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”We can only see a short distance
ahead, but we can see plenty there
that needs to be done.”
Alan Turing
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Abstract

This thesis is the outcome of research on providing software agents with learning by observa-

tion capabilities. It presents an agent architecture that allows software agents to learn control

knowledge by direct observation of the actions executed by expert agents while performing a

task. The proposed architecture makes it possible for software agents to observe each other. It

displays information that is essential for observation, such as the agent constituents and capa-

bilities, the actions performed and the conditions holding for them. The displayed information

is accessible to all agents that want to observe.

The proposed approach combines two methods of learning from the observed data. The first

one relies on the sequence which the actions were observed. The second one categorizes the

information in the observed data and determines which set of categories the new problems be-

long. The two learning methods are incorporated into a learning process that covers all aspects

of learning by observation such as the discovery and observation of experts, storage of the ac-

quired information, learning and application of the acquired knowledge. The learning process

also includes an evaluation of the agent’s progress which provides control over the decision

to obtain new knowledge or apply the acquired knowledge to new problems. The process is

extended with external feedback on the actions executed by the agent.

The approach was tested on three different scenarios that show that learning by observation

can be of key importance whenever agents sharing similar features want to learn from each

other.

Keywords: learning by observation, software agents, machine learning, software image
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Resumo

Esta tese resulta da investigação da aplicação da aprendizagem por observação em agentes de

software. A tese apresenta uma arquitetura que permite a agentes de software aprender mecan-

ismos de controlo por observação direta das ações realizadas por agentes especialistas enquanto

estes realizam uma tarefa. A arquitetura proposta permite que agentes de software se observem

uns aos outros ao exibir informações que são essenciais para a observação, tais como os con-

stituintes e as capacidades do agente, as ações realizadas e as condições existentes aquando a

realização das mesmas. Esta informação é acessvel a todos os agentes que queiram observar.

A abordagem proposta combina dois métodos de aprendizagem. O primeiro baseia-se na

sequência em que as ações foram observadas. O segundo categoriza a informação observada e

determina o conjunto de categorias aos quais os novos problemas pertencem. Os dois métodos

de aprendizagem são incorporados num processo de aprendizagem que cobre todos os as-

petos da aprendizagem por observação tais como a descoberta e observação de especialistas,

o armazenamento da informação adquirida, a aprendizagem e a aplicação do conhecimento

adquirido. O processo de aprendizagem inclui também uma avaliação do progresso do agente

que controla a decisão de obter novo conhecimento ou de aplicar o conhecimento adquirido em

novos problemas. O processo é alargado com feedback externo sobre as ações executadas.

A abordagem foi testada em três diferentes cenários que mostram a importância da apren-

dizagem por observação em situações onde agentes que compartilham caracterı́sticas semel-

hantes querem aprender uns com os outros.

Palavras-chave: aprendizagem por observação, agentes de software, aprendizagem au-

tomática, imagem de software
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Learning by Observation in Software Agents

Chapter 1

Introduction

This thesis describes research on a new learning paradigm for software agents: learning how to

perform a task by observing the actions executed by an expert agent with similar characteristics

while performing a task. Learning by observation is one of the least common and most complex

forms of learning amongst animals because it is singular to humans and to a strict number of

superior mammals (Bandura, 1977). It is an efficient mechanism of social learning and social

interactions of both humans and a number of other animal species, as well as for artificial

systems. This method of learning is also usually known in the artificial intelligence community

as imitation learning, learning from demonstration, programming by demonstration, learning by

watching and learning by showing. This variety arises from the definitions of what is learning

by observation, imitation and other similar activities. For consistency, the expression learning

by observation is going to be used from here on.

Explaining the ability to learn by observing in humans and other animals has proved to be a

complex subject. The mechanisms that underlie learning by observation are not yet quite known

and in addition they are closely linked to other social aspects such as socialization and commu-

nication (Nehaniv & Dautenhahn, 2004). The abilities involved in learning by observation play

an important role in several aspects of social development such as communication, interaction

and culture.

Traditional research on learning by observation only involved areas such as psychology, bi-

ology and ethnology. However, it has been recognised that the synthesis of artificial systems

that can be taught by observation, rather than by explicit programming, can also provide im-

portant insights on the mechanisms behind learning by observation. Expanding the research on

learning by observation to artificial systems allows a better understanding of its nature and ori-
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gins, besides providing a better understanding of social intelligence (Nehaniv & Dautenhahn,

2004).

Over the last decades, the subject of learning by observation has come to light in several

areas of artificial intelligence such as programming by demonstration, machine learning and

robotics. Chapter 2 shows that the vast majority of approaches that most accurately follow

the principles of learning by observation defined in Bandura’s social learning theory (Bandura,

1977) come from robotics, because robots can directly observe each other. Software systems

cannot observe one another in the same way tangible entities can be observed and therefore they

usually focus on the learning algorithm, ignoring important issues such as how the knowledge

is collected and how software systems observe one another. With the exception of one approach

(Machado, 2006; Machado & Botelho, 2006), software systems usually disregard that actions

may not have visible effects in the environment and do not take into account the direct obser-

vation of the activities performed by software systems. The research described in this thesis

addresses the following problems:

• How to make software agents observable to themselves and to others.

• How to provide learning by observation abilities to software agents, specifically the ability

to learn control knowledge by observing the actions performed by expert agents.

To avoid misconceptions, the act of observing a software agent is defined as:

Reading meta-data about an agent’s constituents, its actions and the conditions holding

when the actions were executed, without a direct intervention of the observed agent.

This way, the observed agent (the expert) has a passive role in the observation process,

as would be expected in learning by observation in humans and superior mammals. It is the

agent that wants to learn (the apprentice) who takes action to obtain new knowledge without

interfering with the expert agent.

The following sections present the motivation for this research (section 1.1), an overall view

of the approach to learning by observation (section 1.2), the important aspects to retain from the

evaluation of the approach (section 1.3) and a description of the application scenarios (section

1.4).

2



Learning by Observation in Software Agents

1.1 Motivation

This section describes the importance of learning by observation for software agents and the

conditions under which learning by observation is an adequate method for software agents to

learn. Research in neurology and psychology shows that learning by observation may well be

one of the causes of the exponential growth of human technologies in the last centuries. Unlike

natural selection, observation allows these capabilities to spread amongst individuals within the

same generation (Ramachandran, 2003). Learning by observation allows humans and animals

to learn faster than when using other learning methods (Meunier et al., 2007).

Machine learning approaches usually disregard the process of discovering experts and col-

lecting the examples that are necessary for learning a task. However, when compared with

learning by observation in humans, such a learning model seems unnatural. In learning by ob-

servation the apprentice has an active role in discovering experts and collecting the examples.

The learning process, that takes place in the apprentice, includes the discovery and comparison

of the structures of the experts to determine their similarity with the apprentice (Bandura, 1977;

Ramachandran, 2003; Meunier et al., 2007).

When applied to artificial systems, learning by observation allows artificial agents to share

skills without the need of human intervention. Apprentices can automatically learn about the

expert’s behaviour and include it in their own repertoire. The use of learning by observation

also broadens the context of the interactions and collaboration between artificial systems and

humans. It provides the means for the establishment of social relationships between apprentices

and experts (Nehaniv & Dautenhahn, 2004). For example, learning by observation could be

used as a means of establishing a social relationship between a personal agent and its user. This

would allow the personal agent to be aware of the actions of the user and thereby learn how and

when to perform them.

Learning by observation is useful for software systems because it provides a more direct

approach to the problem to solve when compared with other techniques where agents learn

only from the transitions in the state of the world. Instead of spending time testing several

hypotheses, artificial agents acquire the knowledge from the expert by directly observing its

actions while it performs the task. This allows the artificial agents to directly know which

actions are necessary to perform a specific task (Argall et al., 2009; Chernova, 2009).

According to several authors (Byrne, 1999; Dautenhahn & Nehaniv, 2002; Botelho & Figueiredo,

2004; Machado, 2006), being able to observe an expert agent performing its actions, as opposed

3
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to merely rely on the observation of their effects, can be advantageous because not every action

produces visible changes on the environment (for example, agent communication). In addition,

when the representation of world states requires too much memory it is impossible for the agent

to know the effects of all actions (for example, simulations with multiple interactions). The

agent may also not be able to know the effects of its actions a priori (for example, executing or

invoking a software program or API). Observing the actions is also advantageous in situations

in which the same effects could be achieved by different alternative actions but using one of

them is clearly better than using others (for example, using a set of sums instead of a simpler

multiplication). In such cases, it is important to actually ”see” what the expert agent is doing by

observing its actions. This allows the agent to know exactly what actions were executed.

The application of learning by observation in software systems is ideal for societies where

agents share common features but have their own internal representation methods (for exam-

ple, integration of legacy systems). Without common internal representation methods, directly

transferring knowledge between agents is impossible or, at least very difficult. Learning by

observation makes it possible to learn without the need of common internal representations

because each agent makes its own interpretations of what it is observing.

The advantages of learning by observation provide the motivation for further research on

how to implement a learning mechanism, for software agent societies, that enables agents to

learn from each other. The following section provides an overview of the proposed approach to

learning by observation in software agents.

1.2 Approach Definition

The research described in this thesis presents a computational approach to enable software

agents to learn by direct observation of the actions being performed by expert agents while they

are executing a task. An overview of this research is presented in (Costa & Botelho, 2013). This

is possible because the proposed approach also concerns displaying information that is essential

for observation, making it possible for software agents to observe each other. It defines a visible

representation of the agent constituents and capabilities, of the actions it executes and of the

conditions holding before the actions were executed - the software image (see chapter 3).

The proposed software image is an improvement of Machado’s approach (Machado, 2006;

Machado & Botelho, 2006). It represents the agent as a collection of parts with sensing and
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action capabilities and displays snapshots of the agent’s current and past activity (see section

1.2.1). It also defines an ontology to provide a common ground for designating the elements

of the software image (see section 3.3). Other innovations include a shared repository where

agents can register their software image so that it is available to any interested agent and the

possibility of observers subscribing to notifications on the creation of new snapshots (see section

3.4.3).

In addition to the software image, the proposed approach presents a learning process that

covers all aspects of learning by observation, such as discovering and observing experts, storing

the acquired data, learning from the observed information, applying the acquired knowledge

and evaluating the agent’s progress (see section 1.2.2). Agents can find themselves in one of

two states of the learning process: the learning state or the execution state (see chapter 4).

When agents are in the learning state, their only objective is to observe experts and acquire

new knowledge from them. When agents are in the execution state, their only objective is to

apply the acquired knowledge to select the actions to execute. The agent’s evaluation controls

switching between these two states (see section 4.6).

Two distinct methods of learning from the information acquired by observation, the recall

and the classification methods, were specifically developed for the approach (see section 4.5).

The two methods allow agents to perform the observed task when facing the same conditions

as the experts and also a similar task when facing different conditions.

The proposed approach is also capable of mimicking the behaviour of mirror neurons, which

allows the agent to use the learning methods both when observing and when preparing to ex-

ecute its own actions (see section 4.1). Another innovation of the proposed approach is the

ability to receive external feedback on the executed actions from specialized evaluators.

The following sections provide additional details on the two main aspects of the proposed

approach: the visible representation of software agents and the computational approach to learn-

ing by observation.

1.2.1 The Visible Representation of the Software Agent

For software agents to learn by observing each other they need to be visible to themselves and

to others. To become ”visible” to others, the software agent needs an accessible representation

of its constituents and activities, which is called ”the visible software image” or merely ”the

software image”. This ”visible” representation must include at least the agent components and
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the actions it performs (Botelho & Figueiredo, 2004).

To make the software agent ”visible” to others, the proposed software image provides a

domain-independent meta-data representation of its constituents, of the actions it executes and

the conditions holding before the actions were executed. It improves Machado’s proposal

(Machado, 2006; Machado & Botelho, 2006) by including the agent’s input mechanisms (the

sensors) in the description of the agent constituents (see section 3.2.1) and enhancing the in-

formation on the agent actions with the conditions holding when they were executed and with

the history record. It also enables the representation of simple and composite agent actions (see

section 3.2.2).

The proposed software image defines a meta-ontology to provide a common ground for

designating the elements of the software image (see section 3.3). A shared repository was

developed to allow agents to register their software image so that it is available to any interested

agent. The proposed software image also opens the possibility of observers subscribing to

notifications on the executed actions (see section 3.4.3).

Following Machado’s proposal (Machado, 2006; Machado & Botelho, 2006), the informa-

tion provided by the proposed software image is divided in two main categories: the static image

and the dynamic image. The static image is a representation of the agent’s constituents, their

relations and their characteristics. The dynamic image is a representation of the agent’s current

and past actions and the conditions holding before those actions were executed.

The static image represents the agent as a collection of parts with sensing and action capa-

bilities. The agent parts can also have visible attributes which represent the important aspects

of the agent’s internal state. The description of the agent sensors in the static image allows the

agents to compare with others not only by the actions they can perform but also by the kind of

information they can obtain from the environment. The information collected by the agent sen-

sors represents the way the agent understands the world - the agent’s perspective of the world.

Without this information agents have no way of knowing if the experts they observe understand

the world in the same way as them, which is important for a better understanding of the reasons

behind the expert’s actions (Bandura, 1977; Ramachandran, 2000).

Including the agent sensors in the static image is essential when software agents only have

access to part of the state of the environment, which is acquired by their sensors, because it

provides the interested agents with information on the agent’s sensing abilities. An example of

this is when two agents have access to different properties of the same object making it harder,
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if not impossible, to learn from each other because they would not understand the perspective

of the other. For example, one of the agents only sees the colour of the object and the other only

sees the shape of that object. The information regarding the agent sensors is also an important

aspect of embodiment because it is one of the requirements to be situated (Etzioni, 1993).

Unlike Machado’s proposal (Machado, 2006; Machado & Botelho, 2006), where only the

action being currently performed was displayed, the proposed software image displays snap-

shots of the agent’s current and past activity in the dynamic image (see section 3.2.2). The

snapshot captures all the agent’s activity in the time it takes to update the agent’s perception of

the world. It holds a representation of the executed actions and of the conditions holding at the

moment the agent decided to execute them. The conditions represent the state of the environ-

ment and important aspects of the agent’s internal state at a given moment. The information

provided for observation (the sequence of snapshots) is similar to the training sequences used

for training machine learning algorithms (a sequence of condition-action pairs) which facilitates

the development of the learning algorithm (see section 4.5).

The conditions in the snapshot can either hold the perspective of the agent that executes

the actions (the observed agent) or the perspective of the agent that is observing (the observer

agent) (see section 3.1). Using the perspective of the observed agent requires the observer to

have the same kind of sensors and visible attributes as the observed agent because it is the only

way it can understand the information contained in the conditions.

Using the perspective of the observer does not require both agents to have the same sensors.

However, it requires the observer to be in sync with the observed agent because the observer

needs to know exactly when the observed agent acquires the conditions for the actions it ex-

ecutes. In dynamic environments it is not guaranteed that the conditions holding before the

actions are visible in the dynamic image are the same as the conditions holding at the moment

the agent decided to execute them. In addition, it is not always ensured that the observer has

a complete access to the environment of the observed agent. When agents run in distinct pro-

cesses and have no skills to communicate with other processes, they can only acquire the state

of the environment that is contained in their process.

In the proposed approach, the conditions hold the perspective of the agent that executes

the actions because it is essential for the history record (see section 3.2.2). The history record

provides access to the agent’s past actions and the conditions holding when those actions were

executed in an uninterrupted flow from a given moment in the past to the present moment. This
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allows apprentices to acquire a large amount of information without waiting for the expert to

perform the actions. Without the perspective of the agent that executes the actions it would not

be possible to store the conditions whenever the agent is not being observed.

The dynamic image also enables the representation of simple and composite actions in the

snapshots. A composite action is composed of a sequence of actions which reproduce a complex

behaviour. Instead of displaying this complex behaviour as a single action, the behaviour is

decomposed in simpler actions which are easier to learn. The simpler actions may also be

reused to create other complex behaviours (see section 3.2.2).

