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Abstract

The spatial-temporal evolution of the purely transverse current filamentation instability is analyzed by
deriving a single partial differential equation for the instability and obtaining the analytical solutions
for the spatially and temporally growing current filament mode. When the beam front always
encounters fresh plasma, our analysis shows that the instability grows spatially from the beam front to
the back up to a certain critical beam length; then the instability acquires a purely temporal growth.
This critical beam length increases linearly with time and in the non-relativistic regime it is
proportional to the beam velocity. In the relativistic regime the critical length is inversely proportional
to the cube of the beam Lorentz factor y,;,. Thus, in the ultra-relativistic regime the instability
immediately acquires a purely temporal growth all over the beam. The analytical results are in good
agreement with multidimensional particle-in-cell simulations performed with OSIRIS. Relevance of
the current study to recent and future experiments on fireball beams is also addressed.

1. Introduction

The interaction of energetic particle beams with plasmas is ubiquitous in laboratory and in astrophysical
scenarios, and so are beam-plasma instabilities such as Weibel [1], current filamentation [2, 3] and two stream
[4, 5]. The first two instabilities, also referred as Weibel-like instabilities, are electromagnetic in nature and arise
due to the anisotropy in the momentum distribution of the electrons, protons and ions. Specifically, for the
current filamentation instability (CFI) the role of the velocity anisotropy is played by the counter-streaming flow
of the particle beams. These instabilities generate exponentially growing magnetic fields, providing one of the
possible mechanisms for generating near equipartition magnetic fields in extreme astrophysical scenarios, such
as gamma ray bursts [6], and are also closely associated with the formation of relativistic Weibel mediated
collisionless shocks [7] in space [8] and laboratory plasmas [9—13]. Recently, the onset of the CFI was
experimentally observed in counterstreaming plasmas in high power laser experiments [ 1 1-13]. Experiments
on laser wakefield acceleration have also reported the filamentation of the accelerating particle beam as it
interacts with the background plasma [14]. These instabilities provide an efficient way of restoring the isotropy
in collisionless plasmas, since the energetic particles scatter off the self generated magnetic fields by which the
longitudinal momentum is transferred to the transverse momentum.

The available theoretical models for CFI are restricted mainly to a purely temporal analysis [2, 3, 16] and do
not capture any spatial characteristics of the instabilities, which can be very relevant for finite size systems [ 11—
13, 16-18].

In this paper we obtain the relativistic spatial-temporal solutions for the unstable transverse CFI modes in
cold plasmas. Our work and approach are inspired by [ 19, 20]. A single differential equation is derived to model
the instability, considering only the electron response, ignoring the finite transverse dimension effects,
considering a semi-infinite plasma slab and including the effects of a beam density ramp. For a step-like
Heaviside beam profile analytical solutions are obtained for physically relevant and realistic initial conditions.
We further obtain the quasi-static and asymptotic behavior of the solutions. The theoretical results are

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/4/043049
mailto:vishwa.bandhu@ist.utl.pt
mailto:luis.silva@ist.utl.pt
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043049&domain=pdf&date_stamp=2015-04-23
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043049&domain=pdf&date_stamp=2015-04-23
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 043049 V B Pathak et al

compared with multidimensional particle-in-cell (PIC) simulations using OSIRIS [21]. Such spatial-temporal
analysis, shown in the later part of this paper, is relevant to the jets emitted by the x-ray binaries where the
velocities of the jets are in relativistic range ~0.6¢ [22] where spatial effects in the CFI modes are significant, or to
the fireball-like beams [ 16—18] interacting with the plasma.

2. Theory

We consider a two dimensional (2D) slab geometry, where a relativistic beam with velocity vy, Z and density
nopF (z, t), where F (z, t)is the initial density profile of the beam, is propagating in a stationary plasma
comprised of cold electrons and immobile ions with homogeneous plasma density #1,. We analyze the stability
of a transverse CFI mode with wavenumber k, and vector potential A=A (y, 7)2 exp [ikx], where

w = vot — zand 7 = t, which satisfies the Coulomb gauge condition v - A=0 by solving the wave equation
(v? — o}/ A = —4x] /c. Under the slow envelope approximation |d,A| < |kA|, the governing equation for
the vector potential of the electromagnetic wave driven by a current density J, can be written as

2v 4 .
[ —o2+ =20, + kz]A == 2 ek (1)
c? c? c
where | = —e[ng,F (W) ¥ip + nop¥ip + nypigp ] is the current density driving the vector potential A = A,

