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Resumo

Nesta tese são apresentadas duas aplicações de estimação de Value at Risk (VaR): VaR

de Crédito e VaR em Credit Default Swaps (CDS).

O VaR de crédito foi estimado com base em pressupostos de correlação diferentes,

utilizando as cópulas Gaussiana e t, e comparado com a perda observada numa car-

teira de crédito de uma instituição financeira Portuguesa, num total de 72 observações

mensais no perı́odo entre 2004 e 2009. Concluo que existe evidência empı́rica de que

algumas das hipóteses assumidas pelas agências de rating para avaliar CDOs são de-

sadequadas em situações de stress, como a crise financeira observada em 2008. As

estimativas de VaR de crédito foram comparadas usando procedimentos de backtesting.

O modelo que melhor se adequa ao portfólio em análise baseia-se no estimador empı́rico

de correlação proposto por De Servigny e Renault (2002a), considerando a cópula t com

8 graus de liberdade.

Relativamente à aplicação de modelos de VaR a CDS, o VaR foi estimado usando

vários métodos: Regressão de Quantis, Simulação Histórica, Simulação Histórica Fil-

trada, Teoria dos Valores Extremos e vários modelos GARCH. A análise baseia-se em

242 entidades, no perı́odo entre setembro 2001 e abril 2011. As estimativas de VaR

em CDS foram comparadas usando procedimentos de backtesting. Concluo que a Re-

gressão de Quantis proporciona melhores resultados na estimação de VaR que os res-

tantes métodos e que os rácios financeiros propostos por Campbell et al (2008) para

determinar o risco de falência contribuem para explicar o preço do CDS.

Palavras-Chave: Value at Risk, Cópulas, Correlação, Regressão de Quantis

Classificação JEL: C01, C02





Abstract

This thesis presents two applications of Value at Risk (VaR) estimation: Credit VaR and

VaR in Credit Default Swaps (CDS).

I compare Credit VaR estimates based on different correlation assumptions, using

Gaussian and t copulas, with the observed loss in a credit portfolio of a Portuguese fi-

nancial institution, for a time series of 72 monthly observations, covering the period

between 2004 and 2009. I provide empirical evidence that some of the assumptions

made by rating agencies to evaluate CDOs are inadequate in stress situations like the

financial crisis observed in 2008. All Credit VaR estimates were compared using back-

testing procedures. I find that the most accurate Credit VaR model for this portfolio is

based on asset correlation given by the empirical estimator proposed by De Servigny

and Renault (2002a) and assuming a dependence structure given by the t copula with 8

degrees of freedom.

Regarding the application of VaR models to CDS, I estimate VaR using several

methods: Quantile Regression, Historical Simulation, Filtered Historical Simulation,

Extreme Value Theory and GARCH-based models. The analysis of the determinants of

CDS spreads is based on 242 reference entities and the time period ranges from Septem-

ber 2001 to April 2011. All VaR models were compared using backtesting procedures.

I find that Quantile Regression provides better results than the other models tested and

that the financial ratios proposed by Campbell et al (2008) to determine the risk of

bankruptcy contribute to explain the determinants of the price of CDS.

Keywords: Value at Risk, Copulas, Correlation, Quantile Regression

JEL Classification: C01, C02





Executive Summary

This thesis presents two applications of Value at Risk (VaR) estimation: Credit VaR and

VaR in Credit Default Swaps (CDS).

Value at Risk estimates of credit portfolios depend on default probability, recovery

rate and asset correlation. Previous literature has pointed asset correlation as one of

the major weaknesses of VaR estimates and a factor that played a major role in the fi-

nancial crisis observed in 2008. Rating agencies faced heavy criticism regarding the

assumptions used to evaluate Collateralized Debt Obligations but there is few empirical

evidence to support that criticism. One of the goals of this study is to compare differ-

ent approaches to calculate credit VaR with the loss observed in a financial institution

portfolio and analyze the sensitivity of VaR estimates to different assumptions regarding

asset correlation.

I compare Credit VaR estimates based on different correlation assumptions, using

Gaussian and t copulas, with the observed loss in a credit portfolio of a Portuguese fi-

nancial institution, for a time series of 72 monthly observations, covering the period

between 2004 and 2009. I find that credit VaR estimates differ substantially, depending

on the assumptions regarding asset correlation and dependence structure. This finding

reinforces the crucial role that the assumption regarding correlation plays in credit VaR

estimation. I also provide empirical evidence that some of the assumptions made by ma-

jor rating agencies to evaluate CDOs are inadequate in stress situations like the financial

crisis observed in 2008. I find that the more accurate VaR model for the portfolio used in

this study is based on asset correlation given by the empirical estimator of De Servigny

and Renault (2002a) and assuming t copula with 8 degrees of freedom.



Credit Default Swaps were at the forefront of the recent financial crisis of 2007-2009

and many observers have blamed CDS as one of the lead causes of the crisis. However,

a more careful analysis, as done in Stulz (2009), suggests that CDS did not trigger the

crisis and that in fact they allowed some institutions to limit their losses and, for this

reason, CDS are certain to remain a crucial financial instrument, even though under

tighter regulation and more control.

Regarding the application of VaR models to CDS, the goal of this study is to estimate

VaR in CDS using Quantile Regression, covering the period of the recent financial crisis,

and perform a thorough evaluation of VaR estimates and compare them with alternative

methods, namely Historical Simulation, Filtered Historical Simulation, Extreme Value

Theory and GARCH-based models, through backtesting methodologies. The analysis

of the determinants of CDS spreads is based on 242 reference entities and the time

period ranges from September 2001 to April 2011. I find that Quantile Regression pro-

vides better results than the other models tested and that the financial ratios proposed

by Campbell et al (2008) to determine the risk of bankruptcy contribute to explain the

determinants of the price of CDS.
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Introduction

This thesis presents two applications of Value at Risk (VaR) estimation: Credit VaR and

VaR in Credit Default Swaps, and is divided into chapters accordingly.

Value at Risk estimates of credit portfolios depend on default probability, recovery

rate and asset correlation. Previous literature has pointed asset correlation as one of the

major weaknesses of VaR estimates and a factor that played a major role in the financial

crisis observed in 2008. Rating agencies faced heavy criticism regarding the assump-

tions used to evaluate Collateralized Debt Obligations (CDO) but there is few empirical

evidence to support that criticism. One of the goals of this study is to compare differ-

ent approaches to calculate credit VaR with the loss observed in a financial institution

portfolio and analyze the sensitivity of VaR estimates to different assumptions regarding

asset correlation.

I compare credit Value at Risk estimates based on different correlation assumptions,

using Gaussian and t copulas, with the observed loss in a credit portfolio, for a time

series of 72 monthly observations, covering the period between 2004 and 2009. I also

compare the results obtained with stochastic and deterministic recovery rate.

The portfolio used in the first chapter of this study is from a Portuguese financial

institution and comprises all companies whose total credit is over 50 thousand euros,

covering 12,736 firms. Correlation assumptions are inspired in previous studies, rating

agencies methodologies to evaluate CDOs and Basel III Accord:

• empirical correlation estimator proposed by De Servigny and Renault (2002a)

• correlation values used by Moody’s for homogeneous portfolios, as detailed in

Meissner et al (2008)
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• correlation values used by Standard & Poors in their CDO Evaluator model, as

detailed in Meissner et al (2008)

• Standard & Poors’ old values (prior to 2005), as presented in Kiff (2004)

• approximation to Fitch’s asset correlation, following Fender and Kiff (2004)

• Basel III Accord’s maximum asset correlation

• Basel III Accord’s minimum asset correlation

Using Monte Carlo simulation technique and copula functions, I simulate portfolio

value distribution and compute credit VaR. Repeating this process for each monthly ob-

servation, I obtain the VaR time series, which I then compare with the time series of

observed loss in the portfolio using the tests proposed by Kupiec (1995) and Christof-

fersen (1998), the Loss Function method proposed by Lopez (1998) and the Average

Quantile Loss Function proposed by Koenker and Bassett (1978). Regarding VaR back-

testing, I also employ a measure of VaR over-conservativeness.

I find that credit VaR estimates differ substantially, depending on the assumptions

regarding asset correlation and dependence structure. This finding reinforces the cru-

cial role that the assumption regarding correlation plays in credit VaR estimation. I also

provide empirical evidence that some of the assumptions made by major rating agencies

to evaluate CDOs are inadequate in stress situations like the financial crisis observed in

2008. I find that the more accurate VaR model for the portfolio used in this study is

based on asset correlation given by the empirical estimator of De Servigny and Renault

(2002a) and assuming t copula with 8 degrees of freedom. All of the conclusions of

this study are invariant to the assumption of deterministic instead of stochastic recovery

rate, which suggests that it is possible to significantly reduce computation time with low

impact on the final results.

Credit Default Swaps (CDS) were at the forefront of the recent financial crisis of

2007-2009. CDS are essentially insurance contracts that protect against default of an

underlying company (the reference entity or name) and thus the CDS price is a measure

of the credit risk of the underlying obligor. During the crisis, CDS prices increased by

2



factors of 10, signalling high risk of default and potentially very large losses for the

financial institutions working as insurance companies in the CDS market. Therefore,

many observers have blamed CDS as one of the lead causes of the crisis. However, a

more careful analysis, as done in Stulz (2009), suggests that CDS did not trigger the

crisis and that in fact they allowed some institutions to limit their losses and, for this

reason, CDS are certain to remain a crucial financial instrument, even though under

tighter regulation and more control.

The financial crisis has raised more concern about risk prediction, which now has a

more important role in banking and finance. Banks rely on Value at Risk (VaR) mea-

sures to control their risk exposure. There are several competing approaches to estimate

VaR, including Historical Simulation using past data, parametric models describing the

full distribution of interest, Extreme Value Theory and Quantile Regression to model a

specific quantile rather than the whole distribution. The goal of this study is to estimate

VaR in CDS using Quantile Regression, covering the period of the recent financial crisis,

and perform a thorough evaluation of VaR estimates and compare them with alternative

VaR estimation methods through backtesting methodologies such as the tests proposed

by Kupiec (1995) and Christoffersen (1998), the Average Quantile Loss Function pro-

posed by Koenker and Bassett (1978), the Conditional Tail Expectation proposed by

Artzner et al (1999) and the Dynamic Quantile test presented by Engle and Manganelli

(2004). Quantile regression is potentially useful for estimating VaR in new products

with a short history. Furthermore, by incorporating current market expectations em-

bedded in the market prices of the explanatory variables, Quantile Regression has the

potential to outperform other methods when market conditions become very different

from the past.

I find that Quantile Regression provides better results in the estimation of VaR in

CDS than Historical Simulation, Filtered Historical Simulation, Extreme Value Theory

and all GARCH-based models tested in this study, especially for CDS names with long

history when the forecast horizon of VaR estimates is 30 days and for CDS names with

short history when the forecast horizon of VaR estimates is 1 day. I also find that the

financial ratios proposed by Campbell et al (2008) to determine the risk of bankruptcy

and failure contribute to explain the determinants of the price of CDS. Recent studies

3



have shown that Filtered Historical Simulation and Extreme Valued Theory are the most

accurate VaR models. However, the empirical evidence provided in this study does not

support the extension of this finding to VaR estimation in CDS.

4



Chapter 1

Credit VaR
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1.1 Literature Review

Recent literature has shown that one of the main weaknesses in Credit Value at Risk

estimates is the assumption about correlation.The subprime crisis has shown that this

weakness is real.

Niethammer and Overbeck (2008) analyze the effect of estimation errors on risk

figures, causing model risk. They point out that estimating correlation is of major im-

portance for banks and find empirical evidence that the obtained values of correlation

strongly depend on the method used in the estimation. Crouhy et al (2000) show that

credit VaR is quite sensitive to estimates of correlations. In this paper, I provide em-

pirical evidence of the sensitivity of credit VaR estimates to the assumptions regarding

correlation by calculating credit VaR for a real portfolio considering several correlation

assumptions.

According to Duffie (2008), even specialists in CDOs are ill equipped to measure

the risk of tranches that are sensitive to default correlation and this is the weakest link in

credit risk transfer markets, which could suffer a dramatic loss of liquidity if a surprise

cluster of defaults suddenly emerges. Moreover, he argues that correlation parameters

used in rating methodologies tend to be based on rudimentary assumptions. Picone

(2002) states that the main question in evaluating CDOs has become how to measure

the level of diversification in the portfolio, i.e., default correlations. Fender and Kiff

(2004) illustrate that incorrect assumptions about default correlation can cause the rat-

ing agencies to significantly under or overestimate the risk in a credit portfolio. A com-

parative analysis of Fitch, Moody’s and Standard and Poor’s CDO rating approaches

is provided by Meissner et al (2008). They conclude that at the end of 2007 the main

rating agencies were all applying the Merton Structural Model and deriving asset val-

ues with Gaussian copula model. The differences between methodologies existed in the

way the rating agencies derived the core input parameters, namely default probability,

recovery rate and asset correlation. Asset correlation was pointed out as the most crit-

ical input parameter, due to its significant impact on default distribution. In this paper

I estimate credit VaR considering the asset correlation assumptions used by the major

rating agencies to evaluate CDOs, for the period between 2004 and 2009, and com-

pare these estimates with the observed loss in a real portfolio using VaR backtesting
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methodologies. Due to the fact that the time period considered in this study covers the

subprime crisis and the portfolio considered in the analysis could have been securitized,

this study provides interesting insights about the accuracy of rating agencies method-

ologies to evaluate CDOs and also provides empirical evidence to the recent criticism

faced by rating agencies.

Several authors criticize the use of the Gaussian copula as market practice to esti-

mate VaR and evaluate CDOs. Previous research has shown that the assumption of the

same correlation parameters under different copulas may lead to hazardous understate-

ment of risk. According to Dorey et al (2005), the use of Gaussian copula seems to be

justified for modeling convenience rather than for theoretical reasons and this methodol-

ogy significantly underestimates the frequency of multiple extreme defaults. Frey et al

(2001) indicate that asset correlations are not enough to describe dependence between

defaults because they do not fully specify the copula of the latent variables. As a con-

sequence, the assumption of a Gaussian copula may not adequately model the potential

extreme risk in the portfolio. They also indicate that models allowing for tail depen-

dence, such as the multivariate t copula, give evidence that more worrying scenarios are

possible. Mashal and Zeevi (2002) perform a sensitivity analysis that strongly suggests

that the Gaussian dependence structure should be rejected in all data sets, when tested

against the alternative t dependence structure. According to Crouhy et al (2000), it is

not legitimate to assume normality of the portfolio changes for credit returns which are

by nature highly skewed and fat-tailed.The percentile levels of the distribution can not

be estimated from the variance only, the calculation of credit VaR requires drawing the

full distribution of changes in the portfolio. On the other hand, Hamerle and Rösch

(2005) show that misspecification of the distribution and the dependence structure of

asset returns does not necessarily produce misleading forecasts of the loss distribution.

In order to evaluate the impact of the choice of copula on the final results, I estimate

VaR with Gaussian and t copula, considering the correlation assumptions used by major

rating agencies and the Basel III Accord, and compare these estimates with the observed

loss.
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1.2 Data

The data set used in this study is from one of the 10 largest Portuguese financial institu-

tions. The sample used in this study comprises all companies whose total credit is over

50 thousand euros, covering 12,736 firms in the period between January 2004 and De-

cember 2009. Table 1.1 presents the distribution of observations per year and industry.

Table 1.1: Distribution of observations per year and industry
Distribution of the observations used in the empirical analysis, per year and industry, for the period
from January 2004 to December 2009.

Year
Industry 2004 2005 2006 2007 2008 2009

Banking and Finance 33 34 36 44 61 73

Broadcasting/Media/Cable 15 16 18 23 25 27

Building, Materials and Real Estate 2,712 2,866 3,051 3,222 3,269 3,161

Business Services 184 200 242 271 343 429

Materials and Utilities 40 48 50 60 69 91

Computers and Electronics 20 22 25 39 40 57

Consumer Products 604 611 704 863 1.052 1.262

Food, Beverage and Tobacco 63 72 88 122 146 170

Gaming, Leisure and Entertainment 171 180 201 213 228 275

Health Care and Pharmaceutical 73 90 100 114 132 148

Industrial/Manufacturing 204 219 257 330 394 489

Lodging and Restaurants 183 211 235 293 376 459

Retail 171 193 213 247 301 380

Supermarkets and Drugstores 482 516 584 658 756 979

Textiles and Furniture 93 100 109 124 156 202

Transportation 32 32 45 69 109 147

Others 47 42 49 49 71 81

Portfolio distribution per type of loan and guarantee are presented in tables 1.2 and

1.3. More than half of the total credit is guaranteed by real estate collateral, partly due

to the high weight of construction loans, namely 43.10%. Approximately 9% of the

portfolio has financial collateral and only 13.37% has no guarantee.
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Table 1.2: Portfolio distribution per type of loan
Distribution of the observations used in the empirical analysis, per type
of loan, for the period from January 2004 to December 2009.

Type of Loan Distribution (%)
Construction Loan 43.10

Working Capital Loan 23.93

Investment Loan 19.57

Line of Credit 11.38

Leasing 2.02

Table 1.3: Portfolio distribution per type of guarantee
Distribution of the observations used in the empirical analysis, per type
of guarantee, for the period from January 2004 to December 2009.

Guarantee Distribution (%)
Financial Collateral 9.05

Real Estate Collateral 54.21

Other Collateral 1.78

Personal Guarantee 21.59

No Guarantee 13.37

1.3 Methodology

In this section I explain the procedure used to estimate Credit VaR. I start with the

presentation of the Merton model framework and copula functions. Then I explain

how correlation is imposed in the estimation procedure and present all asset correlation

assumptions tested in this study. Finally, I present the VaR estimation method.

Portfolio value at time t depends on the loan value of each obligor and this, in turn,

is a function of the debt amount, the occurrence of default, and the recovery rate, when

default occurs. Let the random variable Ii,t be the default indicator for obligor i at time

t, taking values in {0,1} (we interpret the value 1 as default and 0 as non-default), let

Debti,t be the outstanding value at time t of the loan granted to firm i and let RR be the

recovery rate. Loan value and portfolio value are given by:

Loan V aluei,t =


Debti,t ×RRi,t if Ii,t = 1,

Debti,t if Ii,t = 0,

(1.1)
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Portfolio V aluet =
N∑
i=1

Loan V aluei,t (1.2)

According to the option pricing approach to the valuation of corporate securities

initially developed by Merton (1974), the firm’s asset value, Vt, follows a geometric

Brownian motion

dVt/Vt = µdt+ σdWt

where Wt is a standard Brownian motion, and µ and σ2 are respectively the mean and

variance of the instantaneous rate of return on the assets of the firm, dVt/Vt.

The value V at any future time t is given by:

Vt = V0exp
{(
µ− σ2

2

)
t+ σWt

}
(1.3)

with Wt being normally distributed with zero mean and variance equal to t, Vt is log-

normally distributed with expected value E(Vt)=V0exp{µt} and
√

tZt≡Wt-W0, with Zt
∼ N(0,1).

Merton’s model assumes that a firm has a very simple capital structure, as it is fi-

nanced only by equity, St, and a single zero-coupon debt instrument maturing at time

T, with face value F, and current market value Bt. In this framework, default occurs at

maturity of the debt obligation when the value of assets is less than the debt value, F, to

the bond holders. The probability of an obligor defaulting, pDef , is given by:

pDef=Pr[Vt≤ F]
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Replacing Vt by equation 1.3 and Wt by
√

tZt it follows:

pDef = Pr
[
V0exp

{(
µ− σ2

2

)
t + σ

√
tZt
}
≤ F

]
= Pr

[
ln(V0) +

(
µ− σ2

2

)
t + σ

√
tZt ≤ ln(F)

]
= Pr

[(
µ− σ2

2

)
t + σ

√
tZt ≤ ln

( F
V0

)]
(1.4)

= Pr
[
Zt ≤

ln(F/V0)− (µ− (σ2/2))t
σ
√

t
≡ z
]

= Φ(z)

z is simply the threshold point in the standard normal distribution corresponding to a

cumulative probability of pDef and is called distance to default.