The proposed software image uses an ontology to describe the knowledge about the agent

sensors, visible attributes and actions, about the tasks to be accomplished and about the re-

lationships between these elements. Using ontologies allows different agents that follow the

same ontology to use the same designations for the same kinds of sensors, actions and visible

attributes and for the same tasks. The ontology also enables specific kinds of sensors, actions

and visible attributes to be associated with specific tasks, which allows the agents to know which

elements are required to perform a task (see section 3.3).

Another important aspect of the ontology is the possibility of associating different desig-

nations of the same element, which opens the possibility of translations between different on-

tologies. A meta-ontology, which is called the software image meta-ontology, was created to

facilitate this translation. The meta-ontology defines the basic elements of the ontology and the

possible relationships between those elements.

A shared repository was specifically developed for the proposed software image (see section

3.4.3). Software agents use this repository to register their software image. The registered

software images can be easily accessed by any agent interested in observing the represented

agent. This ensures that, even though running in different processes, the agents can still observe

each other.

The proposed software image also provides a notification service that allows observer agents

to subscribe to snapshot notifications. The subscribed observers receive notifications each time

a new snapshot is created in the dynamic image of the observed agent. This allows the observers

to know exactly when they have to observe, that is, when they can collect a new snapshot from

the dynamic image of the observed agent (see section 3.4.3).

The following section shows the relevant aspects of the approach to learning by observation.
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1.2.2 Learning by Observation of the Software Image

The proposed approach defines a complete learning process which includes discovering an ex-

pert from which it is potentially possible to learn, observing that expert, retaining the acquired

information in the agent’s memory, learning new control knowledge from the information in the

agent’s memory to propose actions, applying the acquired knowledge and a continuous evalua-

tion of the agent’s progress (see chapter 4). The proposed learning process follows the definition

of learning by observation provided by the social sciences (see section 2.2.1), with some lim-

itations regarding the motivation that drives an apprentice to observe an expert, which is only

partially covered by the proposed approach.

The motivation to observe an expert is addressed by the internal evaluation which provides

the agent with a measure of the confidence on its knowledge. Depending on this confidence,

the agent can be motivated to acquire more knowledge (when it stops being confident) or to

perform the task using the acquired knowledge (when it is confident on its knowledge). The

agent can therefore find itself in one of two states of the learning process: the learning state or

the execution state (see chapter 4).

When agents are in the learning state, their only objective is to observe experts and acquire

new knowledge from them. When agents are in the execution state, their only objective is to

apply the acquired knowledge to select the actions to execute. Switching between these two

states depends on two configurable thresholds for the confidence. The agent can also switch

to the learning state whenever it faces a configurable amount of unfamiliar conditions, that is,

conditions that were not faced by any of the observed experts (see section 4.6).

The proposed approach mimics the behaviour of the mirror neurons by allowing the agent

to learn new control knowledge and propose actions when it is preparing to execute its own

actions and also when it is observing (in the learning state). This is possible because there is

a distinction between the representation of an action and its execution. The agent proposes

abstract representations of its actions, meaning that they are not immediately executed.

Being able to propose actions when observing and when preparing to execute them not

only improves the identification of the observed actions but also allows the agent to evaluate its

knowledge while it is learning (see section 4.6). When observing, the agent proposes actions

for the conditions in the observed snapshots, that is, for the conditions faced by the observed

expert. The proposed actions can then be compared with the observed actions (the actions in the

snapshot) to determine if the agent is able to propose the same actions as the observed expert.
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The proposed approach defines two methods of determining the experts from which it is

potentially possible to learn. Bandura’s social learning theory (Bandura, 1977) is followed

when it is not possible to determine the agent structures are necessary for the task to learn.

According to this theory, agents can observe experts that are similar to them, that is, an expert

whose static image has the same structure and the same elements as the agent’s static image

(see section 3.4.3).

When it is possible to determine the task to learn and the structures and abilities that are

necessary for that task (see section 3.3), agents can observe an expert as long as the intersection

of their software images contains those structures and abilities. This is enough to ensure that

the apprentice agent is able to recognize all the conditions and activities on the expert software

image that are necessary for learning a specific task.

Before acquiring the snapshots regarding the expert’s current activity, the agent acquires

all the snapshots in the expert’s history record. This provides a large amount of knowledge

without waiting for the expert to execute those actions. The process of discovering an expert

and observing it is referred to as the observation period. The agent may go through several

observation periods, where it has the chance to observe different experts, while it is learning.

This increases the diversity of the agent’s knowledge because different experts might provide

different points of view on the task to learn (see section 4.3).

The observed snapshots are retained in a temporary memory before being processed and

stored in the agent’s memory. The temporary memory acts as a buffer for observation because

it allows the agent to handle snapshots at a different rate from which they are acquired. It

also allows the agent to keep a record of the expert’s actions that might take place while it is

acquiring the expert’s history, which provides an uninterrupted sequence of snapshots from a

moment in the past until the current moment.

In the proposed approach, the agent’s memory is stored in a tree structure. Using a tree

structure enables the sequence in which the snapshots were observed to be intrinsically pre-

served in the agent’s memory. The tree structure also facilitates the consolidation of the agent’s

knowledge because it stores different approaches for the same task as alternative paths in the

tree (see section 4.4).

The information in the agent’s memory is used for learning new control knowledge and

proposing actions. The proposed approach provides two methods of learning from the infor-

mation acquired in observation: the recall and the classification methods (see section 4.5). The

10



Learning by Observation in Software Agents

recall method was totally developed for the proposed approach. It uses the sequence on which

the expert actions were observed to propose actions for the new problems. The classification al-

gorithm is an adaptation of the existing KStar algorithm (Cleary & Trigg, 1995). It categorizes

the information in the observed data and determines which actions to perform according to the

categories of the new problems.

The two methods propose actions individually, providing the agent with a broader set of

possibilities of actions to choose from. Dynamically computed weight factors are associated

to each method to assist on deciding which of them is best suited for the current situation.

The weight factors reflect the amount of correct and incorrect actions proposed by each method

throughout time, as explained in section 4.5. The accuracy of the proposed actions is determined

by the evaluation of the agent’s progress, which is described in section 4.6.

The agent’s evaluation constantly tests the agent’s knowledge, when it is in the learning

state and when it is in the execution state (see section 4.6). The results of those tests update

the value of the agent’s internal confidence. When the agent is in the learning state, the internal

evaluation determines if the agent masters the task it is observing. It proposes actions for the

conditions in the observed snapshot and checks if the proposed actions are the same as the ones

observed in the expert. If the actions are the same the confidence increases, if they are not the

same the confidence decreases (see section 4.6).

When the agent is in the execution stage, the internal evaluation determines the quality of

the actions selected for execution. A simple monitoring of the executed actions checks whether

the actions were effectively executed or not. The confidence decreases if a problem is detected

when executing the actions. However, this simple monitoring has some limitations because

even though there are no problems when executing the actions it is not possible to ensure that

the action was the most appropriate for the current conditions.

To overcome this problem, the proposed approach enables the evaluation to receive external

feedback on the executed actions from specialized experts, the teachers, or from other evaluators

that are specific to the application domain. This allows the agent to be evaluated on its ability

to propose the correct actions for the current conditions. The feedbacks can either be positive,

when the agent executes the correct actions, or negative, when the agent proposes the incorrect

actions. However, the ability to receive external feedback approximates the approach to the

paradigm of learning by teaching.

Another improvement of the external feedbacks comes from the negative feedbacks. A neg-
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ative feedback represents a situation where the action proposed by the agent is inappropriate for

the current conditions, which is also a negative training example. Therefore, besides influenc-

ing the agent’s confidence in its knowledge, the external feedbacks also provide the agent with

negative training examples. The negative training examples help to prevent future executions of

the same actions under the same conditions as explained in section 4.6.

1.2.3 Approach Contributions and Limitations

The proposed approach heavily relies on an agent architecture with software image. Agents

with software image can be ”seen” (consulted) by other agents and even by themselves. In spite

of the similarities with Machado’s approach (Machado, 2006; Machado & Botelho, 2006), the

proposed approach to the software image introduces several improvements, in particular:

• The inclusion of the agent sensors in the static image, in addition to the visible attributes,

the actuators and the actions from Machado’s approach. This improvement provides a

better description of the agent and improves the observer’s ability to understand the rea-

sons for the agent actions, as explained in section 3.1.

• The dynamic image, besides displaying the executed action as in Machado’s approach,

also displays information on the conditions holding at the time the action was executed,

that is, the state of the environment, as perceived by the agent sensors, and the instances

of the important aspects of the agent’s internal state. With this improvement, the data

provided for observation is similar to the training sequences used for training machine

learning algorithms (condition-action pairs), as explained in section 3.2.

• The proposed software image displays historical information about the actions executed

in the past and about the conditions holding at the time those actions were executed.

This enables the agents to acquire a large amount of knowledge at the beginning of the

observation, as section 3.2.2 shows.

• The proposed software image uses ontologies to hold the knowledge on the designations

of the different kinds of sensors, visible attributes, actions and tasks. This improvement

allows agents that follow the same ontology to use the same designations for the same

kinds of sensors, visible attributes, actions and tasks, as section 3.3 shows.
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• The proposed software image provides a shared repository where agents can register their

software image. The registered software images can be easily accessed by any agent

interested in observing the represented agent, even when running in a different process

(see section 3.4.3).

• The proposed software image allows observers to subscribe to snapshot notifications.

This allows the subscribed observers to know exactly when to observe, which is when a

new snapshot is created in the dynamic image of the observed agent (see section 3.4.3).

The contributions of the proposed approach are not restricted to the agent software image.

The other important contributions are the complete approach to learning by observation in soft-

ware agents, in particular:

• The discovery of experts which provides the agent with the necessary tools to discover,

by itself, expert agents from which it is possible to learn (see section 4.3).

• The use of tree structures to hold the agent’s knowledge, which allows the agent to express

its knowledge as a decision tree and enables storing different approaches to the same task

with minimal conflicts (see section 4.4).

• The definition of two learning algorithms, which are used to convert the observed infor-

mation into mechanisms for choosing the actions to perform in the current conditions - the

recall algorithm and the classification algorithm. The recall algorithm was totally devel-

oped for the proposed approach and uses the sequence on which the expert actions were

observed to propose actions. The classification algorithm is an adaptation of the existing

KStar algorithm (Cleary & Trigg, 1995) and categorizes the observed data to determine

which actions to propose according to the categories of the new problems (see section

4.5).

• The definition of an internal evaluation process which provides the agent with a measure

of the confidence on its knowledge. Depending on this confidence, the agent can be in one

of two states of the learning process: the learning state or the execution state (see chapter

4). When agents are in the learning state, their only objective is to observe experts and

acquire new knowledge from them. When agents are in the execution state, their only

objective is to perform their task using the acquired knowledge. Switching between these

two states depends on two configurable thresholds, as explained in section 4.6.
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• The ability to mimic the mirror neurons, which allows the agent to use the same mech-

anisms to propose actions both when learning and when using the acquired knowledge.

This allows the agent to directly associate the observed actions with its own actions. It

also allows the agent to propose actions for the conditions faced by the observed expert

and determine if the agent is capable of proposing the same action as the observed expert

(see section 4.1).

Despite the contributions to advance the state of the art of learning by observation in soft-

ware agents, this approach has a limitation regarding the discovery of experts from which it

is possible to learn. This limitation was also found on the surveyed approaches for learning

by observation (see section 2.2.5). In normal circumstances, although an expert has the same

features as the apprentice agent, it does not necessarily mean that it is performing the actions

that are necessary for the apprentice to learn (by observation) how to perform a specific task.

As in almost all the surveyed approaches, the experts in the demonstration scenarios (see

chapter 5) are prepared to only execute the actions that are necessary for the task to be learnt.

One possibility of overcoming this limitation would be through communication with the ob-

served experts, that is, the apprentices could request the expert to perform a specific task.

However this possibility would require the definition of a communication protocol between

the observer and the expert, which, given the time limitations, is outside of the scope of this

thesis.

1.3 Evaluation

The main objective of the research is the development of an approach to learning by observation

that allows software agents to learn control knowledge by observing the actions of another

software agent while it is performing a task. The research is evaluated by the following criteria:

1. A learning by observation agent must be capable of discovering the correct experts from

which it can potentially learn by comparing its software image with the software images

of the expert agents.

2. A learning by observation agent must be capable of solving a problem after observing an

expert solving that same problem.
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3. A learning by observation agent must be capable of solving a problem after observing

experts solving the same problem in different contexts.

4. After learning, the agent’s performance, in terms of the number of actions correctly exe-

cuted, must be similar to the performance of the observed experts.

5. A learning by observation agent must improve its ability to master a task each time it goes

through an additional learning period.

6. The learning by observation agent must obtain better results, in terms of the ability to

master a task and the time it takes to learn that task, than other learning mechanisms

under similar circumstances.

The secondary objective of the research is to provide software agents with a universally ac-

cessible visible representation. Ideally, this visible representation, the software image, would

fulfil all possible goals regarding the visible (accessible) representation of software agents. Un-

fortunately this research is far from providing useful insights about all possible uses of the

software image. The proposed visible representation expands the former approach by Machado

(Machado, 2006; Machado & Botelho, 2006) with new features suitable for learning control

knowledge by observation. The proposed approach also has in mind that it should be as general

as possible not impairing future uses.

The proposed approach was implemented in three different scenarios that show the capa-

bilities of the approach and validate the evaluation criteria. The following section presents an

overview of those scenarios.

1.4 Demonstration Scenarios and Results

This section presents a general description of the demonstration scenarios where the proposed

approach was implemented. The capabilities of the proposed approach are tested in three dif-

ferent scenarios, described in chapter 5. In all the demonstration scenarios, the agents do not

initially know the effects of their actions and, with the exception of one setting in the first

scenario, no external feedback is used to enhance the agent’s evaluation (see section 4.6).

In the first scenario, the agent learns how to manipulate their virtual hand to display numbers

using sign language (see section 5.2). In the second scenario, the agent learns how to calculate

mathematical expressions using the numbers and operators acquired from the environment (see
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section 5.3). In the third scenario, the agent learns how to reach the top of a simulated mountain

by going backwards and forwards to gain momentum (see section 5.4).

In addition, chapter 5 also presents the results of the tests on the proposed software image

(see section 5.1). The results show that the agent’s complexity can be measured by the number

of parts, the number of atomic elements in those parts and the depth of sub-parts. Agents

composed of a small number of parts with a small number of elements and depth are less

complex and therefore have the shortest times both when creating and when comparing their

software images. The tests also show that this measure of complexity only affects the time to

discover an expert from which it is potentially possible to learn. The time it takes to acquire a

snapshot from the dynamic image is not affected by the agent’s complexity.

The first scenario (see section 5.2) was especially conceived as a situation in which the

results of agent actions are not visible in the environment, since the majority of the actions only

affect the agent. Therefore, it will not be possible for a common machine learning solution to

learn only from the effects of the actions. For a complete understanding of what is happening,

it is necessary to observe the agent’s constituents and its actions.

The scenario simulates an agent with a virtual hand that displays numbers using sign lan-

guage. Each time the agent sees a number, the virtual hand is changed to display that number by

means of sign language. The virtual hand is used only for communicating with users through

a graphical display. The only way software agents can obtain information on the state of the

agent’s virtual hand is through the software image.

The first scenario was specially conceived to test the abilities of the proposed approach and

the influence of the configurable thresholds. It shows that the confidence thresholds determine

the time the agent spends learning and the number of times it returns to the learning state after

starting to execute its own actions, which affects the total amount of executed actions. The

configurable amount of unfamiliar conditions affects the number of times the agent returns to

the learning state after starting to execute its own actions, which also affects the total amount of

actions executed.

The scenario also determines the influence of the two methods of proposing actions, recall

and classification, on the executed actions. The recall method has more influence when the

agent faces the same conditions as the experts it observes. The classification method has more

influence when the agent faces different conditions (see section 5.2.1). Finally the scenario

shows that using external feedback from a specialized expert is useful when the effects of the
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actions are not visible both in the environment and in the agent (see section 5.2.4).

