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     ABSTRACT 

     The separation theorems are the key results for convex programming. They are 

important consequences of the Hahn-Theorem theorem. In this work begin to consider 

vector spaces, in general, then normed spaces and lastly Hilbert spaces. In the end, 

applications of these results in convex programming and in minimax theorem, two 

important tools in operations research, management and economics are presented.   
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       1.INTRODUCTION 

       The Hahn-Banach theorem is presented, with great generality, together with an 

important separation theorem. Then these results are particularized: first for normed 

spaces and then for a subclass of these spaces, the Hilbert spaces. 

       The fruitfulness of these results is emphasized in the last sections where it is shown 

that they permit to obtain very important results in the applications. First, the Kuhn-

Tucker theorem, the convex programming main result, so important in operations 

research. Then the minimax theorem, an important result in game theory, which 

consideration in management and economic models is becoming trivial. 

        Other work on this subject is (10).  

       2. THE HAHN-BANACH-THEOREM  

         Definition 2.1 

         Consider a vector space L and its subspace     Suppose that in    it is defined a 

linear functional   . A linear functional f defined in the whole space L is an extension of 

the functional    if and only if        
 
    

 

    
   

         Theorem 2.1 (Hahn-Banach)   

          Be p a positively homogeneous convex functional, defined in a real vector space 

L, and    an L subspace. If    is a linear functional defined in     , fulfilling the 

condition 



                                                      
 

    
        , 

there is an extension f of    defined in L, linear, and such that f(x)      
 

   
  

           Demonstration: 

           Begin showing that if       there is an extension of   ,    defined in a 

subspace    , such that     , in order to fulfill the condition (2.1). 

            Be         ; if    is the subspace generated by    and z, each point of    is 

expressed in the form     , being     . If    is an extension (linear) of the 

functional    to   , it will happen that                       or, making       

 ,                    Now choose c, fulfilling the condition (2.1) in    , that is: in 

order that the inequality                   for any      and any real number t, 

is accomplished. For     this inequality is equivalent to the condition   (
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For     it is equivalent to the condition   (
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              Now it will be proved that there is always c satisfying simultaneously the 

conditions (2.2) and (2.3). 

               Given any                           , 

                      
                  

                                

since     
        

              (              )           

          Be            (     
            ) and          (     

   

        ). As   and     are arbitrary, it results from (2.4) that       . Choosing c in 

order that           it is defined the functional     on    through the formula  

                       This functional satisfies the condition (2.1). So any 

functional    defined in a subspace      and subject in    to the condition (2.1), may 

be extended to a subspace   . The extension    satisfies the condition           
 

    
  If L has an algebraic numerable base                the functional in L is 

built by finite induction, considering the increasing sequence of subspaces     

         
    (       )   designating (         ) the L subspace generated by      

and      . In the general case, that is, when L has not an algebraic numerable base, it is 



mandatory to use a transfinite induction process, for instance the Haudsdorf maximal 

chain theorem. 

          So call   the set of the whole pairs       , at which    is a L subspace that 

contains    and    is an extension of     to    that fulfills (2.1). Order partially  so that 

                                            |  
       By the Haudsdorf maximal chain 

theorem, there is a chain, that is: a subset of   totally ordered, maximal, that is: not 

strictly contained in another chain. Call it Ω. Be   the family of the whole    such that 

         Ω.   is totally ordered by the sets inclusion; so, the union   of the whole 

elements of   is a L subspace. If      then      for some        ; define  ̃    

     , where   is the extension of    that is in the pair        - the definition of  ̃ is 

obviously coherent. It is easy to check that     and that      satisfies the condition 

(2.1).  

           Now it follows the Hahn-Banach theorem complex case, the Hahn contribution 

to the theorem.  

           Theorem 2.2 (Hahn-Banach)  

            Be p an homogeneous convex functional defined in a vector space L and    a 

linear functional, defined in a subspace     , fulfilling the condition|     |  

           Then, there is a linear functional f defined in L, satisfying the conditions 

|    |                             

             Demonstration: 

             Call    and     the real vector spaces underlying, respectively, the spaces L 

and    . As it is evident, p is an homogeneous convex functional in    and          

        a real linear functional in     fulfilling the condition |       |       and 

so,               Then, owing to Theorem 2.1, there is a real linear functional   , 

defined in the whole    space, that satisfies the conditions               

                          But,                           and 

                                      |      |                                   . 

Define in L the functional f making                       It is immediate to 

conclude that f is a complex linear functional in L such that              

                      

             It is only missing to show that |    |       
 

   
  

           Proceed by absurd: suppose that there is      such that |     |       . So, 

                and making          , it would happen that         

  [           ]                that is contrary to (2.5).   



