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Abstract.We prove a variant of Hildebrandt’s theorem which asserts that the convex hull of
the essential spectrum of an operator A on a complex Hilbert space is equal to the intersection
of the essential numerical ranges of operators which are similar to A. As a consequence, it is
given a necessary and sufficient condition for zero not being in the convex hull of the essential
spectrum of A.
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1. INTRODUCTION

The notion of the numerical range of an element in a normed algebra is well known
and extensively studied during last five decades (see the standard references [2,3,5,6]).
In this note we confine our self to unital C∗-algebras.

If A is a C∗-algebra with the identity 1, then let A∗ denote its topological dual
and let P = {f ∈ A∗ : f(1) = 1 = ‖f‖} be the set of all normalized states on A. The
numerical range of an element a ∈ A is defined by

V (a) = {f(a) : f ∈ P}. (1.1)

This set is compact, convex and contains the spectrum σ(a) (see [9, Theorem 1]). If
A is the C∗-algebra B(H ) of all bounded linear operators on a complex Hilbert space
H , then ([9, Corollary on p. 420])

V (T ) = W (T ) for any T ∈ B(H ),

where
W (T ) = {〈Tx, x〉 : x ∈H , ‖x‖ = 1}

is the usual numerical range.
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As already mentioned, the spectrum of a ∈ A is contained in the numerical range
of a. Since the numerical range is convex one has

conv
(
σ(a)

)
= V (a).

Denote by inv(A) the set of all invertible elements in A. In the case of the C∗-algebra
B(H ), Hildebrandt has proved the following result (see [7]).

Theorem 1.1 (Hildebrandt’s Theorem). For every A ∈ B(H ),

conv
(
σ(A)

)
=

⋂
S∈inv(B(H ))

W (SAS−1).

2. RESULTS

We include here a slightly more general version of Hildebrandt’s theorem. The proof
relies on the following lemma by Murphy and West [8]. For the sake of completeness
we include its proof. We denote by r(a) the spectral radius of a ∈ A.

Lemma 2.1. Let A be a C∗-algebra and a ∈ A. For any ε > 0, there exists s ∈ inv(A)
such that ‖sas−1‖ < r(a) + ε.

Proof. Let b = 1
r(a)+εa. Then r(b) < 1, i.e., by the Gelfand-Beurling formula,

limn→∞ ‖bn‖1/n < 1. It follows that the series
∑∞

n=0 ‖(bn)∗bn‖ =
∑∞

n=0 ‖bn‖2 con-
verges. Hence c =

∑∞
n=0(bn)∗bn ∈ A and c ≥ 1. Let s =

√
c. Then s ≥ 1, which means

that it is invertible. Since 0 ≤ 1− s−2 ≤ 1, we have

‖sbs−1‖2 = ‖s−1b∗s2bs−1‖ =
∥∥∥s−1

∞∑
n=1

(bn)∗bns−1
∥∥∥

= ‖s−1(s2 − 1)s−1‖ = ‖1− s−2‖ = r(1− s−2) < 1.

It is obvious now that ‖sas−1‖ < r(a) + ε.

Theorem 2.2. Let A be a C∗-algebra and a ∈ A. Then

conv
(
σ(a)

)
=

⋂
s∈inv(A)

V (sas−1). (2.1)

Proof. Let a ∈ A. Since σ(a) ⊆ V (a) and, because of the convexity of the numeri-
cal range, one actually has conv

(
σ(a)

)
⊆ V (a). Since the spectrum is preserved by

similarities one has conv
(
σ(a)

)
⊆

⋂
s∈inv(A)

V (sas−1).

To prove the other inclusion, let λ ∈ C\conv
(
σ(a)

)
. Since conv

(
σ(a)

)
is a compact

convex set there exists a disk D(µ, ρ) such that λ /∈ D(µ, ρ) and conv
(
σ(a)

)
⊆ D(µ, ρ).