According to Merton’s model framework, the critical value z may be calculated

for each obligor in the portfolio considering its specific parameters V0, µ and σ. The

approach I follow in this paper is the calculation of the critical value z for each industry

k such that

zk = Φ−1(pkDef ) (1.5)

where pkDef is the average default probability observed in the data set for industry k con-

sidering the time period between 2004 and 2009. All obligors in industry k will have

the same critical value zk.

I simulate the asset value of every obligor in Merton’s model framework and com-

pare it to the critical value zk previously calculated. If the asset value is below the critical

point, the obligor defaults. Every simulation run must have embedded the correlation

coefficients, in order to generate correlated random numbers that will be used as proxy

of the asset value of each obligor. For this purpose, the use of copulas is extremely use-

ful. Copulas are simply the joint distribution of random vectors with standard uniform

marginal distributions. Their value is that they provide a way of understanding how

marginal distributions of single risks are coupled together to form joint distributions,

that is, they provide a way of understanding the idea of statistical dependence and this
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is the essence of Sklar’s theorem.

Theorem 1 (Sklar, 1959) Let F be a joint distribution function with continuous marginals

F1,...,Fm. Then there exists a unique copula C : [0, 1]m→ [0, 1] such that

F (x1, ..., xm) = C
(
F1(x1), ..., Fm(xm)

)
(1.6)

holds. Conversely, if C is a copula and F1,...,Fm are distribution functions, then the

function F given by equation 1.6 is a joint distribution function with marginals F1,...,Fm.

For a proof and extensions to discontinuous marginal distributions refer to Schweizer

and Sklar (1983).

A unique copula C is extracted from a multivariate distribution function F with con-

tinuous marginals F1,...,Fm by calculating

C(µ1, ..., µm) = F
(
F−1

1 (µ1), ..., F−1
m (µm)

)
,

where F−1
1 ,...,F−1

m are inverses of F1,...,Fm. We call C the copula of F.

If I assume multivariate Gaussian distribution with correlation matrix R then the

copula may be represented by

CGa
R (µ1, ..., µm) = ΦR

(
Φ−1(µ1), ...,Φ−1(µm)

)
,

where ΦR denotes the joint distribution function of a standard m-dimensional normal

random vector with correlation matrix R, and Φ is the distribution function of univariate

standard normal.

The Gaussian copula with Gaussian marginals is defined as

CGa
R (µ1, ..., µm) =

∫
Φ−1(µ1)

−∞
...

∫
Φ−1(µm)

−∞
1

(2π)
m
2 |R|

1
2
exp
(
− 1

2
xTR−1x

)
dx1...dxm

where |R| is the determinant of R. From the definition of the Gaussian copula we can

determine the corresponding density. Using the canonical representation, we have:

1

(2π)
m
2 |R|

1
2
exp
(
− 1

2
xTR−1x

)
= CGa

R (Φ(x1), ...,Φ(xm))×
m∏
j=1

( 1√
2π
exp
(
− 1

2
x2
j

))
12



Suppose instead that the copula is a Student’s t. In this case the copula may be

represented by

TR,υ(µ1, ..., µm) =

∫
t−1
υ (µ1)

−∞
...

∫
t−1
υ (µm)

−∞

Γ
(
υ+m

2

)
|R|−

1
2

Γ
(
υ
2

)
(υπ)

m
2

(
1 + 1

υ
xTR−1x

)−υ+m
2

dx1...dxm

where υ is the number of degrees of freedom. Using the canonical representation, the

copula density for the multivariate student’s t copula is:

CR,υ(µ1, ...µm) = |R|− 1
2

Γ
(
υ+m

2

)
Γ
(
υ
2

) ( Γ
(
υ
2

)
Γ
(
υ+1
2

))m
(

1+ 1
υ
ςTR−1ς

)−υ+m
2

m∏
j=1

(
1 +

ς2
j

υ

)−υ+1
2

where ςj = t−1
υ (µj).

The copula implicit in the multivariate t is very different from the Gaussian copula

because it has the property of tail dependence, so that it tends to generate simultaneous

extreme events with higher probabilities than the Gaussian copula. This fact is crucial

in the context of Value at Risk, as it leads to higher probabilities of joint defaults.

The linear correlation coefficient fully characterizes statistical dependence only in

the class of elliptical distributions, the most important example being the multivariate

Normal distribution. One particular shortcoming of this measure concerns the adequacy

of correlation as an indicator of potential extreme co-movements in the underlying vari-

ables. Correlation is a measure of central tendency involving only first and second

moment information but tail dependence is a more representative measure that is used

to summarize the potential of extreme co-movements. The concept of tail dependence

reflects the tendency of two r.v.s, say X and Y, to “move together”, giving the asymp-

totic indication of how frequently we should expect to observe joint extreme values. For

these reasons, I will estimate VaR with t and Gaussian copulas and compare the results.

Correlation is imposed in the simulation procedure through a matrix containing all

pairwise asset correlations for all obligors in the portfolio. In order to capture the spe-

cific nature of each industry, I calculate correlation coefficients between industries and

generalize those coefficients to all obligors. Consider for example obligors a and b,

operating in industries x and y, respectively. The asset correlation coefficient between a
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and b, ρAab, will be given by the asset correlation between industries x and y.

Table 1.4 presents the correlation assumptions tested in this study and the respec-

tive source. Sections A and B provide a detailed explanation of these asset correlation

assumptions.

Table 1.4: Correlation Assumptions
Correlation coefficients tested in this study and the respective source.

Asset Correlation Coefficients
Intra-sector Inter-sector Source

Empirical estimator De Servigny and Renault (2002)

15% 3% Moody’s

15% 5% Standard & Poors

30% 0% Standard & Poors’ old values (prior to 2005)

30% 20% Approximation to Fitch’s values proposed by Fender and Kiff (2004)

24% 24% Basel III Accord’s maximum value

8% 8% Basel III Accord’s minimum value

A) Constant correlation coefficients The assumption of constant correlation coef-

ficients is market practice, due to its simplicity. The asset correlation coefficients I test

in this study have been used by rating agencies to evaluate CDOs and are implicit in the

methodology prescribed by the Basel III Accord.

B) Empirical estimator of correlation

Asset values are not observable for most firms operating in the market and, for this

reason, asset correlation can not be calculated within my data sample. However, asset

correlation affects the joint default probability, as I will show below, meaning that an

assumption on joint asset movement like the copula approach allows us to back out the

implied asset correlation from joint default probability.

Let pi and pj denote the marginal default probability of obligor i and j, respectively.

The joint probability that obligor i and j both default by some time horizon T is denoted

as pij . Let Vi,Vj represent the asset values for obligors i and j, and zi, zj the respective
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default threshold. In Merton’s model framework we have,

pij = P (Vi ≤ zi, Vj ≤ zj) (1.7)

Let ρAij denote the asset correlation between asset values Vi and Vj , and let fγ(u,v)

denote a density function with correlation coefficient γ. The joint default probability of

obligors i and j is defined as

pij =

∫ zi

−∞

∫ zj

−∞
fρAij(u, v) du dv (1.8)

From equation 1.8 we see that asset correlation affects joint default probability. I

will now focus on the joint default probability and, once I have estimates for the joint

default probability, I will derive the implied asset correlation.

All calculations regarding probability of default will be performed by industry, i.e.,

there is an implicit assumption that the obligors of each industry are homogeneous

groups and that defaults are conditionally independent given a set of common economic

factors affecting all obligors. According to Frey and McNeil (2001) the concept of ex-

changeable vectors is the correct way to mathematically formalize the notion of homo-

geneous groups that will be used in practice and the concept of mixture models presents

the appropriate setup for conditional independence. 1

Following Akhavein et al (2005), I employ static pool methodology to calculate joint

default probabilities. Pools are formed by grouping obligors according to their industry

classification and each pool is followed forward for one year, resulting in a cohort. Let

Dk,t denote the number of defaults which have occurred in industry k and cohort t and

Nk,t denote the total number of obligors in the same industry and cohort. The marginal

default probability of industry k and cohort t is given by:

pk,t =
Dk,t

Nk,t
(1.9)

1Please see appendix A for more details regarding the mathematical framework of exchangeable vec-
tors and mixture models.
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The sample from 2004 to 2009 enables me to calculate 6 default probabilities for each

industry.

Once yearly default probabilities are calculated, I aggregate them to an average prob-

ability over the observation period, assuming that each year is an independent data set.

I weight each year by its relative size, that is, by the number of firms present in the

sample each year. The marginal default probability of industry k aggregated across all

cohorts is given by:

pk =
T∑
t=1

Nk,t(∑T
t=1 Nk,t

)Dk,t

Nk,t
(1.10)

The first term on the right side of the equation corresponds to the weight attributed to

each year and the second term is the marginal default probability of industry k and co-

hort t, according to equation 1.9. Table 1.5 presents the estimates of marginal default

probabilities.

Recall that from a given group with N elements, one can create N(N-1)/2 different

pairs. Therefore, if D denotes the number of defaulting obligors, one method to extract

the joint default probability for a given year t corresponds to drawing pairs of firms

without replacement, given by the following equation:

Dt

Nt

Dt − 1

Nt − 1

This is the estimator used by Lucas (1995) and Nagpal & Bahar (2001). In a similar

way, based on the framework presented in the appendix A, Frey and McNeil (2001)

propose the use of the joint default probability estimator given by:

π̂j =
1

T

T∑
t=1

(
Dt
j

)(
Nt
j

) =
1

T

T∑
t=1

Dt(Dt − 1)...(Dt − j + 1)

Nt(Nt − 1)...(Nt − j + 1)
, 1 ≤ j ≤ min{N1, ..., Nn}

(1.11)

According to De Servigny and Renault (2002a), this estimator has the drawback that

it can generate spurious negative correlation. The one period joint default probability

calculated above is always smaller than (D/N)2, which is the square of the univariate

probability. Thus, the estimated joint default probability is always lower than that ob-

16



Table 1.5: Marginal default probabilities
Empirical marginal default probability of each industry aggregated across all cohorts.

Industry Marginal default probability (%)

Undefined 3.46

Banking and Finance 2.07

Broadcasting/Media/Cable 5.64

Building, Materials and Real Estate 4.88

Business Services 2.89

Materials and Utilities 3.80

Computers and Electronics 2.01

Consumer Products 3.61

Food, Beverage and Tobacco 3.49

Gaming, Leisure and Entertainment 3.57

Health Care and Pharmaceutical 1.80

Industrial/Manufacturing 3.75

Lodging and Restaurants 4.71

Retail 2.89

Supermarkets and Drugstores 3.13

Textiles and Furniture 5.90

Transportation 2.93

Others 2.72

tained under the assumption of independence, which implies negative correlation. For

this reason, I calculate the joint default probability for industry k using the estimator

proposed by De Servigny and Renault (2002a), defined as:

pkk =
T∑
t=1

Nk,t∑T
t=1Nk,t

Dk,tDk,t

Nk,tNk,t
(1.12)

The first term on the right side of the equation corresponds to the weight attributed to

each year and the second term is the joint default probability of industry k and cohort t,

calculated assuming the draw of pairs of firms with replacement.

In the case of obligors operating in different industries, the formula becomes:

pkj =
T∑
t=1

Nk,t +Nj,t∑T
t=1Nk,t +Nj,t

Dk,tDj,t

Nk,tNj,t
(1.13)
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Despite the fact that both estimators would yield very similar results in very large sam-

ples, in samples of the size of a typical credit portfolio the difference may be substantial.

For details regarding the performance of these estimators, see De Servigny and Renault

(2003). Table 1.6 presents the obtained estimates of joint default probabilities.

Once I have the joint default probabilities, I calculate the asset correlations implicit

in equation 1.8 using a numerical method. For this purpose, I assume multivariate Gaus-

sian distribution with Gaussian marginals. Table 1.7 presents the asset correlations ob-

tained imposing the restriction |p̂kj-pkj| ≤ 5× 10−6. The average intra sector asset cor-

relation is 12.99% and the average inter sector asset correlation is 0.14%, corresponding

to an average default correlation of 2.68% and 0.05%, respectively.
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Table 1.6: Joint Default Frequency (%)
Empirical joint default frequency between all industries.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

(1) Undefined 0.212 0.065 0.204 0.180 0.103 0.143 0.073 0.130 0.117 0.127 0.063 0.130 0.165 0.103 0.114 0.212 0.108 0.115

(2) Banking and Finance 0.065 0.124 0.096 0.099 0.061 0.073 0.046 0.070 0.067 0.065 0.048 0.077 0.107 0.061 0.063 0.124 0.055 0.043

(3) Broadcasting/Media/Cable 0.204 0.096 0.354 0.272 0.159 0.231 0.117 0.205 0.212 0.208 0.096 0.211 0.261 0.163 0.177 0.331 0.165 0.150

(4) Building, Materials and Real Estate 0.180 0.099 0.272 0.303 0.147 0.194 0.091 0.188 0.181 0.185 0.087 0.197 0.243 0.141 0.164 0.303 0.157 0.132

(5) Business Services 0.103 0.061 0.159 0.147 0.174 0.109 0.057 0.106 0.103 0.106 0.052 0.112 0.137 0.083 0.092 0.174 0.087 0.073

(6) Materials and Utilities 0.143 0.073 0.231 0.194 0.109 0.238 0.073 0.140 0.145 0.144 0.067 0.147 0.186 0.110 0.123 0.238 0.124 0.115

(7) Computers and Electronics 0.073 0.046 0.117 0.091 0.057 0.073 0.117 0.071 0.068 0.069 0.039 0.073 0.091 0.060 0.061 0.114 0.050 0.043

(8) Consumer Products 0.130 0.070 0.205 0.188 0.106 0.140 0.071 0.217 0.131 0.134 0.063 0.141 0.172 0.104 0.116 0.217 0.110 0.094

(9) Food, Beverage and Tobacco 0.117 0.067 0.212 0.181 0.103 0.145 0.068 0.131 0.212 0.132 0.061 0.140 0.180 0.104 0.116 0.212 0.109 0.079

(10) Gaming, Leisure and Entertainment 0.127 0.065 0.208 0.185 0.106 0.144 0.069 0.134 0.132 0.219 0.061 0.140 0.172 0.103 0.116 0.219 0.113 0.101

(11) Health Care and Pharmaceuticals 0.063 0.048 0.096 0.087 0.052 0.067 0.039 0.063 0.061 0.061 0.108 0.067 0.088 0.053 0.056 0.108 0.050 0.044

(12) Industrial/Manufacturing 0.130 0.077 0.211 0.197 0.112 0.147 0.073 0.141 0.140 0.140 0.067 0.230 0.185 0.108 0.122 0.230 0.116 0.095

(13) Lodging and Restaurants 0.165 0.107 0.261 0.243 0.137 0.186 0.091 0.172 0.180 0.172 0.088 0.185 0.284 0.137 0.152 0.284 0.146 0.111

(14) Retail 0.103 0.061 0.163 0.141 0.083 0.110 0.060 0.104 0.104 0.103 0.053 0.108 0.137 0.167 0.091 0.167 0.083 0.067

(15) Supermarkets and Drugstores 0.114 0.063 0.177 0.164 0.092 0.123 0.061 0.116 0.116 0.116 0.056 0.122 0.152 0.091 0.187 0.187 0.097 0.079

(16) Textiles and Furnitures 0.212 0.124 0.331 0.303 0.174 0.238 0.114 0.217 0.212 0.219 0.108 0.230 0.284 0.167 0.187 0.372 0.188 0.174

(17) Transportation 0.108 0.055 0.165 0.157 0.087 0.124 0.050 0.110 0.109 0.113 0.050 0.116 0.146 0.083 0.097 0.188 0.188 0.097

(18) Others 0.115 0.043 0.150 0.132 0.073 0.115 0.043 0.094 0.079 0.101 0.044 0.095 0.111 0.067 0.079 0.174 0.097 0.174
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Table 1.7: Asset Correlation (%)
Empirical asset correlation between all industries.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

(1) Undefined 12.801 -1.989 0.921 1.291 0.471 1.701 0.791 0.761 -0.839 0.491 0.151 -0.049 0.181 0.601 0.861 0.831 1.151 3.851

(2) Banking and Finance -1.989 21.351 -4.009 -0.549 0.041 -1.539 1.371 -1.339 -1.589 -2.539 4.201 -0.269 1.791 0.321 -0.799 0.251 -1.789 -4.799

(3) Broadcasting/Media/Cable 0.921 -4.009 2.651 -0.379 -0.609 1.621 0.621 0.081 1.641 0.631 -1.239 -0.049 -0.409 0.021 0.001 -0.149 -0.149 -0.569

(4) Building, Materials and R.E. 1.291 -0.549 -0.379 5.781 0.801 0.871 -1.519 1.391 1.311 1.281 -0.269 1.621 1.291 -0.069 1.451 1.171 1.981 -0.169

(5) Business Services 0.471 0.041 -0.609 0.801 15.691 -0.219 -0.469 0.231 0.261 0.351 -0.129 0.581 0.121 -0.279 0.111 0.331 0.311 -1.679

(6) Materials and Utilities 1.701 -1.539 1.621 0.871 -0.219 11.431 -0.959 0.391 1.811 1.111 -0.369 0.561 0.821 -0.089 0.541 1.341 2.041 2.061

(7) Computers and Electronics 0.791 1.371 0.621 -1.519 -0.469 -0.959 21.181 -0.529 -0.699 -0.859 1.111 -0.669 -0.969 0.431 -0.849 -0.879 -3.139 -4.399

(8) Consumer Products 0.761 -1.339 0.081 1.391 0.231 0.391 -0.529 11.531 0.741 0.751 -0.549 0.781 0.221 -0.149 0.441 0.411 0.731 -1.039

(9) Food, Beverage and Tobacco -0.839 -1.589 1.641 1.311 0.261 1.811 -0.699 0.741 12.391 1.051 -0.739 1.301 1.941 0.431 1.141 0.551 1.191 -3.569

(10) Gaming, Leisure and Entert. 0.491 -2.539 0.631 1.281 0.351 1.111 -0.859 0.751 1.051 12.201 -0.929 0.851 0.471 -0.129 0.671 0.851 1.431 0.691

(11) Health Care and Pharmac. 0.151 4.201 -1.239 -0.269 -0.129 -0.369 1.111 -0.549 -0.739 -0.929 23.591 -0.149 0.651 0.221 -0.379 0.261 -0.919 -2.109

(12) Industrial/Manufacturing -0.049 -0.269 -0.049 1.621 0.581 0.561 -0.669 0.781 1.301 0.851 -0.149 11.241 1.051 -0.009 0.791 0.861 1.001 -1.529

(13) Lodging and Restaurants 0.181 1.791 -0.409 1.291 0.121 0.821 -0.969 0.221 1.941 0.471 0.651 1.051 5.971 0.121 0.641 0.541 1.141 -3.069

(14) Retail 0.601 0.321 0.021 -0.069 -0.279 -0.089 0.431 -0.149 0.431 -0.129 0.221 -0.009 0.121 14.861 -0.039 -0.479 -0.559 -3.099

(15) Supermarkets and Drugst. 0.861 -0.799 0.001 1.451 0.111 0.541 -0.849 0.441 1.141 0.671 -0.379 0.791 0.641 -0.039 14.121 0.251 0.931 -1.559

(16) Textiles and Furnitures 0.831 0.251 -0.149 1.171 0.331 1.341 -0.879 0.411 0.551 0.851 0.261 0.861 0.541 -0.479 0.251 1.681 1.801 1.721

(17) Transportation 1.151 -1.789 -0.149 1.981 0.311 2.041 -3.139 0.731 1.191 1.431 -0.919 1.001 1.141 -0.559 0.931 1.801 17.031 3.661

(18) Others 3.851 -4.799 -0.569 -0.169 -1.679 2.061 -4.399 -1.039 -3.569 0.691 -2.109 -1.529 -3.069 -3.099 -1.559 1.721 3.661 18.311
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1.3.1 VaR Estimation2

Once I have the asset correlation matrix, I start generating correlated random numbers

that will be used as proxy of the asset value of each obligor. Let C=(C1,...,CN )′ be an

N-dimensional random vector with continuous marginal distributions representing the

asset value of each obligor and let z=(z1,...,zN )′ be a vector of deterministic cut-off levels

obtained within Merton’s model framework. The following relationship holds:

Ii = 1⇔ Ci ≤ zi (1.14)

I follow Monte Carlo simulation technique to draw the portfolio value distribution.

