Instituto Universitário de Lisboa

Departamento de Matemática

Exercícios de Sucessões e Séries

Exercícios: sucessões 1

1. Estude quanto à monotonia cada uma das seguintes sucessões.

(a)
$$\frac{1}{n}$$

(b)
$$\sqrt[n]{n+1} + \sqrt{n}$$

(c)
$$\frac{n+1}{n+2}$$

(d)
$$(-1)^n$$

(d)
$$(-1)^n$$

(e)
$$\sqrt{n+1} - \sqrt{n}$$

$$(f) \frac{(-1)^n}{n}$$

$$(g) \frac{n^2 + n}{n+4}$$

$$(h) \ \frac{1}{2^n}$$

(i)
$$(-1)^n (1 - \frac{n}{\sqrt{n}})$$

(j)
$$(-1)^n - (-1)^{n+1}$$

(k)
$$1 + \frac{1}{n} + \frac{1}{n^2}$$

- 2. Indique, justificando, as sucessões limitadas do exercício 1.
- 3. Averigue a existência do limite das seguintes sucessões. Calcule o seu valor nos casos em que existe.

(a)
$$\frac{1}{n}$$

(a)
$$\frac{1}{n}$$

(b) $\frac{n+1}{n+2}$
(c) $(-1)^n$

(c)
$$(-1)^r$$

(d)
$$\sqrt{n+1} - \sqrt{n}$$

(e)
$$\frac{(-1)^n}{n+1}$$

$$(\mathbf{f}) \ \frac{1}{2^n}$$

(g)
$$(2 + \frac{1}{n})^n$$

(g)
$$(2 + \frac{1}{n})^n$$

(h) $\frac{2^{n+1} + 3^n}{2^n + 3^{n+1}}$

(i)
$$\sin(n\frac{\pi}{2})$$

(j)
$$\cos(n\pi) + (-1)^{n+1}$$

(k)
$$\frac{n!}{(n-2)!(n^2+1)}$$

(l) $(\frac{n}{1+n})^{\frac{1}{n}}$

(l)
$$\left(\frac{n}{1+n}\right)^{\frac{1}{n}}$$

(m)
$$\sqrt[n]{n}$$

(n)
$$\sqrt{n+\sqrt{n}}-\sqrt{n}$$

(o)
$$\frac{3n^{7/2} + 2n^2}{n + 4\sqrt{n + n^7}}$$

(a)
$$\sqrt{n+\sqrt{n}} = \sqrt{n}$$

(b) $\frac{3n^{7/2} + 2n^2}{n+4\sqrt{n+n^7}}$
(c) $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$
(c) $\sqrt{n+\sqrt{n+\sqrt{n}}} = \frac{1}{n-1}$

(q)
$$a_1 = 1, a_{n+1} = \frac{a_n}{2} + 1, \forall n$$

 $(Sugest\tilde{a}o:(a_n)_n \ \acute{e} \ mon\acute{o}tona \ e \ limitada?)$

(r)
$$a_1 = 1, a_{n+1} = 1 + \sqrt{a_n}, \forall n$$

- 4. Seja $a_n = 1 + 2 + \ldots + n = \sum_{k=1}^n k$. Por indução verifique que $a_n = \frac{(n+1)n}{2}$ seguindo os seguintes passos:
 - (a) Comece por confirmar que $a_1 = \frac{(1+1)1}{2}$.
 - (b) Agora, supondo que $a_n=\frac{(n+1)n}{2}$, derive $a_{n+1}=\frac{(n+2)(n+1)}{2}$, usando a igualdade $a_{n+1}=a_n+(n+1)$.

- 5. Seja $a_n = 1 + r + r^2 + r^n = \sum_{k=0}^n r^k$. Por indução verifique que $a_n = \frac{1 r^n}{1 r}$ seguindo os seguintes passos:
 - (a) Comece por confirmar que $a_1 = \frac{1-r^1}{1-r}$.
 - (b) Agora supondo que $a_n = \frac{1-r^n}{1-r}$ derive $a_{n+1} = \frac{1-r^{n+1}}{1-r}$, usando a igualdade $a_{n+1} = a_n + r^{n+1}$.
- 6. Se $a_n > 0$ para todo o n e $\lim \frac{a_{n+1}}{a_n} = L$ verifique que:
 - (a) quando L > 1 então $\lim a_n = \infty$.
 - (b) quando L < 1 então $\lim a_n = 0$.
- 7. Usando, se necessário, sucessões enquadradas, mostre que se tem:

