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Abstract

Real world applications for vehicle collection or delivery along streets usually
lead to arc routing problems, with additional and complicating constraints.
In this paper we focus on arc routing with an additional constraint to identify
vehicle service routes with a limited number of shared nodes, i.e. vehicle
service routes with a limited number of intersections. This constraint leads to
solutions that are better shaped for real application purposes. We propose a
new problem, the bounded overlapping MCARP (BCARP), which is defined
as the mixed capacitated arc routing problem (MCARP) with an additional
constraint imposing an upper bound on the number of nodes that are common
to different routes. The best feasible upper bound is obtained from a modified
MCARP in which the minimization criteria is given by the overlapping of the
routes. We show how to compute this bound by solving a simpler problem.
To obtain feasible solutions for the bigger instances of the BCARP heuristics
are also proposed. Computational results taken from two well known instance
sets show that, with only a small increase in total time traveled, the model
BCARP produces solutions that are more attractive to implement in practice
than those produced by the MCARP model.
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1. Introduction

Capacitated arc routing mathematical models are often used to formulate
delivering or collecting problems where the demands are associated with the
links of the underlying network.

There are many variants of these problems. In the typical capacitated
arc routing problem (CARP) the objective is to identify minimum cost (or
time) routes to be traversed by the vehicles of a given fleet to perform the
service in the streets of a network, starting and ending at a depot. The street
segments demanding for service are called tasks, and have a given demand to
be satisfied by one of the vehicles. The fleet is homogeneous, and the vehicles
capacity must be respected.

The CARP was introduced by Golden and Wong (1981), and originally
defined on undirected graphs. Since then, several CARP variations and gen-
eralizations have been reported in the literature, many of them motivated
by real life applications, like waste collection, postal distribution or winter
gritting. Dror (2000), Wøhlk (2008), and Corberán and Prins (2010) survey
the research on the CARP and its variations, as well as their applications.

The Mixed CARP (MCARP) generalizes the CARP for mixed graphs,
that is, graphs with arcs and edges. The MCARP is more suited to situations
where the direction of the traversals has to be taken into account. This is the
case of household waste collection (see e.g. Ghiani et al. (2005); Mourão and
Amado (2005); Belenguer et al. (2006); Bautista et al. (2008); Mourão et al.
(2009); Gouveia et al. (2010)), or road network maintenance (see e.g. Amaya
et al. (2007)). The MCARP is NP-hard, since it generalizes the CARP, which
is known to be NP-hard (Golden and Wong, 1981).

Since this work is motivated by a refuse collection problem, henceforward
the task demands represent the amounts of refuse to collect.

Real world applications often require other constraints that must be
added to the basic MCARP model. In some cases, it is not even easy to
decide how to measure the additional specifications. Examples of such sit-
uations arise when workloads need to be equitably distributed among the
vehicles, or different vehicle routes have to be constrained to separated geo-
graphical regions. On the recent paper of Ghiani et al. (2014) strategic and
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tactical issues involving these type of constraints are surveyed for solid waste
management systems.

Also, too many intersections of the service areas of different vehicles can
complicate the activities to be held in a region (see e.g., Muyldermans et al.
(2002); Mourgaya and Vanderbeck (2007)). According to Kim et al. (2006)
and Poot et al. (2002) for instance, solutions with an excessive number of
vehicle crossovers tend to be rejected by the practitioners. Kim et al. (2006)
also remark that the overlapping of service areas is strongly related to the
intersection of the vehicle routes. The number of intersections may decrease
if each vehicle service area is concentrated in a geographical region.

An adequate definition of these “nice” regions (sets of arcs and edges) is
not easy to state since besides needing to be separated and workload bal-
anced, their shape should have other “nice” characteristics. These, apart
from being subjective, also allow practitioners to accept or reject a solution
after a single viewing. A survey on measures used in the literature for the
classification of the regions is provided later in Section 2.

Two of these “attractive” characteristics for the service areas are: i) con-
nectivity and ii) compactness. While connectivity can be clearly defined as
the possibility of traveling between any two points of a region without leaving
it, there are different measures of the compactness of a region (MacEachren,
1985). In general, these measures compare the region against an “ideal com-
pact shape”, such as a circle or a square, or they are based on the distances
between points in the region – higher distances mean, in general, less compact
regions.

Typical solutions for MCARP models are usually very unsatisfactory in
terms of the above criteria. Figure 1a) depicts the optimal MCARP solution
for instance lpra2 (see Section 6.1 for a description of the data set), where we
can see the overlap of several different vehicle routes (identified by a different
color) and very irregular (thus, not “nice”) regions served by each route.
Furthermore, we even observe disconnected sequences of tasks within each
vehicle service. Thus, solutions resulting from solving the “pure” MCARP
can be very inadequate to implement in practice.

The disconnected components observed in the MCARP solutions has mo-
tivated our first attempt to improve the shape characteristics of the routes.
In this approach, we have imposed constraints guaranteeing that the set of
tasks within each route are connected. We omit from this paper the details
of how we have modeled and implemented this approach. However, we re-
fer the reader to Figure 1b), which illustrates the solution for the instance
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lpra2 obtained after adding such “connectivity” constraints to the model. It
is quite clear that this solution, despite having connected sets of tasks, still
exhibits several undesirable situations such as vehicle routes that overlap and
spread (being non compact) in the collection zone.

This attempt to model the “nice” features of the routes by adding con-
nectivity constraints illustrates what we have mentioned before, namely that
it may not be straightforward to measure and describe the “attractiveness”
specification of the routes, in a mathematical way.

(a) MCARP (b) Connectivity model (c) BCARP

Figure 1: lpra2 instance – optimal solutions for 3 vehicles.

Motivated by this unsuccessful experiment, in this paper we propose,
study and test a new model that uses a constraint simpler to formulate
and that is based on a different way to measure the non-overlapping of the
vehicle routes. We call this new problem the bounded overlapping MCARP
(BCARP). The overlapping is measured in terms of the number of nodes that
are common to the tasks of different routes.

One motivation for considering this measure is as follows. We may inter-
pret the set of these common (shared) nodes as representing the boundaries
between the regions served by each route, and their number as the length
of the corresponding boundaries. Thus, one way to promote “nice” (disjoint
and compact) regions is by limiting the length of their boundaries.

Figure 1c) depicts the optimal BCARP solution for instance lpra2, where
we have included the new constraint on non-overlapping routes. It is interest-
ing to compare the three solutions in the figure in order to see the advantage
of the latest approach, in terms of compactness and separation of the regions
served by each route. Moreover, although connectivity was not enforced in
the BCARP model, the resulting solution has connected sets of tasks in each
route.

In this work we consider three main measures to evaluate the “nice”
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characteristics of solutions. While the first one measures the connectivity,
the other two try to measure the compactness, as detailed in Section 5.

This paper is organized as follows. After the literature review (Section 2),
the relevant notation is presented in Section 3.1. Next, in Section 3.2 we re-
view a model for the MCARP from Gouveia et al. (2010) which will be used as
a backbone to model the more restrictive version of the MCARP here studied.
In Section 3.3 we describe a variant where we want to minimize the num-
ber of shared nodes, named as the non overlapping MCARP (NOMCARP).
The value of the NOMCARP objective function is then used to define the
upper bound for the number of overlapping nodes in the MCARP. In Sec-
tion 3.4 we propose a model for the BCARP that is obtained from combining
the MCARP model with constraints from the NOMCARP, and a constraint
guaranteeing the referred bounded overlapping. Section 4 is devoted to the
methodology employed to find feasible solutions for the BCARP. Solutions
for small sized instances are obtained by solving the models in sequence as
described above. Heuristics are developed and used to obtain solutions for
the larger sized instances. The measures introduced to evaluate the solutions
(Section 5) precede the computational results. These involve two sets of well
known benchmark instances and are presented and analyzed in Section 6,
before the conclusions, in Section 7.