The first step is the generation of 10,000 scenarios for the asset value of each obligor i

in each time period t. In the case of Gaussian copula, a possible way of transforming a

vector of uncorrelated random variables (U) into a vector of correlated random variables

(C) is the multiplication of U by the Cholesky decomposition of the asset correlation

matrix Ωt. Considering a portfolio with N obligors, the Cholesky decomposition of Ωt

is the N×N symmetric positive definite lower triangular matrix At, such that Ωt=AtA′t.
In the case of the t copula, the vector of correlated random variables is obtained from

the application of the appropriate copula function. By doing this, it is possible to have a

dependence structure with t-student distribution and marginals within the Merton model

framework.

After the simulation of the asset value for every obligor, I determine which obligors

default in each simulation s and time period t. When a default occurs, a recovery rate is

determined by using Beta distribution sampling. The probability density function of the

Beta distribution, for 0 ≤ x ≤ 1 and shape parameters α, β > 0, is given by:

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (1.15)

2VaR estimation was performed with the software Matlab.
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where Γ(z) is the gamma function. The expected value and variance of x are given by:

E[x] =
α

α + β
var[x] =

αβ

(α + β)2(α + β + 1)
(1.16)

The historical levels of recovery for this type of loans in the financial institution

considered in this study have an average value of 61% and a variance of 0.01668, which

are reflected in the following parameters of the Beta distribution: α equal to 8.09 and

β equal to 5.13. Loan value of obligor i in simulation s and time t is given by equation

1.1.

Portfolio value for simulation s in period t is represented by:

Portfolio V alues
t =

N∑
i=1

Loan V alues
i,t , s ∈ (1, ...10.000), t ∈ (1, ...72) (1.17)

After drawing portfolio value distribution for period t, the credit VaRt estimate for a

99% confidence level is calculated according to the following equation:

CV aR99%
t = Mean portfolio valuet − portfolio value1%

t (1.18)

I repeat this process for each correlation assumption and each copula, in order to

estimate VaR with different methodologies and compare the results with the time series

of observed loss. For the t dependence structure, it is essentially the degrees of freedom

parameter that controls the extent of tail dependence and tendency to exhibit extreme co-

movements. Considering previous research performed by Dorey et al (2005), Cherubini

et al (2004) and Abid & Naifar (2008), I calculate VaR considering 2, 8 and 12 degrees

of freedom.

Figure 1.1 presents the comparison between VaR estimates considering Gaussian

copula and the observed loss. Figures 1.2, 1.3 and 1.4 present the comparison between

VaR estimates considering t copula and respectively 2, 8 and 12 degrees of freedom, and

the observed loss. These figures show the behavior of each VaR model through time and

compare it with the observed loss in each time period between 2004 and 2009. Every

time the line corresponding to a VaR estimate is below the line corresponding to the
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observed loss (red line in the figures), a violation occurs. A perfect VaR model would

follow closely the observed loss time series and should be below the loss 1% of the time

(for a 99% confidence level), meaning that the model would accurately predict market

movements and react very fast to its changes.

Figure 1.1: CVaR vs Observed Loss - Gaussian copula
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Figure 1.2: CVaR vs Observed Loss - t copula (DoF=2)

01−2004 01−2005 01−2006 01−2007 01−2008 01−2009 12−2009

2

4

6

8

x 10
8

 

 

Empirical Estimator

Moody’s

S&P

S&P old values

Kiff

Basel Max

Basel Min

Observed Loss

23



Figure 1.3: CVaR vs Observed Loss - t copula (DoF=8)
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Figure 1.4: CVaR vs Observed Loss - t copula (DoF=12)
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Regarding Gaussian copula, the rate of VaR violations appears to be very high when

I assume correlation derived with empirical estimator, Basel minimum value or cor-

relation parameters used by Moody’s and S&P. For all other correlation assumptions,

Value at Risk is always higher than the observed loss, which suggests overestimation of

portfolio risk.

The assumption of t copula with 2 degrees of freedom produces very conservative

VaR estimates for all correlation assumptions. In the case of t copula with 8 degrees of
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freedom, only the empirical estimator of correlation produces VaR violations. Increas-

ing the degrees of freedom from 8 to 12 apparently increases the number of VaR vio-

lations in the case of empirical estimator and Basel minimum value for asset correlation.

1.4 Backtesting VaR

The assumptions about correlation and dependence structure tested in this study pro-

duced very different VaR estimates. In order to compare the different VaR approaches

and identify the most accurate one, I perform backtesting procedures.

The simplest method to verify the accuracy of a VaR model is to record the propor-

tion of times VaR is exceeded in a given sample, the failure rate. Denoting the loss on

the portfolio over a fixed time interval as xt,t+1 the hit function is given by:

It+1(θ) =

 1 if xt,t+1 > V aRt(θ)

0 if xt,t+1 ≤ V aRt(θ)
(1.19)

Suppose we have a VaR estimate at the 1 percent left-tail level for a total of T pe-

riods. We can count the number of times the actual loss exceeds the previous’ period

VaR. Defining N as the number of exceptions, it follows that the failure rate (π) is given

by N/T. The goal is to determine whether N is too small or too large under the null

hypothesis that θ=0.01 in a sample of size T. The statistical framework for this test is

the Bernoulli trials, which means that the number of exceptions x follows a binomial

probability distribution:

f(x) =

(
T

x

)
θx(1− θ)(T−x) (1.20)

The expected value of x is E[x]=θT and the variance is Var(x)=θ(1-θ)T. When T is

large, we can use the central limit theorem and approximate the binomial distribution

by the normal distribution:

z =
x− θT√
θ(1− θ)T

≈ N(0, 1) (1.21)
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Christoffersen (1998) points out that the problem of determining the accuracy of a

VaR model can be reduced to the problem of determining whether the hit sequence sat-

isfies two properties:

Unconditional coverage property: The probability of realizing a loss in excess of

the estimated VaR should be exactly θ. If losses in excess of the estimated VaR occur

more frequently than θ of the time, then this would suggest that the VaR model system-

atically understates the portfolio risk. The opposite finding would alternatively provide

evidence on an overly conservative VaR model.

Independence property: this property places a strong restriction on how VaR ex-

ceptions may occur. Intuitively, this condition requires that the previous history of VaR

violations must not convey any information about whether a VaR violation will occur

in the following period. In general, a clustering of VaR exceptions represents violation

of the independence property that provides evidence of a lack of responsiveness in the

VaR model, making successive runs of VaR exceptions more likely.

According to Campbell (2005), the unconditional coverage and independence prop-

erties of the hit sequence are distinct and must both be satisfied by an accurate VaR

model.

A) Kupiec Test (1995)

Kupiec (1995) proposes a test to check the unconditional coverage property, based

on the number of VaR violations. Kupiec’s test examines how many times a VaR is

violated over a given span of time. If the number of exceptions differs considerably

from θ × 100, then the accuracy of the VaR model is called into question. The null

hypothesis for Kupiec’s test is:

H0 : π = θ (1.22)

π̂ is given by:

π̂ =
N

T
(1.23)
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The log-likelihood ratio for this test is given by:

LRuc = −2ln[(1− θ)T−NθN ] + 2ln{[1− π̂]T−N π̂N} (1.24)

which is asymptotically distributed chi-square with one degree of freedom under the

null hypothesis that θ is the true probability.

B) Christoffersen Test (1998)
Christoffersen (1998) developed a test to check the independence property. The test

setup is as follows: each period we set a violation indicator to 0 if VaR is not exceeded

and to 1 otherwise. We then define Tij as the number of periods in which state j has

occurred in one period while it was i the previous period and πi as the probability of

observing an exception conditional on state i the previous period. The null hypothesis

is:

H0 : π0 = π1 = π (1.25)

The test statistic is given by:

LRind = −2ln[(1−π̂)(T00+T10)π̂(T01+T11)]+2ln[(1−π̂0)T00 π̂0
T01(1−π̂1)T10 π̂1

T11 ] (1.26)

which is asymptotically distributed chi-square with one degree of freedom. π̂0 and π̂1

are given by:

π̂1 = T11
T10+T11

π̂0 = T01
T00+T01

Tables 1.8 and 1.9 present the results obtained for Kupiec and Christoffersen tests

for all correlation assumptions considering Gaussian and t copulas. The null hypothesis

of Kupiec test is rejected in the scenario of Gaussian copula considering asset correla-

tion based on the empirical estimator, Moody’s, S&P and Basel Accord minimum value.

The same result is obtained in the case of t copula with 12 degrees of freedom, consid-

ering asset correlation given by the empirical estimator. The null hypothesis of Kupiec

test is not rejected in the case of t copula with 8 degrees of freedom and correlation

based on the empirical estimator and also in the case of t copula with 12 degrees of

freedom and correlation based on Basel III Accord minimum value. In the remaining
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correlation assumptions, Kupiec test is inconclusive due to the fact that no exceptions

were observed.

The null hypothesis of Christoffersen test is rejected in the case of Gaussian copula

with correlation based on Moody’s and S&P parameters and in the case of t copula

with 12 degrees of freedom with correlation based on the empirical estimator. The

null hypothesis of this test is not rejected only in the cases of Gaussian copula with

correlation based on the empirical estimator and t copula with 12 degrees of freedom

and correlation prescribed by Basel III Accord minimum value. In all the other cases

this test is inconclusive.

Since the unconditional coverage and independence properties of the hit sequence

must be both satisfied by an accurate VaR model, at this point I can conclude that some

of the models tested in this study are not accurate, namely the models based on Gaussian

copula with correlation given by the empirical estimator, Moody’s and S&P parameters

and Basel III Accord minimum value for correlation and also the model based on t cop-

ula with 12 degrees of freedom and correlation given by the empirical estimator. I will

exclude these VaR models from the remaining backtesting procedures.

At this point an interesting conclusion emerges: since the methodologies applied by

Moody’s and Standard and Poors to evaluate CDOs are based on the Gaussian copula

with the correlation parameters tested in this study and these methodologies produced

very high failure rates, leading to the rejection of the null hypothesis of the Kupiec test,

I conclude there is empirical evidence that the procedures used by major rating agencies

to evaluate CDOs are inadequate in stress situations like the financial crisis observed in

2008.

Some of the correlation assumptions tested in this study produced null failure rate

or null results for the statistics T10, T11, leading to inconclusive results of Kupiec and

Christoffersen tests. These null outcomes might be explained by over conservative VaR

models or by the small number of observations, but in either cases it is not possible to

draw a conclusion from the performed VaR backtests. The evaluation of the accuracy of

these VaR models requires us to find alternative methods.
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Table 1.8: Kupiec Test
Results obtained for Kupiec test for all correlation assumptions considering Gaussian and t copulas.

Gaussian copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 63 13 15 0 0 0 25

# observations 72 72 72 72 72 72 72

Failure Rate (%) 88 18 21 0 0 0 35

LRuc 526 53 66 na na na 138

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result Reject H0 Reject H0 Reject H0 n.a n.a n.a Reject H0

t copula (DoF=2) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 0 0 0 0 0 0 0

# observations 72 72 72 72 72 72 72

Failure Rate (%) 0 0 0 0 0 0 0

LRuc n.a n.a n.a n.a n.a n.a n.a

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result n.a n.a n.a n.a n.a n.a n.a

t copula (DoF=8) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 1 0 0 0 0 0 0

# observations 72 72 72 72 72 72 72

Failure Rate (%) 1 0 0 0 0 0 0

LRuc 0 n.a n.a n.a n.a n.a n.a

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result Accept H0 n.a n.a n.a n.a n.a n.a

t copula (DoF=12) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min*

# exceptions 11 0 0 0 0 0 2

# observations 72 72 72 72 72 72 72

Failure Rate (%) 15 0 0 0 0 0 3

LRuc 41 n.a n.a n.a n.a n.a 2

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result Reject H0 n.a n.a n.a n.a n.a Accept H0

* Benchmark model

Considering all correlation assumptions that produced valid results for Kupiec and

Christoffersen tests, only the hypothesis of asset correlation given by the Basel Accord

minimum value (8%) considering a t copula with 12 degrees of freedom simultaneously

satisfies the unconditional coverage property and the independence property. In order

to continue the process of identifying the most accurate VaR model for this particular
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Table 1.9: Christoffersen Test
Results obtained for Christoffersen test for all correlation assumptions considering Gaussian and t copulas.

Gaussian cop-
ula

Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.67 0.02 0.02 0.00 0.00 0.00 0.02

π1 0.92 0.92 0.93 n.a n.a n.a 1.00

LRind 3.88 50.45 55.84 n.a n.a n.a n.a

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result Accept H0 Reject H0 Reject H0 n.a n.a n.a n.a

t copula (DoF=2) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

π1 n.a n.a n.a n.a n.a n.a n.a

LRind n.a n.a n.a n.a n.a n.a n.a

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result n.a n.a n.a n.a n.a n.a n.a

t copula (DoF=8) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.01 0.00 0.00 0.00 0.00 0.00 0.00

π1 0,00 n.a n.a n.a n.a n.a n.a

LRind n.a n.a n.a n.a n.a n.a n.a

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result n.a n.a n.a n.a n.a n.a n.a

t copula
(DoF=12)

Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min*

π0 0.03 0.00 0.00 0.00 0.00 0.00 0.01

π1 0.82 n.a n.a n.a n.a n.a 0.50

LRind 33.26 n.a n.a n.a n.a n.a 5.00

Critical Value 6.63 6.63 6.63 6.63 6.63 6.63 6.63

Test Result Reject H0 n.a n.a n.a n.a n.a Accept H0

* Benchmark model

portfolio, I will set this model as a benchmark.

C) Loss Function Estimator

Despite the fact that the hit function plays a major role in the backtesting procedures,

the information contained in the hit function is limited, as it ignores, for example, the

magnitude of the exceedance of VaR estimates. Lopez (1998) suggests an alternative to

the approach that focuses exclusively on the hit series. The loss function suggested by
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Lopez (1998) is:

L(V aRt(θ), xt,t+1) =

 1 + (xt,t+1 − V aRt(θ))
2 if xt,t+1 > V aRt(θ)

0 if xt,t+1 ≤ V aRt(θ)
(1.27)

According to Campbell (2005), a backtest that uses the loss function defined by

Lopez (1998) would typically be based on the sample average loss,

L̂ =
1

T

T∑
t=1

L(V aRt(θ), xt,t+1) (1.28)

Table 1.10 presents the results for the sample average loss. The average magnitude

of the exceedance of VaR estimates considering asset correlation given by the empirical

estimator and assuming t copula with 8 degrees of freedom is 34 × 1012AC, approxi-

mately half of the average magnitude of the exceedance of VaR estimates considering

our benchmark model. For this reason, the former VaR model will also be considered

as a reference in the comparison of VaR models.

Table 1.10: Loss Function Estimator (1012AC)
Results obtained for the Loss Function Estimator for all correlation assumptions considering Gaussian and t copulas.

Copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min
Gaussian excluded excluded excluded n.a n.a n.a excluded

t (DoF=2) n.a n.a n.a n.a n.a n.a n.a

t (DoF=8) 34 n.a n.a n.a n.a n.a n.a

t (DoF=12) excluded n.a n.a n.a n.a n.a 67*

* Benchmark model

D) Measure of over-conservativeness

The loss function estimator is only useful when a VaR model has non null failure

rate. For this reason, the problem of determining whether inconclusive results of Kupiec

and Christoffersen tests were due to over conservative VaR models or to small number

of observations remains. In order to measure how conservative a VaR model is, I will

define a variant of the loss function proposed by Lopez (1998). While the loss function

proposed by Lopez (1998) considers only the time periods in which a violation of VaR
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occurs (in the remaining periods the function has value 0), this new measure considers

only the periods in which the loss is below the estimated VaR (assigning the value 0

when there is violation of the VaR estimate). Thus, we can calculate an average value

of over-conservativeness. The advantage of this measure of over-conservativeness is

that it provides additional information when the Kupiec and Christoffersen tests are

inconclusive.

L′(V aRt(θ), xt,t+1) =

 1 + (V aRt(θ)− xt,t+1)2 if xt,t+1 < V aRt(θ)

0 if xt,t+1 ≥ V aRt(θ)
(1.29)

Define N’ as the number of periods for which VaR estimates are higher than the actual

loss. The sample average is given by:

L̂′ =
1

N ′

T∑
t=1

L′(V aRt(θ), xt,t+1) (1.30)

Table 1.11 presents the results for this measure of over-conservativeness.

Table 1.11: Measure of over-conservativeness (1012AC)
Results obtained for the Measure of over-conservativeness for all correlation assumptions considering Gaussian and
t copulas.

Copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min
Gaussian excluded excluded excluded 28,535 43,336 32,047 excluded

t (DoF=2) 142,319 189,421 196,561 270,523 332,825 316,105 173,720

t (DoF=8) 14,918 34,196 36,247 81,121 108,748 95,007 24,254

t (DoF=12) excluded 20,757 22,055 60,821 85,045 71,498 13,406*

* Benchmark model

According to table 1.11, all VaR models that produced inconclusive results of Ku-

piec and Christoffersen tests are more conservative than our benchmark, as L̂′ is always

higher for these correlation assumptions.

E) Average Quantile Loss
Following Koenker and Bassett (1978) I also employ a different loss function, the

predictive quantile loss which is based on quantile regression.
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QL(V aRt(θ), xt,t+1) =

 | xt,t+1 − V aRt(θ) | (θ) if xt,t+1 < V aRt(θ)

| xt,t+1 − V aRt(θ) | (1− θ) if xt,t+1 ≥ V aRt(θ)

(1.31)

The economic intuition behind the use of the QL function is that the capital forgone

from overpredicting the true VaR should also be taken into account. This function is

asymmetric in view of the fact that underestimation and overestimation have diverse

consequences, as underprediction of risk might lead to liquidity problems and insol-

vency, and overprediction implies higher capital charges which reflect the opportunity

cost of keeping a high reserve ratio. The best VaR method is the one that generates the

lowest average quantile loss (AQL), defined as:

AQL =
1

T

T∑
t=1

QL(V aRt(θ), xt,t+1) (1.32)

Table 1.12 presents the results for the AQL risk measure.

Table 1.12: Average Quantile Loss Function (106AC)
Results obtained for the Average Quantile Loss Function for all correlation assumptions considering Gaussian and t
copulas.

Copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min
Gaussian excluded excluded excluded 1.63 2.05 1.75 excluded

t (DoF=2) 3.76 4.34 4.42 5.19 5.75 5.61 4.15

t (DoF=8) 1.21 1.80 1.86 2.82 3.28 3.06 1.51

t (DoF=12) excluded 1.37 1.43 2.43 2.89 2.65 1.28*

* Benchmark model

According to table 1.12, the minimum values for the average quantile loss function

are obtained in the case of empirical estimator of correlation with t copula with 8 degrees

of freedom and in the case of asset correlation given by Basel Accord minimum value

and t copula with 12 degrees of freedom (the benchmark model).

Considering that our benchmark model satisfies both the unconditional coverage and

the independence properties, which means that is an accurate VaR model according to

Christoffersen (1998), but has a significantly higher average magnitude of exceedance

of VaR estimates according to the loss function estimator and a higher average quantile
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loss than the VaR model considering asset correlation given by the empirical estimator

and assuming t copula with 8 degrees of freedom, and that all the other VaR models are

either rejected in those tests or over conservative, I conclude that the most accurate VaR

model for this portfolio is based on asset correlation given by the empirical estimator

and assuming t copula with 8 degrees of freedom.

1.5 Deterministic versus Stochastic Recovery Rate

In the previous sections I presented VaR estimates assuming a recovery rate given by

Beta distribution sampling with parameters α equal to 8.09 and β equal to 5.13, both

estimated with historical information. In this section I present the results obtained as-

suming that the recovery rate is a constant proportion of the asset value and compare

them with the results produced with stochastic recovery rate.

Considering the parameters α and β estimated with historical information and the

result in equation 1.16, the expected value of the recovery rate is 61%. I will assume

that the recovery rate is constant and equal to this value in the simulation procedure.

