. 5d Pol. shp4 shp12 shp24 shp52
80 0.158 0.158 0.158 0.158 0.158 0.158

r = 7% 90 1.290 1.292 1.296 1.296 1.296 1.297
q = 3% 100 4.791 4.790 4.792 4.792 4.792 4.792
δ = 0.02 110 11.214 11.214 11.215 11.215 11.215 11.215

120 20.021 20.021 20.026 20.026 20.026 20.026
80 1.573 1.573 1.570 1.570 1.570 1.572

r = 7% 90 5.296 5.296 5.294 5.294 5.294 5.295
q = 3% 100 10.237 10.237 10.237 10.237 10.237 10.238
δ = 0.04 110 16.473 16.473 16.473 16.473 16.473 16.474

120 23.842 23.842 23.843 23.843 23.843 23.843
80 0.723 0.723 0.722 0.722 0.722 0.723

r = 7% 90 2.964 2.966 2.966 2.966 2.966 2.967
q = 0% 100 7.059 7.059 7.060 7.060 7.060 7.060
δ = 0.03 110 13.173 13.174 13.176 13.176 13.176 13.176

120 20.991 20.991 20.993 20.993 20.993 20.992
80 1.066 1.066 1.064 1.064 1.064 1.065

r = 3% 90 4.172 4.172 4.170 4.170 4.170 4.171
q = 7% 100 9.165 9.165 9.165 9.165 9.165 9.165
δ = 0.03 110 15.909 15.909 15.909 15.909 15.909 15.909

120 23.920 23.920 23.920 23.920 23.920 23.920
CPU (seconds) 99.90 117.80 7.05 23.92 53.53 145.28

This table values capped American-style put options under the CEV model, adopting the parameter confi-
gurations of Table 1. The 3rd and 4th columns show the capped American-style put prices obtained through
the optimal stopping approach, using a polynomial boundary with 4 and 5 degrees of freedom, respectively.
The last four columns report the capped American-style put prices under the SHP method, using time steps
n ∈ {4, 12, 24, 52}.
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Table 7: Prices of capped American-style put options under the JDCEV model with recovery at
maturity (β̄ = −1, a = 20, St0 = $100, H = $75, T − t0 = 0.5 years, r = 5%, and q = 0%)

Nunes (2009) SHP approach
b c K V̄ 0

t0 V̄ D
t0 V̄t0 shp12 shp24 shp52

0.00 0.5 80 0.261 0.047 0.308 0.307 0.308 0.308
0.00 0.5 90 1.331 0.137 1.468 1.468 1.469 1.469
0.00 0.5 100 4.301 0.194 4.495 4.496 4.496 4.497
0.00 0.5 110 10.457 0.140 10.597 10.601 10.599 10.598
0.00 0.5 120 - - 20.000 20.000 20.000 20.000
0.00 1 80 0.222 0.093 0.315 0.314 0.315 0.315
0.00 1 90 1.172 0.270 1.443 1.444 1.444 1.444
0.00 1 100 4.000 0.378 4.378 4.381 4.381 4.380
0.00 1 110 10.225 0.247 10.472 10.479 10.476 10.475
0.00 1 120 - - 20.000 20.000 20.000 20.000
0.02 0.5 80 0.229 0.094 0.323 0.322 0.323 0.323
0.02 0.5 90 1.192 0.276 1.467 1.467 1.468 1.468
0.02 0.5 100 4.006 0.394 4.400 4.402 4.402 4.402
0.02 0.5 110 10.206 0.267 10.473 10.479 10.476 10.475
0.02 0.5 120 - - 20.000 20.000 20.000 20.000
0.02 1 80 0.194 0.139 0.333 0.333 0.333 0.333
0.02 1 90 1.051 0.406 1.457 1.457 1.457 1.457
0.02 1 100 3.733 0.572 4.305 4.309 4.308 4.308
0.02 1 110 10.022 0.349 10.371 10.381 10.377 10.376
0.02 1 120 - - 20.000 20.000 20.000 20.000
CPU (seconds) 190.04 21.97 71.22 288.61

This table values capped American-style put options under a time-homogeneous JDCEV model with recovery
at maturity, adopting the parameter configurations of Table 4. Columns 4 to 6 contain the values offered
by the approach of Nunes (2009) for the American-style capped put option components given in equations
(47), (48), and (46), respectively, using a 6 degree polynomial specification for the early exercise boundary.
The last three columns of the table report the values of the capped American-style put provided by the SHP
approach with n ∈ {12, 24, 52}.
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