2. Literature review

This section reviews the literature on the solution methodologies and the
numerical measures used to obtain and evaluate the “nice” attributes for
zones, concerning regions partitioning for routing applications.

When partitioning a region in smaller “nice” zones either for arc or node
routing applications, three main approaches have been discussed in the lit-
erature. In the first approach, the partitioning and the routing problems are
sequentially solved, using multi phase methods (Teixeira et al., 2004; Mourão
et al., 2009). In the second, the partitioning and the routing are solved to-
gether as a whole problem (Kim et al., 2006; Mourão et al., 2009; Ramos and
Oliveira, 2011). In the last one, only the partitioning problem is solved. In
some cases, the partitioning is solved keeping in mind that the application is
an arc routing problem (Muyldermans et al., 2002, 2003; Perrier et al., 2008;
Assis et al., 2014) and in others that the application is on a node routing
problem (Mourgaya and Vanderbeck, 2007; Lin and Kao, 2008; Rı́os-Mercado
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and Fernández, 2009; Gonzalez-Ramı́rez et al., 2011; Jarrah and Bard, 2012;
Lei et al., 2012; Salazar-Aguilar et al., 2012).

Among the attributes regarded as relevant when designing zones for rout-
ing applications we may highlight the compactness, the non-overlapping, and
the connectivity within each zone.

Compactness is one of the most frequently mentioned characteristics, al-
though not always clearly defined. Furthermore, the meaning of compactness
slightly differs from author to author, being, for instance, associated with:
i) zones shapes as close as possible to circles, squares or rectangles (Lin and
Kao, 2008; Gonzalez-Ramı́rez et al., 2011; Jarrah and Bard, 2012); ii) geo-
graphically or visually compact zones (Perrier et al., 2008; Lei et al., 2012); or
iii) the proximity between the demand entities in the same zone (Poot et al.,
2002; Muyldermans et al., 2003; Kim et al., 2006; Tang and Miller-Hooks,
2006; Rı́os-Mercado and Fernández, 2009; Salazar-Aguilar et al., 2012; Assis
et al., 2014).

Several compactness measures have thus been considered in the literature,
whether to evaluate the final solutions, to evaluate compactness during the
execution of the solution methods, or both. Generically, these measures try
to evaluate the proximity between elements belonging to the same zone, as
next detailed.

We may find measures based on maximum travel times (Mourão et al.,
2009; Gonzalez-Ramı́rez et al., 2011); on maximum Euclidean distances (Rı́os-
Mercado and Fernández, 2009; Assis et al., 2014); on the sum of the Euclidean
distances (Kim et al., 2006; Mourgaya and Vanderbeck, 2007; Salazar-Aguilar
et al., 2012); on the averages and standard deviations of distances, or travel
times between customers, or to a reference point in a zone (Poot et al., 2002;
Tang and Miller-Hooks, 2006; Mourão et al., 2009); on the perimeters of the
zones (Lei et al., 2012); or even perimeters and areas of the zones (Lin and
Kao, 2008). Jarrah and Bard (2012) define clusters of clients in the plane in
such a way that the ratio of the difference between the maximum and the
minimum x coordinate and the difference of the maximum and the minimum
y coordinate lies within a given interval. Poot et al. (2002) and Tang and
Miller-Hooks (2006) also consider the average number of customers in a zone
which are closer to the reference point of a different zone rather than to its
own, representing costumers who are not well positioned. While Poot et al.
(2002) reference point refers to the center of gravity, Tang and Miller-Hooks
(2006) opt to use the customer closer to this point, named as the median
of the tour. Tang and Miller-Hooks (2006) compute the measures based on
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network travel times instead of Euclidean distances.
In some cases, these evaluation compactness measures are also embed-

ded in the heuristic processes (Kim et al., 2006; Tang and Miller-Hooks,
2006; Rı́os-Mercado and Fernández, 2009; Gonzalez-Ramı́rez et al., 2011; Lei
et al., 2012; Salazar-Aguilar et al., 2012; Assis et al., 2014). In other cases,
authors devise compactness indicators only embedded in the solution meth-
ods (Mourgaya and Vanderbeck, 2007; Lin and Kao, 2008). Although not
specifically devised for routing application, it is worth to refer compactness
measures that compare the region with that of an ideal shape (MacEachren,
1985; Bozkaya et al., 2003).

Non-overlapping may be defined as zones with clear geographical borders
(Cattrysse et al., 1997; Muyldermans et al., 2003), from routes overlapping
(Poot et al., 2002; Kim et al., 2006; Lu and Dessouky, 2006; Tang and Miller-
Hooks, 2006) or boundary crossing points (Lin and Kao, 2008). However, the
literature has been scarce on the evaluation of zones overlapping. Poot et al.
(2002) and Kim et al. (2006) evaluate the overlapping of the solutions by
counting the number of nodes in more than one convex hull of clusters of
nodes (each cluster formed by the stops of a route). Lu and Dessouky (2006)
define the crossing length percentage of a trip as the sum of the crossed
length of all the crossings divided by the total length of the trip. Tang and
Miller-Hooks (2006) claim that by minimizing the number of customers closer
to the reference point of another tour, they also minimize the overlapping
of the tours. In the mathematical model proposed by Lin and Kao (2008),
an upper limit for the number of boundary crossing points is imposed, and
the number of such points is also used to evaluate the overlapping of the
final solutions. These authors consider a predefined set of small land parcels,
representing small collection areas regarding the amount of refuse to collect,
and with the road lengths per parcel previously computed. The aim is to
assign the parcels into balanced regions, regarding the refuse to collect and
the road lengths. In the models here proposed no predefined routes or areas
are imposed, and the crossing points are determined by the models.

Matis (2008) measures the visual attractiveness of a tour by combining, in
only one equation, the number of crossings amongst different routes; the com-
pactness (defined from the distances between customers in the same route);
and the number of customers in a route which are closer to the center of
gravity of another route.

Note that in this paper, the definition of attractive routes does not con-
sider the location of the depot (the same applies to the definitions given in
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the previous references). This implies that the design and cost of the optimal
solutions may be influenced by the time taken traveling from the depot to
the first service, and from the last service back to the depot. On the other
hand, the alternative approach (incorporating the location of the depot in
the definition of attractive routes) may produce lopsided shaped routes or
even routes with more odd shapes. A computational study to compare the
two approaches may shed some light on the advantages and disadvantages of
each approach. Such is the purpose of future work.

Zones contiguity is generally related to the connectivity between all of its
demand entities (Muyldermans et al., 2003; Perrier et al., 2008; Assis et al.,
2014) or the possibility to reach all of them within the zone (Rı́os-Mercado
and Fernández, 2009; Salazar-Aguilar et al., 2012).

In this paper, we propose an exact method, based on a model that simul-
taneously designs sectors and builds routes, and a heuristic solution method
which sequentially solves the two problems. In fact, by solving a MCARP
with an upper bound on the number of overlapping areas, we are able to de-
sign “nice” routes. These methods may then directly be applied to a sectors
design problem, if each sector is assigned to one vehicle.

3. Models

In this section we review and present models for three related problems,
i) the MCARP; ii) the non overlapping MCARP (NOMCARP), which also
identifies vehicle routes as in the MCARP, but the minimization criteria
is on non-overlapping; and iii) the BCARP, which is the MCARP with an
additional constraint on the number of overlappings. We also show that the
NOMCARP may be solved by a simpler model, with the same objective,
but only requiring the allocation of tasks to the vehicle routes (the design
of routes is not required). The new and simpler model is called as the non
overlapping routes model (nor).

For simplicity, and without loss of generality, we assume that no demand
links are incident into the depot. In the other cases, a dummy depot is
considered, only linked with the depot, and from where vehicle routes must
start and end, being the depot treated as a common node. We also considered
that each zone is served by only one vehicle route.
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3.1. Notation

The initial mixed network, (N,AD, AR, ER), includes deadheading, i.e.
links with no demand for service, and required (or demand) links. N is the
set of nodes, representing the depot (node s), and street crossings or alleys.
All deadheading links are represented by arcs in AD. To identify the links
having a service to be performed, and called required links or tasks, we use
the sets AR and ER, corresponding to the set of the required arcs and the
set of required edges, respectively.