I repeated the process of VaR estimation described in previous sections, for the same

portfolio, time periods and correlation assumptions, assuming a deterministic instead of

a stochastic recovery rate. Figures 1.5 to 1.8 present the comparison between all VaR

estimates with stochastic and deterministic recovery rates. The analysis of the graphs

suggests that VaR estimates considering deterministic recovery rates are very similar to

those obtained with stochastic recovery rates.

Tables 1.13 and 1.14 present the results of Kupiec and Christoffersen tests. Regard-

ing Kupiec test, the conclusions are exactly the same that we have previously obtained

with stochastic recovery rate. The results obtained in Christoffersen test considering

deterministic instead of stochastic recovery rate are different for the case of gaussian

copula considering the empirical estimator of correlation and Basel Accord minimum

value for asset correlation (the null hypothesis is now rejected for these correlation as-

sumptions). Despite these differences, the conclusions derived from both tests remain

unchanged and the benchmark model is also the model based on t copula with 12 de-
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Figure 1.5: CVaR - Gaussian copula, Stochastic vs Deterministic Recovery Rate
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Figure 1.6: CVaR - t copula (DoF=2), Stochastic vs Deterministic Recovery Rate
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grees of freedom and correlation given by Basel III Accord minimum value.

Tables 1.15, 1.16 and 1.17 present the loss function, over-conservativeness and av-

erage quantile loss estimates, respectively. The conclusions we derive from these mea-

sures also remain unchanged.

Considering that our benchmark model satisfies both the unconditional coverage and

the independence properties, which means that is an accurate VaR model according to
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Figure 1.7: CVaR - t copula (DoF=8), Stochastic vs Deterministic Recovery Rate
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Figure 1.8: CVaR - t copula (DoF=12), Stochastic vs Deterministic Recovery Rate
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Christoffersen (1998), but has a significantly higher average magnitude of exceedance

of VaR estimates and a higher average quantile loss than the VaR model considering

asset correlation given by the empirical estimator and assuming t copula with 8 degrees

of freedom, and that all the other VaR models are either rejected in those tests or over

conservative, I conclude that the most accurate VaR model for this portfolio considering

deterministic recovery rate is based on asset correlation given by the empirical estimator
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Table 1.13: Kupiec Test - Deterministic Recovery Rate
Results obtained for Kupiec test for all correlation assumptions considering Gaussian and t copulas and deterministic Recov-
ery Rate.

Gaussian copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 65 16 13 0 0 0 24

# observations 72 72 72 72 72 72 72

Failure Rate(%) 90 22 18 0 0 0 33

LRuc 553 72 53 n.a n.a n.a 130

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result Reject H0 Reject H0 Reject H0 n.a n.a n.a Reject H0

t copula (DoF=2) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 0 0 0 0 0 0 0

# observations 72 72 72 72 72 72 72

Failure Rate (%) 0 0 0 0 0 0 0

LRuc n.a n.a n.a n.a n.a n.a n.a

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result n.a n.a n.a n.a n.a n.a n.a

t copula (DoF=8) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 1 0 0 0 0 0 0

# observations 72 72 72 72 72 72 72

Failure Rate (%) 1 0 0 0 0 0 0

LRuc 0 n.a n.a n.a n.a n.a n.a

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result Accept H0 n.a n.a n.a n.a n.a n.a

t copula (DoF=12) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

# exceptions 11 0 0 0 0 0 2

# observations 72 72 72 72 72 72 72

Failure Rate (%) 15 0 0 0 0 0 3

LRuc 41 n.a n.a n.a n.a n.a 2

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result Reject H0 n.a n.a n.a n.a n.a Accept H0

and assuming t copula with 8 degrees of freedom.

The similarity of the conclusions regarding the accuracy of VaR estimates consid-

ering deterministic and stochastic recovery rate suggests that it is possible to save a

significant amount of computation time with low impact on the final results by assum-

ing deterministic recovery rate.
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Table 1.14: Christoffersen Test - Deterministic Recovery Rate
Results obtained for Christoffersen test for all correlation assumptions considering Gaussian and t copulas and deterministic
Recovery Rate.

Gaussian cop-
ula

Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.57 0.02 0.02 0.00 0.00 0.00 0.04

π1 0.95 0.94 0.92 n.a n.a n.a 0.96

LRind 7.49 58.30 50.45 n.a n.a n.a 66

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result Reject H0 Reject H0 Reject H0 n.a n.a n.a Reject H0

t copula (DoF=2) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

π1 n.a n.a n.a n.a n.a n.a n.a

LRind n.a n.a n.a n.a n.a n.a n.a

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result n.a n.a n.a n.a n.a n.a n.a

t copula (DoF=8) Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.01 0.00 0.00 0.00 0.00 0.00 0.00

π1 0.00 n.a n.a n.a n.a n.a n.a

LRind n.a n.a n.a n.a n.a n.a n.a

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result n.a n.a n.a n.a n.a n.a n.a

t copula
(DoF=12)

Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min

π0 0.02 0.00 0.00 0.00 0.00 0.00 0.01

π1 0.91 n.a n.a n.a n.a n.a 0.50

LRind 44.35 n.a n.a n.a n.a n.a 5.00

Critical Value 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349 6.6349

Test Result Reject H0 n.a n.a n.a n.a n.a Accept H0

Table 1.15: Loss Function Estimator - Deterministic Recovery Rate(1012AC)
Results obtained for the Loss Function Estimator for all correlation assumptions considering Gaussian and t copulas
and deterministic Recovery Rate.

Copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min
Gaussian excluded excluded excluded n.a n.a n.a excluded

t (DoF=2) n.a n.a n.a n.a n.a n.a n.a

t (DoF=8) 56 n.a n.a n.a n.a n.a n.a

t (DoF=12) excluded n.a n.a n.a n.a n.a 114
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Table 1.16: Measure of over-conservativeness - Deterministic Recovery Rate(1012AC)
Results obtained for the Measure of over conservativeness for all correlation assumptions considering Gaussian and
t copulas and deterministic Recovery Rate.

Copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min
Gaussian excluded excluded excluded 27,325 42,429 32,552 excluded

t (DoF=2) 142,231 190,314 195,790 271,191 334,248 309,256 172,122

t (DoF=8) 14,640 32,972 36,148 79,351 111,735 93,678 24,213

t (DoF=12) excluded 20,383 21,857 60,004 84,577 71,187 13,232

Table 1.17: Average Quantile Loss Function - Deterministic Recovery Rate (106AC)
Results obtained for the Average Quantile Loss Function for all correlation assumptions considering Gaussian and t
copulas and deterministic Recovery Rate.

Copula Emp. Est. Moody’s S&P S&P (old) Kiff Basel Max Basel Min
Gaussian excluded excluded excluded 1.60 2.02 1.76 excluded

t (DoF=2) 3.75 4.35 4.41 5.19 5.76 5.54 4.13

t (DoF=8) 1.22 1.77 1.86 2.79 3.32 3.04 1.50

t (DoF=12) excluded 1.36 1.42 2.42 2.88 2.64 1.33
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Chapter 2

VaR in Credit Default Swaps
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2.1 Literature Review

In recent years there have been several studies that propose different methods of cal-

culating VaR. Most of these studies focus on the calculation of VaR for stock returns.

The methods that have received most attention fall into four categories: nonparametric,

parametric, semi-parametric and hybrid. Among the parametric models, there is the

GARCH model proposed by Bollerslev (1986) and all the variants that have been intro-

duced, such as EGARCH proposed by Nelson (1991) and GJR model of Glosten et al

(1993). Concerning the semi-parametric models, Engle and Manganelli (2004) propose

a new approach to VaR estimation, the Conditional Autoregressive model (CAViaR),

which includes V aRt−1 as an explanatory variable. For a semi-parametric method,

Danielsson and De Vries (2000) propose the use of Extreme Value Theory for calcu-

lating VaR. Regarding the non parametric models, the most widely used are Historical

Simulation and Filtered Historical Simulation. McNeil and Frey (2000) analyze a hy-

brid model which combines GARCH with Extreme Value Theory.

The diversity of methods available to estimate VaR led to a wide range of studies that

provide empirical evidence of the performance of VaR approaches. Kuester et al (2006)

compare the out of sample performance of several methods of predicting univariate

VaR for the NASDAQ index and find that the hybrid method, combining a heavy-tailed

GARCH filter with an Extreme Value Theory-based approach, performs best overall,

closely followed by a variant on a Filtered Historical Simulation. They also find that

none of the CAViaR models tested performs adequately in all tests at any quantile level,

showing poor out of sample performance. Regarding the Mixture models, they conclude

that some of these models perform worse in smaller window sizes due presumably to

their rather large parameterizations and, for this reason, they are generally outperformed

by Filtered Historical Simulation and Extreme Value Theory.

Sener et al (2012) test and rank twelve different popular VaR methods on the equity

indices of eleven emerging and seven developed markets, covering the period of the re-

cent sub-prime mortgage crisis, and find that asymmetric methods, such as EGARCH,

generate the best performing VaR forecasts and the methods based in Extreme Value

Theory (EVT) approaches perform the worst. Rubia and Sanchis-Marco (2013) con-

sider the return-restricted CAViaR models originally proposed by Engle and Manganelli
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(2004) as well as alternative models such as EVT and GARCH and use different vari-

ables which are related to measures of trading activity and liquidity. They find that

Quantile Regression-based risk models that account for the volatility and other market

conditions outperform the other approaches.

Rossignolo et al (2012) performs a comparative study of VaR models based on data

from emerging and frontier markets and find that Historical Simulation and Filtered His-

torical Simulation are inaccurate, conditional models represent an improvement, both

for GARCH and EGARCH techniques, and heavy tailed distributions, particularly EVT,

reveal as the most accurate technique to model market risk. A study performed by Hal-

bleib and Pohlmeier (2012), in which they propose the combination of different VaR

approaches to provide robust and precise VaR forecasts and provide empirical evidence

of the performance of a wide range of standard VaR approaches, supports the results

of Rossignolo et al (2012), as they also find that the best VaR approaches are based on

EVT.

The forecast of VaR in CDS requires, first, the estimation of the price of CDS in

the specific quantile of interest and then the calculation of VaR using a mark-to-market

technique. The key issue is the estimation of the price of the CDS in the tail of the price

distribution. For this purpose, the methods typically used to calculate VaR for stock

returns are applicable.

Considering the overall performance of Filtered Historical Simulation reported by

Kuester et al (2006) and the empirical evidence of the performance of Extreme Value

Theory reported in several of the recent studies presented above, I consider that these

are promising methods of estimating VaR and thus I will test them in this study. Follow-

ing Kuester et al (2006), I will also estimate VaR considering the Historical Simulation

method and GARCH models. In the analysis of Kuester et al (2006), the Mixture mod-

els present poor out of sample performance in small samples, which are the situations

of most interest in the evaluation of CDS due to their recent history, and for this reason

these models are not considered in this study.

There is a growing interest in employing Quantile Regression (QR) in the finance lit-
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erature. QR was first applied to VaR estimation by Taylor (1999) and Chernozhukov and

Umantsev (2000). Taylor (1999) applies QR to estimate multiperiod VaR in the context

of exchange rates and compare this new approach with the traditional methods which

first estimate the volatility and then assume a probability distribution. Chernozhukov

and Umantsev (2000) use QR also to model VaR without, however, examining the per-

formance of this method.

Engle and Manganelli (2004) propose a particular specification for QR, called CAViaR.

Instead of modeling the whole distribution of returns, this model allows to concentrate

in the quantile directly and specify the evolution of the quantile over time using a special

type of autoregressive process. Chen et al (2012) propose a new family of VaR models

based on QR and find that these models consistently ranked best for VaR forecasting,

comparing to the classical approaches based on GARCH models.

Gebka and Wohar (2013) analyze the causality between past trading volumes and

index returns in the Pacific Basin countries and find that the QR method reveals strong

nonlinear causality even though this relation was not detected by OLS regression. Lee

and Li (2012) employ a QR approach and show that the effect of diversification on firm

performance is not homogeneous across various quantile levels. Baur (2013) proposes

an alternative framework to decompose the dependence using QR and demonstrates that

this methodology provides a detailed picture of dependence including asymmetric and

non-linear relationships. Allen et al (2012) apply QR to measure extreme risk of various

European industrial sectors both prior to and during the recent financial crisis and find a

highly significant difference in the distance to default between quantiles 50% and 95%.

Pires et al (2011) apply QR approach in order to model the distribution of CDS

spreads and, through the use of mark-to-market techniques, calculate VaR. Inspired by

the results of Pires et al (2011), in this study I also employ QR to identify the de-

terminants of CDS spreads in specific quantiles of interest, in order to calculate VaR.

However, I extend the results of Pires et al (2011) by augmenting the sample to include

the recent credit crisis and by testing additional explanatory variables.

The use of QR in the context of forecasting VaR is typically associated with differ-

ent specifications of the CAViaR model. However, in this study I use QR to identify the

determinants of the price of CDS and then calculate VaR, using mark-to-market tech-
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niques. I compare the performance of the VaR model based on this specification of the

QR with the results obtained with Historical Simulation, Filtered Historical Simulation,

GARCH-based models and EVT, through the application of backtesting methodologies.

To the best of my knowledge this is the first time that backtesting methodologies are

applied to compare different methods of estimating VaR in CDS.

A wide range of macroeconomic and microeconomic factors have been analyzed in

the context of determinants of CDS spreads. Das et al (2009) compare the explana-

tory power of market-based and accounting-based models of CDS spreads and find that

models including both accounting and market information perform better than separate

models. Ericsson et al (2009) conclude that variables such as volatility and leverage,

which are theoretically implied variables, explain a significant proportion of CDS varia-

tions. Zhang et al (2005) analyze the impact of equity returns and volatility of the refer-

ence entity on the CDS premium and find that CDS spreads can be largely explained by

intra-day refined measures of historical volatility and jump probability. Byström (2005)

shows that CDS spreads are negatively correlated with stock prices and positively cor-

related with stock price volatility. Morkoetter et al (2012) show that counterparty de-

fault risk measures have a negative impact on CDS spreads. Regarding the measure of

counterparty default risk, Campbell et al (2008) find that financial ratios such as prof-

itability, leverage and liquidity play an important role in explaining the determinants of

bankruptcy and failure. Following these studies, I use market-based and accounting-

based factors as determinants of CDS spreads, namely stock returns and stock price

volatility and also financial ratios such as leverage, return on assets and liquidity.

Tang and Yan (2007) provide evidence that liquidity risk and liquidity level explain

a significant proportion of CDS spread variation. CDS liquidity, measured by absolute

bid ask spread, is introduced by Bongaerts et al (2011) and Pires et al (2011) as an

explanatory variable of CDS premiums. Pires et al (2011) find that CDS spreads sig-

nificantly increase with absolute bid ask spreads across all conditional quantiles of the

CDS distribution. Based on these results, in this study I use absolute bid ask spread as

a measure of CDS market liquidity.
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2.2 CDS Price

2.2.1 Estimation Techniques

Banks and regulators are primarily interested in the aggregate VaR across trading ac-

tivities, raising the question of whether to start by aggregating the data and then apply

a univariate VaR model or to start with disaggregate data and then apply multivari-

ate structural portfolio VaR model. In evaluating the portfolio VaR, the multivariate

model can have some advantages over the univariate model. According to Bauwens et

al (2006), one of these advantages is that once we get the covariance matrix by the mul-

tivariate approach, we do not need to calculate again the covariance matrix even if the

weights of each asset are changed; under the univariate model, we should evaluate the

variance of portfolio again whenever the weights of each asset are changed. Another

advantage is that a multivariate model may improve the evaluation performance in up-

dating the variances and correlations by considering the individual characteristics of the

portfolios components and estimating their linear comovement. However, Berkowitz

and O’Brien (2002) show that the aggregation and modeling problems involved in the

multivariate approach may lead to poor forecasting accuracy and the simple univariate

model can even outperform these complicated structural models. Considering that uni-

variate models are a useful complement of the more complex structural models and may

even outperform these models and be sufficient for forecasting portfolio VaR, I restrict

attention to the univariate case.

A) Quantile Regression

The sensitivities to empirical determinants of CDS spreads may change according

to the level of CDS spread itself. Given this, a simple conditional mean regression may

not be appropriate to completely describe CDS spreads and in this case a more flexible

framework is required, for example the Quantile Regression.

The Quantile Regression was introduced by Koenker and Bassett (1978) and is an

extension of the conditional mean regression to a collection of models for different con-

ditional quantile functions.
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The θ-th regression quantile is any solution to the Quantile Regression minimization

problem:

min
β

[ ∑
t|yt≥xtβ

θ|yt − xtβ|+
∑

t|yt<xtβ

(1− θ)|yt − xtβ|
]

(2.1)

where xt is a row vector of explanatory variables with first element equal to 1 and β

is a vector of parameters. The usual procedure for building an explanatory model for

a variable is to look for a relationship between past observations of that variable and

past observations of potential explanatory variables. This is not a feasible procedure for

building a model for the quantiles of a variable because past observations of the quan-

tiles are not available (they are unobservable). The attraction of Quantile Regression

is that past observations of the quantiles are not required because the variable itself is

regressed on explanatory variables to produce a model for the quantile.

An interesting aspect regarding Quantile Regression is the mitigation of some typi-

cal empirical problems, such as the presence of outliers, heterogeneity and non-normal

errors. The Quantile Regression results are robust to heavy tailed distributions while the

standard regression estimators are sensitive to departures from the normality assump-

tion; the Quantile Regression results are invariant to outliers of the dependent variable

that tend to ±∞ according to Coad and Rao (2006), while the standard regression esti-

mators are highly sensitive to outliers; finally, the Quantile Regression approach avoids

the assumption that the error terms are identically distributed at all points of the condi-

tional distribution, allowing to acknowledge firm heterogeneity and admit the possibility

that slope parameters vary at different quantiles of the conditional distribution of the de-

pendent variable.

B) GARCH Models

The data on which the variances of the error terms are not equal, meaning that the

error terms may reasonably be expected to be larger for some data points than for others,

is said to suffer from conditional heteroskedasticity. ARCH and GARCH models treat
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heteroskedasticity as a variance to be modeled and as a result a prediction is computed

for the variance of each error term.

In some cases, the key issue is the variance of the error terms and this question often

arises in financial applications where the variance of the dependent variable (for exam-

ple returns) represents the risk level of interest. Financial data suggests that some time

periods are riskier than others and these riskier times are not scattered randomly across

monthly or quarterly data. Instead, there is a degree of autocorrelation in the riskiness of

some financial applications. These types of issues are handled by ARCH and GARCH

models. For more details on GARCH models, please see Bollerslev (1986).

In this study I employ three types of GARCH models, the general GARCH, the

EGARCH and GJR combined with two distributions of innovations processes, namely

Normal and Student’s t.

i) GARCH(P,Q)

The general GARCH(P,Q) model for the conditional variance of innovations is

σ2
t = k +

P∑
i=1

Giσ
2
t−1 +

Q∑
j=1

Ajε
2
t−j (2.2)

with constraints ∑P
i=1Gi +

∑Q
j=1 Aj < 1

k > 0

Gi ≥ 0

Aj ≥ 0

The basic GARCH(P,Q) model is a symmetric conditional variance process as it ig-

nores the sign of the disturbance.

ii) EGARCH(P,Q)

The general EGARCH(P,Q) model for the conditional variance of innovations, with
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leverage terms and an explicit probability distribution assumption is

log σ2
t = k +

P∑
i=1

Gi log σ
2
t−1 +

Q∑
j=1

Aj

[
|εt−j|
σt−j

−E
{
|εt−j|
σt−j

}]
+

Q∑
j=1

Lj

(
εt−j
σt−j

)
(2.3)

where

E{|zt−j|} = E

{
|εt−j|
σt−j

}
=

√
2

π

for the normal distribution, and

E{|zt−j|} = E

{
|εt−j|
σt−j

}
=

√
ν − 2

π

Γ(ν−1
2

)

Γ(ν
2
)

for the Student’s t distribution with degrees of freedom ν > 2.

iii) GJR(P,Q)

The general GJR(P,Q) model for the conditional variance of innovations with leverage

terms is

σ2
t = k +

P∑
i=1

Giσ
2
t−1 +

Q∑
j=1

Ajε
2
t−j +

Q∑
j=1

LjSt−jε
2
t−j (2.4)

where St−j = 1 if εt−j < 0 and St−j = 0 otherwise, with constraints

∑P
i=1 Gi +

∑Q
j=1Aj + 1

2

∑Q
j=1 Lj < 1

k ≥ 0

Gi ≥ 0

Aj ≥ 0

Aj + Lj ≥ 0

For GARCH(P,Q) and GJR(P,Q) models, the lag lengths P and Q and the magnitudes

of the coefficients Gi and Aj determine the extent to which disturbances persist. In the

case of EGARCH models, the persistence is captured by terms Gi.