           3.  VECTOR SPACE CONVEX PARTS SEPARATION 

            The next theorem, a very useful consequence of the Hahn-Banach theorem, is 

about vector space convex parts separation. Beginning with 

              Definition 3.1 

              Be M and N two subsets of a real vector space L. A linear functional f defined 

in L separates M and N if and only if there is a number c such that             

                     that is, if                        A functional f 

separates strictly the sets M and N if and only if                         

              Theorem 3.1 (Separation) 

              Suppose that M and N are two convex subsets of a vector space L such that the 

kernel of at least one of them, for instance M, is non-empty and does not intersect the 

other set; so, there is a linear functional non-null on L that separates M and N. 

               Demonstration: 

               Less than on translation, it is supposable that the point 0 belongs to the kernel 

of M, which is designated  ̇.  So, given     ,     belongs to the kernel of      

and 0 to the kernel of         As  ̇     , by hypothesis, 0 does not belong to 

the kernel of      and    does not belong to the one of         Put      

     and be p the Minkovsky functional of   ̇  So                    ̇  Define, 

now, the linear functional                 Note that    is defined in a space with 

dimension , constituted by elements    , and it is such that                 In fact, 

              , when      and                            when      

Under these conditions, after the Hahn-Banach theorem, it is possible to state the 

existence of linear functional f , defined in L, that extends   , and such that      

     
 

   
  Then it results        

 
   

                  In consequence: 

                 -f separates the sets K and {  }, that is 

                 - f separates the sets M-N and {  }, that is 

                 -f separates the sets M and N.  

 

                4. THE HAHN-BANACH THEOREM FOR NORMED SPACES 

                   Definition 4.1 

                   Consider a continuous linear functional f in a normed space E. It is called f 

norm, and designated ‖ ‖: ‖ ‖     || ||  |    | that is: the supreme of the values 

assumed by |    | in the E unitary ball.   



                     Observation: 

                     -The class of the continuous linear functionals, with the norm above 

defined, is a normed vector space, called the E dual space, designated     

                      The Theorem 2.1 in normed spaces is: 

                      Theorem 4.1 (Hahn-Banach) 

                      Call L a subspace of a real normed space E. And    a bounded linear 

functional in L. So, there is a linear functional defined in E, extension of   , such that 

‖  ‖   ‖ ‖    

                      Demonstration: 

                      It is enough to think in the functional   satisfying  ‖ ‖  ‖  ‖  . As it is 

convex and positively homogeneous, it is possible to put       ‖ ‖ and to apply 

Theorem 2.1.  

                       Observation: 

                       -To see an interesting geometric interpretation of this theorem, consider 

the equation ‖     ‖     It defines, in L, an hiperplane at distance   
 

‖  ‖
       

Considering the   extension f, with norm conservation, it is obtained an hiperplane in E, 

that contains the hiperplane considered behind in L, at the same distance from the 

origin. 

                       The Theorem 2.2 in normed spaces is: 

                       Theorem 4.2 (Hahn-Banach) 

                       Be E a complex normed space and    a bounded linear functional defined 

in a subspace    . So, there is a bounded linear functional f, defined in E, such that 

               ‖ ‖   ‖  ‖     

                       Two separation theorems, important consequences of the Hahn-Banach 

theorem, applied to the normed vector spaces, are then presented: 

                      Theorem 4.3 (Separation) 

                      Consider two convex sets A and B in a normed space E. If one of them, for 

instance A, has at least on interior point and           , there is a continuous 

linear functional non-null that separates the sets A and B.  

                      Theorem 4.4 (Separation) 

                     Consider a closed convex set A, in a normed space E, and a point       

not belonging to A. So, there is a continuous linear functional, non-null, that separates 

strictly {  } and A.  



 

                  5. SEPARATION THEOREMS IN HILBERT SPACES 

                     In a Hilbert space  , 

                     Theorem 5.1 (Riesz representation) 

                     Every continuous linear functional      may be represented in the form 

     [   ̃] where  ̃  
    ̅̅ ̅̅ ̅̅

[   ]
    

                      From now on, only real Hilbert spaces will be considered. 