The second scenario (see section 5.3) compares the proposed approach with supervised

learning algorithms that only learn from the effects of the actions, in a situation where some

of the effects of the actions are not visible in the environment. The scenario was conceived

to show the inefficiency of only observing the effects of the actions under such conditions.

The agents have to learn how to calculate mathematical expressions from the numbers and

operations acquired from the environment.

The agents hold the acquired numbers and operators to create a mathematical expression.

The expression is calculated and the agent outputs the result of the calculation. The effects of the

actions concerning obtaining the numbers and operators to create the expression are partially

visible in the environment. The part of the effect that is visible is their acquisition from the

environment. The other effect of those actions, which is calculating the value of the expression,

is not visible because it only affects the agent. The only action whose effect is completely

visible in the environment is the output of the result.

The third scenario (see section 5.4) presents the mountain car problem as described in (Sut-

ton & Barto, 1998). It is an application of the proposed approach in a different class of problems,

which are are best suited for reinforcement learning (RL) algorithms. The proposed approach

is compared with a RL algorithm in a situation in which this kind of learning algorithm has

already shown to be a good approach. (Mitchell, 1997).

The outcome of the tests performed in the application scenarios validates the evaluation

of this research (see section 5.5). The results show that, with the proposed approach, agents

that do not initially know the effects of their actions can correctly learn how to perform a task

after observing experts performing that task. The agents are also able to perform a task after

observing experts performing similar tasks under different conditions (see section 5.2.1).

The first scenario also shows that agents are capable of returning to the learning state after

starting to apply their knowledge (the execution state) and increase their ability to perform a

task each time they return from the learning state. Finally the scenario shows that even when

the effects are not visible in the agent (see section 5.2.2), it is still possible to learn the task,

even though it requires additional feedback from specialized experts (see section 5.2.4).

The second scenario (see section 5.3) shows that observing the actions is better than observ-

ing their effects in situations where some of the effects of those actions are not visible in the

environment. Even when compared with a KStar algorithm (which is used by the classification
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method) that only observes the effects of the actions, the approach to learning by observation

is far better when considering the amount of correct actions executed. This shows the advan-

tages of the approach when compared with similar solutions that only observe changes in the

environment.

The third scenario (see section 5.4) shows that the proposed approach is able to learn faster

than the reinforcement learning approach even in problems for which reinforcement learning

has proved to be adequate. Agents using the proposed approach are able to learn faster and

require fewer actions to achieve the goal. They are also able to achieve approximately the same

results as the experts (in terms of the number of actions and the distance that is necessary to

travel to reach the top of the mountain) which is far better than the results of the reinforcement

learning apprentices.

Even though learning by observation requires the presence of experts, in typical learning

by observation applications the experts already exist. Learning by observation does not require

an additional effort developing expert knowledge. The only situation in reinforcement learning

where there is no effort in developing expert knowledge is rewarding the agent only at the end

of the task. The only information provided is the goal, which is embedded in the agent. The

application of any other reinforcement schemes would require an additional effort on developing

a proper reward function or on directly providing the rewards for the performed actions.

In the proposed approach, agents have the ability to find experts by themselves (see section

4.3.1). These experts can either be other agents, with the sufficient knowledge for the task,

or even a program that is directly controlled by a person. The ability to find an expert re-

moves the burden of building a proper reward scheme which would be necessary to improve the

reinforcement learning agent. Therefore, the proposed approach is more advantageous than re-

inforcement learning since it provides shorter learning periods, better results and even a smaller

development effort.

The next chapter presents a survey on research on the visual representation of agents and

on learning by observation. Chapter 3 describes the approach to the software image. Chapter 4

describes the approach to the learning by observation process. Chapter 5 describes the experi-

mental results and the evaluation of this research. Finally, chapter 6 presents conclusions and

future work.
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Chapter 2

State of the Art

The main contribution of this thesis is a new learning paradigm for software agents: learning

how to perform a task by observing the actions executed by an expert agent with similar char-

acteristics. The main intention of this chapter is to survey the approaches that are related to

this learning paradigm or that may contribute to solve the problems faced when applying learn-

ing by observation in software agents. With this survey it is possible to determine the relevant

features for an approach to learning by observation and what is still lacking from the surveyed

approaches.

Learning by observation can be, in certain domains, the most efficient learning method, but

as this survey shows (see section 2.2.5), until now the major advances concerning the ability to

directly observe one another are related to robotics. The main reason for this is because robots

can physically observe each other. They also allow a more natural interaction with humans

which facilitates using human experts and enables the creation of an intuitive communication

medium between humans and robots (Argall et al., 2009).

Software agents do not have the ability to see themselves or the others in the same way as

tangible entities (such as robots) see themselves and other tangible entities. This is the main

reason why they are usually constrained to learning by observing the effects of actions, instead

of the actions themselves (Quick et al., 2000; Argall et al., 2009).

However, as several authors have already emphasized (Byrne, 1999; Dautenhahn & Ne-

haniv, 2002; Botelho & Figueiredo, 2004; Machado, 2006), not every observable action pro-

duces visible changes in the environment. Thus, using state change information alone in learn-

ing algorithms is not always a good option. In such cases, it is important to actually ”see” the

expert agent executing its actions. This approach allows the apprentice agent to know what
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action was performed by the expert, thus overcoming the problems that arise when the effects

of the actions are not visible.

For software agents to learn by observing the actions of other software agents, the exis-

tence of a visible body that displays the necessary visible features is mandatory (Mataric, 1997;

Botelho & Figueiredo, 2004; Machado, 2006). Software agents need to be equipped with some

kind of visible representation of their components and of the actions they do. To make a soft-

ware agent ”visible” to others, its visible representation must be accessible not only to its owner

but also to other agents.

Determining how to create this representation of the software body, which is called the

software image (of the visible software agent), how to make it universal and how observation

and interpretation takes place, are important aspects of this thesis. Therefore, the two main

contributions of this chapter are:

• The literature overview regarding approaches for building a visual image for software

agents (Section 2.1)

• The literature overview regarding learning by observation which includes the social learn-

ing theories (Section 2.2)

The literature overview on embodiment, embodied cognition and embodied artificial intel-

ligence in section 2.1.1 shows that embodiment deals with problems that are similar to the rep-

resentation of a visible software image. However, the main aspects focused by the embodiment

literature are the distinction between mind and body, the grounding problem, the advantages of

having a body and the definition of what is embodiment. This leaves little room for approaches

that address more specific aspects of embodiment (such as how to represent a software body)

and that can point out to different ways of solving this problem.

It is also possible to find contributions for the visible representation of software agents and

their actions outside the embodiment literature. As section 2.1.2 shows, the approaches for the

graphical representation of software programs and of the interactions between their components

may contribute with a different perspective on how to build this visible representation, even

though it is not their main purpose.

From what is acknowledged by this literature revision, the only known approach to have

proposed a software image for visible software agents comes from Machado (Machado, 2006;

Machado & Botelho, 2006). With this software image, software agents are able to show their
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constituents and the actions they are performing. However, as section 2.1.6 shows, the men-

tioned approach misses some important requirements such as the inclusion of the agent sensors

in the description of its constituents and capabilities, the ability to represent complex actions,

the existence of a history record, the inclusion of the conditions in the data provided for ob-

servation, the inclusion of the agent’s visible properties as conditions for the executed actions,

the existence of a common repository for the software images and the possibility of receiving

notifications on agent activities.

The literature overview of approaches for learning by observation described in section 2.2

shows that the learning algorithm is one of the most important aspects of an approach to learning

by observation (see section 2.2.2). However, an approach cannot be limited to the definition of

the learning algorithm. It must also provide a global view of the learning process that includes

the agent’s motivation to learn, discovering and observing agents, learning new knowledge from

the information acquired by observation, storing this knowledge and applying the learnt knowl-

edge in new situations (Demiris & Hayes, 2002; Tan, 2012). Evaluation is also an important

aspect to consider in the learning process (Wood, 2008; Billing et al., 2010).

One of the major flaws detected on the surveyed approaches, besides lacking the ability

to directly observe the expert performing the task, was the fact that this global view is still

missing (Tan, 2012). To the best of our knowledge, with the exception of the proposed approach,

all approaches are focused on solving specific problems, and the solutions they provide are

supported exclusively by the learning algorithm, which is only part of the learning process. The

learning algorithm defines how the information, obtained from observation, is stored and how

it is used, that is, how the agent proposes actions to execute when facing new problems (Argall

et al., 2009).

Section 2.2.2 shows the different possibilities for the learning algorithm. The most common

possibility is to follow the same sequence of actions as the expert, or sequencing, which requires

the agent to store the sequence on which it has observed the actions performed by the expert.

Other possibilities are to generalize the acquired information, to use analogies between the

acquired information and the new problems or to categorize the information and determine to

which set of categories the new problems belong. This allows the agent to face situations that

have never been observed, because in a real world situation it is almost always impossible to

observe all possible conditions (Argall et al., 2009; Sullivan, 2011). These possibilities may use

Bayesian or classification algorithms, neural networks, inverse reinforcement learning, case-
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based reasoning or inductive programming.

This variety of possibilities for the learning algorithm reinforces the remark that learning by

observation does not depend on a specific method or algorithm to create new knowledge from

the observed data. However, the literature overview shows that the approaches are somehow

dependent on the types of domain on which the chosen algorithms are more effective.

Another important conclusion of the survey on the approaches for learning by observation

is described in section 2.2.4. It shows that learning by observation cannot be fully achieved

without mimicking specific structures that exist in the brains of humans and superior mammals

- the mirror neurons - because they are tightly involved with learning by observation. Several

approaches propose to mimic the peculiar behaviour of the mirror neurons through forward

models. Forward models allow apprentices to create internal representations of the world, from

which they obtain information on the consequences of the actions without executing them.

However, the forward models are specifically designed for robots and use hardware in-

hibitors to prevent the robot actuators from executing the estimated actions. The main objective

of these kind of structures is to create a distinction between the description of the action and

its execution, that is, to create abstract representations of agent actions (Kulic et al., 2011).

This solution is simpler and provides the agent with control over the execution of the actions

proposed by the learning algorithm.

The following sections present an overview of the surveyed approaches on embodiment, on

the visual representation of the software agent and on learning by observation.

2.1 The Software Visual Image

This section presents a survey on embodiment, embodied cognition and embodied artificial

intelligence, the research fields that are closely related to the subject of providing software

agents with an accessible (visible) representation of their constituents (their body) and activities.

Without the means to represent the constituents of a software agent and the actions it executes,

learning by observing an expert while it performs a task becomes harder, if not impossible, to

achieve.

The main purpose of this section is to provide an overall view of what is embodiment and

to show how the literature on these research fields can point out important contributions of

the software body and how they can be used to provide a ”visible” description of the software
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agent and of its activity - the visible software image or simply the software image. The section

also shows that outside of the literature on embodiment it is also possible to find approaches

that, although not aimed to solve the problem of providing agents with a software image, make

some contributions on how to build it. These approaches are usually directed to the graphi-

cal representation of programs and of the interactions between their components, for software

developers.

The literature on learning by observation also has contributions for the software image.

Although the approaches to learning by observation are mainly focused on how to learn from

observing the actions of an agent, some of them provide insights on how to represent the agent’s

activity in a way that is ”observable” to other agents. The literature on learning by observation

also provides some improvements on the software image, such as the use of ontologies to allow

a common understanding of the information contained in the software image.

2.1.1 Embodiment

Embodiment consists of giving the notion of body to an entity. It is supported by the phe-

nomenology school, which believes that the role of the body, in the interaction between agent

and environment, should be more significant. Despite the concern with the role of the body

and its properties, the literature on embodiment does not care about the definition of a software

image.

Claims about embodiment revolve around materiality and the physical world, which makes

it difficult to understand how to embody something in a software world (Quick et al., 2000).

However, it is possible to highlight some of the features that are important for a ”visible” de-

scription of the agent constituents such as the agent’s acting and sensing capabilities (Brooks,

1991; Etzioni, 1993).

Dreyfus (Dreyfus, 1992) suggests that embodiment needs relatively little emphasis on the

actual form of the body, but rather on qualitative features such as the capacity to act, ”the ’I can’

ability to respond to situational solicitations” (Dreyfus, 1992). The possibility of performing

actions is not something that is inherited from being material, unless the action is happening in

the material world. This makes being a material agent not immediately significant (Quick et al.,

2000).

Software agents can also be situated in the software environment in the same way as a robot

is situated in the physical world, if characterized by what they can do (their actions) and also
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by the kind of inputs they are able to collect from the software environment (Etzioni, 1993).

Stripping embodiment from its association to physicality makes it possible to find applications

of it for software agents. One of these possible applications is learning by observation, as stated

by Botelho and Figueiredo (Botelho & Figueiredo, 2004) and Mataric (Mataric, 1997).

Despite the advancements in research on embodiment, recent approaches for software em-

bodiment are usually associated with the representation of virtual characters, such as described

in (Morel & Ach., 2011). Like the robotic approaches, the problem of the existence of a body

is overcome by replacing it with a virtual representation of something that exists in the physical

world, which in this case is the body of the virtual character.

Additional information on embodiment and embodied cognition is presented in appendix A.

The following sections show contributions from outside the embodiment literature on creating

the software image.

2.1.2 Code Analysis and Function Tracking

This section shows that besides the literature on embodiment, an overview of other subjects pro-

vides ideas that can be used for the representation of the constituents and activities of software

agents, or simply, the software image. Code analysis (Consens et al., 1992) and function track-

ing (Arévalo et al., 2010) are examples of approaches from outside the literature on embodiment

that provide ideas on how to represent the constituents and activities of software agents.

Although the main purpose of these two approaches is not directed to solving the problem

of creating an accessible representation of the software agent their ideas can be adapted for

this representation. Code analysis is normally used to build graph like representations of the

constituents of a program. It uses reflection and code introspection tools to build a graphical

representation of the program’s classes and the relationships among them. It allows developers

to figure out how these programs are made (Consens et al., 1992).

Function tracking describes the activities of a program through tracing and logging. It pro-

vides detailed reports on the sequence of messages exchanged between the program constituents

when carrying out a specific activity. The main purpose of function tracking is to help develop-

ers understand the interactions inside a program (Arévalo et al., 2010).

When combined, code analysis and function tracking provide a practical solution on how to

describe the agent constituents and to trace its activities. However, the descriptions they pro-

vide are low-level representations such as the description of the program classes and methods.
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A better approach is to abstract the program constituents and activities which improves the ca-

pability of detecting and comparing similar concepts. With this improvement, it would only be

necessary to define a mechanism to make these representations accessible (and thus visible) to

the agents that might want to observe them.

The following sections show how approaches for learning by observation can contribute to

the definition of the software image.

2.1.3 Requirements on the Observed Data

This section shows the contributions from the literature on learning by observation on the kind

of information to provide for observation - the demonstration data. The section also shows

several approaches for observing, that is, for providing the demonstration data to the agents that

want to observe an expert performing a task - the observer agents.

According to Argall and her colleagues (Argall et al., 2009), the most suitable kind data for

observation, that is, for the demonstration data, is the condition-action pair, which is similar to

the data used for training machine learning algorithms. When agents observe an expert they are

actually acquiring a condition-action pair, consisting of the actions executed by the agent and

the conditions holding before those actions were executed. The condition-action pair acquired

by the observer agent represents a positive training example provided by the observed expert

(Argall et al., 2009).

The conditions in the demonstration data represent the way the agent understood the world

at the time the actions were selected and executed. The conditions can either be obtained by the

agent that is observing, the observer, or by the agent that is performing the actions, the observed

expert. When the conditions are obtained by the observer, they hold the point of view of the

agent that is observing, which means that it is able to immediately understand them. However,

it requires the observer and the expert agent to be synchronized so that the observer knows when

to obtain the conditions for the actions it observes (Argall et al., 2009).

The synchronization between the expert and the observer is not necessary when it is the

expert agent who obtains the conditions because the expert knows exactly when to obtain them,

which is at the moment it selects the actions for execution (Argall et al., 2009). However, there

is a risk that the observer does not understand the point of view of the observed expert and

therefore it is not able to understand the conditions. Section 2.1.5 shows how this risk can

be mitigated and why it is important for the observer to understand the point of view of the
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observed expert.