For the directed formulations that we will use, we define the directed
graph G = (N,A) as next detailed. All links are represented by arcs in
A = AD ∪ R where R = AR ∪ AER

is the set of required arcs, with AER
=

{(i, j), (j, i) : {i, j} ∈ ER∧ i < j}. That is, in the directed graph G = (N,A),
each required edge {i, j} ∈ ER is replaced by two opposite arcs, (i, j) and
(j, i), with the same associated data as the original edge. Only one of these
two arcs is required to be served. Thus, |R| = |AR|+2|ER|, and |AR|+ |ER|
is the number of tasks.

We assume that both G and its subgraph spanned by N \{s} are strongly
connected graphs. For simplicity, all nodes in N \{s} are endpoints of at least
one task. Thus, nodes i ̸= s which are not endpoints of a task are removed
from the network and connections in the original network using these nodes
are reestablished by adding arcs with durations corresponding to shortest
deadheading path values in the original network.

The following notation is also needed to describe the models.

• For each link, arc (i, j) or edge {i, j}, dij > 0 is its deadheading time, i.e.,
the time needed to traverse the street without serving it. Additionally,
each required link (i, j) or {i, j} has an associated demand, qij > 0, and a
service time, tij ≥ dij.

• A fleet of P identical vehicles is available, each with a capacity of W . The
time needed to empty a vehicle is λ.

• v(.) is the optimal value of model (.) or the value of a feasible solution
obtained with model (.).

3.2. MCARP model

Here, we briefly review the model of Gouveia et al. (2010), named by
(mcar).

Thus, for each route p = 1, . . . , P , let:

• xp
ij be 1 if arc (i, j) ∈ R is served by route p, and 0 otherwise.
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• ypij be the number of times that arc (i, j) ∈ A is deadheaded by route p.
• f p

ij be the flow in arc (i, j) ∈ A, related to (part of) the route demand,
needed to guarantee the routes connectivity.

(mcar)

min

P∑
p=1

 ∑
(i,j)∈A

dijy
p
ij +

∑
(i,j)∈R

tijx
p
ij + λ

∑
(s,j)∈A

ypsj

 (1a)

s.t.:

P∑
p=1

xp
ij = 1 ∀(i, j) ∈ AR (1b)

P∑
p=1

(
xp
ij + xp

ji

)
= 1 ∀(i, j) ∈ AER

: i < j (1c)

∑
j:(i,j)∈A

ypij +
∑

j:(i,j)∈R

xp
ij =

∑
j:(j,i)∈A

ypji +
∑

j:(j,i)∈R

xp
ji ∀i ∈ N ; ∀p (1d)

∑
(s,j)∈A

ypsj 6 1 ∀p (1e)

∑
j:(j,i)∈A

fp
ji −

∑
j:(i,j)∈A

fp
ij =

∑
j:(j,i)∈R

qjix
p
ji ∀i ∈ N \ {s}; ∀p (1f)

∑
(s,j)∈A

fp
sj =

∑
(i,j)∈R

qijx
p
ij ∀p (1g)

fp
ij 6 W

(
ypij + xp

ij

)
∀(i, j) ∈ R; ∀p (1h)

fp
ij 6 Wypij ∀(i, j) ∈ AD; ∀p (1i)

xp
ij ∈{0, 1} ∀(i, j) ∈ R; ∀p (1j)

ypij > 0 and integer ∀(i, j) ∈ A; ∀p (1k)

fp
ij > 0 ∀(i, j) ∈ A; ∀p (1l)

The objective function (1a) minimizes the total traveling time, given by
the deadheading, the service and the dump times. Constraints (1b) and (1c)
ensure that all the tasks are served by vehicle routes; (1d) impose the conti-
nuity of routes at each node; (1e) are needed to adequately charge the dump
cost in the objective function and to ensure that no more than P vehicles
are used; (1f) and (1g) are flow conservation constraints, that together with
the linking constraints (1h)–(1i) force the connectivity of the routes. Con-
straints (1h)–(1i) are also used to guarantee that each route total demand is
compatible with the vehicles capacity, W .

Since this model has symmetric optimal solutions, we have tried symmetry-
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breaking inequalities similar to the ones suggested in Benavent et al. (2014).
However, as no more instances were solved by its inclusion in the models we
drooped this additional constraints in the models here proposed.

3.3. Models for the non overlapping MCARP (NOMCARP)

In this subsection we describe two models for the NOMCARP, named as
(nomcar) and (nor). The objective is to assign tasks (corresponding to arcs
or edges) to vehicle routes while minimizing the overlapping. One way to
measure this overlapping is by counting the number of routes each end node
of a task is assigned to.

3.3.1. Model (nomcar)

For p = 1, . . . , P , and o ∈ N , let np
o be a binary variable, indicating

whether node o is an end node of a task assigned to route p. With these
variables the expression

∑
p=1,...,P np

o represents the number of routes node
o belongs to. Thus, in our models, the summation term (2) represents the
number of routes graph nodes belong to, and is used to measure the overlap-
ping.

∑
o∈N

P∑
p=1

np
o (2)

To obtain a model to minimize the overlapping of the vehicle routes,
we can replace the objective function (1a) of the MCARP model by the
minimization of (2),

min
∑
o∈N

P∑
p=1

np
o (3)

and include the following constraints, which force np
o to be one if node o is

an end node of a task belonging to vehicle route p:

xp
ij 6 np

o ∀(i, j) ∈ AR; o = i, j; ∀p (4a)

xp
ij + xp

ji 6 np
o ∀(i, j) ∈ AER : i < j ; o = i, j; ∀p (4b)

np
o ∈{0, 1} ∀ o ∈ N ; ∀p (4c)
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Let us denote by (nomcar) the model resulting from the (mcar) model by
replacing the objective function (1a) with (3), and including the additional
constraints (4a) to (4c).

3.3.2. Model (nor)

We observe that for the new given objective (3) we need no information
about the vehicle routes that are used to visit the tasks (this statement will
be clarified later on). Hence, we can reformulate and simplify the model as
follows.

For p = 1, . . . , P , let zapij be a binary variable equal to one iff task (i, j) ∈
AR is assigned to vehicle p, and let zepij be a binary variable equal to one
iff task {i, j} ∈ ER is assigned to vehicle p. Thus, variables zapij and zepij
correspond, respectively, to xp

ij for (i, j) ∈ AR, and to xp
ij+xp

ji for {i, j} ∈ ER

in the previous models (mcar) and (nomcar).
Consider the following model:

(nor)

NO = min
∑
o∈N

P∑
p=1

np
o (3)

s.t.:
P∑

p=1

zapij = 1 ∀(i, j) ∈ AR (5a)

P∑
p=1

zepij = 1 ∀{i, j} ∈ ER (5b)

∑
(i,j)∈AR

qijza
p
ij +

∑
{i,j}∈ER

qijze
p
ij 6 W ∀p (5c)

zapij 6 np
o ∀(i, j) ∈ AR; o = i, j; ∀p (5d)

zepij 6 np
o ∀{i, j} ∈ ER; o = i, j; ∀p (5e)

zapij ∈{0, 1} ∀(i, j) ∈ AR; ∀p (5f)

zepij ∈{0, 1} ∀{i, j} ∈ ER; ∀p (5g)

np
o ∈{0, 1} ∀ o ∈ N ; ∀p (4c)

In the (nor) model the objective function (3) minimizes the number of
nodes visits. Constraints (5a) and (5b) assign each task to only one vehicle,
and (5c) ensures that this assignment respects the vehicles capacity. Linking
constraints (5d) and (5e) are needed to relate the assigned tasks with the
task nodes variables.
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In order to see that the two models, (nor) and (nomcar), are equivalent,
we state and prove (see Appendix A) the following result.

