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1 Unconstrained Optima

1. Given a function f : Rn → R and a ∈ Rn,

(a) What is the condition that de�nes f(a) as an absolute [relative] maximum

of f?

(b) What is the condition that de�nes f(a) as an absolute [relative] minimum

of f?

2. Given a di�erentiable function f : R2 → R, for a point a ∈ R2 �nd the direction

u ∈ R2 which gives the maximum value for the directional derivative f ′u(a) at a.

3. This exercise pretends to characterize a necessary property on relative extrema of

a function f : Rn → R.

(a) From Linear Algebra, recall that the inner product (or scalar product,

or even dot product) of two vectors u,v ∈ Rn is given by

u|v = (u1, . . . , un)|(v1, . . . , vn) = u1v1 + . . .+ unvn

We say that two vectors w,h ∈ Rn are orthogonal (or perpendicular)

when w|h = 0. Find the vectors of R2 which are orthogonal to the vector

(1, 1).

(b) Verify that if a vector u ∈ R2 is such that u|v = 0, for all v ∈ R2, then

u = 0.

(c) Let h : R → R be di�erentiable function with a a relative maximum of h.

Use the inequalities obtained in question 1 to deduce

• h(a+ε)−h(a)
ε ≤ 0 for ε > 0

• h(a+ε)−h(a)
ε ≥ 0 for ε < 0

Then conclude that h′(a) = 0. In a similar way, deduce the condition for a

to be a relative minimum of h.

(d) Let f : R2 → R be de�ned by f(x, y) = x2 + y2. Prove that 0 is a minimum

of f .

(e) Let g : R → R2 be the function de�ned by g(t) =
(
t, sin(t)

)
. Justify that

h = f ◦ g, a function from R to R, has a minimum at t = 0 and, using (c)

conclude that h′(0) = 0.
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(f) If g from the previous question was de�ned by g(t) = tv = (tv1, tv2), for a

�xed v = (v1, v2) ∈ R2, verify that we could obtain an analogous conclusion.

(g) Using the result obtained in (f) and the Chain Rule, prove that∇f(0)|Jg(0) =

0. What does this mean?

(h) Using (b) conclude that ∇f(0) = 0 at the minimum point of f .

(i) ∗ 1 Generalize the result of the previous point for any di�erentiable function

f : Rn → R with a relative extremum at the point a ∈ Rn; consequently,
conclude that ∇f(a) = 0.

4. The study of the function f : R2 → R de�ned by f(x, y) = (y − 3x2)(y − x2)
shows the di�culty of �nding the su�cient conditions to conclude that a critical

point is an extremum.

(a) Verify that (0, 0) is a critical point of f .

(b) Determine and classify (relatively to the sign) the Hessean matrix of f at

(0, 0) and on a neighborhood of (0, 0). What we can conclude from the

necessary and su�cient conditions discussed in the class?

(c) Show that (0, 0) is a minimum of f in the direction on any line passing on

the origin, that is, if a, b ∈ R with a2 + b2 > 0 and g : R→ R2 is de�ned by

g(t) = (at, bt), then t = 0 is a minimum of f ◦ g.

(d) However, verify that (0, 0) is not a minimum of f .

5. Determine the relative extrema of the following functions:

(a) f (x, y) = xy

(b) f (x, y) = x2 + y2

(c) f (x, y) = x2 − y2

(d) f (x, y) = x+ 2ey − ex − e2y

(e) f (x, y) = 2y log x2

(f) f (x, y) = x3 + y2 + 2xy − 8x

(g) f (x, y) = −x3 + 4xy − y2

(h) f (x, y) = −3y2 + x3 + 2xy

(i) f (x, y) = sin (xy)

6. Compute, if they exist, the unconstrained optima of the following functions:

(a) f (x, y) = 4x2 − 12xy + 9y2 + 36x− 54y + 90

(b) f (x, y) = 2x4 − 4x2y2 + 2y4 + 34

1
Exercises with

∗
are considered more di�cult and demand more time and dedication for their

resolution.
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(c) f (x, y) = x4 + y4 + 2x2y2 − 10x2 − 10y2 + 25

(d) f (x, y) = 4x2y − 4x4 − y2 + 1

(e) f(x, y, z) = x2 + yz + 5xz − xy − x3 + 2y.

7. Verify if the function g (x, y) = e(x−y)
(
x2 − 2y2

)
has relative extrema.