Argall and her colleagues (Argall et al., 2009) also point out some of the strategies used

in robotics to provide the demonstration data to the observer agents. However, none of these

strategies make reference to an accessible representation of the agent or even to software em-

bodiment, mainly because the agent is a robot and has a physical body. Some of them, like

teleoperation, do not even concern the observation of another agent because the demonstration

data is provided by direct manipulation of the observer (for example, a person manipulates the

arm of the robot to emulate the movements to learn) (Argall et al., 2009). Teleoperation is

one of the most commonly used methods of providing demonstration data to observers, mainly

because it does not require the observation of another agent (Billing et al., 2010, 2011; Tan,

2012; Sugimoto et al., 2012).

Other methods of providing the demonstration data that require the observation of another

agent use specialized sensors to record the executed actions and the conditions holding before

those actions were executed (Argall et al., 2009). The observers only have to know where this

information is stored and how to collect it. A similar mechanism for recording and presenting

the agent’s activities is provided in Machado’s approach (Machado, 2006; Machado & Botelho,

2006), as explained in section 2.1.6.

In addition to helping to determine the kind of information that is best suited for observation,

the literature on learning by observation also provides insight on how to represent agent actions.

The following section shows several proposals for representing those actions.

2.1.4 Representing Agent Actions

This section shows several strategies for representing agent actions as a way of decreasing the

complexity of the task to learn. One possible strategy is using composite actions, that is, actions

composed of a sequence of actions. Through composite actions it is possible to represent a task

as a sequence of high-level actions, which in turn are decomposed in sequences of simpler

actions which are easier for the agent to learn. The outcome of a composite action is the same

as executing all the actions that compose it (Heyes & Ray, 2000; Byrne, 1999; Sullivan, 2011).

Using composite actions is also a way of overcoming the distinction that is usually made

between action level and program level learning (Byrne & Russon, 1998). According to Byrne

and Russon (Byrne & Russon, 1998) the program level provides a broader description of the

task to learn, that is, the task is described by the sequence of composite actions. The action
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level reflects a detailed and linear specification of a task, that is, the task is described as the

sequences of actions in each composite action.

Wood (Wood, 2008) also uses the distinction of program and action level when describing

the tasks to learn. For him, this distinction can be used for generalizing tasks. For example, the

task of building a wall may include both building with bricks and building with blocks. At a

program level, both tasks would have the same representation, but at an action level some of the

actions for building would be different (Wood, 2008). This would, however, require each task

to have different composite actions because they would require different sequences of actions

to complete the task.

Another possibility of decreasing the complexity of a task is enabling the instantiation of

agent actions. Learning actions that may be instantiated is more effective than learning only

concrete actions. Once learnt, an action may be applied to several different circumstances (for

example, a generic move action that receives the object to move as an argument can be applied

to a ball or to a chair by simply changing the argument) (Sullivan, 2011).

A different possibility of decreasing the complexity of the task to learn is presented in

Machado’s agent architecture (Machado, 2006; Machado & Botelho, 2006). In her proposal,

the software agent is represented as a collection of parts, each one specialized in solving part

of a complex problem. This way the problem is automatically divided into smaller and simpler

problems that are easier to solve and thus requiring less complex behaviours. The approach used

in her architecture is similar to the robotic architectures proposed by Brooks (Brooks, 1986).

2.1.5 The Point of View of the Observed Expert

This section shows the importance of understanding the point of view of the agent that executes

the actions - the expert. It shows different approaches on how observer agents can understand

the point of view of the experts they observe. The importance of understanding the point of

view of the observed agent is described by several authors (Ramachandran, 2000; di Pellegrino

et al., 1992; Rizzolatti et al., 1996; Maistros & Hayes, 2001). Without this understanding the

observer agents are at risk of not knowing the exact reasons for the actions they observe on the

expert.

One possibility for understanding the point of view of the observed expert is to use mappings

between their concepts of the world and of their actions. With proper mappings it is possible

for an observer to correlate the conditions and the actions it observes on the expert with its own
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understanding of the world and its actions. Without these mappings learning becomes ineffec-

tive because the observer cannot understand the actions it observes in the expert (Alissandrakis

et al., 2002).

The mappings can be manually built as proposed by Alissandrakis and his colleagues (Alis-

sandrakis et al., 2002). They use a pre-built library that links instances of the actions and

conditions of the expert, with their specific counterparts as they are understood by the observer

agent. The observer uses this library to convert the actions and conditions it observes on the

expert to the actions and conditions it is able to understand.

Another possibility for understanding the point of view of the observed expert is provided by

social learning theories when explaining how learning by observation takes place in humans and

superior mammals. According to social learning, this problem can be easily solved by making

entities learn from each other only when they share similar bodies and capabilities (Bandura,

1977). The ability to identify similar entities is analogous to the process of matching the static

structures of software agents. If both agents have the same static structure there is no need for

mappings, since they can immediately recognize the constituents and the abilities provided by

these structures on each other.

Recent developments in learning by observation approaches (Sullivan, 2011; Fonooni et al.,

2012) provide different alternatives on understanding the point of view of the observed expert.

They use ontologies as a way to generalize the agent actions and their interpretation of the

world. Describing these elements in an ontology allows them to be recognized by anyone who

is familiar with that ontology. The elements can also use the ontology properties to express their

relationships with other elements (Fonooni et al., 2012; Sullivan, 2011).

2.1.6 Previous Proposals on the Software Image

This section describes a previous proposal on the software image from Machado (Machado,

2006; Machado & Botelho, 2006). Machado’s proposal is a materialization of Botelho and

Figueiredo’s proposal (Botelho & Figueiredo, 2004) for a component based approach to the

agent’s body and its visual image. According to them, the agent’s body is a set of components,

each with its own set of rules to solve particular problems.

In Machado’s approach (Machado, 2006; Machado & Botelho, 2006), the ”visible” repre-

sentation of the agent is composed of a static image and a dynamic image. The static image,

the agent’s static visual appearance, is made out of representations of the agent’s components
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and descriptions of their roles. It allows the agent to show its constituents, the relations be-

tween its parts and the requirements for their use. The dynamic image, the agent’s dynamic

visual appearance, represents the agent’s activities, body expressions and emotions (Botelho &

Figueiredo, 2004; Machado, 2006; Machado & Botelho, 2006).

The static image groups the agent’s constituents in parts, each one providing information

on a portion of the agent’s capabilities. Each capability is represented by an actuator that holds

a collection of actions. Each action represents the agent’s ability to change the environment

or to change its internal state. The agent parts in the static image may also make reference

to portions of the agent’s internal state - the visual attributes. The visual attributes represent

important aspects of the agent’s internal state and therefore are made visible in the software

image (Machado, 2006; Machado & Botelho, 2006).

The dynamic image needs constant updates because it shows the instance of the action being

currently performed by the agent. Unlike the dynamic image, the static image does not change

with time to allow a coherent identification among software agents.

Although Machado’s approach to the software image (Machado, 2006; Machado & Botelho,

2006) provides a description of the agent constituents and actions, it does not describe the kind

of input the agent can acquire from the software environment. As section 2.1.1 shows, for a

complete description of the agent it is also necessary to include its sensing capabilities, that

is, its sensors. Machado’s dynamic image is also only capable of showing the action being

currently performed, not the conditions holding for that action. As section 2.1.3 shows, the

conditions are also an important aspect to include in the data to provide for observation.

2.2 Learning by Observation

This section provides an overall view of machine learning and how learning by observation fits

in the classification of machine learning approaches. It describes how learning by observation

is understood on a social and neurological perspective and how this perspective gives insight on

determining what experts are appropriate to observe. It provides an overview on the learning

algorithms that are most commonly used in learning by observation approaches. It also shows

the progress on approaches for learning by observation and identifies specific contributions that

might be of key importance for the approach presented in this thesis.

Machine learning is one of the main areas of artificial intelligence. Generally, machine
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learning has three major objectives: development of computational theories for machine learn-

ing, development of systems with the capability to learn and theoretical analysis and develop-

ment of generic learning algorithms (Costa & Simões, 2008).

Machine learning algorithms can be organized in supervised, unsupervised and reinforce-

ment learning. Supervised learning consists of creating mappings between inputs and outputs,

whose correct values are provided by an expert, which is usually a person. Experts can inter-

act directly with the learner agent providing the necessary training sequences for the learning

algorithm (Alpaydin, 2004). Unsupervised learning determines how a dataset is organized by

analysing the structure of the input space and identifying which patterns occur more often than

others. In unsupervised learning there are no supervisors, there is only input data (Alpaydin,

2004).

Reinforcement learning consists of defining which sequence of actions is optimal for reach-

ing a goal. Expert knowledge is necessary for building a reward system that compensates the

agent each time it chooses the correct action. Despite requiring the use of expert knowledge,

reinforcement learning is different from standard supervised learning since it does not use train-

ing sequences. The outcome of a single action is not important, what matters is the policy, that

is, the sequence of actions required to reach a goal (Alpaydin, 2004).

As described in section 2.2.1, learning by observation is an important social interaction

mechanism for humans and superior animals from which they benefit from the experiences of

others (Alissandrakis et al., 2002). It is the outcome of observing interpreting and reproducing

a behaviour model that was executed by others (Billard, 1999; Bandura, 1977). Learning by

observation enables cognitive feedbacks and opens the possibility of assigning mental states to

others, which are necessary for abstract problem solving such as testing hypothesis, planning in

advance, creative thinking and cognitive empathy (Dautenhahn, 1994). The advent of learning

by observation in human societies gave way to a new kind of knowledge transference that is

embedded by human social interactions (Ramachandran, 2003).

From a computational point of view, learning by observation can be defined as a subset

of supervised learning. It comprises all techniques that build knowledge from demonstrated

data (Argall et al., 2009; Billard, 1999). A computational approach to learning by observation

must also take into account its social dimension (Dautenhahn, 1994; Alissandrakis et al., 2002;

Nehaniv & Dautenhahn, 2004; Rao et al., 2004). As section 2.2.1 shows, without this social

dimension there is a risk of learning without understanding the reason for the expert’s actions
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(Alissandrakis et al., 2002). The social dimension of learning by observation also provides an

insight on how to determine the kind of expert from which it is possible to learn.

The survey on learning by observation reveals that the definition of the learning algorithm

is one of the most important aspects of an approach to learning by observation. The algorithm

defines how the information, obtained from observation, is stored and how it is used, that is, how

the agent proposes actions to execute when facing new problems (Argall et al., 2009). Section

2.2.2 shows several possibilities for the learning algorithm. One of the most frequently used

is sequencing, which essentially is trying to follow the same sequence of actions as the expert.

Other possibilities for the learning algorithm are to generalize the acquired information, to use

analogies between the acquired information and the new problems or to categorize the acquired

information and determine to which set of categories the new problems belong.

The survey on learning by observation also reveals that an approach to learning by obser-

vation cannot be limited to the learning algorithm. In addition to the algorithm, the approach

must also provide a global view of the learning process, which includes the agent’s motiva-

tion to learn, discovering and observing experts, learning new knowledge from the information

acquired in observation, storing this knowledge and applying it by proposing actions for the

current conditions (Demiris & Hayes, 2002; Wood, 2008; Billing et al., 2010; Sullivan, 2011;

Tan, 2012). To the best of our knowledge, with the exception of the proposed approach, all ap-

proaches are focused on solving specific problems, and the solutions they provide are supported

exclusively by the learning algorithm (see section 2.2.5).

The evaluation of the agent’s progress is also an important aspect to consider in the learning

process because it allows the agent to measure how its performance is affected both when it is

consolidating the information acquired from observation and when executing actions (Wood,

2008; Hajimirsadeghi & Ahmadabadi, 2010; Billing et al., 2010; Sullivan, 2011). The evalu-

ation may also provide a simple motivation mechanism because the agent can be motivated to

learn when it stops being confident on its performance. The agent can also be motivated to stop

learning when it regains the confidence in its performance (see section 2.2.4).

Section 2.2.5 shows that, with the exception of Machado’s approach (Machado, 2006; Machado

& Botelho, 2006) and of the proposed approach, all major advances in learning by directly ob-

serving an agent and the actions it performs are related to robotics (Argall et al., 2009). Software

agents, given the problems outlined in section 2.1, cannot directly observe one another. Almost

all software approaches for learning by observation are constrained to observe the changes in
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the environment (the effects of agent actions) and the knowledge obtained to perform a task is

limited to state change information (Quick et al., 2000; Argall et al., 2009).

One of the characteristics of the approaches described in section 2.2.5 is that they usually

focus on specific problems, which implies adaptations of some of their contributions whenever

they are applied in new domains. Despite these problems, the reviewed approaches provide

important contributions that can be adapted to the approach described in this thesis.

2.2.1 Social Learning Theories

This section shows how learning by observation is important for socialization and how it may

help to improve agent interaction. It also shows the contributions of social learning theories

for a computational approach to learning by observation such as defining what is learning by

observation and determining from which experts it is possible to learn.

Research on learning by observation is intimately related to social learning and social inter-

actions, which are frequent in species that live in societies (Dautenhahn, 1994; Billard, 1999).

For Meltzoff (Meltzoff & Moore, 1977), learning by observation is a means of probing the per-

son’s identity and of communicating with persons, as opposed to things. It is necessary for the

”development of individual contacts, social relationships and a theory of mind” (Dautenhahn,

1994).

The development of cognitive architectures is the path for achieving a global model for the

computational approaches to learning by observation (Tan, 2012). Taking social aspects into

consideration when developing computational approaches for communicative agents enables a

faster development of common understanding and increases the speed of information transmis-

sion (Billard, 1999).

Social learning and learning by observation play an important role in building interpersonal

relations throughout child development. The interpersonal relationships allow children to dis-

tinguish if something is ”like them” or not (Dautenhahn, 1994). The ability to distinguish them-

selves and to point out similar features in others is important for the identification of entities

from which it is potentially possible to learn by observation (Bandura, 1977).

Without the identification of similar features, learning by observation would be impossible

because apprentices would not be able to recognize what they were observing on others (Ban-

dura, 1977). Therefore, providing agents with the ability to recognize the structures and abilities

of other agents is an important aspect when developing a computational approach to learning
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by observation (see section 2.1).

Bandura’s social learning theories (Bandura, 1977) are generally accepted as those that best

describe the learning by observation process in humans and superior mammals. Bandura em-

phasizes the importance of observing and modelling the actions of others because when it is

not possible to know the effects of those actions a priori, learning only from the effects of the

actions becomes a laborious process (Bandura, 1977)

For Bandura, learning by observation consists of the organization and symbolic representa-

tion of the model of the observed actions (the sequence of actions that are necessary to complete

a task) and posterior reproduction of that model. He describes learning by observation as a pro-

cess with four components: attention, retention, motor reproduction and motivation (Bandura,

1977).

Bandura’s description of the learning process gives an insight on the relevant tasks of a com-

putational approach to learning by observation. Demiris and Hayes (Demiris & Hayes, 2002)

developed an approach to learning by observation inspired in this description of the learning

process. For these authors the learning process consists of three stages: attention (gathering

training data through observation), retention (building new knowledge from what has been

observed) and reproduction (the application of the new knowledge though the actions of the

apprentice). Including a stage to control the reproduction of the acquired knowledge, the repro-

duction stage, provides additional control over the apprentice’s abilities after learning.

If motivation is added as an overall feature, the process described by Demiris and Hayes

(Demiris & Hayes, 2002) becomes a reflection of the key aspects of learning by observation in

social sciences (Bandura, 1977). The learning process can also be improved with an evaluation

stage (see section 2.2.3) which allows the agent to measure how its performance is affected

when acquiring knowledge and also when applying the acquired knowledge to execute a task

(Wood, 2008; Billing et al., 2010).

Despite the contributions of social learning theories, a computational approach to learning

by observation requires the definition of a learning algorithm. The following section shows the

different possibilities for the learning algorithm.