Proposition. Given a feasible solution of any one of the models (nor) and
(nomcar), there is a feasible solution of the other model, with the same ob-
jective value.

3.4. Bounded overlapping MCARP model (bcar)

We can use the optimal value of the problem defined in Subsection 3.3 to
define a tight upper bound for the non-overlapping constraint in the model for
the BCARP, named as (bcar). As referred before, the BCARP is a MCARP
with a bounded number of overlapping areas.

Besides (1a)–(1l), which are taken from the MCARP model, we add a
constraint, (6), imposing the previously mentioned upper bound, NO, on
the number of times that the nodes are shared, and the linking constraints
between node and routing variables are also needed and stated by (4a)–(4c).

∑
o∈N

P∑
p=1

np
o 6 NO (6)

As we will see in the computational results, the MIP solver, within a time
limit of one hour, is not able to find feasible solutions for the biggest tested
instances with the (bcar) model. In order to overcome this disadvantage we
have developed a heuristic, described in Section 4.

4. Solving BCARP instances

To solve instances of the BCARP we hopefully solve the two models,
(nor) and (bcar) (see Sec. 4.1). However, in situations where the MIP solver
does not provide the optimal solution within the prescribed time limit for
one of the two models, we use heuristics as detailed in Sections 4.2 and 4.3.
In the computational results section, we compare the solutions produced by
the heuristic and by the (bcar) model, when possible.

4.1. Solving the BCARP using models (nor) and (bcar)

In theory, optimal solutions for BCARP instances may be obtained if
a MIP solver is sequentially applied to the two models. To solve a given
instance, we first solve the corresponding (nor) model to identify the upper
bound on the number of shared nodes, NO. The model (bcar) is then solved.
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This methodology, as it will be computationally confirmed in Section 6, only
works for small instances, since the MIP solver used (CPLEX) fails to solve
(bcar) or even (nor) for medium size instances (from 30/40 nodes, 100/90
links and 11 vehicles for mval instances and from 145 nodes, 360 links and 8
vehicles for lpr instances) within the time limit of one hour. Feasible solutions
for the bigger instances are found through the heuristics next detailed.

4.2. Solving (nor)

Whenever the MIP solver fails to solve to optimality or even to find
a feasible solution for (nor) we resort to a heuristic. With that purpose,
P seed-tasks are first selected, chosen far from the depot and from each
other, and assigned to the vehicles. Let vp be the seed-task of vehicle p. A
new objective function which measures the distances between tasks and the
seed-tasks is defined. Let distuvp be the undirected distance between task
u = (i, j) ∈ AR or u = {i, j} ∈ ER and the seed-task vp ∈ AR ∪ ER, i.e.,
the shortest path deadheading time computed ignoring the orientation of the
arcs, and not including du nor dvp . The objective function (3) is replaced by

min
P∑

p=1

( ∑
u∈AR

distuvpza
p
u +

∑
u∈ER

distuvpze
p
u

)
(7)

and a feasible solution to (nor) is obtained by (7) within constraints (5a),
(5b), (5c), (5f) and (5g).

We first observe that this variant of the (nor), named as (hnor), is easier
to solve since we have omitted the variables np

o and the corresponding con-
straints. Moreover, with the fixed seeds and (7) the symmetric assignments
of the (nor) model are avoided. The underlying idea of the new objective is
to fix tasks that are close to the seed-tasks.

The optimal solution for (hnor) is then used as follows: tasks such that
the two end-nodes belong to only one vehicle in the (hnor) solution are fixed
to that vehicle, and we then solve a restricted (nor) with these tasks fixed. By
first solving the (hnor), the restricted (nor) becomes easier to solve (through
the fixing of variables – corresponding to task assignments).

The value of NO to be used in the (bcar) model, and in the 2-phase
heuristic described in the next section, is then the best of the following two
values: i) the overlapping in the solution described above, computed by (2);
ii) the best value obtained by the MIP solver for the (nor) model.
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4.3. A 2-phase Heuristic for the BCARP

A feasible solution for (bcar) can be obtained by solving a mixed arc
routing problem per vehicle, after solving (nor). In the first phase, model
(nor) is used to obtain an assignment of tasks to vehicles, and then, in the
second phase, this assignment is used to build the routes of each vehicle.

Note that each vehicle subproblem is non-capacitated, as (nor) assigns
tasks taking vehicle capacities into account. The resulting subproblems are
thus substantially easier to solve than the original MCARP, since the values
of the variables for the assignment of tasks to routes are already chosen,
except for the direction for servicing the required edges.

In the computational section we compare, whenever possible, the solu-
tions obtained by this heuristic with the solutions obtained with (bcar).

5. “Nice” solution measures

As referred, “nice” solutions stand for connected and compact solutions.
To evaluate the connectivity and the compactness of a solution we propose
three measures. We opted for normalized measures as this helps examining
and classifying solutions of different characteristics, as well as isolated solu-
tions. The proposed measures are designed mainly to evaluate solutions in
urban environments. It is often the case in many cities that the geometry of
streets is rectangular, and |AD| is small when compared with |AR ∪ ER|.

• Connectivity Index (CI) is the average number of connected components
(CC) of the set of tasks in the service zones, given by CI = CC

|routes| , where

|routes| is the number of routes of the solution under evaluation. In the
“ideal” situation the tasks of each zone are all connected and the value of
CI is equal to one.

• Average Tasks Distance (ATD) is the average of the shortest path dead-
heading times between tasks within service zones, computed by Equa-
tion (8),

ATD =
1

|routes|

P∑
p=1

∑
a,b served by p

Dab

|taskpairs|
(8)

where |taskpairs| = |AR∪ER|×(|AR∪ER|−|routes|)
2×|routes|2 represents an approximation

for the mean value of the number of task pairs per route, and Dab is the
minimum deadheading time from task a to task b, not including da nor
db. These values represent the minimum between at most eight shortest
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deadheading travel times, as we are dealing with mixed graphs. In fact, if
both a, b ∈ ER, eight distances are considered to compute Dab (see Mourão
et al. (2009)), resulting in a symmetric distance matrix D. Note that,
“nicer” solutions are obtained with a smaller ATD value. We can observe
that routing distances tend to increase when the shape of the service zones
deviates from “nice” compact shapes such as circles or squares.

• Routes Overlapping Index (ROI), given by Equation (9), measures the node
overlapping in the solution obtained when compared with the one in an
“ideal” solution. Again, smaller values of this index correspond to “nicer”
solutions.

ROI =
NO − |N |(√

|routes|+
√
|N | − 1

)2
− |N |

(9)

In Equation (9), NO− |N | is the node overlapping of the solution under

evaluation, withNO here computed by (2), while
(√

|routes|+
√

|N | − 1
)2
−

|N | represents the node overlapping in an “ideal” solution for an hypothetical
instance, as next detailed.

In order to motivate the index ROI, we consider a hypothetical instance
with |N | = n2 nodes and |routes| = r2 service zones, with n and r integer
and n − 1 multiple of r. Assume further that nodes are placed uniformly
in a square in the plane. In the “ideal” partition of this square, each of
the |routes| service zones is contained in a smaller square with [1 + (n −
1)/r]2 nodes each (see Figure 2, where n = 13 and r = 3). Most nodes
belong to only one of these squares, others belong to two and some belong
to four. The sum of the number of squares each node belongs to is given by
|routes|× [1+(n−1)/r]2 = (r+n−1)2. Hence, the overlapping is calculated

by
(√

|routes|+
√
|N | − 1

)2
− |N |. We use this formula even if the above

assumptions on |N | and |routes| are not satisfied. Observe that no conditions
on the tasks are imposed. It may happen that some nodes that belong to
more than one square are only visited by one route from a single sector.
In order to have it simpler, the definition of the third measure omit these
situations. Note that, this simplification does not spoil the “significance”
and “information” of the measure.