8. Discuss, in order to the parameter α ∈ R, the existence of extrema of the following

function: f (x, y) = xy (α− x− y) .

9. Let us consider the following classical problem on Statistics. Given a set of data{
(x1, y1), . . . , (xn, yn)

}
over two variables x and y, �nd the line y(x) = a+bx which

better �ts the observed relation between the variables. To de�ne this relation, it

is supposed that one of the variables determines the value of the other, to the �rst

one we call independent variable and to the second dependent variable. In

the case y(x) = a+bx, y is the dependent variable and x the independent one. One

of the most common methods is the Method of the Minimum Squares which

minimizes the distance between the observed values for the dependent variable yi

and the values estimated by the line ŷi = a + bxi. In this way, the parameters

de�ning the line can be found solving the following problem:

mina,b

n∑
i=1

(
yi − (a+ bxi)

)2
(1)

(a) For the set of data {(1, 1), (3, 3), (2, 1)}, �nd the parameters a and b for the

line of the minimum squares.

(b) ∗ Find the expression of a and b of the line of the minimum squares for an

abstract sample of data
{

(x1, y1), . . . , (xn, yn)
}
.

2 Constrained Optima

1. Determine which the following functions have extrema in the given domain. Use

the Weierstrass Theorem for extrema, as possible. For the cases that you conclude

that there are no extrema, identify the Theorem's condition(s) not satis�ed.

(a) w :
{

(x, y) : 0 ≤ x+ y ≤ 1, x, y ≥ 0
}
→ R, w(x, y) = xy

(b) g : (1, 2]× [0, 1]→ R, g(x, y) = x

(c) f : (0, 1]× [0, 1]→ R, f(x, y) = y
x
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(d) h : [0, 1]× [0, 1]→ R, h(x, y) =

x+ y if xy > 0

x/2 if xy = 0.

(e) w :
{

(x, y) : 0 ≤ x+ y ≤ 1
}
→ R, w(x, y) = xy

(f) z : [0, 1]→ R, z(x) =

x if 0 ≤ x ≤ 1

1/x if 1 < x ≤ 2.

2. Given a function f : Rn → R and a set of points S = {x ∈ Rn : g(x) = 0} with
g : Rn → Rm. What do you understand by: f(a), with a ∈ Rn, is a relative

[absolute] maximum of f subject to S?

3. To �nd the constrained optima of f(x, y) = x+y subject to g(x, y) = x2+y2−4 =

0, do as follows:

(a) First, trace the set of points given by g(x, y) = 0 and the level curve f(x, y) =

1. Deduce in which way the level curve should move to increase/decrease the

value of f(x, y). Find the constrained optima.

(b) Use the Lagrangean function to �nd the critical points and the bordered

Hessian matrix to decide if they are optima.

4. Determine, tracing as in 3 and using the Lagrangean function, the extrema of the

following functions:

(a) f (x, y) = x2 + y2 − 4, subject to x+ y = 3.

(b) f (x, y) = 4x2 + y2 − 4xy, subject to 2y − x = 3.

(c) f (x, y) = x2y2, subject to x+ y = 20.

(d) f (x, y) = x2 + 4xy + 4y2 subject to the set {(x, y) : y = 2x+ 1} .

(e) f (x, y) = x+ y subject to x2

2 + y2

4 = 1.

(f) f (x, y) = 1
x2

+ 1
y2

subject to xy + 1 = 0.

5. (a) A company needs raw materials x and y to produce a speci�c good. The

quantity produced of this good is determined by the production function

f(x, y) = xy. The company has 6 m.u. to invest in raw materials and the

cost of each unit of x is 1 m.u. and each unit of y is 2 m.u.. Formulate the

problem for this company in order to �nd the optimal production. Solve it.

(b) Now suppose that the company has κ m.u. to invest in raw materials. Solve

the new problem of the company, �nding x and y for the optimal production.

Notice that x = x(κ) and y = y(κ) depend on κ.
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(c) De�ne the maximum value to produce as a function on the available quantity

to invest in raw materials, i.e. f(κ) = f(x(κ), y(κ)).

(d) Compute the rate of the optimal production caused by the rate of κ, ∂f
∂κ .

Compare with the Lagrange multiplier from the previous question.

(e) What is the minimum price (of the good produced) accepted by the company

to invest an extra m.u.?

6. An economic agent has an utility function given by U(x, y) = (x+2)(y+1), where

x and y are two commodities consumed by it. The prices for these commodities

are Px, Py and the available income is M .