                      Note that the separation theorems, seen in the former section, are effective 

in Hilbert spaces. But, due to the Riesz representation theorem, they may be formulated 

in the following way: 

                       Theorem 5.2 (Separation) 

                       Consider two convex sets A and B in a Hilbert space H. If one of them, 

for instance A, has at least one interior point and           , there is a non-null 

vector v such that       [   ]        [   ]    

                       Theorem 5.3 (Separation) 

                       Consider a closed convex set A, in a Hilbert space H, and a point       

not belonging to A. So, there is a non-null vector v, such that [    ]        [   ]   

                       Another separation theorem: 

                       Theorem 5.4 (Separation) 

                       Two closed convex subsets A and B, in a Hilbert space, at finite distance, 

that is: such that:           ‖   ‖      may be strictly separated:       [   ]  

      [   ]    

                       It is also possible to establish that: 

                       Theorem 5.5 (Separation) 

                        Being H a finite dimension Hilbert space, if A and B are disjoint and non-

empty convex sets they always may be separated.  

                     6. CONVEX PROGRAMMING 

                        A class of convex programming problems, at which it is intended to 

minimize convex functionals subject to convex inequalities, is outlined now.  Begin 

presenting a basic result that characterizes the minimum point of a convex functional 



subject to convex inequalities. Note that it is not necessary to impose any continuity 

conditions. 

               Theorem 6.1 (Kuhn-Tucker) 

                Be f(x),                convex functionals defined in a convex subset C of 

a Hilbert space. Consider the problem            ,                    Be    a 

point where the minimum, supposed finite, is reached. Suppose also that for each vector 

u in   , Euclidean space with dimension n, non-null and such that     , there is a 

point x in C such that ∑            designating    the components of u. So, 

i) There is a vector v, with non-negative components {  }, such that  

   
   

{     ∑       

 

 

}        ∑                                 

 

 

  

 

ii) For every vector u in    with non-negative components, that is: belonging to 

the positive cone of    , 

     ∑       

 

 

       ∑               ∑           

 

 

      

 

 

  

                    Corollary 6.1 (Lagrange duality) 

                     In the conditions of Theorem 6.1                        

∑              
  

                     Observation: 

                      -This corollary is useful supplying a process to determine the problem 

optimal solution, 

                      -If the whole    in expression (6.2) are positive,    is a point that belongs 

to the border of the convex set defined by the inequalities, 

                      -If the whole   are zero, the inequalities do not influence the problem, 

that is: the minimum is equal to the one of the restrictions free problem. 

                     Considering non-finite inequalities:  

                      Theorem 6.2 (Kuhn-Tucker in infinite dimension) 

                      Be C a convex subset of a Hilbert space H and f (x) a real convex 

functional defined in C. Be I a Hilbert space with a closed convex cone  , with non-

empty interior, and F(x) a convex transformation from H to I (convex in relation to the 

order introduced by cone  : if                   ). Be    a f (x) minimizing 



in C subjected to the inequality        Consider    {  [   ]    
 

   } (dual 

cone). Admit that given any      it is possible to determine x in C such that 

[      ]   . So, there is an element v in the dual cone   , such that for x in C 

     [      ]        [       ]        [       ]  being u any element of 

     

         Corollary 6.2 (Lagrange duality in infinite dimension) 

                                   [      ]  in the conditions of Theorem 6.2.  

          7. MINIMAX THEOREM 

            In a two players game with null sum be        a real function of two variables 

      and  A and B convex sets in H. One of the players chooses strategies (points) in 

A in order to maximize        (or minimize        ): it is the maximizing player. 

The other player chooses strategies (points) in B in order to minimize        (or 

maximize        ): it is the minimizing player. The function        is the payoff 

function.          represents, simultaneously, the gain of the maximizing player and 

the loss of the minimizing player in a move at which they chose, respectively the 

strategies          . So, the gain of one of the players is equal to the other’s loss. That 

is why the game is a null sum game. A game in these conditions value is c if 

                                                                         (7.1). 

                If, for any        ,           ,         is a pair of optimal strategies. 

There will be a saddle point if also 

                                                   x                                 . 

                  Theorem 7.1 

                  Consider A and B closed convex sets in H, being A bounded. Be        a 

real functional defined for x in A and y in B fulfilling: 

                -                                       for x in A and   ,    

in B,       (that is:        is convex in y for each x), 

                -  (             )        (     )           for y in B and 

  ,    in A,       (that is:        is concave in x for each y), 

               -        is continuous in x for each y, 

so (7.1) holds, that is: the game has a value.   

                The next corollary follows from the Theorem 7.1 hypothesis strengthen: 

                Corollary 7.1(Minimax) 



                Suppose that the functional        of Theorem 7.1 is continuous in both 

variables, separately, and that B is also bounded. Then, there is an optimal pair of 

strategies, with the property of being a saddle point.   

                 8. CONCLUSIONS  

                   The Hahn-Banach theorem was presented with great generality, real and 

complex version, followed by an important separation theorem, consequence of it.  

                   These results were specified for normed spaces and then for a subclass of 

these spaces: the Hilbert spaces. Better saying, they were reformulated for Hilbert 

spaces using the Riesz representation theorem. 