Table 1 presents the values for the “nice” solution measures, that are
used to compare connectivity and compactness for the optimal lpra2 solu-
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Figure 2: Hypothetical instance and “ideal” solution with |N | = 169 and |routes| = 9. In this case(√
|routes|+

√
|N | − 1

)2
− |N | = 56.

tion (Figure 1) computed with the three models ((mcar), connectivity model,
and (bcar)). This instance has 104 tasks and 3 routes are needed. The con-
nectivity index, CI, is higher for the MCARP solution, thus indicating a less
“nice” solution. The BCARP model, although not explicitly enforcing the
connectivity constraints, produces solutions that are, in terms of connectiv-
ity, as good as the ones obtained by the connectivity model. We observe
a similar behavior concerning the other measures, ATD and ROI; the so-
lutions obtained from the MCARP model are always worse than the ones
obtained from the connectivity model, which, in turn, are outperformed by
the solutions generated by the BCARP model.

Through our computational experiments, we will confirm these results,
namely we will see that feasible vehicle routes obtained with the BCARP
model are substantially more compact and then more attractive to the users.

Table 1: lpra2 instance – characteristics of the optimal solutions.

Connectivity
(mcar) model (bcar)

Number of connected components 6.0 3.0 3.0
CI 2.0 1.0 1.0
Number of shared nodes 85.0 78.0 59.0
ATD 98.7 87.6 61.1
ROI 2.9 2.2 0.5

6. Computational results

In this section we describe computational results from the approaches
previously proposed and discussed. The results for the MCARP and BCARP
models and the heuristic are analyzed and compared under three different
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view-points to evaluate the effect of the new overlapping constraint on the
routes:

i) The impact on the objective values (total traveling time).
ii) The impact on the gap values and CPU times.
iii) The shape of the solutions.

Exact and heuristic approaches are also compared for the BCARP to access
the quality of the proposed heuristic, and also to evaluate the size of the
instances that can be solved to optimality by the proposed ILP model.

The shape of the solutions is evaluated according to the measures de-
scribed in Section 5.

The computational results were obtained with the MIP solver CPLEX
12.5, on a personal computer (Intel Core i7-3520M 2.90GHz processor and 8
GB of RAM, under 64-bit Windows 7 Professional), for two sets of benchmark
MCARP instances detailed in Section 6.1. The analysis of the results is
provided in Section 6.2.

6.1. Test instances

Computational experiments were conducted with the MCARP instances
also used in Belenguer et al. (2006) and Gouveia et al. (2010), named lpr and
mval. The instances characteristics are displayed in Table 2 and in Table 3.

The first column in these tables indicates the instance name, followed by
the number of nodes, |N |. Third to fifth columns depict the total number of
links, |A′| = |AD| + |AR| + |ER|, the number of required arcs, |AR|, and the
number of required edges, |ER|. The number of vehicles, P , its capacity, W ,
and the total network demand, QT , are shown in the three last columns. In
the 34 mval instances (Table 3) all links have an associated service, and then
the total number of links, |A′|, is given by summing the number of arc and
edge tasks, |AR|+ |ER|.

6.2. Analysis of computational results

Relevant computational results, comparing solution values deviations and
CPU times of the methods, are displayed in Table 4 and Table 5, respectively
for the mval and for the lpr instances. As before, the first column indicates
the instance name.
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Table 2: lpr instances characteristics.

name |N | |A′| |AR| |ER| P W QT

lpra1 28 94 0 52 3 10000 11235
lpra2 53 169 5 99 3 10000 23446
lpra3 146 469 33 271 8 10000 64709
lpra4 195 651 34 469 13 10000 108635
lpra5 321 1056 58 748 19 10000 170514
lprb1 28 63 5 45 3 10000 12142
lprb2 53 117 9 92 4 10000 23312
lprb3 163 361 26 279 8 10000 63624
lprb4 248 582 8 493 12 10000 103770
lprb5 401 876 37 764 19 10000 171408
lprc1 28 52 39 11 4 10000 16662
lprc2 53 101 77 23 5 10000 31718
lprc3 163 316 241 61 12 10000 97946
lprc4 277 604 362 142 17 10000 149531
lprc5 369 841 387 416 25 10000 227186

Table 3: mval instances characteristics.

name |N | |AR| |ER| P W QT name |N | |AR| |ER| P W QT

mval1a 24 20 35 4 200 358 mval6a 31 22 47 5 170 451
mval1b 24 13 38 5 120 358 mval6b 31 22 44 6 120 451
mval1c 24 17 36 10 45 358 mval6c 31 23 45 12 50 451
mval2a 24 16 28 4 180 310 mval7a 40 36 50 5 200 559
mval2b 24 12 40 5 120 310 mval7b 40 25 66 6 150 559
mval2c 24 14 35 10 40 310 mval7c 40 28 62 11 65 559
mval3a 24 15 33 4 80 137 mval8a 30 20 76 5 200 566
mval3b 24 16 29 5 50 137 mval8b 30 27 64 6 150 566
mval3c 24 18 25 9 20 137 mval8c 30 28 55 11 65 566
mval4a 41 26 69 5 225 627 mval9a 50 32 100 5 235 654
mval4b 41 19 83 6 170 627 mval9b 50 44 76 6 175 654
mval4c 41 21 82 7 130 627 mval9c 50 42 83 7 140 654
mval4d 41 21 83 11 75 627 mval9d 50 38 93 12 70 654
mval5a 34 22 74 5 220 614 mval10a 50 32 106 5 250 704
mval5b 34 35 56 6 165 614 mval10b 50 33 101 6 190 704
mval5c 34 17 81 7 130 614 mval10c 50 36 100 7 150 704
mval5d 34 29 63 11 75 614 mval10d 50 42 87 12 75 704
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i) Evaluating the feasible solution values

The second column in Tables 4 and 5 give information on the increase
in (bcar) objective value, measured in percentage, from the optimum value
of (mcar), whilst column three depicts the same percentage comparing the
solution values of the BCARP heuristic with (mcar) optimum values.

Table 4: Computational results – mval instances.

increase on the gap values (in %) and CPU times (in sec)

objective value (in %) (mcar) (bcar) Heuristic

name
v(B)−v(F )

v(F )
H−v(F )