2.2.2 Possibilities for the Leaning Algorithm

This section provides an overview of the different possibilities for the learning algorithm. One

of the most important features of a computational approach to learning by observation is defin-
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ing how to build new knowledge from what is being observed (the demonstration data) and how

this knowledge is used by the agent. The literature overview shows that different possibilities

such as sequencing, classification learning, neural networks, case-based reasoning and inductive

logic programming can be used for the learning algorithm.

The definition of the learning algorithm builds on the presumption that the demonstration

data represents the action executed by the agent and the conditions holding for that action at the

time the expert selected the action to execute (Argall et al., 2009), as explained section 2.1.3.

This way, the learning algorithm provides the agent with the ability to estimate actions for the

current conditions.

Sequencing is one of the most common possibilities for the learning algorithm in the re-

viewed approaches (see section 2.2.5). It relies on the sequence in which the demonstration

data was observed on the expert to provide the agent with a plan on how to achieve a task. This

plan consists of a sequence of actions that has to be followed by the agent, so that it accom-

plishes a task. It provides the agent with a guideline on how to go from one state (the conditions

currently faced by the agent), to a goal or sub-goal state (the ideal conditions holding when the

task is completed) (Argall et al., 2009)

The sequencing possibility is best suited for situations where behaviours are correlated and

a chain of repeating events can easily be determined such as in repetitive tasks (Veeraraghavan

& Veloso, 2008). It is also closely related with sequence learning in humans since it handles the

same kind of problems, such as predicting the elements of a sequence based on the preceding

element, finding the natural order of the elements in a sequence and selecting a sequence of

actions to achieve a goal (Clegg et al., 1998; Sun, 2001).

Earlier computational approaches to learning by observation such as String Parsing (SP)

(Byrne, 1999) and Associated Sequence Learning (ASL) (Heyes & Ray, 2000) use the sequenc-

ing possibility for the learning algorithm. The main purpose of these theoretical approaches was

to stimulate the development of learning by observation models and to serve as a guideline for

theoretical experiments. They lack important features such as the references for the kinds of in-

puts that can be used for observation. There is also no clear indication of the kind of information

that is used for observation (Alissandrakis et al., 2002).

The most common approaches inspired in sequence learning use neural network models,

such as recurrent back-propagation networks (Frasconi et al., 1995; Giles et al., 1995), to solve

these problems. The Dynamical Recurrent Associative Memory Architecture (DRAMA), from
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Billard and Hayes (Billard & Hayes, 1999), is also inspired in sequence learning and uses

a recurrent neural network for its learning algorithm. Despite the difficulties in generalizing

approaches on robotic systems (due to the differences in robot hardware), DRAMA has been

successfully implemented in several robotic platforms and contexts.

The recurrent neural network in DRAMA allows learning of spatio-temporal regularities

and time series in discrete sequences of inputs. It is capable of dealing with great amounts of

noise on its inputs due to the neural network capabilities. The neural network also has low

resource requirements for training. Experiments show that, even with basic hardware and very

limited computational capabilities, robots were still able to carry out real time computations

and on-line learning of relatively complex tasks (Billard & Hayes, 1999). However, this is only

true when sensor input data is not complex (for example, numerical values). For more complex

data like software objects (that are commonly used by software agent approaches), the number

of inputs of the neural network increases, causing a decrease in its performance.

A simpler solution for sequencing is presented in several approaches to learning by observa-

tion (Byrne, 1999; Heyes & Ray, 2000; Cederborg et al., 2010; Kulic et al., 2011; Billing et al.,

2010, 2011; Fonooni et al., 2012). These approaches reflect the solutions for the problems of

sequence learning in the structures that are used to store the observed data. These structures

preserve the temporal relations so that future reconstructions of the sequence on which the data

was observed are possible.

Some of these approaches (Byrne, 1999; Heyes & Ray, 2000) use linear structures such as

vectors and lists to store the data, which intrinsically preserves the temporal relations (for exam-

ple, the next element in the sequence is the following element in the linear structure). The agent

can easily recall these sequences using pattern recognition or other comparison methods, such

as the nearest neighbour algorithm used in (Cederborg et al., 2010), to find a specific element

in the sequence and thus determine where to start following it. Important actions can also be

easily identified by paying attention to their repetition on multiple observations, especially if

these repetitions happen under different conditions (Byrne, 1999).

More recent approaches (Cederborg et al., 2010; Kulic et al., 2011) improved the method

of storing the observed data using tree structures instead of linear structures. This allows the

representation of different approaches for the same task and also the generalization of a task

(for example, the initial movements for lowering the body using the legs are the same whether

it is for picking an object in the ground or for kneeling). Parts of a sequence can be aggregated
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in other sequences when both share the same transition of elements (for example, the initial

movements for kneeling and lowering the legs could belong to the same sequence). The tree

structure enables the agent to represent its knowledge as a decision tree, providing a choice for

each element in the sequence (for example, after the initial movements the agent chooses if it

wants to kneel, following one branch of the tree, or pick an object, following another branch of

the tree).

The agent improves its ability to make choices in the sequence if the elements of the se-

quence contain the actions and the conditions holding before those actions were executed (the

demonstration data). This allows the agent to compare the conditions faced when proposing

actions with the conditions of each choice. This kind of decision making is similar to a deci-

sion tree, which is the strategy used by Sammut and his colleagues (Sammut et al., 1992; Isaac

& Sammut, 2003). The ability to make choices is also found in human sequence learning, as

described by Sun (Sun, 2001).

A different way of preserving relations between the demonstration data acquired from the

expert is proposed in the Predictive Sequence Learning (PSL) from Billing and his colleagues

(Billing et al., 2010, 2011) and Fonooni and his colleagues (Fonooni et al., 2012). The pre-

dictive sequence learning uses fuzzy rules to describe the relations between the elements of a

sequence as a hypothesis. The relation between an element and the next one in the sequence is

described by a probability. For example, the higher the number of times element A is observed

after B, the higher the probability of B being the one following A.

In addition to sequencing, other possibilities for the learning algorithm include generaliz-

ing the acquired information, making analogies between the acquired information and the new

problems and categorizing the information and determining which set of categories the new

problems belong (Argall et al., 2009). This allows the agent to face future conditions that were

not observed on the expert. Unlike the sequencing possibility, there is no specific sequence of

actions to follow. The agent determines what actions it should perform supported exclusively

by the conditions it is currently facing.

One way of generalizing the acquired information is through the Bayesian algorithms (Ina-

mura et al., 1999; Rao et al., 2004; Sugimoto et al., 2012). These algorithms provide a statisti-

cal approach, based on the Bayes theorem, to build a probabilistic model of what was observed.

The probabilistic model is built with the demonstration data acquired (by observation) from the

expert. According to Rao and his colleagues (Rao et al., 2004), the probabilistic model of the
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Bayes theorem is the best choice for representing the brain tasks behind learning by observation,

such as combining different sensor data and combining the sensor data with prior knowledge.

Besides the Bayesian algorithms, other kinds of supervised learning algorithms can be used

for this possibility for the learning algorithm. The demonstration data, acquired when observ-

ing the expert, is used to train those algorithms so they can estimate actions for the conditions

faced by the agent (Argall et al., 2009). Neural networks are an example of an algorithm that

generalizes the information acquired by observation (Billard & Hayes, 1999). The classification

algorithms used in (Sullivan, 2011) are an example of an algorithm that categorizes the infor-

mation acquired by observation and determines to which set of categories the new problems

belong.

Other possibilities for the learning algorithm rely on reinforcement and inverse reinforce-

ment learning. However, these possibilities are not very common because of the way the rewards

are calculated. Usually, the examples provided by the expert do not provide clear rewards (Ar-

gall et al., 2009). Using inverse reinforcement can be helpful in situations where reinforcements

are not clear because it obtains the rewards from the examples (Russell, 1998; Ramachandran

& Amir, 2007; Argall et al., 2009).

The ability to learn by observation within the context of reinforcement learning is usually

viewed as ”a source of reliable information that can be used to accelerate the learning process”

(Chernova & Veloso, 2009). Inverse reinforcement learning is normally used in many software

approaches for learning by observation (Chernova & Veloso, 2009; Babes-Vroman et al., 2011;

Neu & Szepesvari, 2007; Neu & Szepesvári, 2009; Judah et al., 2011; Lopes et al., 2009) be-

cause it relies on sequences of state-action pairs, that can be provided by a demonstrator, to build

a reward function (Babes-Vroman et al., 2011). However, the proposed approaches only focus

on the learning algorithm and do not provide additional information on the mechanisms used

for acquiring the state-action pairs or even if the state-action pairs reflect a direct observation of

the expert while it is performing the task.

Inverse reinforcement learning approaches also have some limitations when compared with

other possibilities because they provide multiple reward functions. Even though these reward

functions can be optimal for performing the task, they do not represent the expert’s reward func-

tion (Babes-Vroman et al., 2011; Judah et al., 2011; Neu & Szepesvari, 2007). This requires the

algorithm to solve the problem multiple times so that it is possible to find out the reward func-

tions that are closer to the expert, which might be computationally expensive when considering
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large problems (Judah et al., 2011).

Inverse reinforcement learning algorithms are also more sensitive to the quality of the data

provided in the demonstrated examples. Like most of the supervised learning algorithms it is

hard to provide proper solutions for state spaces that have never been observed (Neu & Szepes-

vari, 2007). However, in inverse reinforcement learning, the quality and the amount of examples

acquired by the apprentice has direct influence in the way the reward function is calculated. If

the examples do not completely specify the rules for performing the task, it becomes harder

to obtain an exact reward function. This increases even more the number of reward functions

proposed by the algorithm (Judah et al., 2011). Therefore, many approaches require additional

techniques to increase the quality of the observed demonstrations such as requesting the expert

to provide feedback (Chernova & Veloso, 2009) or specific demonstrations (Judah et al., 2011;

Lopes et al., 2009), or use probabilistic methods to improve the agent’s knowledge (Neu &

Szepesvári, 2009; Babes-Vroman et al., 2011).

One of the major problems of using probabilistic methods to increase the agent’s knowledge

is that it increases the computational requirements of the algorithm. Furthermore, many prob-

abilistic methods use statistical analysis of the surrounding environment to determine expert

intentions (Babes-Vroman et al., 2011). This requires the apprentice to collect additional infor-

mation that does not come directly from the expert and makes the quality of learning dependent

on the quality of the knowledge of the model of the environment (Neu & Szepesvari, 2007).

One possible solution for that is provided by Neu and Szepesvari (Neu & Szepesvári, 2009).

They use a set of tunable weights to optimize the way the reward function is calculated. This,

however, continues to require an additional computational effort.

Another way of increasing the quality of the calculated reward function in inverse reinforce-

ment learning is using expert feedback whenever the agent is uncertain of the action to perform.

Chernova and Veloso (Chernova & Veloso, 2009) use automatically calculated thresholds to

provide the agent with a measure of its uncertainty. The threshold decides when it is necessary

to ask the expert for new data, even though it might be difficult to calculate (Judah et al., 2011).

Other problems that might come from expert feedback is making too many bad questions, that

is, questions on what not to do (Judah et al., 2011). Judah and his colleagues (Judah et al., 2011)

try to reduce this problem by incorporating a query selection mechanism in the apprentice. The

mechanism filters the questions so that the apprentice only makes the ones that produce new

knowledge.
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Lopes and his colleagues (Lopes et al., 2009) present a different method of filtering the

apprentice questions that reduces the amount of examples required to build the reward function.

The filter uses a set of known probabilities on state transition to compute the states that are most

informative. This, however, requires additional knowledge on the probabilities of one state

transitioning to another, which might not always be available. Despite being able to increase

the quality of the calculated reward function without requiring too much computational effort,

expert feedback solutions get outside the scope of a pure leaning by observation approach,

where the expert agent does not participate in the learning process and might even be unaware

that it is being observed.

Neu and Szepesvari (Neu & Szepesvari, 2007) propose a mixed solution that includes both

inverse reinforcement and other supervised learning algorithms. They use the supervised learn-

ing algorithms to penalize the deviations of the apprentice and the inverse reinforcement learn-

ing to fine tune a reward function that provides the agent with the ability to perform a task. This

solution, however, is more complex to implement and does not solve the problem of generating

more than one optimal reward function.

Inductive logic programming (ILP) is another possibility for the learning algorithm, pro-

posed by Konic and Laird (Könik & Laird, 2006). It extracts first order rules from structured

data obtained through observation. However, this structured data does not take the form of

the demonstration data used in all other strategies, the condition-action pairs. Also, one of the

particularities of inductive logic programming is the focus on reflecting the expert’s rules on

the data provided for observation. This forces the apprentice to learn not only the conditions

holding when the actions were selected for execution but also the reasoning behind the expert’s

decisions, which requires more information to be provided for observation (Könik & Laird,

2006).

To allow agents to discover the expert’s internal reasoning, the process of observing an ex-

pert requires several complex knowledge sources. These sources can include behaviour traces,

expert goal annotations and background knowledge. The knowledge acquired when observing

these sources is partitioned into a hierarchy and represented as first order rules. To store this

knowledge, Konik proposes an episodic database. This database is an extension of Prolog that

improves the temporal relations between the observed data (Könik & Laird, 2006).

However, the kind of complex data required by the inductive logic programming possibility

escapes the concept of learning by observation, on which the observed data should only repre-
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sent features that are visible, like the state of the environment, the agent visual attributes and the

actions (see section 2.1). For this reason, inductive logic programming is not a good candidate

for an approach to learning by observation where agents observe the actions (and the conditions

holding for those actions) performed by an expert while executing a task.

In addition to the learning algorithm, an approach to learning by observation must also

provide solutions for all features of the learning process. The way the agent evaluates the

information acquired by observation is one of these features. The following section shows

several approaches on how to evaluate the agent’s knowledge.

2.2.3 Evaluating the Agent’s Knowledge

This section explains the importance of evaluation and describes several approaches to evaluate

the agent’s knowledge.

Including an evaluation stage in the learning process provides the agent with a simple moti-

vation mechanism. The agent can be intrinsically motivated to learn because it knows when it

has acquired sufficient knowledge to perform a task on its own or because it detects that portions

of its knowledge need improvement and thus require the agent to go back learning (Wood, 2008;

Billing et al., 2010). The ability to enhance the agent’s knowledge through new observations is

an important factor for learning by observation because one of the downsides of learning by ob-

servation is the fact that the agent’s knowledge is limited to what it was able to observe (Argall

et al., 2009).

An appropriate evaluation of the agent’s knowledge allows the agent to measure how its

performance is affected both when it is consolidating the information acquired by observation

or when executing actions (Wood, 2008; Hajimirsadeghi & Ahmadabadi, 2010). The agent’s

performance can be captured by a confidence factor that represents the agent’s confidence on its

knowledge. The value of the confidence factor determines if the agent is prepared, or not, for

selecting actions for the current conditions (Billing et al., 2010).

One way of determining the confidence factor is using the information provided by the learn-

ing algorithm (Chernova, 2009). When proposing actions, the learning algorithm used on Cher-

nova’s approach (Chernova, 2009) also provides a measure of its confidence on the proposed

actions. However, this confidence only reflects the distance between the agent’s knowledge and

the new problems. It is not possible to show how the agent evolved and how many times in the

past it has been able to propose the correct actions.
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Evaluating the actions executed by the agent and including the results of this evaluation on

the confidence factor is essential for determining what portions of the agent’s knowledge need

improvement (Wood, 2008). An evaluation that operates when the agent is learning and when

it is using the acquired knowledge to select actions to execute a task, allows agents to know

when it is necessary to observe experts and when they are ready to execute actions. One way

of evaluating the agent while it is executing actions is through external feedback, which can be

provided by the expert agents. Several authors (Sullivan, 2011; Hajimirsadeghi & Ahmadabadi,

2010; Chernova, 2009) use specialized experts, or teachers, to monitor and reinforce the agent’s

actions. The teachers measure the agent’s performance and provide the necessary feedback for

evaluation.