(a)
$$\frac{a^n}{n!} \to 0$$

(b)
$$\frac{n^n}{n!} \to +\infty$$

(c)
$$\frac{n^{\alpha}}{a^n} \to 0$$
, para qualquer α e $a > 0$;

(d)
$$\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{n+n}} \to +\infty$$

(e)
$$\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \to 0$$

2 Exercícios: séries geométricas e de Mengoli

8. Paradoxo de Zenão

- (a) Uma determinada pessoa para ir do ponto A ao ponto B teria de passar pelo ponto médio A₁ entre estes dois pontos. Estando em A₁ teria de passar pelo ponto médio entre A₁ e B, o ponto A₂. E assim sucessivamente. Argumentava Zenão que nunca se chegaria a B. Utilizando a série geométrica mostre que Zenão estava errado.
- (b) Se o passo utilizado no argumento de Zenão for de 1/3 em vez de 1/2 acha que a conclusão da alínea anterior se mantém correcta? Comece por definir u_n como a distância percorrida após n passos e verifique que $u_n = u_{n-1} + \frac{1}{3}(1-u_{n-1}) = \frac{1}{3} + \frac{2}{3}u_{n-1}$. Derive então por substituição sucessiva, (ou por indução), que $u_n = \sum_{k=1}^n \frac{2^{k-1}}{3^k}$. Conclua.

- (c) E se o passo utilizado fosse 0 < r < 1?
- 9. Paradoxo de São Petersburgo Considere o seguinte jogo. Temos dois intervenientes a "casa" e o "jogador", o jogador investe $K\ u.m.$ e a casa, paga um prémio q_k de acordo com a seguinte regra: uma moeda é atirada ao ar sequencialmente até que saia "cara", quando a primeira cara sai no k-ésimo lançamento o prémio recebido pelo jogador é de $g_k = 2^k$.
 - (a) Qual a probabilidade p_k de receber o prémio no momento k, i.e. qual a probabilidade da primeira "cara" sair no k-ésimo lançamento?
 - (b) Calcule o valor do jogo (i.e. o seu valor esperado, ou média) $E = \sum_{k=1}^{\infty} p_k g_k$.
 - (c) Que conclusão pode retirar da pergunta (b)?
- 10. Sabendo que a taxa de juro de capitalização do dinheiro será de 5%/ano, de entre as seguintes opções qual escolheria?
 - (a) Receber 100000 € imediatamente.
 - (b) Receber 5000 €no príncipio de todos os anos para todo o sempre, i.e. receber a quantia indicada no início do ano t, para todo o t.
 - (c) Receber $0,001*(1,06)^t \in \text{no início do ano } t, \text{ para todo o } t.$
- 11. Uma bola é deixada cair de uma altura h, cada vez que bate no chão ela volta a saltar até 2/3 da altura de onde caiu no momento anterior. Qual a distância total (para cima e para baixo) percorrida pela bola?
- 12. Calcule, em caso de convergência, o valor das seguintes séries:

(a)
$$\sum_{n\geq 3} (\frac{1}{5})^n$$

(b) $\sum_{n\geq 1} 2^n$

(d)
$$\sum_{n\geq 1} \left(\frac{2^{n+1}}{3^n} - \frac{5}{2^n}\right)$$

(b)
$$\sum_{n>1} 2^n$$

(e)
$$\sum_{n\geq 1} \left(\frac{-3}{2^n} + \frac{2}{(-3)^{n+1}} - \frac{1}{4^{n+2}}\right)$$

(c)
$$\sum_{n\geq 0} \frac{7}{2^{n+2}}$$

13. Considere as seguintes séries geométricas em função do parâmetro real x. Determine para cada uma a razão r = r(x), o intervalo de convergência e a soma da