I compute the θ-quantile estimate of the distribution of interest by first fitting a

GARCH model to the first order differences of CDS price. Following Engle and Man-
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ganelli (1999), the one-period-ahead VaR estimate is calculated with following equa-

tion:

V aRt+1(θ) = µ̂t+1 + σ̂t+1Qθ(ẑ) (2.5)

where µ̂t+1 and σ̂t+1 are the estimated conditional mean and conditional standard devi-

ation for t + 1, respectively, and Qθ(ẑ) is the empirical θ-quantile of the standardized

residuals. In this study, I assume that the expected change in the CDS spread is zero. In

terms of equation 2.5, this corresponds to µ̂t+1 = 0.

This estimation is a mix of a GARCH and a Historical Simulation applied to the

standardized residuals. Thus, whether the error distribution is conditional normal or

follows other distribution, it is straightforward to compute the one-step-ahead θ-quantile

forecast, since under all distributions we can compute the corresponding quantiles which

we then multiply by our conditional standard deviation forecast.

In order to estimate VaR for period t + h, I apply a simple scaling rule. Assuming

that µ̂t+h = 0, this corresponds to multiplying the one-period-ahead estimated stan-

dard deviation by the square root of the number of periods ahead of the forecast (h),

according to the following equation:

V aRt+h(θ) =
√
hσ̂t+1Qθ(ẑ) (2.6)

C) Historical Simulation

The simplest way to estimate the θ-quantile of a distribution is to use the sample

quantile estimate based on historical data, which is referred to as Historical Simulation.

For Historical Simulation (HS), the θ-quantile estimate for t+1 is given by the empirical

θ-quantile, Qθ, of a moving window of w observations up to time t.

Despite being a popular way to estimate the θ-quantile of a particular distribution,

Historical Simulation has some major flaws. First, this method ignores the possible non-

iid nature of the data. Second, the length of the window one chooses must satisfy two

contradictory properties: it must be large enough in order to make statistical inference

significant and it must not be too large to avoid the risk of taking observations outside of

the current volatility cluster. Finally, when the market moves from a period of relatively

low volatility to a period of relatively high volatility (or vice versa), θ-quantile estimates
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based on Historical Simulation will be biased downward (upward).

A variant of the Historical Simulation method presented above is the Filtered His-

torical Simulation (FHS), which has shown very good results in the study performed by

Kuester et al (2006). For FHS, a GARCH model is used to prefilter the data and the

nonparametric nature of Historical Simulation is retained by bootstrapping (sampling

with replacement) from the standardized residuals. These bootstrapped standardized

residuals are then used to generate time paths of future CDS prices. One of the appeal-

ing features of FHS is its ability to generate relatively large deviations not found in the

original time series.

D) Extreme Value Theory

Extreme value theory (EVT) focuses on the tails of the distribution of interest. Fol-

lowing Diebold et al (1998), in this study I fit a time-varying model to the data and then

estimate the tail of the standardized residuals by an EVT model, using the limit result

for peaks over threshold (POT). This process first extracts the filtered residuals from

each series with a GARCH model, then constructs the sample marginal cumulative dis-

tribution function of each asset using a Gaussian kernel estimate for the interior and a

generalized Pareto distribution estimate for the tails.

McNeil and Frey (2000) combine an AR(1)-GARCH(1,1) process, assuming normal

innovations, with the POT method. The filter with normal innovations is capable of re-

moving the majority of clusterings and for this reason I also assume normal innovations

in this study.

The one-day-ahead VaR estimate is given by equation 2.5, where µ̂t+1 and σ̂t+1 are

the estimated conditional mean and conditional standard deviation for t + 1, respec-

tively, obtained from a AR(1)-GARCH(1,1) process. Moreover, Qθ(ẑ) is the θ-quantile

estimate of the standardized residuals, obtained with the POT method. The estimation

of VaR for period t + h is given by equation 2.6. I refer to Embrechts et al (1997) for

more details on EVT.
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2.2.2 VaR Estimation

The value at risk measure places an upper bound on losses in the sense that these will

exceed the VaR threshold with a small target probability, typically chosen between 1%

and 5%. Conditional on the information given up to time t, the VaR for period t+h at

the confidence level θ is given by:

V aRθ
t+h := Qθ(L|Xt) = inf{l ∈ R : P (L > l|Xt) ≤ 1− θ}, 0 < θ < 1 (2.7)

where Qθ(.) denotes que quantile function, L is the loss in period t and Xt represents

the information available at date t. For implementing VaR based measures, one seeks

a precise quantile estimate relatively far out in the right tail of the loss distribution for

some specified future date.

The estimation methods described in the previous section are used to estimate the

price of a CDS in time period t, with a certain confidence level, meaning that the output

of these estimation methods will be a price for the CDS. The price evolution of CDS

allows us to understand the evolution of the risk of the underlying entity and compare

the predicted price with the price observed in the market. Thus, by examining the price

of CDS over time we can compare different estimation methods and analyze their ac-

curacy, but the price of CDS alone does not provide a loss distribution and a Value at

Risk. To transform the distribution of CDS spreads into a distribution of losses I use

the reduced-form model described in O’Kane and Turnbull (2003). This transformation

allows us to convert basis points into monetary values, thus allowing the calculation of

Value at Risk.

Following O’Kane and Turnbull (2003), unlike bonds the gain or loss from a CDS

position cannot be computed simply by taking the difference between current market

quoted price plus the coupons received and the purchase price. To value a CDS we need

to use a term structure of default swap spreads, a recovery rate assumption and a model.

The present value of a position initially traded at time t0 at a contractual spread of

S(to, tN) with maturity tN and which has been offset at valuation time tV with a position
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traded at a spread of S(tV , tN) is given by:

MTM(S(to, tN), λ) = ±[S(tV , tN)− S(to, tN)]×RPV 01(tV , tN) (2.8)

where

RPV 01 =
N∑
n=1

Z(tn) ·∆tn
[
Q(tn) +

(
Q(tn−1)−Q(tn)

)
· 1pa

2

]
(2.9)

denotes the Risky present value of 1 bp paid on the premium leg, the indicator 1pa

equals 1 if the contract specifies premium accrued and 0 otherwise, ∆tn is the number

of years between payment dates, Z(tn) is the risk-free discount factor for tn (e−rtn),

Q(tn) = e−λtn is the probability of survival until tn and λ is the hazard rate. The

positive sign is used for the protection buyer and the negative sign for the protection

seller.

Following Pires et al (2011), I assume a flat recovery rate (R) of 40% and a flat

interest rate (r) of 5%. The approximate break-even flat hazard rate is computed as:

λ =
S

(1−R)

Let Si,t denote the CDS spread for entity i at time t and λθ =
F−1
Si,t

(θ|Xi,t)

(1−R)
denote

the hazard rate for the estimated CDS price at a given quantile θ. The value at risk is

computed as:

V aRθ(Si,t|Xi,t) = MTM(Si,t, λ
θ)

The Value at Risk represents the change in value of a contract initially negotiated at

price Si,t due to a change in the hazard rate to λθ. This new hazard rate represents a

new CDS spread at a given quantile θ. Different methods of CDS price estimation will

lead to potentially different price estimates at a given quantile θ, i.e., each estimation

technique will be associated with a specific λθ for the time t and firm i. Assuming

that I am a protection seller, I am interested in the risk of the CDS spread increasing.

Therefore, I will focus on the forecast of upper quantiles of the price of CDS, namely

quantile 99.
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2.3 Backtesting VaR

The Value at Risk represents the change in value of a contract initially negotiated at price

Si,t due to a change in the hazard rate to λθ. However, the real change in the hazard rate

observed in the market in a specific time interval might be higher or lower, meaning that

the real mark-to-market might be higher or lower than predicted by the VaR model. For

this reason, the backtesting will be performed by comparing the estimated VaR with the

real mark-to-market considering the implicit hazard rate of the maximum price that the

CDS reached in the following 1, 3, 10 and 30 days, allowing us to check the accuracy

of VaR estimates with a time horizon of 1, 3, 10 and 30 days.

The backtesting of VaR methods in CDS will be performed based on the tests pre-

sented in chapter 1 and two additional tests, namely Conditional Tail Expectation and

Dynamic Quantile Test, which I present in the following.

A) Conditional Tail Expectation

Artzner et al (1999) present Conditional Tail Expectation as a measure of risk de-

fined by:

CTEθ(X) = E[xt,t+1|xt,t+1 > V aRt(θ)] (2.10)

The CTE measure should be interpreted carefully and should be examined in con-

junction with other methods of backtesting, such as the Average Quantile Loss, because

the value of the loss observed when there is a violation of VaR gives an idea of the

severity of the loss but gives no indication of the closeness between the loss and the

VaR estimate, i.e., there may be a violation of VaR and loss observed may be extremely

high, and yet, the estimated VaR is very close to the observed loss.

B) Dynamic Quantile Test

Engle and Manganelli (2004) propose a test based on the regression of It on a re-

53



gressor matrix X that contains lagged hits, It−1,...,It−p, for example:

It = θ0 +

p∑
i=1

βiIt−i + µt, (2.11)

where, under the null hypothesis, θ0 = θ and βi = 0, i = 1, ...p. In vector notation, we

have:

I − θι = Xβ + µ (2.12)

where ι is a vector of ones.

Invoking the central limit theorem yields

β̂LS = (X ′X)−1X ′(I − θι) asy∼ N
(
0, (X ′X)−1θ(1− θ)

)
(2.13)

The DQ test consists in testing some linear restrictions in a linear model that links the

violations to a set of explanatory variables. Tests such as the proposed by Christoffersen

(1998) can detect the presence of serial correlation in the sequence of indicator functions

but this is only a necessary but not sufficient condition to assess the performance of a

quantile model because, in some situations, the unconditional probabilities of exceeding

the quantile are correct and serially uncorrelated but the conditional probabilities given

the quantile are not. The tests presented above have no power against this form of

inefficiency.

Considering that the empirical application in this study covers CDS with short his-

tory and in order to minimize the loss of information,the regressor matrix X contains

the constant and two lagged hits.

2.4 Empirical Analysis

2.4.1 Data Sample

I use the Bloomberg Financial Services database to obtain all the names that belonged

to any of the first 16 series of two important CDS indexes for the US market: the CDX

North America Investment Grade and the CDX North America High Yield. I restrict
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the sample to public traded firms by keeping only the names for which I am able to

find a matching CUSIP in the CRSP and COMPUSTAT databases. I am left with 242

different names. For these names, I collect daily market data (CDS bid and ask quotes,

stock price, and market capitalization) and quarterly accounting data (total assets, total

liabilities, total equity, cash holdings, and net income). The sample is from Sep/2001 to

Apr/2011.

The original database comprises 330,852 daily observations, corresponding to 242

CDS names. Observations with missing information regarding the bid or ask price of

CDS, the stock market variables or accounting data are deleted (25,409 records). Only

the daily records with missing information are removed, rather than all daily records

relating to Names for which at some point in time there was missing information. The

records with insufficient information for calculating the historical volatility are also re-

moved (1,162 daily records). For this purpose, it is considered that it takes at least five

days of information in order to calculate the volatility associated with a particular refer-

ence entity. The analysis of variable bid ask spread reveals extreme values that indicate

unusual events, with potential significant impact on statistical estimation. For this rea-

son, the records in the tails of the distribution of variable bid ask spread are removed,

namely the records below percentile 1 and above the percentile 99 (6,109 observations).

The final database consists of 298,172 records relating to 227 CDS names. The average

number of CDS names per month is presented in Figure 2.1.

The estimation of Quantile Regression is based on the entire database. The esti-

mation of GARCH models, Historical Simulation, Filtered Historical Simulation and

Extreme Value Theory is based on CDS names chosen from the available 227 reference

entities. In order to have a good control group with a long history I choose 5 CDS names

with the largest number of observations (between 2228 and 2181 observations). Addi-

tionally, in order to test the adequacy of QR for estimating VaR in products with short

history, I also select 5 CDS names with the smallest number of observations (between

65 to 223 observations). None of these CDS names defaulted in the sample period. Ta-

ble 2.1 presents some relevant summary statistics for these CDS names.
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Figure 2.1: Average number of CDS names per month

Table 2.1: Summary Statistics - CDS names
Summary statistics of the ten CDS names used in the empirical analysis, for the period from September 2001 to April 2011.
Id Company Name Start Date End Date Obs Mean Std.Dev. Skew. Kurt. Min Max
1 Int. Bus. Machines C. 16-10-2001 15-04-2011 2288 35 21 1,4 5,5 6 136
2 Wal-Mart Stores Inc 16-10-2001 15-04-2011 2228 29 23 1,8 6,2 6 133
3 Dow Chemical Co 26-03-2002 15-04-2011 2184 96 104 2,9 13,3 14 675
4 Int. Paper Co 26-03-2002 15-04-2011 2183 122 125 3,1 13,9 32 851
5 Macy’s Inc 26-03-2002 15-04-2011 2181 145 162 2,5 10,0 27 1037
6 Rite Aid C. 30-06-2006 15-04-2011 223 1019 577 1,5 6,5 383 3757
7 KB Home 14-07-2006 13-07-2009 91 402 158 -0,4 1,9 131 701
8 Forest Oil C. 06-02-2008 15-04-2011 74 380 84 0,3 1,9 238 525
9 Amkor Technology I. 06-02-2008 15-04-2011 67 574 138 1,0 4,0 394 998
10 AES Corp. 07-02-2008 15-04-2011 65 378 96 3,0 10,7 326 767

The financial time series usually exhibit special statistical properties, namely volatil-

ity clustering, significant kurtosis and some type of skewness. See for example the data

in table 2.1 and figure 2.2. As a consequence, methods based on the assumptions of

independent and identically distributed observations and normal distribution tend not to

suffice and for this reason it is necessary to apply alternative strategies to predict VaR.

The methodologies applied in this study take these characteristics into consideration.

2.4.2 Variables

CDS price
The dependent variable, CDS pricei,t, is the midpoint between the bid and ask quotes
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Figure 2.2: Walt Disney Co and Time Warner CDS Price
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for firm i and period t.

Stock return
Positive equity returns increase the value of equity and therefore diminish the leverage

of the firm. Accordingly, it is expected that the CDS quote is negatively impacted by

equity returns.

Volatility of stock returns
Higher firm-specific equity volatility indicates a higher probability that the firm’s value

will cross the threshold of default, hence increasing CDS quotes. In this study historical

volatility is computed as:

Historical volatilityt =

√√√√252× 1

n− 1
×

t−1∑
i=t−31

r2
i , (2.14)

Where ri is the daily stock return.

Bid ask spread
The standard measure of liquidity for stocks and bonds is the relative bid ask spread.

However, contrary to stock prices, CDS premiums are expressed in comparable units:

basis points per annum of the notional amount of the contract. Pires et al (2011) provide

examples that give intuition that dividing the CDS bid ask spread by the CDS mid quote

can bias the comparison of liquidity between different reference entities. Based on this

reasoning, absolute rather than relative bid ask spread is used as independent variable.

Leverage
According to Merton (1974), a firm defaults if the value of its assets falls below the

value of its debt and, hence, the leverage ratio is crucial for determining the distance

to default. In other words, an increase in leverage results in an increased probability of

default and consequently in an increase of the CDS premiums. Following Campbell et

al (2008), the leverage ratio of the reference entity is computed considering the book

value and also the market value of equity. The ratio is defined as:
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LeverageMarket=Total Book Liabilities
Total Market Equity

LeverageBook=Total Book Liabilities
Total Book Equity

Whereas total liabilities and total equity are book values being quoted on a quarterly

basis, total market equity is defined as the product of the last equity price and the num-

ber of shares outstanding at the end of day t.

Return on assets
Following Campbell et al (2008), a standard measure of profitability is constructed: net

income relative to total assets. The profitability ratio of the reference entity is computed

considering total assets at book value and also considering the equity component of total

assets at market value and adding the book value of liabilities:

Return on assetsMarket= Net Income
Total Market Equity+Total Book Liabilities

Return on assetsBook= Net Income
Total Book Assets

Liquidity
Following Campbell et al (2008), liquidity is measured as the ratio of a company’s cash

and short term assets to its total assets. The ratio is computed considering total assets

at book value and also considering the equity component of total assets at market value

and adding the book value of liabilities:

LiquidityMarket=
(Cash+Near Cash Item)

Total Market Equity+Total Book Liabilities

LiquidityBook = (Cash+Near Cash Item)
Total Book Assets

Table 2.2 presents some relevant summary statistics of the variables considered in

the study.
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Table 2.2: Summary Statistics - Variables
Summary statistics of the variables available in the empirical analysis considering all CDS names, for the period
from September 2001 to April 2011.

Variable Obs Mean Std. Dev. Min Max
Bid ask spread 298,172 10.633 11.709 2.321 94.98
CDS Price 298,172 154.735 243.443 5.892 60,761.59
LeverageBook 298,172 3.694 21.027 -259.245 2,082.333
LeverageMarket 298,171 2.579 34.754 .070 4,100.762
LiquidityBook 298,172 .062 .069 0 .668
LiquidityMarket 298,171 .044 .051 0 .594
Return on AssetsBook 298,172 .008 .029 -.604 .259
Return on AssetsMarket 298,171 .004 .028 -.673 .211
Stock return 298,172 .0005 .027 -.896 1.024
V olatility of stock return 298,172 .351 .256 .015 4.367
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2.4.3 CDS Price Estimation1

A) Quantile Regression

A panel data analysis is performed to determine the impact of cross-sectional and

time-series variables on CDS spreads. In order to identify variables which generally

contribute most to explain the price of CDS, I start by estimating a linear regression

suitable for panel data for the entire database, considering all independent variables

available, in particular, information regarding the CDS (bid ask spread), information on

the share price of the company (total stock return, stock volatility) and economic and

financial information of the company (return on assets, leverage and liquidity).

To obtain efficient results I test whether the variables exhibit autocorrelation by the

Lagrange multiplier test (Wooldridge (2002)). The test shows evidence of the presence

of autocorrelation, which causes the standard errors of the coefficients to be smaller

than they actually are and higher R-squared. Based on a Hausman test, a fixed-effects

model is specified for the analysis of the determinants of CDS spreads for the regression

model. In order to test for the presence of heteroskedasticity, that is, the error terms

µi,t do not have constant variance for firm i and time period t, a modified Wald test

for groupwise heteroskedasticity in fixed effects regression model is performed with

the null hypothesis that the variance of one group j equals the overall variance (σ2
j =

σ2
overall). The null hypothesis is rejected. Considering that there is evidence of the

presence of autocorrelation and heteroskedasticity, it is applied a robust estimator of the

error variance matrix against both heteroskedasticity and autocorrelation.

To check whether time fixed effects are needed when estimating the fixed-effects

model, I include time dummies for each period in the regression model and, based on

the F-test, I conclude that time fixed effects are needed. Taking into account these ad-

justments, the different specifications for the financial ratios based on book values and

market values of equity, and the other variables available, several alternative specifi-

cations for the regression are tested. The variables that show statistical significance

and economic intuition in explaining the determinants of the price of the CDS with the

highest explanatory power are: bid ask spread, the stock return, the volatility of stock

1Linear Regression and Quantile Regression for panel data were estimated with the software Stata.
The remaining models were estimated with the software Matlab.
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returns, return on assets and leverage, both based on the book value of equity, and time

dummies.The regression model is designed as:

CDS spreadi,t = β1bid ask spreadi,t + β2stock returni,t

+β3stock volatilityi,t + β4return on assets
Book
i,t

+β7leverage
Book
i,t

+ai + at + µi,t

With ai and at representing entity-fixed and time-fixed effects.

Regarding overall goodness of fit, the high F-statistics indicates that all model pa-

rameters are different from zero and the R2 value is 53.8%. Table 2.3 presents the

results.