Yoo =1 / 1 = vg, /c? is the beam Lorentz factor, and cis the velocity of light in vacuum. The suffixes 0 and 1 are
the Oth and 1st order perturbed values of the plasma (p) and beam (b) parameters defined as plasma electron
velocity and density ¥, = i, 1, = ng, + 1), and beam electron velocity and density ¥, = ¥, + V15,

ny = nop F (1//) + nyp. The chosen vector potential perturbation will generate a magnetic field

B =9 xA = —ikA(y, 7)§ exp|ikx]in the y direction. Resorting to the fluid equations of motion of a two-
species-plasma (plasma electrons and beam electrons), using the continuity equation and the equation of
momentum conservation for the relativistic beam and the stationary background plasma electrons, and
restricting to the first order values in the weakly coupling limits by ignoring the (d; + v, 0, ) term with respect to
kvop, the perturbed quantities can be written as,

- e -
V]p = —EA,
- N e .
01[}’0171/11; + ngv()zhvlbzz] = _ElkVObAelkxx - % (0 + Vobav/)
nopeF 1 :
GT = Ob—z(w) —kvopc + —26T<6, + vaaW) Aelkx, (2)
mcYop Yoo

Incorporating equation (2) in equation (1) by taking the second order 7 derivative of equation (1) and further
neglecting the higher order derivatives 92, 0, 0;, 65, when compared with k%2, we obtain,

[0F+ QFw)ap. — IFFw) |a =0, 3)

where I = kvoba)pb/ v D> D = kK*c* + a)pzp + a)lfb gy Q= 2w§b vob/(}/03bD), wpp = +/Nope*/(me,) and
Wpp = [ Ngp ¢%/(me,) . Considering an infinite beam [ F () = 1] and ignoring the second term in equation (3)
we retrieve the well known purely temporal evolution of the system with growth rate Iy. Interestingly, the
equation obtained by Mori et al [19] (equation 10 in [19]) to analyze the spatial-temporal evolution of Raman
forward scattering has the same form as equation (3) obtained here for the case of CFI. Equation (3) can be
solved numerically for any general beam profile; however, to obtain analytical expression, we assume

F(w) = H (y),where H (y) = 0for y < 0, H () = 1for y > 0is the Heaviside function. Respecting
causality, we can impose A = 0 for 7 < 0, and define the double Laplace transform of A (z, y) as

Ala, p) = fow dr /:o dyA (z, w)exp [—iar — ifw]. (4)

Thus, by doing the double Laplace transformation of equation (3), according to equation (4), we obtain the field
expression in Laplace space as

QA (0, 0) - ia(1+£Q)A(0, §) - ixQA(a, 0) = Z(0, §)

Ao p) = a’+ Qap + I} ’ )

where A (0, 0), A(0, ), A(a, 0)and 9,A (0, ) are the Laplace transformsof A(z = 0, w = 0), A(z = 0, y),
A(r, w = 0)and 0,A (r = 0, ) respectively, which are the required initial conditions. The field A (z, y) can be
obtained by performing inverse Laplace transformation of A (@, f3), defined as

2
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Figure 1. Evolution of the field A/A,, (a) comparing (i) the exact (equation (8)), (ii) the quasi-static (equation (9)), and (iii) the
asymptotic solutions (equation (10)) of equation (3) for the spatial-temporal evolution of purely transverse CFI modes at 7 = 20w p_pl’
and (b) showing the temporal evolution of equation (8) at different times and along the beam. The beam is propagating with

Yoo = 1.25 along the zdirection in the equally dense (129, = 1)) plasma. The wavenumber of the CFI mode s k = 0.628w,/c taken to
get maximum Q = 0.32c at y, = 1.25. The arrow pointers on the lines indicates Ly, which varies as 0.32cz.

1 co—ioy co—ioy . .

Alr, y) = — / da / dBA (a, p) e+, 6)
47?2 J—co—ic, —co—iop

where 64, ) are chosen such that the contour from co — ig(,,3) to —00 — i6(4, ) lies below all the singularities.