(a)
$$\sum_{n\geq 1} \frac{x^n}{3^{n+1}}$$

(e)
$$\sum_{n\geq 0} \frac{(2x)^n}{3^{n+1}} - \frac{7x^{n+1}}{4^n}$$

(f) $\sum_{n\geq 2} \frac{2^n}{x^{n+1}}$

(b)
$$\sum_{n\geq 0} \frac{(2x)^n}{4^{n-2}}$$

(f)
$$\sum_{n>2} \frac{2^n}{r^{n+1}}$$

(c)
$$\sum_{n\geq 0} \frac{(x-1)^{n+1}}{2^{n+1}}$$

(g)
$$\sum_{n\geq 1} \left(\frac{x}{1-x}\right)^n$$

(c)
$$\sum_{n\geq 0} \frac{(x-1)^{n+1}}{2^{n+1}}$$

(d) $\sum_{n\geq 1} \frac{x^{n+1}}{2^n} - \frac{2^n}{3^{n+1}}$

14. (a) Partindo das seguintes igualdades, para 0 < x < 1:

i.
$$\sum_{k=0}^{\infty} x^{k+1} = \frac{1}{1-x}$$

ii.
$$\frac{\partial \left(\sum_{k=0}^{\infty} x^{k+1}\right)}{\partial x} = \sum_{k=0}^{\infty} \frac{\partial (x^{k+1})}{\partial x}$$

confirme que $\sum_{k=0}^{\infty} (k+1)x^k = \frac{1}{(1-x)^2}$.

- (b) Calcule $\sum_{p=1}^{+\infty} \sum_{k=p-1}^{\infty} x^k$.
- (c) O que pode concluir das igualdades obtidas anteriormente?
- 15. (a) Mostre que se tem $0,99999\cdots = 0,(9) = 1$.
 - (b) Calcule o racional correspondente à dízima 3,666 · · · .
 - (c) Calcule o racional correspondente à dízima 1, 181818....
- 16. Considere o modelo autoregressivo em que os valores da variável y no momento t são determinados pelo valor de y no momento t-1 e pelo valor de uma outra variável x no momento t, assim temos

$$y_t = x_t + \alpha y_{t-1}$$

.

- (a) Determine que $y_t = \sum_{k=0}^{\infty} \alpha^k x_{t-k}$.
- (b) Qual o efeito da variável x no momento $j, x_j,$ no valor de y no momento $t, y_t, i.e.$ $\frac{\partial y_t}{\partial x_j}$?
- (c) Determine o efeito cumulativo de longo prazo $\sum_{k=0}^{\infty} \frac{\partial y_t}{\partial x_j}$? O que mede efeito cumulativo de longo prazo?
- (d) Encontre um exemplo económico que possa ser modelado desta forma.
- 17. Determine para que valores de $a \in \mathbb{R}$ as seguintes séries convergem e determine o seu valor.
 - (a) $\sum_{n\geq 0} \left(\frac{a}{a+1}\right)^n$
 - (b) $\sum_{n\geq 0} (1-|a|)^n$
 - (c) $\sum_{n\geq 0} a$
 - (d) $\sum_{n\geq 0} (\frac{1}{|a|-1/2})^n$

18. Considere a série de termo geral

$$\sum_{n\geq 1} a_n - a_{n+1}$$

- (a) Mostre que $S_n = a_1 a_{n+1}$
- (b) Conclua que $\sum_{n\geq 1} a_n a_{n+1} = a_1 \lim a_{n+1}$.
- 19. Considere a série de termo geral

$$\sum_{n>1} \frac{1}{n(n+1)}$$

- (a) Mostre que $\frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$
- (b) Mostre que $\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$
- (c) Conclua que $\sum_{n\geq 1} \frac{1}{n(n+1)} = 1$.
- 20. Generalize o exercício anterior e, para um dado inteiro $k \geq 1$, calcule o valor da série

$$\sum_{n\geq 1} \frac{1}{n(n+k)}$$

3 Séries de termos não negativos

- 21. Série de Dirichelet
 - (a) Usando a desigualdade

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \left(\frac{1}{8^{\alpha}} + \dots\right)$$

$$\leq 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \left(\frac{1}{8^{\alpha}} + \dots\right)$$

$$= 1 + \sum_{n=1}^{\infty} \left(\frac{1}{2^{(\alpha-1)}}\right)^{n}$$

Verifique que a série $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converge para $\alpha > 1$.

6

(b) Usando o mesmo género de técnica mas com a desigualdade

$$1 + \frac{1}{2^{\alpha}} + \left(\frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \left(\frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}} + \frac{1}{8^{\alpha}}\right) + \dots \ge 1 + \frac{1}{2^{\alpha}} + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \left(\frac{1}{8^{\alpha}} + \frac{1}{8^{\alpha}} + \frac{1}{8^{\alpha}} + \frac{1}{8^{\alpha}}\right) + \dots$$

verifique que a série $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ diverge para $\alpha \leq 1$.