In addition to monitoring and providing basic feedback, the relation between the teacher and

the agent can be extended by enhancing the communication protocol between them. This way,

teachers can take corrective measures like providing the agent with the appropriate action for

the current conditions whenever the agent tries to execute an incorrect action (Hajimirsadeghi

& Ahmadabadi, 2010). The teacher can also override the agent’s decision of whether executing

actions to perform a task or observing experts to acquire more knowledge (Sullivan, 2011). The

extended communication also allows the agent to request the teacher to perform a specific task

(Chernova, 2009).

However, enhancing the communication protocol requires an additional effort in designing

the expert agents since they need to know how to communicate with the agents besides know-

ing how to perform the requested tasks. This also requires apprentice agents to wait for the

teacher to be available to communicate with them, which can extend the amount of time spent

learning. This does not happen when the expert plays a passive role in observation. In addition,

using teachers approximates the approaches to learning by teaching, which is something beyond

learning by observation.

Therefore, an approach to learning by observation should focus on solutions where the ex-

pert has a minimal role. The following section shows the importance of mimicking the be-

haviour of mirror neurons for the evaluation of the agent’s knowledge.

2.2.4 The Mirror Neurons

This section shows how mimicking the behaviour of mirror neurons is important for learning

by observation and how it can be emulated in a computational approach. The section also
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shows how mimicking the behaviour of mirror neurons can be useful for evaluating the agent’s

knowledge.

Under a neurological perspective, learning by observation in humans and superior mammals

is defined by the mirror system, which includes the canonical and the mirror neurons. Experi-

ments on macaque monkeys show that these neurons are involved in the tight coupling between

what is being observed and the motor control. Experiments also show that mirror neurons are

active when the monkeys observe and also when they make a specific movement. This allows

observers to ”feel” like they are performing the actions they observe (Rizzolatti et al., 1996,

2000; Ramachandran, 2000; Demiris & Hayes, 2002).

The discovery of the mirror system was significant for understanding learning by observa-

tion since it appears to provide the direct transformations from the observation of an action to

its execution. It is postulated that the mirror neurons are the basis for learning by observation

and other complex mechanisms like understanding actions and social interaction (Maistros &

Hayes, 2001).

Neuro-imaging studies suggest that the human mirror system is sensitive to sensory-motor

experience. It was verified by experimentation that when ballet experts observe ballet sequences

performed by someone from the same gender they present stronger responses from the mirror

neurons, than when observing similar sequences performed by the opposite gender. This sensi-

tivity is a strong indication that the properties of mirror neurons are acquired through learning

(Calvomerino et al., 2006).

The activation of mirror neurons, whether apprentices are observing or performing the ac-

tions, suggests that learning by observation allows apprentices to place themselves in the posi-

tion of the experts. For Demiris and Hayes (Demiris & Hayes, 2002) it is as if the apprentices

were able to generate several alternatives for the actions they observe on another expert, that

is, as if apprentices were proposing actions for the conditions faced by the observed expert.

This allows apprentices to understand the observed behaviour, thus improving the quality of the

acquired knowledge. It also allows apprentices to measure the confidence on their knowledge

by determining if they are able, or not, of proposing the same actions as the expert (see section

2.2.3).

Several computational approaches to learning by observation attempted to mimic the be-

haviour of the mirror neurons and especially their ability to inhibit the motor controls, which al-

lowed the agent to propose actions without effectively executing them. The most common strat-
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egy to achieve this behaviour is though forward models. They are used in several approaches

(Demiris & Hayes, 2002; Maistros & Hayes, 2004; Rao et al., 2004; Lopes & Santos-Victor,

2007; Sugimoto et al., 2012) as a way of building an internal representation of the world for the

agent.

Through the internal representation of the world, the agents are able to predict how the

actions they propose affect the state of the world without actually executing the actions (Demiris

& Hayes, 2002; Rao et al., 2004; Lopes & Santos-Victor, 2007). This is a safe way for the agent

to simulate the expert’s internal reasoning while observing the actions it executes because the

actions proposed by the agent have no effects in the environment. This effect is similar to the

one produced by the mirror neurons.

Some of the implementations of forward models (Demiris & Hayes, 2002; Maistros &

Hayes, 2004; Lopes & Santos-Victor, 2007) are specifically designed for robot agents and

usually reflect a physical device that inhibits the motor activity. However, Rao and his col-

leagues (Rao et al., 2004) show that it is also possible to implement these forward models using

Bayesian algorithms. Recent approaches (Cederborg et al., 2010; Hajimirsadeghi & Ahmad-

abadi, 2010; Kulic et al., 2011) show that Hidden Markov models can also be used to mimic the

behaviour of mirror neurons.

Like the Bayesian algorithms, the Markov models create an abstract model that associates

the effects with the actions that caused those effects. The models help the agents understand

the new actions, providing them with an abstract representation for them. The abstract repre-

sentations represent both the observed actions (executed by the experts) and the agent actions

(proposed and executed by the agent) (Cederborg et al., 2010; Hajimirsadeghi & Ahmadabadi,

2010; Kulic et al., 2011).

Heyes and Ray (Heyes & Ray, 2000) also use abstract representations of the agent actions.

They state that through abstract representations it is possible to achieve an effect that is similar

to the forward models and hence to the mirror neurons. The abstract representations provide

a clear distinction between the representation of an action and its execution. This allows the

agents to handle their actions without necessarily executing them (Heyes & Ray, 2000).

If all agent actions are abstract representations, the same mechanisms can be used to propose

actions both when the agent is observing and when it is executing a task because the proposed

actions are not immediately executed and can even be discarded. The agent is able to ”feel”

like it is performing the actions it observes if it proposes actions for the conditions holding for
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the actions it observes because the agent is using its mechanisms to propose actions for the

conditions faced by the expert.

2.2.5 Approaches to Learning by Observation

This section provides an overview of the existing approaches to learning by observation. Despite

significant advances on computational approaches to learning by observation there is still a lack

of an established structure on which to organize them (Argall et al., 2009; Tan, 2012). The

analysis of the most recent approaches on learning by observation reveals that the ability to

directly observe the agent and its activities is still exclusive to robotics and that a global model

for this kind of learning is still missing (Hajimirsadeghi & Ahmadabadi, 2010; Cederborg et al.,

2010; Sullivan, 2011; Billing et al., 2011; Kulic et al., 2011; Fonooni et al., 2012; Sugimoto

et al., 2012; Tan, 2012). Only with this global model it is possible to determine the important

components of a learning architecture and how these components interact with each other.

The major problem in most of the surveyed approaches to learning by observation is the

focus on a specific problem, which is usually solved by defining a learning algorithm (see sec-

tion 2.2.2). Almost all approaches lack an overall view of the learning process which should

comprise the methods for finding and observing an expert, for storing and interpreting the ob-

served data (the learning algorithm) and for applying and evaluating the acquired knowledge

(Tan, 2012).

With the exception of Machado’s approach (Machado, 2006; Machado & Botelho, 2006),

all other approaches concerning the direct observation of the agent and its activities are re-

lated to robotic agents. Software approaches for learning by observation are usually focused on

the learning algorithm and don’t provide details on how the training data is obtained or even

if it reflects state information or agent activities. Nonetheless, inverse reinforcement learning

approaches like (Chernova & Veloso, 2009) can provide useful contributions for the learning al-

gorithm such as insights on how to automatically calculate uncertainty thresholds (Chernova &

Veloso, 2009) and ways of improving the acquired knowledge with expert feedback (Chernova

& Veloso, 2009; Judah et al., 2011; Lopes et al., 2009).

Even Machado’s work has limitations since it only addresses the problem of learning vo-

cabulary and it does not allow generalizations of the acquired knowledge. This means that her

agents are not able to learn control knowledge neither are capable of dealing with conditions

that are different from those observed on the expert.
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From the surveyed approaches, Sullivan’s approach (Sullivan, 2011) is the one who com-

bines the most interesting contributions for the approach described in this thesis. His ap-

proach describes a learning process consisting on the observation of an expert, learning from

the demonstration data, applying the acquired knowledge in new problems and expert evalua-

tion (teacher appraisal) of the executed actions. His approach is one of the few that uses the

analogy possibility for the learning algorithm (see section 2.2.2). He uses classification algo-

rithms, which makes his agents capable of dealing with conditions that are different from those

observed on the expert.

In addition, the experts actively participate in the evaluation of the agent actions. The agents

can return to a learning stage (where they exclusively observe experts) whenever new knowledge

needs to be acquired. The ability to return to a learning stage is rarely seen in most of the

learning by observation approaches. However, the decision to return to learning is not made by

the apprentice, it is the expert that forces this change (on the apprentice) whenever it detects

that the apprentice is not correct (Sullivan, 2011).

The following section presents the conclusions of the survey on embodiment and on learning

by observation and some critical comments on the reviewed approaches.

2.3 Critical Comments and Conclusions

The literature overview shows that computational approaches to learning by observation are

advantageous for machine learning. However, with the exception of Machado’s approach

(Machado, 2006; Machado & Botelho, 2006) and some contributions from robotic approaches,

the majority of software approaches for learning by observation do not take into account the

direct observation of the software agent and of its activities. In these cases, the preference for

robotic approaches is natural because learning by observation is an interaction between tangible

entities.

The software approaches that are closer to learning by observation are limited to observing

the effects of actions. However, several authors (Bandura, 1977; Byrne, 1999; Mataric, 1997;

Botelho & Figueiredo, 2004; Machado, 2006) defend that learning by observation would be-

come a laborious process if only the effects of actions were taken into account, especially when

the agent does not know the effects of its actions a priori. Learning by observing only the effects

of the actions is also impossible when those actions do not change the state of the observable
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world. Observing the actions and body movements is advantageous for learning by observation

because it simplifies the learning process and increases the learning speed.

For learning by observation of an expert’s actions to happen in the software world, software

agents need some kind of representation for their constituents and for the actions they perform

- the software image. With the exception of Machado’s approach (Machado, 2006; Machado

& Botelho, 2006), the reviewed literature does not provide any direct solution for this visual

representation (see section 2.1). However, it provides insight on how to collect the information

required for the visual representation (see section 2.1.2) and on the features required for the

visual representation (see section 2.1.3 and 2.1.4).

Machado’s proposal (Machado, 2006; Machado & Botelho, 2006) provides a good starting

point for addressing the problem of creating a software image. However her approach lacks

important features such as describing the kind of inputs the agent can collect from the software

environment (the sensors), the conditions holding when the agent decided to execute an action

and a historical record of the actions executed by the agent and the conditions holding for those

actions (see section 2.1.6).

In addition to the software image, a computational approach to learning by observation

must also define how the information, obtained from observation, is stored and how it is used

- the learning algorithm. The survey on learning by observation shows that there are several

possibilities for the learning algorithm (see section 2.2.2). The sequencing and the classifica-

tion possibilities are the ones that provide the best advantages and the least complexity for an

approach to learning by observation.

The classification possibility allows the agent to extend its knowledge to conditions that have

not been observed and the sequencing possibility allows the agent to easily learn sequences of

actions with different alternatives. The sequencing possibility also defines a way of storing the

agent’s knowledge using tree structures (Cederborg et al., 2010; Kulic et al., 2011). One of the

advantages of using tree structures is the ability to represent different approaches to the same

task. Given the advantages of these two possibilities, the proposed approach will combine both

of them.

The survey on learning by observation also shows that one of the major problems of com-

putational approaches is the focus on the learning algorithm and the lack of a global model

for learning by observation (see section 2.2.5). A general approach to learning by observation

cannot depend on a specific learning algorithm because it may hinder the ability to adapt to
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different circumstances. The approaches for learning by observation usually reflect specific

problems, which imply adaptations of their contributions whenever they are applied in new

domains. Even the most recent approaches (Hajimirsadeghi & Ahmadabadi, 2010; Cederborg

et al., 2010; Sullivan, 2011; Billing et al., 2011; Kulic et al., 2011; Fonooni et al., 2012; Sugi-

moto et al., 2012) follow this trend.

As section 2.2.1 shows, social learning theories provide a good ground for describing the

learning process. They also provide insight on determining the experts from which it is poten-

tially possible to learn, those whose structures and abilities are identical to the agent that wants

to observe them.

In normal circumstances, although the expert and the agent have the same features it does not

necessarily mean that the expert is performing the actions that are necessary for the apprentice

to learn how to perform a specific task. However, on all the surveyed approaches this aspect is

disregarded and the experts only execute the actions that are necessary to perform the task to

learn. Even though this is an important subject, the problem will be left outside of the scope of

this thesis due to the lack of time. The same simplifications will be applied when testing the

approach (see chapter 5).

To the best of our knowledge, the only computational approach that defines a learning pro-

cess that follows the social learning theories is described by Demiris and Hayes (Demiris &

Hayes, 2002) (see section 2.2.5). However, the process described on their approach misses an

important aspect, the evaluation of the acquired knowledge (Wood, 2008; Billing et al., 2010).

The evaluation provides the agent with a measure of the confidence of its knowledge. It is also

a way of providing the agent with a simple motivation to learn (when it stops being confident

on its knowledge) or to stop learning (when it is confident on its knowledge), as described in

section 2.2.3.

Despite the possibilities for determining the confidence factor presented in section 2.2.3,

a simpler way of doing it is testing the agent’s knowledge while it is observing the experts

(Billing et al., 2011). A neurological perspective of learning by observation provides an impor-

tant contribution to the evaluation of the agent’s knowledge - the behaviour of mirror neurons

(see section 2.2.4). Mimicking this behaviour allows agents to use the same mechanisms for

proposing actions when observing and when preparing to execute them. Thereby, an agent can

determine if it is capable of taking the same decisions as the observed expert by proposing

actions for the conditions holding for the actions it observes.

47



Learning by Observation in Software Agents

This allows the agent to experience the observed actions as if it was actually executing them

(Ramachandran, 2000). The agent can therefore propose actions for the conditions holding

before the observed actions were executed and compare the proposed actions with the observed

actions. If the proposed actions are the same as the ones observed on the expert, the agent is

prepared to face that specific situation.

The survey shows several approaches for mimicking the behaviour of mirror neurons (Demiris

& Hayes, 2002; Maistros & Hayes, 2004; Lopes & Santos-Victor, 2007; Rao et al., 2004), most

of them exclusive to robotics. The simplest solution is abstracting the agent actions, that it, ex-

plicitly separating the representation of an action from its execution (Heyes & Ray, 2000; Kulic

et al., 2011). This separation provides the agent with control over the execution of the actions

it proposes.

The ability to receive external feedback from specialized experts is also an important con-

tribution to evaluation (Hajimirsadeghi & Ahmadabadi, 2010; Sullivan, 2011). It allows the

agent to know if the actions it executes are appropriate or not, which complements the way the

agent updates the confidence on its knowledge. However the ability to receive feedbacks from

specialized experts is closer to learning by teaching than learning by observation. In learning

by observation the expert agent has a passive role in the learning process.

In conclusion, the survey on learning by observation shows that the majority of the com-

putational approaches depend of a specific domain and almost all of them cannot be directly

applied to software agents without substantial changes. With the exception of Machado’s ap-

proach (Machado, 2006; Machado & Botelho, 2006), all other software approaches ignore the

possibility of directly observing the software agent and its activities and limit themselves to

observing state changes. Therefore, learning by observation in software environments needs a

different approach where the interactions between software elements must also be taken into

account.
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Chapter 3

The Software Image

This chapter describes the proposed approach for the ”visible” representation of software agents

- the software image. It shows the elements that make up the software image and the additional

functionalities that the proposed approach introduced to previous work regarding the software

image (Machado, 2006; Machado & Botelho, 2006). The chapter also describes the software

image meta-ontology and the software created for the software image. An overview of the

proposed software image is presented in (Costa & Botelho, 2011).

The ability to see other agents is essential for learning by directly observing the actions of

an expert while it is performing a task. However, software agents are unable to see themselves

or the others in the same way tangible entities such as robots see themselves and the others (see

section 2.1). Therefore, the approach for learning by observation proposes a software image that

allows software agents to observe themselves and other agents. The proposed software image

is an accessible representation of the agent that is used by any agent that wants to observe the

represented agent.