Hence λ−µ /∈ D(0, ρ) and conv
(
σ(a−µ)

)
⊆ D(0, ρ), which means that r(a−µ) < ρ. Let

ε > 0 be such that r(a−µ) + ε < ρ. By Lemma 2.1, there exists an invertible element
s such that ‖s(a−µ)s−1‖ < r(a−µ) + ε < ρ. It follows that λ−µ /∈W (s(a− µ)s−1)
and consequently λ /∈W (sas−1).
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Let K(H ) be the ideal of all compact operators on a complex Hilbert space H
and C(H ) = B(H )/K(H ) be the Calkin algebra. For A ∈ B(H ), let [A] denote the
equivalence class A + K(H ). If [A] ∈ inv(C(H )), then A is said to be a Fredholm
operator (see [4, Definition 5.14]). The set of all Fredholm operators in B(H ) is
denoted by Φ(H ).

The essential spectrum of A ∈ B(H ) is defined by

σess(A) = {λ ∈ C : A− λI /∈ Φ(H )},

i.e., σess(A) = σ([A]), which means that λ ∈ C is in the essential spectrum of A
if and only if the element [A − λI] is not invertible in the Calkin algebra (see [1]).
The essential spectrum σess(A) is a non-empty compact subset of σ(A). The essential
numerical range Wess(A) of A ∈ B(H ) is defined analogously, i.e., Wess(A) is equal
to V ([A]), the numerical range of [A] in the Calkin algebra. Note that Wess(A) is a
non-empty compact subset of complex numbers.

In the case of the Calkin algebra, (2.1) reads as

conv
(
σ([A])

)
=

⋂
[S]∈inv(C(H ))

V ([S][A][S]−1),

that is,

conv
(
σess(A)

)
=

⋂
S∈Φ(H )

V ([S][A][S]−1).

Since,

⋂
S∈Φ(H )

V ([S][A][S]−1) ⊆
⋂

S∈inv(B(H ))

V ([SAS−1]) =
⋂

S∈inv(B(H ))

Wess(SAS
−1),

we have

conv
(
σess(A)

)
⊆

⋂
S∈inv(B(H ))

Wess(SAS
−1). (2.2)

The goal of this paper is to show that (2.2) is actually an equality, see Theorem 2.3.
We need the notion of the Weyl spectrum. Recall that by the Atkinson Theorem

(see [4, Theorem 5.17]), A ∈ B(H ) is a Fredholm operator if and only if its range
AH is closed and the kernels ker(A) and ker(A∗) are finite dimensional. The index of
A ∈ Φ(H ) is then defined as ind(A) = dim (ker(A))− dim (ker(A∗)). Let Φ0(H ) be
the set of all Fredholm operators with index 0. The Weyl spectrum of A ∈ B(H ) is

σw(A) = {λ ∈ C : A− λI /∈ Φ0(H )}.
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Note that every invertible operator is a Fredholm operator with index 0, i.e.,
inv(B(H )) ⊆ Φ0(H ). Since Φ0(H ) ⊆ Φ(H ), we have the following inclusions

σess(A) ⊆ σw(A) ⊆ σ(A). (2.3)

Schechter proved (see [1, Theorem 2.5]) that, for any operator A ∈ B(H ),

σw(A) =
⋂

K∈K(H )

σ(A+K). (2.4)

It follows from (2.3) and (2.4) that σw(A) is a non-empty compact subset of σ(A).
By [9, Theorem 9] one has

Wess(A) =
⋂

K∈K(H )

W (A+K), for any A ∈ B(H ). (2.5)

Now, since σ(A+K) ⊆W (A+K) for every K ∈ K(H ), we have⋂
K∈K(H )

σ(A+K) ⊆
⋂

K∈K(H )

W (A+K). (2.6)

However, by (2.4), the left hand side of (2.6) is σw(A), and by (2.5), the right hand
side of (2.6) is Wess(T ). Hence, by the convexity of the essential numerical range,
conv(σw(A)) ⊆ Wess(A). Since the convex hulls of the essential spectrum and the
Weyl spectrum coincide we conclude that

conv(σess(A)) = conv(σw(A)) ⊆Wess(A). (2.7)

Now we are able to prove the remaining part of our main result.