For the sake of simplicity we consider the following realistic initial conditions,

Alt,y=0)=A(r=0,y) =A,, and d,A(r, y =0) =0, (7)

which considers thatat 7 = 0, there is an initial constant noise source throughout the beam and for 7 > 0 the
beam front (y = 0) always encounters fresh plasma, and hence a constant noise source. The noise source for
most instabilities are considered to be associated with the thermal fluctuations, and if thermal fluctuations have
no time or space dependence, the constant noise source assumption holds correct. Longitudinally modulated or
time dependent noise amplitude can be some of the forms of noise source that should be considered and the
detailed analysis of the effect of different noise sources on the CFI spatial-temporal evolution will be addressed
elsewhere. The above conditions yield A (0, ) = A,/(if), A(a, 0) = A,/(ia), A(0, 0) = A, and

0;A (0, #) = 0, whichleads to the solution of equation (3), by inverting equation (5), as

Az, w) = An[ [H(z) - H(z - y/Q) A, cosh (i)

< QY w( w)
H(r — y/ L0 S N Yok P < ) 8
+ H(e U/Q)];)(T_WQ) ZJ[ ol a (8)

where I is the jth order modified Bessel function of the first kind [23]. Neglecting the term 92 in equation (3)
leads to the quasi-static solutions, which are valid at the beam front for y < Qr, as

Ale, ) = AnH(T)H(V/)Io[ZE) \/?] 9)

Moreover, and using the stationary phase method which gives the impulse response due to alocalized initial
disturbance at 7 = 0 and y = 0, the asymptotic solution for A (z, ) atlarge 7 can be written as [ 19]

Az, w) = Ay exp(20Ty/Q). (10)

The partial differential equation governing the CFI (equation (3)) and its exact solution (equation (8)) are valid
for Qr > 1/k, whereas the asymptotic solutions are valid for Qz > 273/(Qk).

Itis evident from figure 1(a), that the quasi-static and asymptotic methods ((ii) and (iii) in figure 1 (a)) fail to
capture the spatial saturation of the instability at the back of the beam as demonstrated by the full exact solution
of equation (3) (line (i) in figure 1). This specific characteristic is also evident in the simulation results to be
discussed later in this paper. It is worth mentioning here that the asymptotic approach, used extensively for
spatial-temporal analysis of the longitudinal beam-plasma instabilities [24], overestimates the growth and does

3



I0OP Publishing NewJ. Phys. 17 (2015) 043049 V B Pathak et al

0-5 J\HHH\‘\HHHH‘\HII\'HH\‘HH\HHHHHHL
r ke/wpy” = 0.1 7
L 0.6 ]
0.3 - -
QT L0 f
0.2 - -
0.1 | -
[ 6.0 7
0.0 T A A AN
0.0 0.2 0.4 0.6 0.8 1.0
vop|c]
Figure 2. Dependence of cross coupling coefficient Q with beam velocity vy, at 1195 = 1,. The dashed line has a slope of 1, plotting
Q = vgp. We note that large Q implies a larger region behind the beam front where the spatial-temporal behavior is significant.

not seem to give correct spatial characteristics for the transverse instabilities, specifically for the CFI discussed
in here.

Atthe beam front, for yy <« Qr the quasi-static solutions given by equation (9) match well with the exact
solutions described by equation (8). The mildly relativistic (y,, = 1.25) solutions for A (z, ) (equation (8)),
presented in figure 1 (b) with respect to y for different times 7, indicate that the filaments grow spatially from the
beam front (y = 0) to the back until the transition point y; = Qr. After the transition point the instability
grows in a purely temporally fashion. We define the beam length over which the instability grows spatially as
L = Qr (identified as vertical arrows in each line in figure 1 (b)). Beyond this length the instability grows with
spatially constant temporal growth rate 7.

As observed from the previous discussions, and from equations (3), (8), (9) and (10), the spatial-temporal
behavior depends on the cross coupling coefficient Q. To address this, in figure 2 we analyze the dependence of Q
on the beam velocity vy, for different CFI wavenumbers k at 1, = 1. For kc > @, @ pp, the maximum value

of Qis achieved for vy, = 0.5¢ (¥, = 1.15), and varies as Qmax = O.65noh/(n0pk2c2). For kc < wpp = @ pps
Qmax = 0.4at vo, = 0.6¢ (), = 1.25). In the non-relativistic scenario y, ~ land k¢ < @,y = @y, Q = vy,
which is shown as a dashed line in figure 2. Athigher y, > 1, k > w,,/c or ng, < ngp, Qtends to 0, and the
instability acquires a purely temporal behavior.