(a) Write the budget restriction of this agent in order to Px, Py and M .

(b) Justify why the budget restriction saturates when the agent is maximizing

his utility.

(c) Write the Lagrangean function which allows to �nd the optimal solution for

the consuming.

(d) Find the optimal values for x, y and λ.

(e) Verify that the second order condition is satis�ed.

(f) Observe what happen to the consumption of y when the price of x changes.

7. A factory produces two types of machines in quantities x and y. The total cost is

given by the function f (x, y) = x2 + 2y2 − xy. To minimize the cost, how many

machines of each type should be produced, if one wishes to produce a total of 8

machines?

8. Let Q = 5x1x2 (in tons) be the production function of a certain good, where x1,x2

are the inputs for the production. Let p1 = 2, p2 = 4 be the prices (in thousands

of euros) of the inputs, respectively. Compute the minimum cost to reach the

production level Q = 40, and the underlying inputs.

9. Find the constrained optima:

(a) f(x, y, z) = x2 + 3y2 + 5z2 subject to 2x+ 3y + 5z = 24

(b) f(x, y, z) = z subject to x2 + y2 + z = 5 and x+ y + z = 1.

10. Which point in the plane of R3 de�ned by x1 + 2x2 + 3x3 = 1 minimizes the

distance to the point (−1, 0, 1)?
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11. A company has a production function f(x, y, z) = 1000x2/5y1/5z1/5, a budget of

1600 e and can buy a unit of x, y and z by the price of 80 e, 10 e and 20

e, respectively. Which input combination does maximize the production? If the

output price is 2e per unit, is it worthy the company to increase the investment

on inputs?

12. Compute the constrained optima f (x, y, z) = 2x2+y+z subject to the condition:{
x+ y + z = 1/4

x− 2y = 3/4

13. Find the maximum of the function 2 lnx + ln y + ln z subject to the condition

x + y + z = 10. Estimate the change of the optimal value when one changes the

independent term to 11.

14. An economic agent wants to divide his savings in three di�erent investments pos-

sibilities in a way that is risk is minimized but the average return is 12%. Invest-

ments 1, 2 e 3, give a return of 10 %, 10% and 15% and the share of each is x,y

e z, respectively. With x + y + z = 1 the variance (the measure of risk used) is

400x2 + 800y2 + 200xy + 1600z2 + 400yz. Therefore the investor's problem is

min 400x2 + 800y2 + 200xy + 1600z2 + 400yz

subject to: x+ y + 1.5z = 1.2

x+ y + z = 1

Using the Lagrangean �nd the optimal solution to the problem, and interpret the

Lagrangean multipliers obtained.

3 Linear Programming

1. Using the graphical method, solve the following Linear Programming problems:

(a)

Max Z =4x+ 3.5y

s.t. x+ y ≤ 5

x ≤ 3

x, y ≥ 0

(b)

Max Z =7x+ 3y

s.t. 2x+ 5y ≤ 20

x+ y ≤ 8

x, y ≥ 0

(c)

Max Z =2x+ 3y

s.t. x+ 2y ≤ 2

6x+ 4y ≥ 24

x, y ≥ 0
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(d)

Max Z =6x+ 5y

s.t. 5x+ 6y ≤ 40

12x+ 9y ≤ 144

x = 4y

x, y ≥ 0

(e)

Max Z =40x+ 30y

s.t. x ≤ 16

y ≤ 8

x+ 2y ≤ 24

x, y ≥ 0

2. Using the Simplex Algorithm, solve the Linear Programming problems from the

previous point.

3. Consider the set of feasible solutions de�ned by the following constraints:

2x− y ≥ −2

x+ 2y ≤ 8

x, y ≥ 0

For this set, graphically determine:

Max Z= y Min Z=2x− 2y Max Z= 2x− 2y

4. (P1)

Max Z =20x1 + 6x2 + 8x3

s.t. 8x1 + 2x2 + 3x3 ≤ 200

4x1 + 3x2 ≤ 150

x3 ≤ 20

x1, x2, x3 ≥ 0

(P2)

Max Z =2x1 − 3x2 − 4x3

s.t. x1 + 5x2 − 3x3 ≤ 15

x1 + x2 + x3 ≤ 5

5x1 +−6x2 + 4x3 ≤ 10

x1, x2, x3 ≥ 0

(a) Solve the Linear Programming problems using the Simplex Algorithm.