Theorem 2.3. For every A ∈ B(H ),

conv
(
σess(A)

)
=

⋂
S∈inv(B(H ))

Wess(SAS
−1).

Proof. We have to prove the inclusion

conv
(
σess(A)

)
⊇

⋂
S∈inv(B(H ))

Wess(SAS
−1).

By [9], there exists K0 ∈ K(H ) such that σw(A) = σ(A+K0). Therefore, by (2.7),

conv
(
σess(A)

)
= conv

(
σ(A+K0)

)
. (2.8)

By Hildebrandt’s theorem (Theorem 1.1), we have

conv
(
σ(A+K0)

)
=

⋂
S∈inv(B(H ))

W (S(A+K0)S−1),
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that is,
conv

(
σ(A+K0)

)
=

⋂
S∈inv(B(H ))

W (SAS−1 +Ks),

where Ks = SK0S
−1. It follows that

conv
(
σ(A+K0)

)
⊇

⋂
S∈inv(B(H ))

⋂
K′∈K(H )

W (SAS−1 +K ′). (2.9)

By (2.5), the right-hand side of (2.9) is
⋂

S∈inv(B(H ))Wess(SAS
−1) and therefore,

because of (2.8), we may conclude that

conv
(
σess(A)

)
⊇

⋂
S∈inv(B(H ))

Wess(SAS
−1).

We conclude the paper with the following corollary of Theorem 2.3.

Corollary 2.4. Let A ∈ B(H ). Then 0 6∈ conv
(
σess(A)

)
if and only if there exists a

positive definite operator P ∈ B(H ) such that 0 6∈Wess(PA).

Proof. First we will show that, for any invertible S ∈ B(H ), zero is in Wess(SAS
−1)

if and only if zero is in Wess(S
∗SA). Let S ∈ inv(B(H )) be arbitrary and assume

that 0 ∈Wess(SAS
−1). By (2.5), 0 ∈W (SAS−1 +K) for every operator K ∈ K(H ).

Let K be fixed. Then there exists a sequence (xn)∞n=1 ⊆H of unit vectors such that

〈(SAS−1 +K)xn, xn〉 −→ 0. (2.10)

Denote yn = ‖S−1xn‖−1S−1xn (n ∈ N). Since 1 = ‖xn‖ ≤ ‖S‖‖S−1xn‖ one has
‖S−1xn‖−2 ≤ ‖S‖2. Thus, because of (2.10), the sequence

〈(S∗SA+ S∗KS)yn, yn〉 = ‖S−1xn‖−2〈(SAS−1 +K)xn, xn〉

converges to 0, i.e., 0 ∈W (S∗SA+ S∗KS). Since K is an arbitrary compact operator
and S is invertible we may conclude that 0 ∈Wess(S

∗SA).
For the opposite implication assume that 0 ∈Wess(S

∗SA), i.e., 0 ∈W (S∗SA+K)
for every K ∈ K(H ). Let K be fixed and (xn)∞n=1 ⊆ H a sequence of unit vectors
such that

〈(S∗SA+K)xn, xn〉 −→ 0.

We denote yn = ‖Sxn‖−1Sxn (n ∈ N). Since ‖Sxn‖−2 ≤ ‖S−1‖2 for any n we have

〈(SAS−1 + (S∗)−1KS−1)yn, yn〉 = ‖Sxn‖−2〈(S∗SA+K)xn, xn〉 −→ 0.

As before we conclude that 0 ∈Wess(SAS
−1).

To finish the proof assume that 0 6∈ conv
(
σess(A)

)
. Then, by Theorem 2.3, there

exists S ∈ inv(B(H )) such that 0 6∈ Wess(SAS
−1), which gives 0 6∈ Wess(PA) for

the positive definite operator P = S∗S. On the other hand, if 0 6∈ Wess(PA) for a
positive definite operator P , then 0 6∈Wess(SAS

−1), where S is an arbitrary invertible
operator such that P = S∗S. By Theorem 2.3, 0 6∈ conv

(
σess(A)

)
.
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