Comparing with the results obtained in Campbell et al (2008), I conclude that some

of the predictor variables of failure are important to explain the CDS prices but there

are some differences. In the study performed by Campbell et al (2008), the profitability

and leverage ratios that perform better are those that measure the equity component of

total assets at market value, while in this study the ratios that perform better are based

on the book value of equity. Additionally, in Campbell et al (2008) the liquidity ratio is

statistically significant and has a coefficient according to the economic intuition but in

this study these conditions are not verified.

The estimation of linear panel models is a starting point to identify the variables

that contribute most to explain the determinants of the price of CDS and understand the

characteristics of the data. However, the main interest of this study is to identify the

determinants of the price of CDS in a specific quantile and, therefore, I proceed to the

estimation of Quantile Regression. Table 2.4 presents the results obtained with Quantile

Regression, for the 99 quantile, considering robust standard error estimation based on

bootstrap methods.
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The Quantile Regression presented in table 2.4 is estimated considering all the avail-

able sampling window, i.e., the application of this equation for determining the price of

CDS at time period t will be performed based on parameters estimated on a sample

that considers periods after t. To minimize the problem of estimating the price of CDS

based on information that is not yet available at the time, I estimate a new regression in

each period considering only the information available at that time. In each subsequent

period, the new information available is added to the previous sampling window and a

new estimation of Quantile Regression is performed. Taking into account, on the one

hand, the importance of having a database sufficiently representative of the determinants

of the price of CDS and, second, that since the financial crisis in 2008 there has been

a sudden increase in the price of the CDS, the first regression is performed considering

the period 2001-2008 and from that date new regressions are estimated for each month

until April 2011. The estimation of VaR and its backtesting will be made based on the

monthly regressions, whose results are presented in the appendix. Comparing the results

obtained in each monthly regression over time, I find that the coefficient of the variable

bid ask spread has increased in each monthly regression, opposed to the reduction in the

absolute value of the coefficients of the variables stock volatility, return on assets and

leverage. This change in the monthly regression coefficients reflects an increase in the

contribution of bid ask spread to explain the price of CDS in the 99th percentile.

B) GARCH Models

The original time series are not stationary as can be seen by the results of the Dickey-

Fuller test presented in table 2.5. In order to transform the original time series into sta-

tionary series, I apply first order differences. The time series are modeled with three

types of GARCH models, the GARCH(1,1), the EGARCH(1,1) and GJR(1,1), com-

bined with two distributions of innovations processes, namely Normal and Students’s

t.

The estimation of GARCH models considering all the available sampling window

followed by the application of these equations for determining the price of CDS at time

period t would be performed based on parameters estimated on a sample that considers

periods after t. For this reason, in line with the procedure followed for Quantile Regres-
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Table 2.3: Panel Regression Results
Results from panel regression model for the CDS price. This table shows the
estimated parameters and the t statistics (in parentheses) using the entire data
sample. * refers to p-values smaller than 0.05, ** refers to p-values smaller than
0.01, *** refers to p-values smaller than 0.001. Full results of the regression,
including the time dummies are available upon request.

CDS spread
Panel Regression Within R2=53.8%
Bid ask spread 12.85***

(366.25)

Stock total return -65.42***
(-7.62)

Stock volatility 161.0***
(97.90)

Return on assetsBook -265.1***
(-30.25)

LeverageBook 0.102***
(8.73)

Table 2.4: Quantile Regression Results
Results from Quantile Regression model for the CDS price. This table shows
the estimated parameters and the t statistics (in parentheses) using the entire data
sample for the 99 quantile. * refers to p-values smaller than 0.05, ** refers to
p-values smaller than 0.01, *** refers to p-values smaller than 0.001. Full results
of the regression, including the time dummies are available upon request.

CDS spread
Quantile 99 Pseudo R2=72.2%
Bid ask spread 18.66***

(70.52)

Stock total return -160.0**
(-2.60)

Stock volatility 389.7***
(11.94)

Return on assetsBook -605.4***
(-16.52)

LeverageBook 0.361***
(11.40)
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Table 2.5: Augmented Dickey-Fuller test
Results from the Augmented Dickey-Fuller test for the ten CDS names used in the empirical analysis. The null hypothesis is
that CDS price series has a unit root.

CDS id 1 2 3 4 5 6 7 8 9 10
p-value 0.2121 0.5072 0.2928 0.3641 0.3186 0.5606 0.5953 0.3169 0.4216 0.2461

sion, I estimate GARCH models in each period for each reference entity considering

only the time series available at that time. In each subsequent period, the new infor-

mation available is added to the previous sampling window and the GARCH models

are reestimated. Similar to the Quantile Regression approach, the first GARCH models

are estimated considering the period 2001-2008 and from that date onwards GARCH

models are reestimated for each month until April 2011. The estimation of VaR and

its backtesting will be made based on the monthly GARCH models. Each estimated

GARCH model will lead to different percentiles of the series of standardized residuals

and to different time series of conditional variance, which are then used to determine

the θ-quantile of the distribution of CDS price for each reference entity at each time pe-

riod t. Due to its extent, the results of all GARCH models were not included in the study.

C) Historical Simulation
The Historical Simulation methodology is applied considering a moving window of

200, 100, 60 and 30 days observations up to time t. Considering the small number of

observations available for the CDS names with sort history, in these cases I will present

only the results of HS considering a moving window of 30 days.

D) Extreme Value Theory
In order to produce results comparable to the previous methods, EVT will also be

applied to the 5 CDS names with the largest number of observations and 5 CDS names

with the smallest number of observations.

2.4.4 Backtesting Empirical Results

Although the performance varies across modeling approaches and distributional as-

sumptions, some patterns emerge. I first discuss the performance of VaR models applied
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to CDS names with short history and considering a prediction horizon of 1 day, then the

results obtained for CDS names with long history and considering a time horizon of

30 days, and finally the performance obtained for the remaining combinations of CDS

names and VaR estimation horizons.

As the number of observations for CDS names with short history is small and HS is

based on the past observations of VaR, in the case of HS only the results considering the

past 30 days are presented. According to table 2.6, at the 1% level, the models that per-

form well more often with respect to violation frequencies are QR, GARCH(T), GJR(N)

and FHS (the criteria is satisfied for 3 CDS names, out of 5). VaR estimates based on

HS and EGARCH (N) perform quite poorly, followed by EGARCH (T). I now turn to

the information in the sequence of violations, as reflected in the p-values of the LR and

DQ test statistic. The models that perform well more often in terms of LR are also QR,

GARCH(T), GJR(N) and FHS. However, QR and GJR(N) are the models that satisfy

the DQ test more frequently. In general, compared to the other models that verify the

criteria of violation frequency and independence, QR provides the best results in terms

of CTE or AQL.

Summarizing the results for CDS names with short history and considering a prediction

horizon of 1 day: QR is the model that simultaneously satisfies all tests for the larger

number of CDS names; HS and EGARCH (N) are the worst models for these reference

entities.

Next, I turn to the results obtained for CDS names with long history and considering

a time horizon of 30 days, presented in table 2.7. Regarding the violation frequency,

in general all models show high violation rates except QR. QR is the best model as it

verifies the criteria for all CDS names, followed by EVT, GARCH (T) and GJR (T)

which verify the unconditional coverage property only once. All the variations of HS

and GARCH-based methods combined with Normal distribution perform very poorly.

None of the VaR models verifies the independence criteria and the Dynamic Quantile

test. In cases for which, additionally to QR, another model satisfies the violation fre-

quency criteria, QR provides the best results in terms of CTE. In conclusion, QR is also
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the most accurate VaR model for those CDS names with long history and considering a

horizon of 30 days for VaR estimates, compared to the other methods tested in this study.

Regarding CDS names with long history and VaR estimation horizon of 1 day, whose

results are presented in table 2.8, all models have very high failure rate compared to the

1% significance level, except QR and GJR(N). The violation frequency of QR is exces-

sively low, hence, the only model that performs well with respect to violation frequen-

cies is GJR(N). None of the models satisfies the DQ test. According to the table 2.11,

these findings are invariant to the increase of the prediction horizon from 1 to 3 days,

except that the failure rate associated with GJR(N) increases and this method maintains

adequacy in terms of violation frequency only for 2 out of 5 CDS names. Increasing

the VaR prediction horizon to 10 days leads the failure rate of GJR(N) to significantly

overcome the 1% level, as shown in table 2.13, and, hence, the model is considered

inadequate in terms of violation frequencies for all CDS names, while the failure rate

in QR maintains its low levels. These results combined with the previous findings pro-

vide evidence that for CDS with long history QR performs best for higher prediction

horizons (as the failure rate for short horizons is very low) and GJR(N) is adequate only

when the VaR prediction horizon is 1 day.

The results of VaR models for CDS names with short history and considering a pre-

diction horizon of 30 days are inadequate in almost all cases, as presented in table 2.9.

From the 50 cases under analysis (5 CDS names combined with 10 VaR models), only

4 perform well with respect to violation frequencies. In the remaining cases, the fail-

ure rate is either 0% or significantly higher than the 1%. This result provides empirical

evidence to the intuition that none of the VaR models is adequate to estimate VaR in a

relatively long time horizon with such a short history.

Kuester et al (2006) provide empirical evidence that FHS is one of the best VaR ap-

proaches compared to the other models tested in their empirical work. However, in this

study FHS performs poorly for all CDS names considering VaR prediction horizons of 1

and 30 days. According to the tables 2.11 and 2.13, in the case of CDS names with long
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history this finding extends to VaR prediction horizons of 3 and 10 days. According

to tables 2.10 and 2.12, a different conclusion emerges in the case of CDS names with

short history and considering VaR prediction horizons of 3 and 10 days, for which FHS

is the most accurate VaR model in respect to violation frequencies and independence of

the violation series.

Recent studies such as Kuester et al (2006), Rossignolo et al (2012) and Halbleib

and Pohlmeier (2012) provide empirical evidence that EVT is one of the most accurate

techniques to estimate VaR. However, the empirical evidence in this study does not

support the extension of that finding to VaR estimation in CDS, as EVT is not one of

the best VaR models in any combination of short/long history and prediction horizon of

1/3/10/30 days.
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Table 2.6: VaR backtesting for CDS names with short history (1 day)
Backtest results for the CDS names with short history and considering a VaR prediction horizon of 1 day. Entries in paren-
thesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for VaR at
θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with ”-”.
The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are the
significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that the
null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
6 GARCH (N) 3.37% 0.08 0.06 0.00 -2.21 0.48

GARCH (T) 2.25% 0.31 0.02 0.00 -2.95 0.13
EGARCH (N) 6.74% 0.00 0.00 0.00 -1.31 1.15
EGARCH (T) 2.25% 0.31 0.02 0.00 -2.98 4.4E+126
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 1.12% 0.91 0.99 1.00 -5.41 0.07
HS30d 8.20% 0.00 0.00 0.00 -0.49 0.12
FHS 3.37% 0.08 0.06 0.00 -2.21 0.16
EVT 5.62% 0.00 0.11 0.00 -1.27 0.20

7 GARCH (N) 5.56% 0.01 0.01 0.00 -1.18 0.16
GARCH (T) 5.56% 0.01 0.01 0.00 -1.18 0.18
EGARCH (N) 13.89% 0.00 0.15 0.00 -0.54 596.70
EGARCH (T) 11.11% 0.00 0.03 0.00 -0.66 0.19
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 0.00% - - - - 0.06
HS30d 0.00% - - - - 0.05
FHS 5.56% 0.01 0.01 0.00 -1.18 0.17
EVT 5.56% 0.01 0.01 0.00 -1.18 0.93

8 GARCH (N) 4.62% 0.03 0.64 0.05 -0.64 0.09
GARCH (T) 7.69% 0.00 0.39 0.00 0.19 0.12
EGARCH (N) 12.31% 0.00 0.04 0.00 -0.49 0.08
EGARCH (T) 10.77% 0.00 0.16 0.00 0.28 0.10
GJR (N) 1.54% 0.69 0.96 0.99 -1.23 0.05
GJR (T) 4.62% 0.03 0.64 0.05 -0.32 0.09
QR 4.62% 0.03 0.09 0.00 -0.62 0.11
HS30d 13.51% 0.00 0.00 0.00 -0.73 0.30
FHS 6.15% 0.00 0.51 0.00 0.25 0.12
EVT 6.15% 0.00 0.51 0.00 0.25 0.12

9 GARCH (N) 9.52% 0.00 0.01 0.00 -0.66 0.12
GARCH (T) 4.76% 0.03 0.63 0.04 -0.78 0.13
EGARCH (N) 23.81% 0.00 0.00 0.00 -0.20 0.10
EGARCH (T) 7.94% 0.00 0.03 0.00 -0.07 0.05
GJR (N) 3.17% 0.17 0.79 0.00 -1.17 0.06
GJR (T) 6.35% 0.00 0.21 0.00 -0.58 0.08
QR 22.22% 0.00 0.00 0.00 -0.09 0.21
HS30d 17.14% 0.00 0.00 0.00 -0.72 0.39
FHS 1.59% 0.67 0.96 0.99 -0.02 0.08
EVT 1.59% 0.67 0.96 0.99 -0.02 0.08

10 GARCH (N) 4.52% 0.00 0.46 0.00 -1.35 0.15
GARCH (T) 2.71% 0.03 0.14 0.00 -1.59 0.14
EGARCH (N) 3.62% 0.00 0.27 0.00 -1.25 0.16
EGARCH (T) 3.17% 0.01 0.01 0.00 -1.42 0.14
GJR (N) 1.36% 0.61 0.85 0.98 -4.81 0.06
GJR (T) 2.71% 0.03 0.14 0.00 -1.59 0.14
QR 1.81% 0.28 0.77 0.79 -0.24 0.16
HS30d 24.87% 0.00 0.00 0.00 -0.91 0.49
FHS 2.71% 0.03 0.14 0.00 -1.59 0.19
EVT 2.71% 0.03 0.14 0.00 -1.59 0.22
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Table 2.7: VaR backtesting for CDS names with long history (30 days)
Backtest results for the CDS names with long history and considering a VaR prediction horizon of 30 days. Entries in
parenthesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for
VaR at θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with
”-”. The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are
the significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that
the null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
1 GARCH (N) 6.65% 0.00 0.00 0.00 -2.58 0.06

GARCH (T) 4.37% 0.00 0.00 0.00 -2.72 0.04
EGARCH (N) 6.26% 0.00 0.00 0.00 -2.60 0.05
EGARCH (T) 7.92% 0.00 0.00 0.00 -2.54 0.07
GJR (N) 6.04% 0.00 0.00 0.00 -2.63 0.05
GJR (T) 4.59% 0.00 0.00 0.00 -2.72 0.05
QR 0.52% 0.01 0.00 0.00 -1.48 0.05
HS200d 11.64% 0.00 0.00 0.00 -2.12 0.16
HS100d 21.02% 0.00 0.00 0.00 -1.59 0.22
HS60d 25.40% 0.00 0.00 0.00 -1.54 0.31
HS30d 34.85% 0.00 0.00 0.00 -1.34 0.38
FHS 3.02% 0.00 0.00 0.00 -2.67 0.03
EVT 1.09% 0.66 0.00 0.00 -2.83 0.03

2 GARCH (N) 2.83% 0.00 0.00 0.00 -2.66 0.04
GARCH (T) 1.30% 0.17 0.00 0.00 -3.29 0.04
EGARCH (N) 3.01% 0.00 0.00 0.00 -2.65 0.05
EGARCH (T) 75.88% 0.00 1.00 0.00 -0.66 0.51
GJR (N) 3.46% 0.00 0.00 0.00 -2.60 0.05
GJR (T) 1.30% 0.17 0.00 0.00 -3.29 0.04
QR 0.67% 0.10 0.00 0.00 -1.65 0.05
HS200d 16.57% 0.00 0.00 0.00 -1.45 0.18
HS100d 26.08% 0.00 0.00 0.00 -1.20 0.21
HS60d 33.03% 0.00 0.00 0.00 -1.11 0.25
HS30d 41.67% 0.00 0.00 0.00 -0.97 0.31
FHS 5.48% 0.00 0.00 0.00 -2.44 0.06
EVT 5.17% 0.00 0.00 0.00 -2.48 0.05

3 GARCH (N) 4.17% 0.00 0.00 0.00 -3.13 0.05
GARCH (T) 4.26% 0.00 0.00 0.00 -3.08 0.05
EGARCH (N) 4.72% 0.00 0.00 0.00 -3.04 0.05
EGARCH (T) 34.51% 0.00 0.00 0.00 -1.82 0.34
GJR (N) 4.58% 0.00 0.00 0.00 -3.09 0.05
GJR (T) 4.26% 0.00 0.00 0.00 -3.08 0.05
QR 0.92% 0.69 0.00 0.00 -3.30 0.05
HS200d 11.74% 0.00 0.00 0.00 -2.76 0.29
HS100d 19.34% 0.00 0.00 0.00 -2.26 0.34
HS60d 26.41% 0.00 0.00 0.00 -1.92 0.38
HS30d 41.13% 0.00 0.00 0.00 -1.61 0.47
FHS 2.66% 0.00 0.00 0.00 -3.30 0.04
EVT 3.02% 0.00 0.00 0.00 -3.39 0.04

4 GARCH (N) 4.59% 0.00 0.00 0.00 -2.65 0.05
GARCH (T) 5.69% 0.00 0.00 0.00 -2.58 0.06
EGARCH (N) 4.45% 0.00 0.00 0.00 -2.65 0.05
EGARCH (T) 9.08% 0.00 0.00 0.00 -2.58 0.08
GJR (N) 4.72% 0.00 0.00 0.00 -2.64 0.05
GJR (T) 5.69% 0.00 0.00 0.00 -2.58 0.06
QR 0.73% 0.19 0.00 0.00 -2.60 0.05
HS200d 18.86% 0.00 0.00 0.00 -2.08 0.31
HS100d 30.20% 0.00 0.00 0.00 -1.59 0.34
HS60d 36.22% 0.00 0.00 0.00 -1.45 0.37
HS30d 41.43% 0.00 0.00 0.00 -1.36 0.44
FHS 5.96% 0.00 0.00 0.00 -3.04 0.06
EVT 6.37% 0.00 0.00 0.00 -3.03 0.06

5 GARCH (N) 5.32% 0.00 0.00 0.00 -3.55 0.09
GARCH (T) 5.74% 0.00 0.00 0.00 -3.46 0.09
EGARCH (N) 6.06% 0.00 0.00 0.00 -3.38 0.10
EGARCH (T) 10.97% 0.00 0.00 0.00 -2.85 0.14
GJR (N) 5.55% 0.00 0.00 0.00 -3.53 0.09
GJR (T) 5.78% 0.00 0.00 0.00 -3.46 0.10
QR 0.78% 0.28 0.00 0.00 -7.35 0.06
HS200d 15.09% 0.00 0.00 0.00 -2.50 0.34
HS100d 22.06% 0.00 0.00 0.00 -1.93 0.34
HS60d 28.29% 0.00 0.00 0.00 -1.78 0.43
HS30d 42.91% 0.00 0.00 0.00 -1.51 0.53
FHS 6.98% 0.00 0.00 0.00 -3.90 0.10
EVT 7.07% 0.00 0.00 0.00 -3.83 0.11
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Table 2.8: VaR backtesting for CDS names with long history (1 day)
Backtest results for the CDS names with long history and considering a VaR prediction horizon of 1 day. Entries in parenthesis
in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for VaR at θ=1%.
When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with ”-”. The cases
where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are the significance
levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that the null hypothesis
cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
1 GARCH (N) 4.16% 0.00 0.00 0.00 -0.30 0.02

GARCH (T) 4.37% 0.00 0.00 0.00 -0.30 0.02
EGARCH (N) 4.07% 0.00 0.00 0.00 -0.30 0.02
EGARCH (T) 4.16% 0.00 0.00 0.00 -0.30 0.02
GJR (N) 1.05% 0.81 0.00 0.00 -0.94 0.01
GJR (T) 4.42% 0.00 0.00 0.00 -0.30 0.02
QR 0.13% 0.00 0.00 0.00 0.01 0.05
HS200d 2.59% 0.00 0.00 0.00 -0.29 0.04
HS100d 4.89% 0.00 0.00 0.00 -0.23 0.04
HS60d 6.33% 0.00 0.00 0.00 -0.23 0.03
HS30d 9.34% 0.00 0.00 0.00 -0.20 0.04
FHS 3.02% 0.00 0.00 0.00 -0.32 0.02
EVT 2.19% 0.00 0.00 0.00 -0.38 0.01