We have also considered a beam profile with F () = 1 — exp[—w?/I?], of direct relevance for the
comparison with simulations. For such beam configurations the numerical solution of equation (3) gives the
same spatial-temporal behavior predicted by equation (8) but with an enhanced saturation length
Lgt ~ Qr + L. Theresults are compared in figure 3 which will be discussed in connection with the simulations
performed in the next section. For F (y) = 1 — exp [—y? /I*], the beam density profile, and hence the effective
temporal growth rate o/ +/F, reaches the maximum density growth rate on the spatial scale length L. Thus, in
presence of a density ramp the spatial evolution of CFI can be attributed both to the beam density spatial profile,

and to the cross coupling term. If L > Qr, we may ignore the contribution from the cross coupling term (Q()ZW)

in equation (3), resulting in a field varyingas A = A, cosh [Igzy'1 — e™¥”F'], thus determining an extra
condition for the relevance of the spatial-temporal effects of the CFI.

3. Simulations

In order to confirm and to explore the theoretical results presented above, we have performed 2D PIC
simulations using OSIRIS [21]. We consider a scenario where a relativistic beam is propagating through a cold
plasma, where the beam and the plasma are both comprised of an electron-proton neutral plasma (the
temperature of the background plasma is set to zero). The simulation box, with dimensions 250 X 100 (c /@)%
is divided into 12500 X 5000 cells with 3 X 3 particles per cell per species. The beam has a gaussian density ramp
atthefront, F () = 1 — exp[—w?/I?], where Lis the length of the gaussian ramp at the beam front. When

L — 0 this profile mimics a sharp rising beam front with a Heaviside function profile which was considered to
obtain the analytical solutions (equation (8)). We seed the instability, in order to analyze a single CFI mode with
wavenumber kg4, with a small magnetic field perturbation of the form B, (7 = 0) = 6By cos (kqx), where

8By = 5 X 107 mcw,,/e.
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Figure 3. Comparison between simulations and theory: (a), (b), (¢) and (d) represent the magnetic field amplitude averaged over
transverse dimension of the simulations (solid dark line), theoretical field estimates (dashed dark line) and beam profile in the
simulations in arbitrary units (red/light solid line) at time 74, = 8.48,11.30,14.13 and 16.95(01,_1,l respectively for y,, = 1.25.To
maximize the Q and minimize the effect of density ramp on the spatial-temporal evolution of CFI mode we have taken
k = 0.628w,,/c, ngy = ngpand L = 0.5¢ @ pp- (e) Represents temporal evolution of the L, (o) compared with the theoretical
estimates (equation (3)) (dashed line: Q = 9L, ) and (f) represents the logarithmic growth of the field in the region of purely
temporal growth (y > ;). Simulation results in o, and theoretical growth rate Ij in dash line.

The comparisons between the CFI magnetic field B, evolution predicted by the theory (numerical solutions
of equation (3)) and the fields observed in the simulations, plotted in figure 3, show that the solutions given by
equation (8) are the most suitable model, among the three models discussed here to predict the spatial-temporal
growth of the CFI along the beam, as expected. In the simulations the instability starts to grow after a relaxation
time (Tyelax & 1.6360;1, for this particular simulation) necessary for the self-consistent electromagnetic fields and
the electromagnetic noise to adjust to the initial flow condition. Thus, for the comparison with the theory, the
time is re-normalized to 7 = Tgm — Trelax> Where Zgn, is the simulation time. One can observe in figure 3 that the
theoretical estimate for the CFI magnetic field, given by equation (8), matches well with the magnetic field
profile observed in the simulations. We analyze the variation of saturation length L, with time 7 in figure 3 (e)
obtained from the simulations. The rate at which L, increases with time 7is Q = 0.32¢, which is equal to the
theoretical value of Q = 0, L, as predicted by our model. Beyond the beam length L,,, the magnetic field
amplitude is spatially constant and grows temporally with growth rate I, as predicted by the theory.