v(F )
v(F )−LbF

LbF
cpu

v(B)−LbB
LbB

cpu H−LbB
LbB

cpu

mval1a 0.00 0.43 0.00 5.4 * 0.00 12.5 0.43 0.3
mval1b 15.33 15.33 0.00 0.4 * 0.00 341.4 0.00 0.5
mval1c – – 7.85 7200.0 * – 6775.8 25.94 3176.1
mval2a 14.51 19.14 0.00 1.6 * 0.00 2.4 4.04 0.1
mval2b 9.37 10.89 0.00 5.7 * 0.00 72.5 1.39 0.4
mval2c – – 7.16 7200.0 * – 4000.8 23.66 401.1
mval3a 6.09 6.96 0.00 1.1 * 0.00 1.4 0.82 0.2
mval3b 4.23 7.04 0.00 5.7 * 0.00 261.9 2.70 0.4
mval3c – – 6.41 7200.0 * 21.15 4232.4 35.26 632.7
mval4a 7.24 7.59 0.00 19.7 * 0.00 73.6 0.32 1.2
mval4b 14.62 14.92 0.00 61.1 * 14.62 3620.1 14.92 20.1
mval4c 17.78 17.14 0.00 6921.3 * 17.78 3924.1 17.14 324.4
mval4d – – 6.35 7200.0 – 7200.0 20.81 3600.2
mval5a 11.22 12.23 0.00 9.4 * 1.53 3602.5 2.45 2.6
mval5b 10.60 10.11 0.00 7200.0 * 10.60 3629.8 10.11 30.0
mval5c 9.18 16.21 0.00 5073.8 * 9.18 3949.5 16.21 349.7
mval5d – – 6.99 7200.0 – 7200.0 21.68 3600.2
mval6a 9.20 9.20 0.00 6.4 * 0.00 17.7 0.00 0.5
mval6b 8.52 8.52 0.00 133.7 * 0.00 22.6 0.00 0.7
mval6c – – 10.91 7200.0 24.78 7200.0 33.04 3600.3
mval7a 1.10 4.12 0.00 57.2 * 1.10 3600.8 4.12 0.9
mval7b 2.43 2.43 0.00 16.7 * 0.00 15.5 0.00 1.0
mval7c – – 7.80 7200.0 – 7200.0 11.95 3600.3
mval8a 5.16 9.12 0.00 9.0 * 0.00 781.1 3.76 1.1
mval8b 12.99 14.88 0.00 371.1 * 12.99 3625.1 14.88 25.3
mval8c – – 19.37 7200.0 – 7200.0 33.89 3600.2
mval9a 5.90 7.86 0.00 16.7 * 5.90 3602.0 7.86 2.2
mval9b 8.83 7.51 0.00 1211.8 * 8.83 3632.0 7.51 32.2
mval9c – – 0.23 7200.0 * 10.75 3941.9 12.15 342.0
mval9d – – 12.85 7200.0 – 7200.1 25.69 3600.5
mval10a 7.26 7.73 0.00 45.8 * 7.26 3613.2 7.73 13.3
mval10b – 12.86 0.00 7200.0 * – 4478.7 12.86 879.0
mval10c – 11.08 0.00 7200.0 – 7200.0 11.08 3600.2
mval10d – – 6.31 7200.0 – 7200.1 23.50 3600.3

#FS 34 24 34
#OS 23 11 4

v(B) = (bcar) objective value; v(F ) = (mcar) objective value; H = heuristic value;
LbB = (bcar) lower bound value; LbF = (mcar) lower bound value;
#FS = number of feasible solutions; #OS = number of optimal solutions;
–: the MIP solver did not find the optimal value of (mcar) or a feasible solution for (bcar) within the time limit;
*: (nor) optimally solved by the MIP solver in 1 hour.

The second column (Tables 4 and 5), shows, as expected, an increase in
(bcar) feasible solution values when compared with (mcar) optimum values.

From the values reported in the third column, we may realize that the
heuristic performs better on the lpr instances rather than on the mval ones.
In fact, it produces significantly smaller deviations for the lpr. Regarding
the increase on the objective values, the behavior of (bcar) and the heuristic
are similar, the latter being able to solve all the instances.
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Table 5: Computational results – lpr instances.

increase on the gap values (in %) and CPU times (in sec)

objective value (in %) (mcar) (bcar) Heuristic

name
v(B)−v(F )

v(F )
H−v(F )

v(F )
v(F )−LbF

LbF
cpu

v(B)−LbB
LbB

cpu H−LbB
LbB

cpu

lpra1 0.27 0.50 0.00 0.2 * 0.00 2.1 0.22 0.5
lpra2 1.40 1.70 0.00 59.7 * 0.00 1331.4 0.30 0.9
lpra3 – – 3.93 7200.0 3.27 7200.0 1.61 3622.8
lpra4 – – 36.24 7200.0 – 6262.6 3.47 6262.6
lpra5 – – – 7200.0 – 10800.0 4.51 10800.0
lprb1 0.34 0.34 0.00 0.2 * 0.00 1.5 0.00 0.1
lprb2 2.00 2.00 0.00 6.9 * 0.00 17.6 0.00 1.4
lprb3 – – 1.26 7200.0 – 7200.0 2.66 3600.3
lprb4 – – 50.29 7200.0 – 3608.7 4.48 14.9
lprb5 – – – 7200.0 – 6132.9 6.17 4567.4
lprc1 0.12 0.48 0.00 846.2 * 0.00 47.1 0.36 0.5
lprc2 – – 0.003 7200.0 * 2.32 3609.2 1.38 9.8
lprc3 – – 7.62 7200.0 – 3630.5 2.33 48.2
lprc4 – – – 7200.0 – 10800.0 2.00 7287.7
lprc5 – – – 7200.0 – 7201.4 2.61 7201.4

#FS 11 7 15
#OS 5 5 2

v(B) = (bcar) objective value; v(F ) = (mcar) objective value; H = heuristic value;
LbB = (bcar) lower bound value; LbF = (mcar) lower bound value;
#FS = number of feasible solutions; #OS = number of optimal solutions;
–: the MIP solver did not find the optimal value of (mcar) or a feasible solution for (bcar) within the time limit;
*: (nor) optimally solved by the MIP solver in 1 hour.

ii) Evaluating the gap values and CPU times

To evaluate the impact of the extra constraints limiting the overlapping,
we also compare gap values (in percentage) and CPU times (in seconds) for
the MCARP with the ones of the two proposed methods for the BCARP,
solving the model exactly and using the heuristic (Tables 4 and 5, columns
4–9).

A time limit of one hour was imposed on the MIP solver to run each
model, (nor), (bcar), and the model defined for the second phase of the
heuristic. The CPU times presented in columns 7 and 9, respectively for
the (bcar) and the heuristic, already include the (nor) CPU time to enable
comparisons with the (mcar) CPU times. This also justifies the imposed time
limit of two hours for (mcar). The instances for which (nor) was optimally
solved by the MIP solver within one hour are marked with * in column 6
(the (bcar) gaps).

Gap values are computed by gap = Ub−Lb
Lb

× 100%, where Ub is the MIP
solver upper bound for the respective model. The MCARP lower bound
(LbF ) is computed using the MIP solver with the models by Gouveia et al.
(2010), within a time limit of two hours.

Since a lower bound for the MCARP is also a lower bound for the BCARP,
the gap for (bcar) is measured with the lower bound (LbB) given by the
maximum between (LbF ) and the (bcar) lower bound obtained by the MIP
solver within a time limit of one hour. The heuristic gap is also given in
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terms of the (bcar) lower bound (LbB), as this value represents a valid lower
bound for the problem under study.

More feasible solutions are found (34 against 24 for mval, and 11 against
7 for lpr) by using (mcar) rather than with (bcar). However, comparing the
CPU times (columns 5 and 7), we may observe cases for which (bcar) feasible
solutions are obtained faster than the (mcar) ones. Concerning (bcar), 11
out of 34 and 5 out of 15 optimal solutions are found (respectively for mval
and lpr instances), whilst (mcar) optimally solves 12 more mval and the same
lpr instances. These observations appear to indicate that (bcar) is harder to
solve than (mcar).

The heuristic, that achieves feasible solutions with reasonable gap values
for all instances, appears to be a useful method to solve the bigger sized
instances.

We should emphasize that the bigger gap values, associated with the
heuristic upper bounds, refer to instances that were not solved by the exact
models. In many situations, the MIP solver was not even able to find a
feasible solution within the time limit.

iii) Evaluating the shape of the solutions

Here we compare the solutions produced by BCARP (either by solving
the problem exactly or by the heuristic) with the solutions of the MCARP
in terms of the three indexes.

As the results show (see Tables 6 and 7), together with its simplicity,
the other advantage of the overlapping constraints here defined is that they
also produce good shape solutions in what concerns the compactness and the
connectivity.

In these tables, results are grouped for evaluating connectivity (CI) and
compactness (ATD and ROI). In each of these groups, columns (mcar),
(bcar) and H present the corresponding values for models (mcar) and (bcar)
and for the heuristic, respectively. As usual, the first column refers to the
instance name.