22. Estude a natureza das seguintes séries de termos não negativos:

(a)
$$\sum \frac{1}{\sqrt{n}+2}$$

(e)
$$\sum \frac{1}{\sqrt{n+1}}$$

(b)
$$\sum \frac{1}{n^2+n}$$

(f)
$$\sum n \sin \frac{1}{n}$$

(c)
$$\sum \frac{1}{2^n + n}$$

(Obs:
$$\frac{\sin(a_n)}{a_n} \to 1$$
 se $a_n \to 0$.)

$$(d) \sum \frac{2^n + n}{2^n + 1}$$

(g)
$$\sum \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$

(h)
$$\sum \frac{1}{(3n-2)(2n+1)}$$

23. Usando o critério da razão, determine a natureza das seguintes séries numéricas:

(a)
$$\sum \frac{2}{n!}$$

(d)
$$\sum \frac{n!}{n^n}$$

(b)
$$\sum \frac{10^n}{n!}$$

(e)
$$\sum \frac{3^n n!}{n^n}$$

(c)
$$\sum \frac{(n!)^2}{(2n)!}$$

24. Usando o critério da raíz, determine a natureza das seguintes séries numéricas:

(a)
$$\sum \frac{1}{n^n}$$

(d)
$$\sum \frac{1}{n^{\frac{n}{2}}}$$

(b)
$$\sum \frac{n^2}{3^n}$$

(d)
$$\sum \frac{1}{n^{\frac{n}{2}}}$$
(e)
$$\sum \frac{1}{(\log n)^{\frac{n}{2}}}$$

(c)
$$\sum \left(1 - \frac{1}{n}\right)^{n^2}$$

Convergência absoluta 4

25. Verfique se as seguintes séries convergem e, em caso afirmativo, classifique a convergência enquanto simples ou absoluta:

7

(a)
$$\sum \frac{(-1)^n}{n + \log n}$$

(b)
$$\sum \frac{(-1)^n}{n^2}$$

(c)
$$\sum \frac{\sin n}{n^2 + 1}$$

(d)
$$\sum \frac{(-1)^n}{\sqrt{n}}$$

(e)
$$\sum (-1)^n \frac{\log n}{n}$$

(e)
$$\sum (-1)^n \frac{\log n}{n}$$
(f)
$$\sum (-1)^n \frac{n}{\sqrt{n} + n^2}$$

(g)
$$\sum \frac{\sin n}{n^3 + 1}$$

(h)
$$\sum \sin(\frac{\pi}{2}n)$$

(i)
$$\sum \frac{(-1)^n}{n}$$

$$(j) \sum \frac{n}{(-1)^n}$$

(k)
$$\sum \frac{(-1)^n n}{n+1}$$

(l)
$$\sum (-1)^n \frac{\log n}{n}$$

(m)
$$\sum (-1)^n (\sqrt{n^2 + 1} - \sqrt{n})$$

- 26. Mostre que se $\sum a_n$ é uma série convergente de termos estritamente positivos e se $(b_n)_n$ é uma sucessão limitada, então $\sum a_n b_n$ é absolutamente convergente.
- 27. Mostre que $\sum \frac{(-1)^n}{n^{\alpha}}$ é convergente, para qualquer $\alpha>0$.

5 Séries de potências

- 28. Estude as seguintes séries quanto à convergência:
 - (a) $\sum 2^{-n} x^n$
 - (b) $\sum n! x^n$
 - (c) $\sum x^n$
 - (d) $\sum_{n \ge 2} \frac{3^n x^{n-1}}{2^{n+1}}$
- 29. Usando o desenvolvimento em série de Taylor conclua que

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots , \quad \forall x \in \mathbb{R} ,$$

e que

$$\log(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n , \ \forall x \in]-1,1].$$

30. Usando o desenvolvimento em sérei de Taylor do logaritmo, determine o valor da série harmónica alternada

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} .$$

- 31. Determine as séries de Taylor do seno e do co-seno e os respectivos raios de convergência.
- 32. Sabendo que

$$f(x) = \frac{1}{1-x} = \sum_{n\geq 0} x^n$$
, $x \in]-1,1[$.

- (a) Verifique a validade do desenvolvimento anterior.
- (b) Determine a série de Taylor de $f'(x) = (1-x)^{-2}$ e o respectivo raio de convergência.