Although it was designed for the purposes of this research, which is learning control knowl-

edge by observing the actions executed by other agents, the proposed software image can also

be used in other circumstances. For example, it could be used for learning vocabulary as in

Machado’s work (Machado, 2006; Machado & Botelho, 2006) or, in general, it may contribute

to embodiment. Additional work will incrementally reveal the characteristics of a software im-

age that is independent of any particular use. Despite this more general long term goal, this

chapter describes the current version of the software image, which was created specifically for

learning by observation.

Although the visual information is an important source of information for several species
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of animals, including humans and superior mammals, it is still hard for computers to extract

the same amount of information from vision sensors as we do. Nonetheless, looking at nature,

it is possible to identify other ways of acquiring information that is as useful as the visual

information. Examples of this can be seen in bats with their ultrasonic senses and in dogs with

their smell senses. Nature shows us that it is possible to adapt sensors to the type of environment

where the organism lives.

Using the same concept in the software world, it is possible to develop rich information

sensors that are specialized in providing information about software agents. Therefore, the act

of observing a software agent does not imply the use of computer vision; instead the agents

use specialized sensors that read meta-data about the observed agent. This meta-data is what

we call the agent’s ”visible” software image or simply the software image. Figure 3.1 shows a

representation of the software image and its relation with the software agent.

Agent structure
Conditions - Actions

Agent structure
Conditions - Actions

Figure 3.1: The software image in relation with the software agent

The software image represents software objects and the relationships among them. As fig-

ure 3.1 shows, the software image provides relevant information on important features of the

software agent such as its constituents, the actions it executes and the conditions holding when it

decided to execute those actions. The software image is universally accessible and has a domain
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independent description so that it can be observed and understood by other agents (see section

3.2). An agent can only have one visible appearance and an instance of a software image can

only represent one agent.

Following Machado’s work (Machado, 2006; Machado & Botelho, 2006), the proposed soft-

ware image is arranged in two categories - the static image and the dynamic image (see section

3.2). The static image is immutable (does not change over time) and describes the constituents

and capabilities of the agent. Software agents are regarded as collections of parts with sensors,

visible attributes and actuators (see section 3.2.1). The dynamic image changes with time and

describes the current and past actions executed by the agent along with the conditions holding

when the agent decided to execute those actions (see section 3.2.2).

The proposed software image improves Machado’s proposal (Machado, 2006; Machado &

Botelho, 2006) by including the agent sensors in the description of its components (see section

3.2.1), combining the information on the state of the software environment (provided by the

agent sensors) with information on important aspects of the agent’s internal state (the visible

attributes) with the observed actions and enabling the representation of composite actions, that

is, actions composed of sequences of simpler actions (see section 3.2.2).

Other important improvements include the ability to store historic data on the agent actions

and on the conditions holding for those actions (see section 3.2.2), and the use of an ontology

to represent the agent sensors, actions and visible attributes, the tasks to be accomplished and

the relationships that exist between those elements (see section 3.3).

The proposed software image also improves its computational realization and defines a new

protocol for observation (see section 3.4). The software developed for the software image allows

agents to build their own software image, update it and compare it with the software images of

other agents. The software requires only a minimal intervention in the original agent source

code to provide software agents with a software image.

The following section shows the importance of two major features of the proposed software

image: The inclusion of the agent sensors in the description of the agent’s components and

capabilities and the inclusion of the conditions holding for the executed actions in the data

provided for observation.
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3.1 The Importance of the Agent Sensors and Perception

This section explains why it is important to describe the agent’s sensing capabilities in the soft-

ware image, specifically in the static image. It also presents two possibilities for the conditions

holding for the executed actions. One possibility is using the perspective of the agent that is

executing the actions. The other possibility is using the perspective of the agent that observes

them.

When considering software environments, there is a common notion that the information

acquired from them is singular and universally accessible. All the components of a program

are able to obtain the same kind of information from the environment. Under this perspective,

describing the sensing abilities of software agents makes no sense because the state of the

environment is the same for all agents.

However a closer examination shows that the components of a program may only have ac-

cess to the elements of the software environment that are important to them. Software agents

can have sensors that constrain the kind of information they receive from the environment. The

ability to sense distinguishes the agents from the remaining elements of the software environ-

ment because it constrains them to express the world the way they sense it (see section 2.1.1).

The proposed software image includes the sensors in the representation of the agent constituents

because they represent the way the agent understands the world.

The agent sensors are also an important aspect for learning by observation because it is more

likely for the observer to understand the reasoning of the expert agent if both share the same

understanding of the world (Demiris & Hayes, 2002; Ramachandran, 2000). For example, an

agent with a sensor that is capable of perceiving an array of colours (the colour agent) acquires

more knowledge by observing agents with the same kind of sensor than by observing agents

with a colour blind sensor (the greyscale agent), which is only capable to perceive in greyscale.

The colour agent would be missing important information provided by the colours that the

greyscale agent cannot perceive. Thus, it is more efficient for the colour agent to learn from

other colour agents than from a greyscale agent.

Another example is when one agent only has access to the color property of the objects

whereas another agent only has access to the shape property of the objects. Even though the

two agents perceive the same object they have different perspectives of that object. In this case,

the two agents would never be able to learn by observing each other because they have different

perspectives of the surrounding environment.
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In general, when agents select actions for execution, their decision is supported by the in-

formation they hold about the world and by their current internal state. This information can

be regarded as the conditions holding when the agent decided to execute those actions. The

conditions contain information on the state of the environment, as it was acquired by the agent

sensors at a given moment, and on aspects of the internal state that were important to decide the

actions to execute (which are called the visible attributes, as explained in section 3.2.1).

Unlike the previous proposal (Machado, 2006; Machado & Botelho, 2006) where agents

could only observe the action being currently performed, in the proposed software image, agents

acquire snapshots of the current and past activity of the observed agent (see section 3.2.2). Each

snapshot contains information on the actions executed in the time it takes for the agent to update

its perception of the world along with the conditions holding at the moment the agent decided

to execute those actions. The observed information can be seen as a condition-action pair,

similar to those in the training sequences used for training machine learning algorithms, which

is important for the learning algorithm as described in section 4.5.

The conditions holding for the observed actions play an important role in the information

provided for observation. They may hold the perspective of the agent that observes the actions

(the observer) or the perspective of the agent that executes them (the observed). Each of these

possibilities has advantages and disadvantages. Using the perspective of the observer is ad-

vantageous because it does not require the observer and the observed agent to have the same

representation of the world. The observer only needs to understand the actions it observes.

The conditions are acquired through the observer’s sensors and therefore it does not require the

observer to have the same sensors as the observed agent. There is also no need to convert the

conditions to the observer’s own internal representation.

One of the disadvantages of using the observer’s perspective in the conditions is the syn-

chronization required between the observer and the observed agent. The observer needs to

know exactly when to acquire the conditions for the actions it observes. The complexity of

the synchronization increases in multi-agent environments because the conditions concerning

the state of the environment can be changed by external factors, such as the activities of other

agents.

Without this synchronization it becomes harder to guarantee which state of the environment

before the actions were observed reflects the conditions holding when the agent decided to

execute those actions. Figure 3.2 shows an example of how hard can it be for the observer to
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choose the correct state of the environment for the conditions holding for the observed action.

time

Agent A updates its 

perception of the world

Agent A selects and executes an action a1

t0

S2

S1

S4

Environment

State

S3

Agent B observes action a0

Agent C executes an action

S0

t1

t2

t3

Agent D executes an action

Agent C executes an action

S5

Action a1 becomes visible in A’s

software image

Agent B observes action a1

Agent D executes an action

t4

t5

t6

t7

t8

possible states

 for conditions 

holding for a1 

in B’s perspective

state for conditions 

holding for a1 

in A’s perspective

Figure 3.2: How the activities of other agents can hinder the ability to determine the conditions

The example in figure 3.2 shows that in the time it takes between observing a0 and a1 (from

t0 to t8) the state of the environment changes five times (from S1 to S5). Therefore, agent B has

no way of knowing which of these states expresses the conditions holding when a1 was selected

and executed (S2) because it does not know exactly when agent A selected and executed a1.

Without synchronization, agent B is only able to know when it has observed a1 (at time t8),

which is not the time at which A selected and executed the action (t4).

Another disadvantage of using the observer’s perspective is when the observer has no direct

access to the environment of the observed agent, such as when agents are running in distinct

processes and have no knowledge on how to access the environment on the other process. For

example, agent A, running on process Pa, is only able to acquire the state of the environment

Sa, while agent B, running on process Pb, is only able to acquire the state of the environment

Sb(Sa 6= Sb). If agent A knows agent B and wants to observe it, it can read its dynamic image,

but since it has no access to Sb, it cannot acquire the state of the environment ofB. In such cases,

even though agents are still able to exchange messages with each other, they would not be able

to acquire the conditions holding for the executed actions without using specific mechanisms

to get access to all the components of the software environment running on the process of the

observed agent.

Using the perspective of the agent that executes the actions is advantageous because it does

not require the observer and observed agent to be synchronized. It also allows observers to get

access to information on the observed agent’s past actions and on the conditions holding before

those actions were executed - the history record (see section 3.2.2). The history record can hold
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this information even when no agents are observing.

The major disadvantage of using the perspective of the agent that executes the actions is that

it requires the observer to understand the world in the same way as the expert it observes, or

at least, to understand the information in the conditions. In such circumstances, the agent can

only observe experts as long as they have the same sensors and visible attributes, as explained in

section 4.3.1, which is another reason to include the agent sensors in the agent software image.

Given the advantages and disadvantages of both possibilities, in the proposed approach,

the conditions hold the perspective of the agent that executes the actions mainly because this

is essential for the history record (see section 3.2.2). Without this perspective it would be

impossible for observers to know the conditions holding in the past if they were not observing

the agent at that moment.

Even though the proposed approach uses the conditions holding the perspective of the ob-

served agent, other approaches may discard those conditions and use only the actions from

the snapshots. As future work, the approach can be improved with methods of acquiring the

conditions holding the perspective of the observer agent.

The following section presents the domain representation of the software image and the

improvements concerning previous versions of it (Machado, 2006; Machado & Botelho, 2006).

3.2 The Elements of the Software Image

This section describes the elements that compose the software image. It shows the way these

elements describe the agent’s structure and its activities. It also describes the improvements on

previous proposals for the software image (Machado, 2006; Machado & Botelho, 2006).

The software image comprises the static image and the dynamic image. The static image

shows the structural relations between the agent’s components and all the sensors and actuators

considered as potential capabilities. The static image also shows the relevant aspects of the

internal state which are manifested as visible attributes.

The dynamic image shows the current and past actions that were executed by the agent along

with the conditions holding when those actions were selected for execution. The conditions

comprise the state of the environment, as it is acquired by the agent sensors, and the instances

of the agent’s visible attributes at a given moment. Figure 3.3 shows the UML diagram of the

software image.
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Figure 3.3: UML diagram of the software image

Figure 3.3 shows that the software image is composed of a static image and a dynamic

image. The static image is a collection of agent parts, where each agent part represents a

capability of the agent. A capability, or agent part, can have sensors that collect information

from the environment, actuators that allow the agent to perform actions and visible attributes to

show relevant aspects of the internal state. The agent parts can also be composed of other parts.

The dynamic image is composed of a sequence of snapshots of the agent activity. Each

snapshot contains the instances of the actions executed by the agent, as they were invoked in

that particular situation, and the conditions holding for those actions. The conditions consist of

the information collected from the agent sensors and the instances of the visible attributes at a

given moment. The sensors and visible attributes are regarded as data-sources because they are

the sources of information for the conditions.

Figure 3.3 also shows that software images have a unique identifier (AGENTUUID), which is

imprinted at the moment the software image is created (see section 3.4.1). This unique identifier

allows an immediate distinction between identical software images, that is, software images

whose static images share the same structure and the same elements. The identifier also provides

the software agents with an easy way of recognizing their own software image. The following

sections describe the static image and the dynamic image in detail.

3.2.1 The Static Image

The static image represents the agent components and its potential capabilities. It describes

the agent as a composition of problem solving components called agent parts, each of which

can have sensors, visible attributes and actuators (see figure 3.3). In Machado’s version of
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the software image (Machado, 2006; Machado & Botelho, 2006), the static image described

software agents as a collection of parts with visible attributes and actuators, which in their turn

provided the agent actions. However, as explained in section 3.1, agents must be characterized

not only by what they can do (their actions) but also by what they can acquire, or perceive, from

the environment (their sensors).

The sensors represent the agent mechanisms that are responsible for collecting information

about the state of the world. They are essential for determining the way the agent understands

the world (see section 3.1). The visible attributes represent important aspects of the internal

state that influence the agent decisions and therefore need to be visible to others. The actuators

represent the mechanisms that provide agents with the ability to change the state of the world

and its internal state. They determine what the agent can do through the actions they provide.

The actions are abstractions of the agent abilities. Depending on their complexity, the agent

abilities can be simple actions or sequences of actions (a composite action).

The proposed software image allows observers to handle both the simple and the composite

actions in the same way, which simplifies the observation of complex abilities. Instead of rep-

resenting the ability with a single action that is harder to represent, the ability is decomposed in

a sequence of simpler actions which are easier to represent. In addition, the simpler actions can

be reused on other composite actions. The proposed software image also offers the possibility

of instantiating the simple actions. The ability to instantiate an action enables it to be used in

several different circumstances. The possible arguments of an action can be set up using the

ArgumentType class (see figure 3.3).

The static image organizes the agent components in a tree. The agent parts and the actuators

are sub-trees of the static image. The sensors, actions and visible attributes are leafs, or atomic

elements, of the software image. This kind of description is advantageous for comparing the

software images of two agents, as described in section 3.4.3. Static images can be distinguished

from each other by their structure (the number of parts, sensors, visible attributes, actuators and

actions) and by the kind of sensors, visible attributes and actions. Each kind of atomic element

(sensor, visible attribute or action) has a distinct designation, which is described in an ontology

(see section 3.3). Figure 3.4 shows an example of a static image of a software agent that sorts

elements in lists.

The static image presented in figure 3.4 shows the relevant features and components of the

list sorting agent. It describes the agent as being composed of two parts (AP1 and AP2). The

57



Learning by Observation in Software Agents

si:StaticImage

ap1:AgentPart ap2:AgentPart

s1:Sensor

designation = listDiscovery

va1:VisibleAttribute

designation = sortingActivity

act1:Actuator

a1:Action

designation = acquireList

a2:Action

designation = showList

act3:Actuator

act2:Actuator

a4:Action

designation = move

argumentTypes = Direction

a5:Action

designation = switchWithPrevious

a6:Action

designation = switchWithNext

s2:Sensor

designation = position

Figure 3.4: The object diagram of an example static image

first part of the agent (AP1) acquires lists from the environment using the acquireList action

(A1). The part also displays lists with the showList action (A2). The agent part discovers the

lists in the world using the listDiscovery sensor (S1) and displays information about its activity

through the sortingActivity visible attribute (VA1).

The second part of the agent (AP2) sorts the acquired lists by switching an element in the

list with the element in the previous position, using the switchWithPrevious action (A5), or with

the element in the next position, using the switchWithNext action (A6). The agent part uses the

move action (A4) to move itself along the list. The action has to be instantiated with a Direction

for the agent part to know on which direction to move. The agent part knows its current position

in the list using the position sensor (S2).

In addition to the innovations in static image, the proposed software image also improves

the dynamic image, as described in the following section.

3.2.2 The Dynamic Image

The dynamic image holds information on the current and past actions that were executed by the

agent, along with the conditions holding before the actions were executed. Unlike Machado’s

proposal (Machado, 2006; Machado & Botelho, 2006) where agents could only observe the

action being currently performed, in the proposed software image, agents acquire snapshots of

the activity of the observed agent.
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The snapshot provides a global view of the actions performed by the agent in the time it

takes to update its perception of the world (see section 3.4.2). Therefore, it is possible for a

snapshot to hold more than one action, especially when the agent has several parts and each of

them is able to execute actions in the time it takes to update the perception. Given that actions

can be instantiated, as explained in section 3.2.1, the snapshot holds instances of the executed

actions as they were invoked in a particular situation. The Argument class holds information on

the arguments used to invoke those actions (see figure 3.3).