The longitudinal modulations, with wavelength ~1 ,, seen in the simulations of figure 3 are due to the
growth of the longitudinal instability seeded by the sharp rising beam density profile at the front. In the
simulations, the longitudinal electric field modulation is observed, but confined only in the front portion of the
beam. The remainder of the beam does not show any sign of the longitudinal electrostatic instability. We
attribute this to the fact that, in a similar way as for the CFI, the longitudinal instabilities also have a spatial-
temporal nature [24]. This also demonstrates that a full understanding of this scenario requires the combined
analysis of CFI and longitudinal electrostatic instabilities.
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Figure 4. Effect of y,, on spatial evolution of the current filamentation instability: snap shots of magnetic field B, at time = 11.30w P_pl
for (a) y,, = 1.25and (b)y,, = 10, demonstrating that at high Lorentz factor the spatial properties of the instabilities are negligible.
Other parameters are: Kgeq = 0.628w,,/¢, gy = t1gp and L = 0.5¢ /@ . The white line shows the beam profile in the simulations.
After time 7 > 11.30w I;,l longitudinal modulations on the CFI becomes significantly strong to visualize the spatial saturation of the
fields.
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Figure 5. The current filamentation fields growing along the beam at time i, = 450, in the simulations performed with varying

the size of density ramp L for y,, = 10 and k = 6.0e,/c. The longitudinal mode responsible for the modulations at the front of the
beam are suppressed for longer density ramps due to the reduced noise level for excitation of the longitudinal modes.

The magnetic field snapshots in the x—z plane, shown in figure 4 indicate a sharper rise in the magnetic field
at the beam front for higher y,, (figure 4 (b)) as compared to lower y,, (figure 4 (a)), which further validates the
theory, since at high y;, the cross coupling term Q, and thus the saturation length Lg,,, decreasesas ~1 / 703b fora
given time 7. Since I « 1 / \/ﬁ , the field amplitude at the back of the beam in figure 4(b) (high y,,,) is weaker as
compared to the field in figure 4(a) (low ), also as predicted by the theory.

As observed in figure 5, where the transversely averaged B, is compared for various density ramps, on
increasing the ramp size L, and thus reducing the initial seed for the longitudinal modes, the simulation results
show that these longitudinal modulations on the purely transverse CFI modes (at the wavelength ~1,) can be
suppressed. As the time progresses (not shown in the paper) the longitudinal modes as well as other faster
growing CFI modes start to play an important role and their interplay in the nonlinear stage becomes significant.

4. Discussion and conclusions

To summarize, in this paper we have derived a single differential equation modeling the spatial-temporal
evolution of the purely transverse CFI. For relevant initial conditions exact analytical solutions have been
obtained and compared with the analytical solutions under the quasi-static and asymptotic approximations. The
validity of the model was demonstrated by comparing it with 2D PIC simulations in OSIRIS [21]. In a setup of a
cold relativistic beam propagating in a uniform cold plasma the instability grows from the beam front to the
back, acquires maximum value at the critical beam length L,; = Qr at given time 7 and then grows in a purely
temporal manner for the rest of the beam length.
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For relativistic fireball electron-positron beams [17, 18] undergoing current filamentation in an electron-ion
plasma, the cross coupling coefficient Q is enhanced by a factor of 2 (Q — 2Q) and the purely temporal growth
rate is enhanced by a factor of /2 (I — /2 I) due to the contribution from the current driven by the velocity
and density perturbations of the positrons in the beam. However, in the relativistic regime this enhancement is
not sufficient to balance the 1 / yosb dependence of Q on the beam Lorentz factor y,,. As aresult for an ultra-

relativistic 29 GeV fireball beam [17] with ng, = 19, Q =~ 2 X 10~ !¢, and thus the spatial evolution to the CFI
can be attributed only to the density gradient scale length. For the recent experiments with a 60MeV electron
beam [16], Q =~ 1.2 X 107°c, thus again suggests only purely temporal growth of the CFI is present along the
beam. However, in the case of moderately relativistic fireball beams Q can be significantly enhanced. For
instance, in the case of Sarri et al [18] with y,, = 15, o, = 101, and considering a density ramp of

L = 0.22¢ /w,, the cross coupling coefficient can be Q &~ 0.01c, which suggests that in the linear regime of the

CFL for 7 > 220w p_pl the CFI spatially grows beyond the density ramp size L and spatially saturates with
Loy~ Qr> L.

Based on our analysis we further observe that the spatial-temporal nature of the instability also has an effect
for finite beam—plasma interaction time 7, and beam size Ly,,p,,. In fact, depending on the relation between
these parameters, i.e either Lyeam < Qtine OF > Qtyyy, a weaker or stronger filamentation of the beam can be
expected which will further affect the nonlinear growth of the instability. Moreover, the study of spatial-
temporal evolution of the beam-plasma instabilities can also lead to a better understanding and characterization
of the Weibel mediated collisionless shock formation process in laboratory and astrophysical plasmas.
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