6 Soluções

- 1. (a) Decrescente
 - (b) Crescente
 - (c) Crescente
 - (d) Não monótona
 - (e) Decrescente
 - (f) Não monótona
 - (g) Crescente
 - (h) Decrescente
 - (i) Não monótona
 - (j) Não monótona
 - (k) Decrescente
- 2. (a) Limitada
 - (b) Não limitada
 - (c) Limitada
 - (d) Limitada
 - (e) Limitada
 - (f) Limitada
 - (g) Não limitada
 - (h) Limitada
 - (i) Não limitada
 - (j) Limitada
 - (k) Limitada
- 3. (a) 0
 - (b) 1
 - (c) Divergente
 - (d) 0
 - (e) 0
 - (f) 0

- (g) Divergente
- (h) 1
- (i) 1
- $(j) \frac{1}{2}$
- (k) $\frac{1}{3}$
- (l) Divergente
- (m) 0
- (n) 1
- (o) $\frac{3}{4}$
- (p) 1
- (q) 2
- (r) $\frac{3+\sqrt{5}}{2}$
- 4.
- 5.
- 6.
- 7.
- 8. (a)
 - (b)
 - (c) Para qualquer r o total caminhado é 1.
- 9. (a) $p_k = 2^- k$.
 - (b) $E = \infty$.
 - (c) Para entrar neste jogo o "jogador" estaria disposto a investir toda a sua riqueza M, dado que E>M.
- 10. (c)
- 11. 5

- 12. (a) $\frac{1}{100}$
 - (b) $+\infty$
 - (c) $\frac{7}{2}$
 - (d) -1
 - (e) $\frac{-39}{12}$
- 13. (a) $r(x) = \frac{x}{3}$;] 3, 3[; $\frac{x}{9-3x}$.
 - (b) $r(x) = \frac{x}{2}$;] 2, 2[; $\frac{32}{2-x}$.
 - (c) $r(x) = \frac{x-1}{2}$; $] 1, 3[; \frac{x-1}{3-x}]$.
 - (d) $r(x) = \frac{x}{2}$; $] 2, 2[; \frac{x^2}{2-x} \frac{2}{3}]$.
 - (e) $r_1(x) = \frac{2x}{3}, r_2(x) = \frac{x}{4};] \frac{3}{2}, \frac{3}{2}[; \frac{1}{3-2x} \frac{28x}{4-x}]$
 - (f) $r(x) = \frac{2}{x}$; $] \infty, -2[\cup]2, +\infty[$; $\frac{4}{x^2(x-2)}$.
 - (g) $r(x) = \frac{x}{1-x}$; $]-\infty, \frac{1}{2}[; \frac{x}{1-2x}]$.
- 14.
- 15. (a)
 - (b) $\frac{11}{3}$
 - (c) $\frac{13}{11}$
- 16.
- 17. (a) $a > \frac{-1}{2}$
 - (b) $-2 < a < 2 \land a \neq 0$
 - (c) a = 0
 - (d) $a < \frac{-3}{2} \lor a > \frac{3}{2}$
- 18.
- 19.
- 20.
- 21.
- 22. (a) Divergente

- (b) Convergente
- (c) Convergente
- (d) Convergente
- (e) Divergente
- (f) Divergente
- (g) Divergente
- (h) Convergente
- 23. (a) Convergente
 - (b) Convergente
 - (c) Convergente
 - (d) Convergente
 - (e) Divergente
- 24. (a) Convergente
 - (b) Convergente
 - (c) Convergente
 - (d) Convergente
 - (e) Convergente
- 25. (a) Converge simplesmente
 - (b) Converge absolutamente
 - (c) Converge absolutamente
 - (d) Converge simplesmente
 - (e) Converge simplesmente
 - (f) Converge simplesmente
 - (g) Converge absolutamente
 - (h) Diverge
 - (i) Converge simplesmente
 - (j) Converge simplesmente
 - (k) Diverge
 - (1) Converge simplesmente

- (m) Diverge
- 26.
- 27.
- 28. (a) Absolutamente convergente em $x \in [-2, 2]$, divergente caso contrário.
 - (b) Absolutamente convergente em x = 0, divergente caso contrário.
 - (c) Absolutamente convergente em $x \in]-1,1[$, divergente caso contrário.
 - (d) Absolutamente convergente em $x \in]-2/3,2/3[$, divergente caso contrário.
- 29.
- $30. \log 2$
- 31. $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, $r = \infty$ $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$, $r = \infty$.
- 32. (a)
 - (b) $\sum_{n\geq 0} n x^{n-1}$, r=1.