                   Examples of the fruitfulness of the results presented are patent in the last 

two sections, where it is shown that they permit to obtain important results, for the 

applications, as the Kuhn-Tucker and the Minimax theorems. Now the structures 

considered were the real Hilbert spaces. The problems studied were convex 

optimization problems in which, it is well known, the separation theorems are a key 

tool. 

                    The Kuhn-Tucker theorem is the convex programming main result so 

important in operations research. The Minimax theorem is an important result in game 

theory, which consideration in management and economic problems resolution is 

greater and greater. 

REFERENCES 
 

 

1. J. P. Aubin. Applied Functional Analysis. John Wiley & Sons Inc., New York, 

1979. 

 

2. A. V. Balakrishnan. Applied Functional Analysis. Springer-Verlag New York 

Inc., New York, 1981. 

3. H. Brézis. Analyse Fonctionelle (Théorie et Applications). Masson, Paris, 1983. 

 

4. M. A. M. Ferreira. Aplicação dos Teoremas de Separação na Programação 

Convexa em Espaços de Hilbert. Revista de Gestão, I (2), 41-44, 1986. 

 

5. M. A. M. Ferreira, M. Andrade and M. C. Matos. Separation Theorems in 

Hilbert Spaces Convex Programming. Journal of Mathematics and Technology, 

1 (5), 20-27, 2010. 

 

6. M. A. M. Ferreira and M. Andrade. Management Optimization Problems. 

International Journal of Academic Research, Vol. 3 (2, Part III), 647-654, 2011. 

 

7. M. A. M. Ferreira and M. Andrade. Hahn-Banach Theorem for Normed Spaces. 

International Journal of Academic Research, 3 (4, Part I), 13-16, 2011. 

 

8. M. A. M. Ferreira M and Andrade. Riesz Representation Theorem in 

Hilbert Spaces Separation Theorems. International Journal of Academic 

Research, 3 (6, II Part), 302-304, 2011. 



 

9. M. A. M. Ferreira and M. Andrade. Separation of a Vector Space Convex Parts. 

International Journal of Academic Research, 4 (2), 5-8, 2012. 

 

10. M. A. M. Ferreira and M. Andrade. The Hahn-Banach Theorem and the 

Separation of a Vector Space Convex Parts. Journal of Mathematics and 

Technology, 4 (1), 5-15, 2013. 

 

 

11. M. A. M. Ferreira, M. Andrade and J. A. Filipe. Kuhn-Tucker’s Theorem for 

inequalities in Infinite Dimension. Journal of Mathematics and Technology, 3 

(1), 57-60, 2012. 

 

12. M. A. M. Ferreira, M. Andrade and J. A. Filipe. Weak Convergence in Hilbert 

Spaces. International Journal of Academic Research, 4 (4), 34-36, 2012. 

 

13. M. A. M. Ferreira, M. Andrade, M. C. Matos, J. A. Filipe and M. Coelho. 

Minimax Theorem and Nash Equilibrium. International Journal of Latest 

Trends in Finance & Economic Sciences, 2(1), 36-40, 2012. 

 

14. S. Kakutani. A Generalization of Brouwer’s Fixed Point Theorem. Duke 

Mathematics Journal, 8, 1941. 

 

15. L. V. Kantorovich and G. P. Akilov. Functional Analysis. Pergamon Press, 

Oxford, 1982. 

 

16. A. N. Kolmogorov and S. V. Fomin. Elementos da Teoria das Funções e de 

Análise Funcional. Editora Mir, 1982. 

 

17. M. C. Matos and M. A. M. Ferreira. Game Representation -Code Form. Lecture 

Notes in Economics and Mathematical Systems; 567, 321-334, 2006. 

 

18. M. C. Matos, M. A. M. Ferreira and M. Andrade. Code Form Game. 

International Journal of Academic Research, 2(1), 135-141, 2010. 

 

19. M. C. Matos, M. A. M.. Ferreira, J. A. Filipe and M. Coelho.  Prisonner`s 

Dilemma: Cooperation or Treason?. PJQM-Portuguese Journal of Quantitative 

Methods, Vol. 1(1),  43-52, 2010. 

 

20. J. Nash. Non-Cooperative Games. Annals of Mathematics, 54, 1951. 

 

21. J. von Neumann and O. Morgenstern. Theory of Games and Economic 

Behavior. Princeton University Press, Princeton, New Jersey, 1947. 

 

22. J. von Neumann and O. Morgenstern. Theory of Games and Economic 

Behavior. John Wiley & Sons Inc., New York, 1967. 

 

 