2 GARCH (N) 4.18% 0.00 0.00 0.00 -0.22 0.01
GARCH (T) 3.64% 0.00 0.00 0.00 -0.18 0.01
EGARCH (N) 4.04% 0.00 0.00 0.00 -0.23 0.01
EGARCH (T) 1.62% 0.01 0.00 0.00 -0.12 0.04
GJR (N) 1.03% 0.88 0.24 0.00 -0.59 0.01
GJR (T) 3.41% 0.00 0.00 0.00 -0.17 0.01
QR 0.09% 0.00 0.89 0.00 0.06 0.05
HS200d 4.83% 0.00 0.00 0.00 -0.18 0.04
HS100d 6.30% 0.00 0.00 0.00 -0.17 0.03
HS60d 8.03% 0.00 0.00 0.00 -0.17 0.03
HS30d 9.55% 0.00 0.00 0.00 -0.16 0.03
FHS 6.87% 0.00 0.00 0.00 -0.19 0.02
EVT 6.42% 0.00 0.00 0.00 -0.21 0.02

3 GARCH (N) 2.25% 0.00 0.00 0.00 -0.60 0.02
GARCH (T) 2.38% 0.00 0.00 0.00 -0.64 0.02
EGARCH (N) 2.38% 0.00 0.00 0.00 -0.58 0.02
EGARCH (T) 2.43% 0.00 0.00 0.00 -0.63 0.02
GJR (N) 0.92% 0.69 0.00 0.00 -0.94 0.01
GJR (T) 2.38% 0.00 0.00 0.00 -0.64 0.02
QR 0.27% 0.00 0.00 0.00 0.28 0.05
HS200d 4.74% 0.00 0.00 0.00 -0.25 0.06
HS100d 5.28% 0.00 0.00 0.00 -0.30 0.05
HS60d 7.20% 0.00 0.00 0.00 -0.26 0.05
HS30d 10.82% 0.00 0.00 0.00 -0.23 0.05
FHS 3.16% 0.00 0.00 0.00 -0.53 0.03
EVT 3.35% 0.00 0.00 0.00 -0.52 0.03

4 GARCH (N) 2.71% 0.00 0.00 0.00 -0.32 0.01
GARCH (T) 3.21% 0.00 0.00 0.00 -0.33 0.01
EGARCH (N) 2.89% 0.00 0.00 0.00 -0.33 0.01
EGARCH (T) 3.03% 0.00 0.00 0.00 -0.31 0.01
GJR (N) 1.15% 0.50 0.03 0.01 -0.63 0.01
GJR (T) 3.16% 0.00 0.00 0.00 -0.32 0.01
QR 0.09% 0.00 0.89 0.00 0.02 0.05
HS200d 6.30% 0.00 0.00 0.00 -0.20 0.06
HS100d 7.92% 0.00 0.00 0.00 -0.20 0.05
HS60d 9.23% 0.00 0.00 0.00 -0.19 0.04
HS30d 11.89% 0.00 0.00 0.00 -0.19 0.04
FHS 3.21% 0.00 0.00 0.00 -0.35 0.02
EVT 3.67% 0.00 0.00 0.00 -0.36 0.02

5 GARCH (N) 3.12% 0.00 0.00 0.00 -0.47 0.02
GARCH (T) 3.40% 0.00 0.00 0.00 -0.43 0.02
EGARCH (N) 3.85% 0.00 0.00 0.00 -0.45 0.02
EGARCH (T) 3.49% 0.00 0.00 0.00 -0.42 0.02
GJR (N) 1.10% 0.64 0.03 0.01 -0.80 0.01
GJR (T) 3.40% 0.00 0.00 0.00 -0.44 0.02
QR 0.00% - - - - 0.05
HS200d 4.75% 0.00 0.00 0.00 -0.26 0.07
HS100d 5.19% 0.00 0.00 0.00 -0.26 0.05
HS60d 8.06% 0.00 0.00 0.00 -0.25 0.05
HS30d 12.09% 0.00 0.00 0.00 -0.22 0.05
FHS 4.73% 0.00 0.00 0.00 -0.43 0.02
EVT 4.73% 0.00 0.00 0.00 -0.41 0.02
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Table 2.9: VaR backtesting for CDS names with short history (30 days)
Backtest results for the CDS names with short history and considering a VaR prediction horizon of 30 days. Entries in
parenthesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for
VaR at θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with
”-”. The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are
the significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that
the null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
6 GARCH (N) 0.00% - - - - 1.81E+11

GARCH (T) 24.72% 0.00 0.00 0.00 -5.71 10.61
EGARCH (N) 1.12% 0.91 0.99 1.00 -6.32 6.97E+07
EGARCH (T) 0.00% - - - - 3.96E+214
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 22.47% 0.00 0.00 0.00 -5.45 0.22
HS30d 54.10% 0.00 0.00 0.00 -2.41 1.09
FHS 3.37% 0.08 0.71 0.24 -5.88 1.07
EVT 11.24% 0.00 0.00 0.00 -5.71 0.30

7 GARCH (N) 5.56% 0.01 0.00 0.00 -3.84 0.58
GARCH (T) 1.39% 0.75 0.97 1.00 -4.42 3.33
EGARCH (N) 0.00% - - - - 0.15
EGARCH (T) 0.00% - - - - 0.29
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 5.56% 0.01 0.01 0.00 -3.64 0.09
HS30d 0.00% - - - - 0.05
FHS 5.56% 0.01 0.00 0.00 -3.84 0.39
EVT 5.56% 0.01 0.01 0.00 -2.89 2.7E+13

8 GARCH (N) 0.00% - - - - 0.83
GARCH (T) 41.54% 0.00 0.00 0.00 -4.61 0.39
EGARCH (N) 0.00% - - - - 0.38
EGARCH (T) 0.00% - - - - 0.19
GJR (N) 0.00% - - - - 2.03
GJR (T) 0.00% - - - - 0.73
QR 47.69% 0.00 0.00 0.00 -4.37 1.32
HS30d 18.92% 0.00 0.00 0.00 -2.83 0.63
FHS 0.00% - - - - 3.75
EVT 0.00% - - - - 2.62

9 GARCH (N) 39.68% 0.00 0.00 0.00 -5.36 74.27
GARCH (T) 42.86% 0.00 0.00 0.00 -4.78 8.99
EGARCH (N) 41.27% 0.00 0.00 0.00 -5.34 2.87
EGARCH (T) 28.57% 0.00 0.00 0.00 -5.37 3.05
GJR (N) 38.10% 0.00 0.00 0.00 -5.37 753
GJR (T) 34.92% 0.00 0.00 0.00 -5.40 1.74E+03
QR 55.56% 0.00 0.00 0.00 -4.68 2.34
HS30d 17.14% 0.00 0.00 0.00 -2.65 0.72
FHS 0.00% - - - - 1.42
EVT 0.00% - - - - 1.25

10 GARCH (N) 5.43% 0.00 0.00 0.00 -26.73 4.71E+03
GARCH (T) 32.58% 0.00 0.00 0.00 -15.79 2.63E+02
EGARCH (N) 3.17% 0.01 0.00 0.00 -31.92 1.28E+05
EGARCH (T) 46.61% 0.00 0.00 0.00 -12.22 3.94
GJR (N) 2.71% 0.03 0.00 0.00 -32.14 5.10E+03
GJR (T) 30.32% 0.00 0.00 0.00 -15.98 62.51
QR 32.58% 0.00 0.00 0.00 -11.67 2.21
HS30d 78.24% 0.00 0.00 0.00 -9.14 6.41
FHS 0.00% - - - - 1.81E+05
EVT 0.00% - - - - 5.80E+04

72



Table 2.10: VaR backtesting for CDS names with short history (3 days)
Backtest results for the CDS names with short history and considering a VaR prediction horizon of 3 days. Entries in
parenthesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for
VaR at θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with
”-”. The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are
the significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that
the null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
6 GARCH (N) 1.12% 0.91 0.99 0.99 -5.92 28.55

GARCH (T) 8.99% 0.00 0.00 0.00 -2.86 0.30
EGARCH (N) 2.25% 0.31 0.84 0.00 -5.83 2.58
EGARCH (T) 0.00% - - - - 5.5E+65
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 3.37% 0.08 0.00 0.00 -5.88 0.09
HS30d 14.75% 0.00 0.00 0.00 -0.93 0.19
FHS 4.49% 0.02 0.00 0.00 -4.53 0.22
EVT 6.74% 0.00 0.00 0.00 -3.37 0.27

7 GARCH (N) 6.94% 0.00 0.00 0.00 -2.72 0.23
GARCH (T) 4.17% 0.04 0.00 0.00 -3.42 0.21
EGARCH (N) 6.94% 0.00 0.02 0.00 -2.22 0.19
EGARCH (T) 8.33% 0.00 0.06 0.00 -1.88 0.18
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 1.39% 0.75 0.97 1.00 -4.16 0.06
HS30d 0.00% - - - - 0.05
FHS 6.94% 0.00 0.00 0.00 -2.72 0.25
EVT 6.94% 0.00 0.00 0.00 -2.72 123

8 GARCH (N) 3.08% 0.18 0.79 0.55 -1.58 0.09
GARCH (T) 13.85% 0.00 0.00 0.00 -1.40 0.21
EGARCH (N) 4.62% 0.03 0.64 0.05 -1.39 0.10
EGARCH (T) 3.08% 0.18 0.79 0.55 -1.58 0.08
GJR (N) 0.00% - - - - 0.08
GJR (T) 4.62% 0.03 0.64 0.05 -1.39 0.10
QR 6.15% 0.00 0.01 0.00 -2.08 0.19
HS30d 18.92% 0.00 0.00 0.00 -1.91 0.46
FHS 3.08% 0.18 0.79 0.55 -1.58 0.14
EVT 3.08% 0.18 0.79 0.55 -1.58 0.13

9 GARCH (N) 11.11% 0.00 0.00 0.00 -1.95 0.21
GARCH (T) 19.05% 0.00 0.00 0.00 -1.19 0.20
EGARCH (N) 11.11% 0.00 0.00 0.00 -1.95 0.23
EGARCH (T) 6.35% 0.00 0.01 0.00 -2.08 0.17
GJR (N) 7.94% 0.00 0.00 0.00 -2.02 0.23
GJR (T) 9.52% 0.00 0.00 0.00 -2.24 0.27
QR 30.16% 0.00 0.00 0.00 -0.85 0.28
HS30d 17.14% 0.00 0.00 0.00 -2.07 0.62
FHS 0.00% - - - - 0.11
EVT 0.00% - - - - 0.11

10 GARCH (N) 4.98% 0.00 0.00 0.00 -4.67 0.27
GARCH (T) 11.31% 0.00 0.00 0.00 -4.01 0.41
EGARCH (N) 4.52% 0.00 0.00 0.00 -4.37 0.36
EGARCH (T) 24.89% 0.00 0.00 0.00 -2.28 0.55
GJR (N) 3.17% 0.01 0.00 0.00 -7.42 0.17
GJR (T) 10.86% 0.00 0.00 0.00 -4.04 0.36
QR 3.17% 0.01 0.01 0.00 -1.57 0.17
HS30d 34.72% 0.00 0.00 0.00 -2.12 0.92
FHS 1.81% 0.28 0.77 0.00 -7.77 0.60
EVT 0.90% 0.89 0.27 0.99 -8.09 0.75
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Table 2.11: VaR backtesting for CDS names with long history (3 days)
Backtest results for the CDS names with long history and considering a VaR prediction horizon of 3 days. Entries in paren-
thesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for VaR at
θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with ”-”.
The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are the
significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that the
null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
1 GARCH (N) 3.28% 0.00 0.00 0.00 -0.95 0.02

GARCH (T) 2.27% 0.00 0.00 0.00 -1.02 0.02
EGARCH (N) 3.02% 0.00 0.00 0.00 -0.98 0.02
EGARCH (T) 3.98% 0.00 0.00 0.00 -0.89 0.02
GJR (N) 1.92% 0.00 0.00 0.00 -1.33 0.02
GJR (T) 2.27% 0.00 0.00 0.00 -1.02 0.02
QR 0.13% 0.00 0.00 0.00 -0.01 0.05
HS200d 3.88% 0.00 0.00 0.00 -0.64 0.05
HS100d 7.22% 0.00 0.00 0.00 -0.51 0.05
HS60d 10.05% 0.00 0.00 0.00 -0.48 0.06
HS30d 14.53% 0.00 0.00 0.00 -0.42 0.07
FHS 2.32% 0.00 0.00 0.00 -0.98 0.02
EVT 1.49% 0.03 0.00 0.00 -1.12 0.02

2 GARCH (N) 2.20% 0.00 0.00 0.00 -0.70 0.01
GARCH (T) 0.72% 0.16 0.00 0.00 -0.91 0.01
EGARCH (N) 2.38% 0.00 0.00 0.00 -0.67 0.01
EGARCH (T) 55.12% 0.00 1.00 0.00 -0.17 0.15
GJR (N) 1.66% 0.00 0.00 0.00 -0.89 0.01
GJR (T) 0.76% 0.24 0.00 0.00 -0.88 0.01
QR 0.13% 0.00 0.94 0.00 -0.34 0.05
HS200d 6.41% 0.00 0.00 0.00 -0.45 0.05
HS100d 9.12% 0.00 0.00 0.00 -0.40 0.05
HS60d 12.59% 0.00 0.00 0.00 -0.36 0.05
HS30d 15.20% 0.00 0.00 0.00 -0.33 0.05
FHS 4.94% 0.00 0.00 0.00 -0.58 0.02
EVT 4.94% 0.00 0.00 0.00 -0.60 0.02

3 GARCH (N) 1.70% 0.00 0.00 0.00 -1.46 0.03
GARCH (T) 1.65% 0.01 0.00 0.00 -1.44 0.03
EGARCH (N) 1.88% 0.00 0.00 0.00 -1.40 0.03
EGARCH (T) 22.46% 0.00 1.00 0.00 -0.49 0.10
GJR (N) 1.33% 0.14 0.00 0.00 -1.66 0.02
GJR (T) 1.74% 0.00 0.00 0.00 -1.44 0.03
QR 0.27% 0.00 0.00 0.00 0.28 0.05
HS200d 5.75% 0.00 0.00 0.00 -0.71 0.08
HS100d 7.15% 0.00 0.00 0.00 -0.76 0.07
HS60d 10.73% 0.00 0.00 0.00 -0.62 0.08
HS30d 16.02% 0.00 0.00 0.00 -0.53 0.09
FHS 2.98% 0.00 0.00 0.00 -1.30 0.03
EVT 2.89% 0.00 0.00 0.00 -1.31 0.03

4 GARCH (N) 2.66% 0.00 0.00 0.00 -0.81 0.02
GARCH (T) 3.12% 0.00 0.00 0.00 -0.82 0.02
EGARCH (N) 2.38% 0.00 0.00 0.00 -0.79 0.01
EGARCH (T) 5.55% 0.00 0.00 0.00 -0.68 0.02
GJR (N) 1.47% 0.04 0.00 0.00 -1.02 0.01
GJR (T) 3.12% 0.00 0.00 0.00 -0.82 0.02
QR 0.14% 0.00 0.94 0.00 -0.42 0.05
HS200d 8.12% 0.00 0.00 0.00 -0.54 0.08
HS100d 11.23% 0.00 0.00 0.00 -0.49 0.07
HS60d 13.47% 0.00 0.00 0.00 -0.44 0.07
HS30d 17.37% 0.00 0.00 0.00 -0.41 0.08
FHS 3.76% 0.00 0.00 0.00 -0.91 0.02
EVT 3.48% 0.00 0.00 0.00 -0.88 0.02

5 GARCH (N) 2.75% 0.00 0.00 0.00 -1.19 0.02
GARCH (T) 3.26% 0.00 0.00 0.00 -1.13 0.02
EGARCH (N) 3.58% 0.00 0.00 0.00 -1.08 0.03
EGARCH (T) 5.78% 0.00 0.00 0.00 -0.90 0.03
GJR (N) 2.29% 0.00 0.00 0.00 -1.33 0.02
GJR (T) 3.26% 0.00 0.00 0.00 -1.13 0.02
QR 0.00% - - - - 0.05
HS200d 6.11% 0.00 0.00 0.00 -0.67 0.09
HS100d 7.45% 0.00 0.00 0.00 -0.61 0.07
HS60d 11.83% 0.00 0.00 0.00 -0.54 0.08
HS30d 18.27% 0.00 0.00 0.00 -0.46 0.10
FHS 3.99% 0.00 0.00 0.00 -1.09 0.03
EVT 4.64% 0.00 0.00 0.00 -1.05 0.03
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Table 2.12: VaR backtesting for CDS names with short history (10 days)
Backtest results for the CDS names with short history and considering a VaR prediction horizon of 10 days. Entries in
parenthesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for
VaR at θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with
”-”. The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are
the significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that
the null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
6 GARCH (N) 3.37% 0.08 0.00 0.00 -6.03 1.55E+05

GARCH (T) 20.22% 0.00 0.00 0.00 -4.27 0.71
EGARCH (N) 6.74% 0.00 0.00 0.00 -5.75 1.67E+03
EGARCH (T) 0.00% - - - - 3.88E+122
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 11.24% 0.00 0.00 0.00 -5.75 0.16
HS30d 34.43% 0.00 0.00 0.00 -1.69 0.43
FHS 4.49% 0.02 0.00 0.00 -6.02 0.25
EVT 8.99% 0.00 0.00 0.00 -5.18 0.31

7 GARCH (N) 6.94% 0.00 0.00 0.00 -3.75 0.28
GARCH (T) 5.56% 0.01 0.00 0.00 -3.80 0.34
EGARCH (N) 5.56% 0.01 0.01 0.00 -2.86 0.14
EGARCH (T) 5.56% 0.01 0.01 0.00 -2.86 0.14
GJR (N) n.a. n.a. n.a. n.a. n.a. n.a.
GJR (T) n.a. n.a. n.a. n.a. n.a. n.a.
QR 5.56% 0.01 0.01 0.00 -3.59 0.09
HS30d 0.00% - - - - 0.05
FHS 8.33% 0.00 0.00 0.00 -3.23 0.29
EVT 8.33% 0.00 0.00 0.00 -3.23 2.64E+06

8 GARCH (N) 4.62% 0.03 0.00 0.00 -5.11 0.16
GARCH (T) 16.92% 0.00 0.00 0.00 -3.43 0.43
EGARCH (N) 10.77% 0.00 0.00 0.00 -4.79 0.19
EGARCH (T) 4.62% 0.03 0.00 0.00 -5.11 0.12
GJR (N) 0.00% - - - - 0.20
GJR (T) 7.69% 0.00 0.00 0.00 -4.74 0.19
QR 16.92% 0.00 0.00 0.00 -3.89 0.51
HS30d 18.92% 0.00 0.00 0.00 -2.83 0.63
FHS 4.62% 0.03 0.00 0.00 -5.11 0.41
EVT 4.62% 0.03 0.00 0.00 -5.11 0.35

9 GARCH (N) 15.87% 0.00 0.00 0.00 -4.66 1.33
GARCH (T) 23.81% 0.00 0.00 0.00 -3.17 0.79
EGARCH (N) 15.87% 0.00 0.00 0.00 -4.66 0.70
EGARCH (T) 15.87% 0.00 0.00 0.00 -4.66 0.63
GJR (N) 15.87% 0.00 0.00 0.00 -4.66 3.40
GJR (T) 15.87% 0.00 0.00 0.00 -4.66 5.11
QR 42.86% 0.00 0.00 0.00 -2.09 0.85
HS30d 17.14% 0.00 0.00 0.00 -2.65 0.72
FHS 0.00% - - - - 0.30
EVT 0.00% - - - - 0.27