(b) Identify and interpret the value of the Lagrange multipliers/shadow prices.

5. Consider the following Linear Programming problems:
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(P1)

Max Z =2x1 + 4x2

s.t. x1 + 2x2 ≤ 5

x1 + x2 ≤ 4

x1, x2 ≥ 0

(P2)

Max Z =3x1 + 7x2

s.t. x1 − x2 ≥ 0

− 3x1 + 2x2 ≤ 5

x1, x2 ≥ 0

(P3)

Max Z =x1 + x2

s.t. 4x1 + 3x2 ≥ 12

2x1 − 3x2 ≤ 5

x1 ≥ 2

x1, x2 ≥ 0

(a) Solve the problems P1, P2 and P3.

(b) Identify the type of solution obtained for each problem. Justify your answer.

(c) For problems with multiple optimal solutions, give another optimal solution.

6. A company produces and sells two types of carpets. For the production, it uses

two machines, A and B, each one working 12 and 14 hours per day, respectively.

To produce 100m2 of the �rst type of carpet, it is necessary 3 hours of work

in the machine A and 7 hours of work in the machine B. For same quantity of

carpet of the type 2, it is required 4 hours and 2 hours in the machines A and B,

respectively. It is known that the pro�t obtained by the production of 100m2 of

the �rst type of carpet is 4m.u. and the correspondent value for the second type

of carpet is 3m.u.. What daily production plan should the company follow to

achieve the maximum pro�t? How should the company use the machines daily?

Formulate and solve the problem, and interpret the obtained solution.

7. Consider the following Linear Programming problem:

Max Z =7x+ 3y

s.t. 2x+ y ≤ 10

8x+ y ≤ 20

3x− y ≤ 9/2

x, y ≥ 0

(a) Solve it using the graphical method.

(b) Determine the variation interval for the coe�cient of x within the objective

function (c1) for which the optimal point is invariant.

(c) Determine the variation interval for the coe�cient of y within the objective

function (c2) for which the optimal point is invariant.
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(d) Determine the possible variations in the independent terms of the constraints

such that the optimal base is invariant.

8. Consider the following Linear Programming problem:

Max Z =x1 + x2

s.t. 4x1 + 3x2 ≥ 12

2x1 + 3x2 ≥ 6

5x1 + 4x2 ≤ 20

4x1 + 5x2 ≥ 20

x1, x2 ≥ 0

(a) Solve it using the graphical method.

(b) Make the Sensitivity Analysis for this problem.
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4 Solutions for the presented exercises

4.1 Unconstrained Optima

1.

2.

3.

4.

5. (a) 0̄ saddle point

(b) 0̄ minimum.

(c) 0̄ saddle point.

(d) 0̄ maximum.

(e) There are no relative extrema.

(f) (2,−2) minimum; (−4/3, 4/3) saddle point.

(g) 8/3 (1, 2) maximum; 0 saddle point.

(h) −2/9
(
1, 3−1

)
maximum; 0 saddle point.

(i)

(
π
2 + kπ

y , y

)
, y ∈] − ∞,−1 [∪] 1,+∞[, represents a family of points of

maximum and

(
−π

2 + kπ
y , y

)
, y ∈]−∞,−1 [∪] 1,+∞[, represents a family

of points of minimum.

6. We have the following families of extrema:

(a)
(
3y−9
2 , y

)
, y ∈ R, family of points of minimum represented by the line with

equation 2x− 3y + 9 = 0 (positive function)

(b) (±y, y) , y ∈ R, family of points of minimum represented by the lines with

equations x = ±y

(c)
(
±
√

5− y2, y
)
, y ∈ ] −

√
5,
√

5[, family of points of minimum represented

by the circumference with equation x2 + y2 = 5

(d)
(
x, 2x2

)
, x ∈ R, family of points of maximum represented by the parabola

with equation y = 2x2.
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(e)
(
−2±

√
6
3 , 10∓ 5

√
6

3 ,−4±
√
6
3

)
saddle points.

7. (2,−4) maximum; 0 saddle point.

8. (0, 0), (α, 0) , (0, α) neither maxima nor minima. (α/3, α/3) minimum if α < 0, and

it is maximum if α > 0.

9.

4.2 Constrained Optima

1. (a) The function w has maximum and minimum, by Weierstrass's Theorem.

(b) The function g has maximum, but no minimum. The domain of g, Dg, is

not closed.