It should be remarked that model (nor), through a MIP solver or the
heuristic, assigns tasks to vehicles, and its solutions are used both by (bcar)
and the BCARP heuristic. That is, the minimum objective value computed,
NO, is imposed as an upper bound for the number of shared nodes in (bcar),
and the tasks assigned to each vehicle in the best (nor) solution are used by
the heuristic to design each vehicle route.
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Table 6: Shape measures – mval instances.

connectivity compactness

CI ATD ROI

name (mcar) (bcar) H (mcar) (bcar) H (mcar) (bcar) H

mval1a 1.00 1.00 1.00 7.34 5.14 5.23 1.94 0.71 0.71
mval1b 1.25 1.00 1.00 8.74 4.98 4.98 1.67 0.56 0.56
mval1c 1.44 – 1.00 3.23 – 1.46 1.23 – 0.64
mval2a 2.00 1.00 1.00 10.31 8.38 11.38 1.89 0.71 0.71
mval2b 2.00 1.00 1.00 12.33 5.85 6.00 2.98 0.52 0.52
mval2c 1.50 – 1.00 4.83 – 2.11 1.32 – 0.59
mval3a 2.00 1.00 1.00 3.95 2.52 2.41 3.07 0.71 0.71
mval3b 1.67 1.00 1.00 4.01 2.47 2.59 2.72 0.78 0.78
mval3c 1.57 1.00 1.00 1.91 0.83 0.95 1.22 0.69 0.61
mval4a 2.67 1.00 1.00 11.56 7.30 7.09 3.94 0.71 0.71
mval4b 2.00 1.00 1.00 11.26 6.79 6.83 3.26 0.65 0.65
mval4c 2.20 1.00 1.00 11.61 5.47 5.77 3.05 0.75 0.75
mval4d 2.44 – 1.00 8.57 – 3.44 2.09 – 0.65
mval5a 1.00 1.00 1.00 11.77 7.07 7.75 4.30 0.88 0.88
mval5b 3.00 1.00 1.00 11.21 6.19 5.88 4.58 0.87 0.87
mval5c 2.40 1.00 1.00 10.90 5.41 5.51 3.83 0.88 0.88
mval5d 1.67 – 1.00 7.69 – 3.29 2.12 – 0.81
mval6a 1.25 1.00 1.00 6.66 4.94 4.94 1.73 0.58 0.58
mval6b 1.50 1.00 1.00 7.34 3.40 3.40 2.06 0.49 0.49
mval6c 1.80 1.00 1.00 4.35 1.76 2.16 1.60 0.70 0.64
mval7a 1.00 1.00 1.00 11.17 4.93 5.18 2.12 0.44 0.44
mval7b 1.00 1.00 1.00 9.07 5.36 5.37 2.20 0.44 0.44
mval7c 1.30 – 1.00 5.08 – 2.62 1.28 – 0.65
mval8a 1.33 1.00 1.00 11.00 6.64 6.71 5.03 0.82 0.82
mval8b 1.50 1.00 1.00 10.65 4.21 4.71 3.60 0.84 0.84
mval8c 2.89 – 1.00 9.22 – 2.65 2.66 – 0.74
mval9a 2.50 1.00 1.00 9.13 5.86 5.83 3.83 0.64 0.64
mval9b 2.50 1.00 1.00 8.22 4.48 4.48 4.03 0.73 0.73
mval9c 2.00 1.00 1.00 6.55 3.65 3.44 2.95 0.68 0.68
mval9d 2.36 – 1.00 5.51 – 2.52 2.26 – 0.71
mval10a 1.33 1.00 1.00 9.25 5.56 5.66 5.42 0.92 0.92
mval10b 3.50 – 1.00 9.16 – 5.08 4.49 – 0.86
mval10c 2.20 – 1.00 7.59 – 4.08 4.10 – 0.84
mval10d 2.40 – 1.00 6.91 – 2.70 2.47 – 0.79

H: heuristic; –: the MIP solver did not find a feasible solution within the time limit.
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Table 7: Shape measures – lpr instances.

connectivity compactness

CI ATD ROI

name (mcar) (bcar) H (mcar) (bcar) H (mcar) (bcar) H

lpra1 3.00 1.00 1.00 63.52 38.91 87.41 3.95 0.66 0.66
lpra2 2.00 1.00 1.00 98.71 61.12 60.63 2.86 0.54 0.54
lpra3 8.25 1.14 1.29 130.43 66.66 65.25 3.58 0.56 0.56
lpra4 21.38 – 1.00 200.16 – 51.53 6.89 – 0.63
lpra5 – – 1.00 – – 52.33 – – 0.59
lprb1 2.00 1.00 1.00 112.82 74.62 74.62 1.98 0.44 0.44
lprb2 4.67 1.00 1.00 107.81 75.94 75.94 3.93 0.63 0.63
lprb3 8.71 – 1.00 173.42 – 86.08 3.64 – 0.47
lprb4 26.25 – 1.00 270.03 – 76.75 6.58 – 0.61
lprb5 – – 1.00 – – 77.17 – – 0.65
lprc1 2.50 1.00 1.00 43.75 33.03 31.69 3.51 0.66 0.66
lprc2 1.00 1.00 1.00 86.78 43.59 48.12 2.51 0.71 0.71
lprc3 11.40 – 1.00 151.82 – 43.49 4.04 – 0.65
lprc4 – – 1.00 – – 47.33 – – 0.62
lprc5 – – 1.00 – – 41.20 – – 0.62

H: heuristic; –: the MIP solver did not find a feasible solution within the time limit.

Note that a connectivity index value equal to one refers to an optimal
solution under this measure, with one connected component per route, as
it is observed (see Tables 6 and 7) for the majority of the cases for both
the (bcar) and the heuristic, and contrary to the values achieved by (mcar).
In fact, even for larger lpr instances, when available, this comparison favors
the heuristic that produces values equal to 1 (except for lpra3), whereas the
corresponding values for (mcar) are greater than 10.

Again, routes compactness, evaluated through indexes ATD and ROI
(Tables 6 and 7), show the advantages of imposing the new constraint.

Although identical values are obtained by (bcar) and the heuristic for the
connectivity and the compactness indexes, it should be emphasized that the
second phase of the heuristic always gets a feasible solution within the time
limit of one hour.

To sum up, solution objective values given by (bcar) greater than the ones
from (mcar) are expected, since additional conditions are imposed to the
vehicle routes. Nevertheless, these increases in the objective values may be
considered acceptable, as they are compensated by “nicer” solution shapes.

7. Conclusions

In this paper we have introduced the BCARP problem, which is defined
as the MCARP with an upper bound on the number of common nodes to
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different routes.
Quite often the optimal solutions produced by MCARP do not exhibit

nice characteristics to be implemented in practice, namely the shape of the
routes are not attractive to practitioners.

By defining the concept of overlapped nodes and by imposing a constraint
bounding the number of such nodes on the solutions of the original MCARP,
our results show that the resulting solutions exhibit much better character-
istics according to three “nicety” measures proposed in the paper.

As expected the optimal solutions of the new problem are more costly
than the corresponding optimal solutions of the problem without the extra
constraint. However, the increase in the cost is acceptable when we compare
what we gain by making the routes “nicer”.

We have also developed a heuristic that produces acceptable solutions for
the instances that are not easy solved by the proposed MIP model. This
method also provides “nice” feasible solutions, with acceptable gap values in
small computational times. The heuristic suggested in Section 4.2 for the
NOMCARP subproblem allows us to improve the feasible solutions for the
BCARP as well as to improve the “nice” characteristics.

Future work will deepen the study on the properties of attractive routes.
These will also address the inclusion or exclusion of the depot from the route
shaping process.
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Appendix A. Proof of the proposition

Proof. Given a feasible solution (x,y, f,n) of (nomcar), consider (z,n) with
the same vector n, and z defined by zapij = xp

ij for (i, j) ∈ AR and zepij =
xp
ij+xp

ji for {i, j} ∈ ER. We show that (z,n) is feasible for (nor) and has the
same objective value as the given solution of (nomcar). Indeed, the objective
functions are the same; satisfaction of constraints (5a) and (5b) follows from
the definition of z and from (1b) and (1c); satisfaction of constraints (5d)
and (5e) also follows from the definition of the variables and from (4a) and
(4b); satisfaction of constraints (5f) and (5g) follows from (1b), (1c), and
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(1j). To see that capacity constraints (5c) are satisfied, observe that for all
p we have

∑
(i,j)∈AR

qijza
p
ij +

∑
{i,j}∈ER

qijze
p
ij =

∑
(i,j)∈R

qijx
p
ij =

∑
(s,j)∈A

f p
sj ≤ W

∑
(s,j)∈A

ypsj ≤ W,

where the first equality follows from the definition of the z variables, and
the second from constraints (1g). The first inequality follows from (1i), as
{(s, j) ∈ A} ⊆ AD, and the second from (1e).