10 GARCH (N) 6.79% 0.00 0.00 0.00 -13.95 5.27
GARCH (T) 21.72% 0.00 0.00 0.00 -8.08 1.93
EGARCH (N) 3.17% 0.01 0.00 0.00 -13.59 33.44
EGARCH (T) 34.84% 0.00 0.00 0.00 -6.03 1.50
GJR (N) 0.90% 0.89 0.95 1.00 -15.25 5.73
GJR (T) 18.55% 0.00 0.00 0.00 -8.89 1.27
QR 10.41% 0.00 0.00 0.00 -6.02 0.36
HS30d 53.37% 0.00 0.00 0.00 -4.74 2.37
FHS 0.45% 0.36 0.94 0.95 -1.67 48.56
EVT 0.45% 0.36 0.94 0.95 -1.67 33.94
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Table 2.13: VaR backtesting for CDS names with long history (10 days)
Backtest results for the CDS names with long history and considering a VaR prediction horizon of 10 days. Entries in
parenthesis in column Model refer to the distribution used, namely Normal or Student’s t. Percentage rate of violations for
VaR at θ=1%. When the % Viol is 0, the results for LRuc , LRind, DQ and CTE cannot be computed and are identified with
”-”. The cases where the GARCH estimation failed are identified with ”n.a.”. Entries in columns LRuc, LRind and DQ are
the significance levels (p-values) of the respective tests. Bold type entries indicate p-values greater than 0.01, meaning that
the null hypothesis cannot be rejected at the 1% significance level.
CDS ID Model % Viol. LRuc LRind DQ CTE AQL
1 GARCH (N) 3.76% 0.00 0.00 0.00 -1.96 0.04

GARCH (T) 2.93% 0.00 0.00 0.00 -2.10 0.03
EGARCH (N) 3.41% 0.00 0.00 0.00 -2.04 0.04
EGARCH (T) 4.42% 0.00 0.00 0.00 -1.87 0.04
GJR (N) 3.28% 0.00 0.00 0.00 -2.10 0.03
GJR (T) 2.93% 0.00 0.00 0.00 -2.10 0.03
QR 0.13% 0.00 0.00 0.00 -0.10 0.05
HS200d 6.47% 0.00 0.00 0.00 -1.26 0.08
HS100d 12.11% 0.00 0.00 0.00 -0.96 0.10
HS60d 16.43% 0.00 0.00 0.00 -0.91 0.14
HS30d 24.53% 0.00 0.00 0.00 -0.77 0.16
FHS 2.62% 0.00 0.00 0.00 -1.98 0.03
EVT 1.40% 0.07 0.00 0.00 -2.32 0.03

2 GARCH (N) 2.74% 0.00 0.00 0.00 -1.34 0.02
GARCH (T) 0.49% 0.01 0.00 0.00 -1.29 0.02
EGARCH (N) 3.05% 0.00 0.00 0.00 -1.36 0.02
EGARCH (T) 66.17% 0.00 1.00 0.00 -0.36 0.27
GJR (N) 3.01% 0.00 0.00 0.00 -1.38 0.02
GJR (T) 0.67% 0.10 0.00 0.00 -1.26 0.02
QR 0.18% 0.00 0.98 0.00 -1.18 0.05
HS200d 10.26% 0.00 0.00 0.00 -0.87 0.09
HS100d 15.84% 0.00 0.00 0.00 -0.74 0.09
HS60d 21.59% 0.00 0.00 0.00 -0.66 0.11
HS30d 26.43% 0.00 0.00 0.00 -0.60 0.13
FHS 4.85% 0.00 0.00 0.00 -1.38 0.03
EVT 4.72% 0.00 0.00 0.00 -1.41 0.03

3 GARCH (N) 2.43% 0.00 0.00 0.00 -2.38 0.04
GARCH (T) 2.29% 0.00 0.00 0.00 -2.43 0.04
EGARCH (N) 2.57% 0.00 0.00 0.00 -2.33 0.04
EGARCH (T) 26.72% 0.00 1.00 0.00 -1.09 0.19
GJR (N) 2.34% 0.00 0.00 0.00 -2.46 0.03
GJR (T) 2.34% 0.00 0.00 0.00 -2.41 0.04
QR 0.27% 0.00 0.00 0.00 0.03 0.05
HS200d 8.22% 0.00 0.00 0.00 -1.57 0.14
HS100d 12.43% 0.00 0.00 0.00 -1.42 0.15
HS60d 18.17% 0.00 0.00 0.00 -1.22 0.17
HS30d 26.74% 0.00 0.00 0.00 -1.04 0.21
FHS 2.52% 0.00 0.00 0.00 -2.36 0.04
EVT 2.52% 0.00 0.00 0.00 -2.44 0.04

4 GARCH (N) 2.71% 0.00 0.00 0.00 -2.01 0.03
GARCH (T) 3.21% 0.00 0.00 0.00 -1.91 0.03
EGARCH (N) 2.61% 0.00 0.00 0.00 -2.02 0.03
EGARCH (T) 5.82% 0.00 0.00 0.00 -1.57 0.04
GJR (N) 2.66% 0.00 0.00 0.00 -2.08 0.03
GJR (T) 3.21% 0.00 0.00 0.00 -1.91 0.03
QR 0.41% 0.00 0.00 0.00 -1.52 0.05
HS200d 11.75% 0.00 0.00 0.00 -1.20 0.15
HS100d 18.96% 0.00 0.00 0.00 -0.97 0.15
HS60d 22.56% 0.00 0.00 0.00 -0.89 0.16
HS30d 28.29% 0.00 0.00 0.00 -0.80 0.19
FHS 4.31% 0.00 0.00 0.00 -1.95 0.04
EVT 4.13% 0.00 0.00 0.00 -1.95 0.04

5 GARCH (N) 4.04% 0.00 0.00 0.00 -2.27 0.04
GARCH (T) 4.50% 0.00 0.00 0.00 -2.20 0.05
EGARCH (N) 4.82% 0.00 0.00 0.00 -2.12 0.05
EGARCH (T) 8.03% 0.00 0.00 0.00 -1.77 0.07
GJR (N) 4.13% 0.00 0.00 0.00 -2.29 0.04
GJR (T) 4.64% 0.00 0.00 0.00 -2.16 0.05
QR 0.09% 0.00 0.89 0.00 -4.50 0.05
HS200d 9.19% 0.00 0.00 0.00 -1.49 0.16
HS100d 12.40% 0.00 0.00 0.00 -1.24 0.15
HS60d 18.53% 0.00 0.00 0.00 -1.08 0.18
HS30d 29.43% 0.00 0.00 0.00 -0.90 0.23
FHS 4.50% 0.00 0.00 0.00 -2.43 0.05
EVT 5.00% 0.00 0.00 0.00 -2.33 0.06
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Conclusion

This thesis presents two applications of Value at Risk (VaR) estimation: Credit VaR and

VaR in Credit Default Swaps.

I compare Credit Value at Risk estimates based on different correlation assumptions,

using Gaussian and t copulas, with the observed loss in a credit portfolio of a Portuguese

financial institution, for a time series of 72 monthly observations, covering the period

between 2004 and 2009. The correlation assumptions tested in the study were inspired

in rating agencies methodologies to evaluate Collateralized Debt Obligations, empirical

estimator suggested by De Servigny and Renault (2002a) and Basel III Accord. In

order to estimate Credit VaR, I simulate portfolio value distribution with Monte Carlo

simulation technique, within the Merton model framework. I show that Credit VaR

estimates are very sensitive to assumptions regarding asset correlation and dependence

structure, reinforcing the crucial role played by correlation in credit loss estimates. I

also provide empirical evidence that some of the assumptions made by rating agencies

to evaluate CDOs are inadequate in stress situations like the financial crisis observed in

2008.

All Credit VaR estimates were compared using backtesting procedures as Kupiec

(1995) and Christoffersen (1998) tests, the Loss Function proposed by Lopez (1998),

the Average Quantile Loss proposed by Koenker and Basset (1978) and also a measure

of over-conservativeness proposed in this study. I find that the most accurate Credit VaR

model for this portfolio is based on asset correlation given by the empirical estimator

proposed by De Servigny and Renault (2002a) and assuming a dependence structure

given by the t copula with 8 degrees of freedom. All conclusions of the study are

invariant to the assumption of deterministic instead of stochastic recovery rate.
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Regarding the application of VaR models to Credit Default Swaps, I estimate VaR

in CDS using several estimation methods: Quantile Regression, Historical Simulation,

Filtered Historical Simulation, Extreme Value Theory and several GARCH-based mod-

els. I use market-based and accounting-based factors as determinants of CDS spreads,

namely stock return and stock price volatility and also financial ratios such as leverage,

return on assets and liquidity. The analysis of the determinants of CDS spreads is based

on 242 different reference entities and the time period ranges from September 2001 to

April 2011, covering the period of the recent financial crisis.

In order to identify the most accurate VaR model I compare the results obtained with

Quantile Regression with those obtained with other estimation methods through the

application of backtesting methodologies such as the tests proposed by Kupiec (1995)

and Christoffersen (1998), the Average Quantile Loss Function proposed by Koenker

and Bassett (1978), the Conditional Tail Expectation proposed by Artzner et al (1999)

and the Dynamic Quantile Test presented by Engle and Manganelli (2004). To the best

of my knowledge this is the first time that backtesting methodologies are applied to

compare different methods of estimating VaR in CDS.

I find that Quantile Regression provides better results in the estimation of VaR in

CDS than Historical Simulation, Filtered Historical Simulation, Extreme Value Theory

and all GARCH-based models tested in this study, especially for CDS names with long

history when the forecast horizon of VaR estimates is 30 days and for CDS names with

short history when the forecast horizon of VaR estimates is 1 day. I also find that the

financial ratios proposed by Campbell et al (2008) to determine the risk of bankruptcy

and failure contribute to explain the determinants of the price of CDS. Recent studies

have shown that Filtered Historical Simulation and Extreme Valued Theory are the most

accurate VaR models. However, the empirical evidence provided in this study does not

support the extension of this finding to VaR estimation in CDS.
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To simplify the analysis I assume that the default indicator Ii,t is exchangeable. A

random vector S is called exchangeable if

(S1, ...Sm)
d
= (SΠ(1), ..., SΠ(M))

for any permutation (Π(1), ...Π(m)) of (1, ...,m). The consequence is that for any

j ∈ {1, ...,m − 1} all of the
(
m
j

)
possible j-dimensional marginal distributions of S

are identical. In this situation, default probabilities and joint default probabilities are

given by

πj := P (Ii1 = 1, ..., Iij = 1), {i1, ..., ij} ⊂ {1, ...,m}, 1 ≤ j ≤ m,

π := π1 = P (Ii = 1), i ∈ {1, ...,m}

The jth order joint default probability, πj , is the probability that an arbitrarily se-

lected subgroup of j obligors defaults.

I will now introduce the definition of Bernoulli mixture model and explain under

which conditions this model is exchangeable. This setup is the mathematical base of the

joint default probability estimator. For this purpose, consider a generic exchangeable

group of N obligors where D obligors default.

Definition 1 (Bernoulli Mixture Model) Given some p < N and a p−dimensional

random vector Ψ = (Ψ1, ...,Ψp), the random vector I = (I1, ..., IN)′ follows a Bernoulli

mixture model with factor vector Ψ if there are functions Qi : Rp → [0, 1], 1 ≤ i ≤ N ,

such that conditional on Ψ the default indicator I is a vector of independent Bernoulli

random variables with P (Ii = 1|Ψ) = Qi(Ψ).

A Bernoulli mixture model is exchangeable if the functions Qi are all identical and,

in that case, the vector I is exchangeable. Considering the random variable Q := Q1(Ψ)

we get for I = (I1, ..., IN)′ in {0, 1}N

P (I = I|Ψ) = Q1(Ψ)
∑N
i=1 Ii(1−Q1(Ψ))N−

∑N
i=1 Ii = P (I = I|Q)
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and, in particular, P (I1 = 1|Q) = Q. Denote by G(q) the distribution function of Q.

The unconditional distributions of I and of the number of defaults are given by

p(I) =

∫ 1

0

q
∑N
i=1 Ii(1− q)N−

∑N
i=1 IidG(q) (15)

P (D = j) =

(
N

j

)∫ 1

0

qj(1− q)N−jdG(q) (16)

Further calculation give

πj = P (I1 = 1, ..., Ij = 1) = E(E(I1, ..., Ij|Q)) = E(Qj) (17)

which means that unconditional default probabilities of first and higher order can be

seen as moments of the mixing distribution. Following Frey and McNeil (2001), the

following proposition holds.

Proposition 1 Define the random variable

(
D

j

)
:=

(
D

j

)(N)

:=


D!

j!(D−j)! 1 ≤ j ≤ D,

0 j > D

to be the number of possible subgroups of j obligors in the D defaulting obligors. Then

E

(
D

j

)
=

(
N

j

)
E(Qj) =

(
N

j

)
πj, 1 ≤ j ≤ N,

For more details, please see Frey and McNeil (2001).
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Table 14: Monthly Regressions (1-7)
Results from quantile regression model for the CDS price. This table shows the estimated parameters using monthly data samples
for the 99 quantile. * refers to p-values smaller than 0.05, ** refers to p-values smaller than 0.01, *** refers to p-values smaller than
0.001. Full results of the regressions, including the time dummies, are available upon request.

CDS Price
Regression Id

Variable (1) (2) (3) (4) (5) (6) (7)
bid ask spread 17.87*** 17.74*** 17.44*** 16.92*** 16.70*** 16.28*** 16.32***
stock return -202.5*** -172.1*** -195.7*** -225.7*** -223.5*** -191.4*** -190.1***
stock volatility 755.4*** 719.6*** 651.5*** 617.0*** 590.3*** 572.1*** 554.4***
return on assetsh -1751*** -1699*** -1646*** -1644*** -1657*** -1692*** -1670***
leverageh 0.573*** 0.595*** 0.634*** 0.631*** 0.587*** 0.530*** 0.485***
constant -240.0*** -229.6*** -209.4*** -195.5*** -185.4*** -175.0*** -170.7***
N 198,959 202,177 205,899 209,499 212,800 216,766 220,740

Table 15: Monthly Regressions (8-14)
Results from quantile regression model for the CDS price. This table shows the estimated parameters using monthly data samples
for the 99 quantile. * refers to p-values smaller than 0.05, ** refers to p-values smaller than 0.01, *** refers to p-values smaller than
0.001. Full results of the regressions, including the time dummies, are available upon request.

CDS Price
Regression Id

Variable (8) (9) (10) (11) (12) (13) (14)
bid ask spread 16.36*** 16.36*** 16.37*** 16.32*** 16.43*** 16.70*** 17.01***
stock return -187.9*** -187.9*** -164.2*** -150.3*** -146.6*** -161.2*** -184.6***
stock volatility 537.4*** 522.2*** 504.5*** 493.1*** 479.1*** 483.8*** 489.9***
return on assetsh -1622*** -1595*** -1563*** -1538*** -1507*** -1010*** -686***
leverageh 0.464*** 0.460*** 0.448*** 0.447*** 0.438*** 0.477*** 0.502***
constant -167.4*** -163.8*** -159.2*** -156.0*** -153.7*** -172.1*** -186.2***
N 224,513 228,281 232,226 235,779 239,721 243,169 246,567
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Table 16: Monthly Regressions (15-21)
Results from quantile regression model for the CDS price. This table shows the estimated parameters using monthly data samples
for the 99 quantile. * refers to p-values smaller than 0.05, ** refers to p-values smaller than 0.01, *** refers to p-values smaller than
0.001. Full results of the regressions, including the time dummies, are available upon request.

CDS Price
Regression Id

Variable (15) (16) (17) (18) (19) (20) (21)
bid ask spread 17.07*** 17.09*** 17.11*** 17.24*** 17.49*** 17.67*** 17.83***
stock return -181.2*** -181.3*** -175.2*** -179.4*** -157.8*** -152.9*** -158.3***
stock volatility 492.1*** 494.1*** 487.7*** 472.1*** 459.7*** 442.7*** 428.7***
return on assetsh -659.5*** -663.6*** -666.7*** -668.1*** -658.7*** -673.4*** -676.2***
leverageh 0.505*** 0.505*** 0.498*** 0.488*** 0.465*** 0.443*** 0.424***
constant -188.1*** -188.7*** -186.8*** -183.4*** -181.9*** -177.9*** -175.2***
N 250,693 254,481 258,045 261,888 265,685 269,679 273,500

Table 17: Monthly Regressions (22-28)
Results from quantile regression model for the CDS price. This table shows the estimated parameters using monthly data samples
for the 99 quantile. * refers to p-values smaller than 0.05, ** refers to p-values smaller than 0.01, *** refers to p-values smaller than
0.001. Full results of the regressions, including the time dummies, are available upon request.

CDS Price
Regression Id

Variable (22) (23) (24) (25) (26) (27) (28)
bid ask spread 17.97*** 18.19*** 18.36*** 18.54*** 18.53*** 18.66*** 18.66***
stock return -156.5*** -152.6*** -152.0*** -141.1*** -147.5*** -153.8*** -160.0***
stock volatility 420.6*** 412.1*** 402.3*** 392.2*** 389.2*** 388.0*** 389.7***
return on assetsh -651.0*** -605.0*** -594.1*** -575.0*** -576.0*** -606.5*** -605.4***
leverageh 0.418*** 0.412*** 0.403*** 0.365*** 0.365*** 0.357*** 0.361***
constant -174.7*** -175.4*** -174.3*** -173.2*** -172.3*** -172.2*** -172.9***
N 277,280 281,078 284,999 288,555 291,938 296,132 298,172
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[38] Embrechts, P., Klüpperberg, C., and T. Mikosch (1997), Modelling Extremal
Events for Insurance and Finance, Springer.

[39] Engle, R.F. (2001), GARCH 101: The Use of ARCH/GARCH Models in Applied
Econometrics, The Journal of Economic Perspectives, Vol. 15, No. 4, 157-168.

[40] Engle, R.F., and S. Manganelli (1999), CAViaR: Conditional Value at Risk by
Quantile Regression, Working Paper, NBER Working Paper Series.

[41] Engle, R.F., and S. Manganelli (2004), CAViaR: Conditional Autoregressive Value
at Risk by Regression Quantiles, Journal of Business & Economic Statistics, Vol.
22, No. 4, 367-381.

[42] Ericsson, J., Jacobs, K., and R. Oviedo (2009), The determinants of credit de-
fault swap premia, Journal of Financial and Quantitative Analysis, Vol. 44, No. 1,
109132.

[43] Fender, I., and J. Kiff (2004), CDO rating methodology: Some thoughts on model
risk and its implications, Working Paper, BIS.

[44] Frey, R., McNeil, A.J., and M.A. Nyfeler (2001), Modelling Dependent Defaults:
Asset Correlations Are Not Enough!, Working Paper, www.defaultrisk.com.

[45] Frey, R., and A.J. McNeil (2001), Modelling Dependent Defaults, ETH E-
Collection, http://e-collection.ethbib.ethz.ch/show?type=bericht&nr=273.

[46] Frey, R., and A.J. McNeil (2003), Dependent Defaults in Models of Portfolio
Credit Risk, Journal of Risk, Vol. 6, No. 1, 59-92.

[47] Gaglianone, W.P, Renato Lima, L., and O. Linton (2008), Evaluating Value-at-
Risk Models via Quantile Regressions, Working Paper, Banco Central do Brasil.

87



[48] Garcia, J., Dewyspelaere, T., Langendries, R., Leonard, L., and T. Van Ges-
tel (2004), On Rating Cash-Flow CDO’s using BET technique, Working Paper,
www.defaultrisk.com.

[49] Gebka, B., and M.E. Wohar (2013), Causality between trading volume and re-
turns: Evidence from quantile regressions, International Review of Economics and
Finance, Vol. 27, 144-159.

[50] Glosten, L.R., Jagannathan, R., and D.E. Runkle (1993), On the relation between
the expected value and the volatility of the nominal excess return on stocks, Jour-
nal of Finance, Vol. 48, 1779-1801.

[51] Goderis, B., Marsh, I.W., Castello, J.V., and W. Wagner. (2007), Bank
Behavior with Access to Credit Risk Transfer Markets, Working Paper,
www.defaultrisk.com.

[52] Halbleib, R., and W. Pohlmeier (2012), Improving the value at risk forecasts: The-
ory and evidence from the financial crisis, Journal of Economic Dynamics & Con-
trol, Vol. 26, 1212-1228.
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