(c) The function has minimum, but no maximum. Df is not closed, (but f é

continuous on Df ).

(d) the function h has maximum and minimum. h is not continuous.

(e) The function has maximum, but no minimum. Dw is not bounded.

(f) The function has maximum and minimum, by Weierstrass's Theorem.

2.

3. (x, y) = 2
1
2 (1, 1) maximum; (x, y) = −2

1
2 (1, 1) minimum.

4. (a) (3/2, 3/2) constrained minimum.

(b) (1, 2) constrained minimum.

(c) (10, 10) constrained maximum; (0, 20) and (20, 0) constrained minima.

(d) (2/3,−1/3) constrained minimum.

(e)
√

2/3 (−1,−2) constrained minimum;
√

2/3 (1, 2) constrained maximum.

(f) Constrained minima at (−1, 1) and (1,−1)

5. (a)

Max Z =xy

s.t. x+ 2y ≤ 6

x, y ≥ 0

(x, y) = 3(1, 12)
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(b)
(
x(κ), y(κ)

)
=
(
κ
2 ,

κ
4

)
(c) f(κ) = f

(
x(κ), y(κ)

)
= x(κ)y(κ) = k2

8

(d) ∂f(κ)
∂κ = κ

4 = λ

(e) p > 1
λ .

6. (a)

Max Z =(x+ 2)(y + 1)

s.t. Pxx+ Pyy ≤M

x, y ≥ 0

(b) ∇f(x, y) ≥ 0

(c)

(d) 
x∗ =

M−2Px+Py

2Px

y∗ =
M+2Px−Py

2Py

λ∗ =
M+2Px+Py

2PxPy

(e)

(f) ∂x∗

∂Py
= 1

2Px

7.

8. Minimum cost at (x, y) = (5, 3).

9. Minimum at (4, 2) and the minimum cost is 16000.

(a) (2, 1, 1) minimum.

(b) (−1,−1, 3) minimum; (2,2,3) maximum.

10. (−15/14,−1/7, 11/4).

11. (x, y, z;λ) = (10, 40, 20; 200) maximum.

12. (x, y, z;λ1, λ2) = (1/4,−1/4, 1/4; 1, 0) minimum.

13. (x, y, z;λ) = (4, 2, 2; 32) maximum.

14. (x, y, z) = (1/2, 1/10, 2/5) minimum.
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4.3 Linear Programming

1. (a) Optimal Solution: x = 3, y = 2; Optimal value: z = 19.

(b) Optimal Solution: x = 20/3, y = 4/3; Optimal value: z = 152/3.

(c) Impossible problem.

(d) Optimal Solution: x = 80/13, y = 20/13; Optimal value: z = 880/13.

(e) Optimal Solution: x = 16, y = 4; Optimal value: z = 760.

2.

3. (a) Optimal Solution: x = 4/5, y = 18/5; Optimal value: z = 18/5.

(b) Optimal Solution: x = 4/5, y = 18/5; Optimal value: z = −28/5.

(c) Optimal Solution: x = 8, y = 0; Optimal value: z = 16.

4. (a) (P1) Optimal Solution: x1 = 15/2, x2 = 40, x3 = 20, s1 = s2 = s4 = 0, s3 =

15; Optimal value: z = 550;

(P2) Optimal Solution: x1 = 0, x2 = 1, x3 = 4, s1 = 22, s2 = s3 = 0;

Optimal value: z = −19

(b)

5. (a) Multiple optimal solutions; Optimal solution: (x1, x2) = α(0, 5/2) + (1 −
α)(3, 1) for α ∈ [0, 1]

(b) Impossible problem.

(c) Not bounded solution.

6.

Max Z =4x+ 3y

s.t. 3x+ 4y ≥ 12

7x+ 2y ≥ 14

x, y ≥ 0

Optimal solution: x = 16/11; y = 21/11; Optimal value: z = 127/11 (that is,

optimal daily production of carpets of type 1 and 2: 16/11m2 and 21/11m2 ,

respectively; Daily maximum pro�t: 127/11m.u.; daily, the available work time

of the machines is totaly consumed).

7. (a) Optimal value: z = 95/3; Optimal solution: x = 5/3 e y = 20/3;
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(b) c1 ∈ [6, 24]

(c) c2 ∈ [7/8, 7/2]

8. (a) Optimal value: z = 40/9; Optimal solution: x1 = 20/9 e x2 = 20/9;

(b) c1 ∈ [4/5, 4/5]
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