Conversely, consider a solution (z,n) feasible for (nor). We build a solu-
tion (x,y, f,n) for (nomcar) with the same n variables. For each p, if zp = 0
let xp = 0, yp = 0 and fp = 0; otherwise, let xp

ij = zapij for (i, j) ∈ AR, and
xp
ij = zepij, x

p
ji = 0 for {i, j} ∈ ER.

To define variables ypij and f p
ij, find a route Up = (u1, u2, . . . , uT ) starting

and ending in the depot s, passing through all arcs u = (i, j) such that
xp
ij = 1, without visiting node s except as the start and end of the route.

Such a route exists because of the strong connectivity assumption on the
subgraph of G spanned by N \ {s}, although it may pass more than once on
some arcs. Observe that u1, . . . , uT depend on p, but to make the notation
lighter we omit the superscript p from this and other terms for which that
dependence follows from the context.

Let ypij be the number of times arc (i, j) is traversed without service in
route Up, that is, ypij = |{t : ut = (i, j)}| if (i, j) ∈ AD and ypij = |{t : ut =
(i, j)}| − xp

ij if (i, j) ∈ R. fp
ij can be defined as follows. For t = 1, . . . , T ,

let φut be the total demand in the set of arcs St = {ut, . . . , uT} (without
repetitions) that is satisfied in route p, that is φut =

∑
(i,j)∈St∩R

qijx
p
ij. Finally,

let f p
ij =

∑
t:ut=(i,j)

φut . Observe that f p
ij = 0 if (i, j) /∈ Up.

We show that (x,y, f,n) is feasible for (nomcar). Satisfaction of con-
straints (1j), (1k), (1l) and (4c) follows from the definition of the variables;
constraints (1b) and (1c) follow from the definition of x and from (5a) and
(5b).

To see that constraints (1d) are satisfied, let p ∈ {1, . . . , P} and i ∈ N .
Hence, from the definition of ypij,∑

j:(i,j)∈A

ypij −
∑

j:(j,i)∈A

ypji =
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=
∑

j:(i,j)∈AD

|{t : ut = (i, j)}| −
∑

j:(j,i)∈AD

|{t : ut = (j, i)}|+

+
∑

j:(i,j)∈R

(
|{t : ut = (i, j)}| − xp

ij

)
−

∑
j:(j,i)∈R

(
|{t : ut = (j, i)}| − xp

ji

)
=

=
∑

j:(i,j)∈A

|{t : ut = (i, j)}|−
∑

j:(j,i)∈A

|{t : ut = (j, i)}|−
∑

j:(i,j)∈R

xp
ij+

∑
j:(j,i)∈R

xp
ji =

=
∑

j:(j,i)∈R

xp
ji −

∑
j:(i,j)∈R

xp
ij.

The last equality follows from Up being a route, so the two left sums in the
third expression are equal for all i ∈ N .

Satisfaction of constraints (1e) follows from the fact that route Up leaves
s at most once, through a non-service arc, for each p ∈ {1, . . . , P}. Now from
the definition of f, we have for all p and i ∈ N \ {s}∑

j:(j,i)∈A

f p
ji −

∑
j:(i,j)∈A

f p
ij =

∑
t:ut=(j,i)∈A

φut −
∑

t′:ut′=(i,k)∈A

φut′
.

Observe that for i ∈ N \ {s} and t ∈ {1, . . . , T − 1}, ut = (j, i) ∈ A if and
only if ut+1 = (i, k) ∈ A, so the above expression equals

∑
t:ut=(j,i)∈A

(φut − φut+1) =
∑

t:ut=(j,i)∈A

 ∑
(k,l)∈St∩R

qklx
p
kl −

∑
(k,l)∈St+1∩R

qklx
p
kl

 =

=
∑

t:ut=(j,i)∈R

qjix
p
ji =

∑
j:(j,i)∈R

qjix
p
ji,

where the first equality follows from the definition of φut and the last is
true because route Up visits all arcs (k, l) ∈ R such that xp

kl = 1. Hence,
constraints (1f) are satisfied.

Constraints (1g) follow from the fact that for all p, route Up leaves node
s at most once and, when it does it, it uses arc u1 ∈ AD. Therefore∑

(s,j)∈A

f p
sj = fp

u1
= φp

u1
=

∑
(i,j)∈S1∩R

qijx
p
ij =

∑
(i,j)∈R

qijx
p
ij,

because route Up visits all arcs u ∈ R such that xp
ij = 1.
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If f p
ij = 0, constraints (1h) or (1i) are satisfied because xp

ij, y
p
ij,W ≥ 0.

Suppose fp
ij > 0. Thus,

f p
ij =

∑
t:ut=(i,j)

φut =
∑

t:ut=(i,j)

∑
(k,l)∈St∩R

qklx
p
kl ≤

∑
t:ut=(i,j)

∑
(k,l)∈R

qklx
p
kl =

=
∑

t:ut=(i,j)

 ∑
(k,l)∈AR

qklza
p
kl +

∑
{k,l}∈ER

qklze
p
kl

 ≤ W |{t : ut = (i, j)}|,

where the last inequality follows from (5c). The last term is equal to W (ypij+
xp
ij) if (i, j) ∈ R, and equal to Wypij if (i, j) ∈ AD. Hence constraints (1h)

and (1i) are also satisfied in this case.
Therefore, (x,y, f,n) is feasible for (nomcar). Since variables n and the

objective function are the same in both models, it follows that (x,y, f,n) and
(z,n) have the same value. This concludes the proof.
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Amaya, A., Langevin, A., Trépanier, M., 2007. The capacitated arc routing problem with
refill points. Operations Research Letters 35 (1), 45–53.

Assis, L. S., Franca, P. M., Usberti, F. L., 2014. A redistricting problem applied to meter
reading in power distribution networks. Computers & Operations Research 41, 65–75.

Bautista, J., Fernández, E., Pereira, J., 2008. Solving an urban waste collection problem
using ants heuristics. Computers & Operations Research 35 (9), 3020–3033.

Belenguer, J. M., Benavent, E., Lacomme, P., Prins, C., 2006. Lower and upper bounds for
the mixed capacitated arc routing problem. Computers & Operations Research 33 (12),
3363–3383.

Benavent, E., Corberán, A., Gouveia, L., Mourão, M., Pinto, L., 2014. Profitable mixed
capacitated arc routing and related problems. TOP doi: 10.1007/s11750-014-0336-x.

Bozkaya, B., Erkut, E., Laporte, G., 2003. A tabu search heuristic and adaptive memory
procedure for political districting. European Journal of Operational Research 144 (1),
12–26.

Cattrysse, D., Van Oudheusden, D., Lotan, T., 1997. The problem of efficient districting.
OR Insight 10 (4), 9–13.

Corberán, A., Prins, C., 2010. Recent results on arc routing problems: An annotated
bibliography. Networks 56 (1), 50–69.

Dror, M. (Ed.), 2000. Arc Routing: Theory, Solutions and Applications. Kluwer Academic
Publishers, Dordrecht.

Ghiani, G., Guerriero, F., Improta, G., Musmanno, R., 2005. Waste collection in Southern
Italy: solution of a real-life arc routing problem. International Transactions in Opera-
tional Research 12 (2), 135–144.

28
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