In addition to the executed actions, the snapshot also shows the conditions holding before

those actions were executed. As section 3.1 explains, the conditions in the snapshot hold the

agent’s perspective. They represent the important aspects of the agent’s internal state (the visible

attributes) and the current understanding of the state of the world (the information acquired by

the sensors) at the time the agent selected the actions for execution because this information

plays an important role in deciding which actions to execute. Figure 3.5 shows an example of a

snapshot that can be observed on the agent whose static image is displayed in figure 3.4.

s1:Snapshot

c1:Condition

value = [8,3,5,2,1]

c2:Condition

value = SORTING

c3:Condition

Value = p1

ai1:ActionInstance

a1:Action

designation = switchWithNext

s1:Sensor

designation = listDiscovery

s2:Sensor

designation = position

va1:VisibleAttribute

designation = sortingActivity

p1:PositionInfo

index = 2

isEnd = false

ordered = false

direction = forward

ai2:ActionInstance

arguments = forward

a2:Action

designation = move

argumentTypes = Direction

Figure 3.5: The object diagram of an example of a snapshot

The snapshot in figure 3.5 shows that when the agent is facing the conditionsC1∧C2∧C3 it

executes the actions switchWithNext and move. The move action receives the argument forward

which designates the direction on which the agent has to move. The conditions in the snapshot

show the information acquired by the agent sensors and the instances of the visible attributes

before the actions were executed. The conditions show the list discovered by the listDiscovery
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sensor [8,3,5,2,1] (condition C1). The agent’s position in the list, as acquired by the position

sensor, is given by the object P1 (condition C3), which determines that the agent is facing the

second element which is not the end of the list. Condition C3 also shows that list is not ordered

and the agent is moving forwards. The conditions also show the agent was displaying SORTING

on its sortingActivity visible attribute at that time (condition C2).

Another important innovation on the dynamic image is the ability to hold a history record of

earlier snapshots for a limited period of time. This allows observers to acquire information on

past snapshots, regarding a period before they started to observe the agent. Acquiring informa-

tion from the history record allows observers to gather knowledge much faster, when compared

with observing only the snapshots regarding the current activity because it is not necessary to

wait for the agent to perform those actions. Since this process consumes large amounts of mem-

ory, the history record contains only a limited number of snapshots, which can be configured

according to the needs.

The software image is complemented with an ontology that provides a universal understand-

ing of the designations of its different kinds of elements (sensors, visible attributes and actions),

as explained in the following section.

3.3 The Software Image Meta-ontology

Using ontologies to organize and discriminate the different kinds of atomic elements and tasks

provides a universal understanding of the software image because the ontology provides a com-

mon ground for the different designations of these elements. Different agents following the

same ontology can use the same designations for the same kinds of sensors, actions, visible at-

tributes and tasks, which facilitates the comparison of the software images of those agents (see

section 3.4.3). The ontology also allows the atomic elements to be associated to specific tasks,

which provides agents with knowledge on which elements are required to perform a task (see

section 4.3.1).

Another important aspect of the ontology is the possibility of creating relationships between

two different designations of same kind of element, which opens the possibility of translations

between different ontologies. The translation allows different elements of two different software

images to be interpreted as mutually corresponding elements. It also opens the possibility of

combining different designations of the same element on different software images.
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The software image meta-ontology was created to facilitate the integration and translation of

different ontologies that represent the knowledge about the agent elements and tasks. The meta-

ontology defines the basic elements for the ontologies and the possible relationships between

those elements. Figure 3.6 shows a representation of the software image meta-ontology. A

complete definition of this meta-ontology can be seen in appendix B.

Atomic

Action

DataSource

+datatype

Sensor VisibleAttribute

equivalentTo 1

1

EquivalentTo

+translation

equivalentTo
1

1

Task
performsTask

0..*

1..*

Figure 3.6: The software image meta-ontology

As figure 3.6 shows, all the atomic elements (sensors, visible attributes and actions) derive

from the ontology Atomic class. Agent tasks are represented by the ontology Task class. A

task can be associated to several atomic elements through the performsTask relationship. The

relationship defines which atomic elements are necessary for accomplishing that task. The

performsTask relationship also shows what tasks can be accomplished by a specific atomic

element.

An atomic element can also have a relationship with another atomic element through the

equivalentTo relationship, which allows two different atomic elements to be regarded as mutu-

ally corresponding. The equivalentTo relationship can be extended with a EquivalentTo associ-

ation class, whose translation property points to a translation component.

The translation component is essential for relationships between two sensors or two visible

attributes. It is capable of converting the information acquired by one of the sensors (or the

information in one of the visible attributes) in the relationship to the information acquired by

the other element. This conversion is important for understanding the information acquired by

the equivalent sensor or in the equivalent visible attribute.

The sensors and visible attributes derive from the DataSource ontology class because they

are the data-sources for the conditions (see section 3.2). The DataSource ontology class holds a

datatype property that indicates the kind of data provided by the sensor or of the visible attribute.
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It indicates the kind of information the sensor is capable of acquiring from the world or how an

aspect of the internal state is represented in a visible attribute. Figure 3.7 shows an example of

how the datatype property can be used.

si_a:StaticImage

ap1_a:AgentPart s1_a:Sensor

designation = dateAsObj

si_b:StaticImage

ap1_b:AgentPart s1_b:Sensor

designation = dateAsStr

Agent A Agent B

Ontology

dateAsObj:Sensor

<<ontology>>

datatype = Date

dateAsStr:Sensor

<<ontology>>

datatype = String

Software Image

Figure 3.7: An example of use of the datatype property

Figure 3.7 shows part of the static images of two agents (agent A and agent B). Agent A has

a sensor (dateAsObj) that acquires a date in a specific format from the environment and agent

B has a sensor (dateAsStr) that acquires a date in another format from the environment. Even

though both agents acquire the same kind of data from the environment, a date, their sensors

have different designations because each agent has a different interpretation of the world. The

datatype property of each designation shows how different are these interpretations. Agent A

acquires the date as a Date object whereas agent B acquires the date as a String object.

dateAsObj:Sensor

<<ontology>>

datatype = Date

dateAsStr:Sensor

<<ontology>>

datatype = String

dateStr:EquivalentTo

<<ontology>>

translation = DatetoString

equivalentTo1

1

equivalentTo1

1

<<component>>

DateToString

+convert(String): Date

+convert(Date): String

Ontology

Figure 3.8: An example of use of the equivalentTo relationship

Under these conditions the two static images would be regarded as different when compared

with each other because their sensors have different designations. However, there is a possibility
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of making these two sensors mutually corresponding using an equivalentTo relationship. This

relationship allows two different elements from two different software images to be regarded as

mutually corresponding elements, which allows the two static images to be regarded as identi-

cal. Figure 3.8 shows how the equivalentTo relationship can be used in the ontology from the

example in figure 3.7 to make the two sensors mutually corresponding.

As figure 3.8 shows, the equivalentTo relationship associates the dateAsObj sensor from

agent A with the dateAsStr sensor from agent B. Thus, even though the sensors have different

designations, they are regarded as corresponding when comparing the static images of the agents

(see section 3.4.3). The figure also shows that the equivalentTo relationship is extended with

an EquivalentTo association class (dateStr). The DateToString component shown in the dateStr

association class is capable of converting a date from a String to a Date object and also in the

opposite direction.

Thereby, when agent A acquires snapshots from agent B, the conditions concerning the

information provided by the dateAsStr sensor are converted to Date objects, which is the kind of

data provided by the dateAsObj sensor, using the DateToString component. The DateToString

component allows agent A to observe and understand the conditions in agent B’s perspective

even when agent A has a different interpretation of the world. Section 5.2.5 shows the results

of additional uses of the equivalentTo relationship.

Appendix B presents the ontology used for the example in figures 3.7 and 3.8.

The following section presents the computational approach for the software image

3.4 The Software for the Software Image

The computational approach for the software image provides the software which allows build-

ing, updating, comparing and discovering software images. The software for the software image

also provides a mechanism for holding the conditions, that is, the information on the current

state of the environment as acquired by the agent sensors and the instances of the visible at-

tributes at a given moment (see section 3.2). An implementation of this software is accessible

from a software versioning and revision control repository 1.

Figure 3.9 shows the way the functionalities and services provided by software developed

for the software image are organized. The software for the software image was subjected to a

1https://github.com/coostax/lckosa-phd.git project SoftwareImageFramework
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series of tests whose results are reported in section 5.1.

<<Service>>

Software Image Index

<<Component>>
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<<Service>>
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<<Component>>

Dynamic Image
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VisibleSoftwareAgent

<<Agent>>

Agent A

The software for 

the software image

<<Service>>

Dynamic Image 

Notification

Conditions

Figure 3.9: The functionalities provided by the software for the software image

As figure 3.9 shows, the software for the software image provides the instruments for build-

ing the software image (see section 3.4.1) in the Software Image Creation. The Condition

Holder is responsible for acquiring and storing the conditions holding for the agent actions and

the Dynamic Image Update holds the mechanisms that update the dynamic image with new

snapshots (see section 3.4.2).

The Static Image Comparison holds the mechanisms for comparing agent software images

(see section 3.4.3). The Dynamic Image Notification allows agents to register for notifications

on new snapshots. The registered agents receive a notification whenever a new snapshot is

displayed in the dynamic image (see section 3.4.3). Finally, the Software Image Index provides

a shared repository where all registered software images can be accessed, thus facilitating the

discovery of software images (see section 3.4.3).

Figure 3.9 also shows that the software created for the software image defines three different

kinds of interfaces: the VisibleSoftwareAgent interface, the Observer interface and the Agent-

Conditions interface. The VisibleSoftwareAgent interface provides access to the software image

while the Observer interface allows the agents that are interested in observing the represented

agent to subscribe for updates to the dynamic image (see section 3.4.3). The AgentConditions

interface provides access to the conditions in the Condition Holder.

The agent software image and all the mentioned functionalities require only a minimal inter-

vention in the agent original source code. Agent developers only need to annotate the elements

that are going to be visible in the software image using code annotations. Figure 3.10 shows the

seven different kinds of code annotations that were specifically defined for this purpose.
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AgentPart
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Figure 3.10: The annotations and their relation with the software image

The annotations presented in figure 3.10 enable the identification of the classes of the soft-

ware agent and the methods and attributes of those classes that are essential for creating and

updating the software image, as described in sections 3.4.1 and 3.4.2. As explained in section

3.2.1, the software image describes the software agent as a composition of agent parts, each of

which can have sensors, visible attributes and actuators which in their turn provide the agent

actions. The VisibleAgent and VisibleAgentPart annotations identify the implementation classes

of the agent and of the agent parts. The class that implements the agent part can have sensor

acquisition methods (annotated with VisibleSensor), action methods (annotated with Visible-

Action) and attributes that represent important aspects of the agent’s internal state, the visible

attributes (annotated with VisibleAttribute).

When the class that implements the agent part (annotated with VisibleAgentPart) contains

action methods, those actions are automatically associated to a default actuator. In addition,

the class that implements the agent part can also be associated to other classes that implement a

sensor mechanism (annotated with VisibleSensorImpl) or provide the agent with a set of actions,

an actuator (annotated with VisibleActuator). Classes that implement a sensor mechanism must

have a sensor acquisition method annotated with VisibleSensor for the sensor to be visible in

the static image (see section 3.4.1).

Figure 3.10 also shows that the designation of an atomic element is assigned in the designa-

tion attribute of the annotation (VisibleSensor,VisibleAction and VisibleAttribute). For consis-
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tency purposes, the designations may follow an ontology (see section 3.3). The argumentTypes

attribute in the VisibleAction annotation assigns the type of arguments that can be used to invoke

the action. It is also possible to assign a source that provides the arguments in the argument-

Types attribute, which allows invoking the action from generic invocation mechanisms. Figure

3.11 shows an example of how the argumentTypes attribute can be used for generic invocation.

<<@VisibleAgentPart>>

SomeAgentPart

 @VisibleSensor(designation=sensorOne)

+collectInfoOnOne(): TypeOne

 @VisibleSensor(designation=sensorTwo)

+collectInfoOnTwo(): TypeTwo

 @VisibleAction(designation=actionOne,argumentTypes=[sensorOne,

                sensorTwo])

+doSomething(d1:TypeOne,d2:TypeTwo)

Figure 3.11: An example of using the argumentTypes attribute for generic invocations

Figure 3.11 shows the implementation class of an agent part with two sensor methods and

one action method. The methods annotated with VisibleSensor represent the sensors of the

agent part and the method annotated with VisibleAction represents the action of the agent part.

The example in figure 3.11 shows that the action actionOne is instantiated with two arguments.

The argumentTypes attribute of the VisibleAction annotation indicates that the value for the first

argument is provided by sensor sensorOne and the value for the second argument is provided

by sensor sensorTwo. This means that, to invoke action actionOne, an invocation mechanism

can use the information provided by sensors sensorOne and sensorTwo as the arguments for the

action.

Besides annotations, the software developed for the software image uses other technologies

such as code introspection and aspect oriented programming. The following sections describe

the functionalities of the software developed for the software image in greater detail, showing

the contributions provided by these technologies.

3.4.1 Software Image Creation

This section describes a generic process to automatically create the software image and the

static image of an agent. The method initially chosen to build the static image (and therefore

the software image) was based on the construction of abstract syntax trees (Neamtiu et al.,

2005) through code introspection. However, the representation provided by the abstract syntax
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tree is too complex for the software image. One way of simplifying this information is to

categorize it using annotations. Therefore, the static image of an agent is created by a domain

independent process that uses code introspection to find annotated elements (classes, methods

and attributes), in the agent’s code, that represent the relevant features of the software agent to

be included in the software image.

The annotations are placed in the agent’s source code to identify the agent and agent part

implementation classes, the sensor and action methods, and the visible attributes. The annota-

tions are also placed in components that implement sensor mechanisms and that provide action

methods. Through code introspection it is possible to access all the agent’s components from

the agent’s main class. This way, the creation process is able to locate all the annotations in

the agent’s source code and build an appropriate static image for the software agent with the

information provided by the annotations. A general description of the creation process, which

starts whenever the agent’s main class is initialized, is shown in algorithm 1.

Algorithm 1 Creating the software image of an agent whose main class is agentClass
function BUILDSOFTWAREIMAGE(agentClass)

init staticImage . the agent’s static image
. regard agentClass as an agent part

part← BUILDPARTIMAGE(agentClass)
add part to staticImage

. find other agent parts in agentClass attributes
attList← the list of attributes of agentClass
for all att← attribute in attList do

class← the implementation class of att
if class has VisibleAgentPart annotation then

part← BUILDPARTIMAGE(class)
add part to staticImage

end if
end for
init softwareImage with staticImage

return softwareImage
end function

The process described in algorithm 1 shows that the static image creation process is also

responsible for initializing the agent’s software image, since it is called when the agent is ini-

tialized. Therefore, this process guarantees that all agents have a software image from the

moment they are initialized, as proven by the tests described in section 5.1.
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Algorithm 2 Creating the static image for the agent part declared in class (part1)
function BUILDPARTIMAGE(class)

init part . the static image of the agent part
. find elements in attributes and attribute implementation classes

for all att← attribute of class do
subClass← the implementation class of att
if att has VisibleAttribute annotation then

. att is a visible attribute
vAtt← data from VisibleAttribute annotation
add vAtt to part

else if subClass has VisibleSensorImpl annotation then
init sensor . subClass implements a sensor
init method . check if subClass has a sensor acquisition method
for all m← method of subClass do

if m has VisibleSensor annotation then
method = m
break cycle

end if
end for
if method is not null then

sensor ← data from VisibleSensor annotation
add sensor to part

end if
else if subClass has VisibleActuator annotation then

init actuator . subClass implements an actuator
for all m← method of subClass do

if m has VisibleAction annotation then
action← data from VisibleAction annotation
add action to actuator

end if
end for
add actuator to part

else if subClass has VisibleAgentPart annotation then
. subClass implements an agent part

subPart← BUILDPARTIMAGE(subClass)
add subPart to part

end if
end for

. continues in algorithm 3
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Algorithm 1 also shows that the process considers the agent’s main class as an agent part,

with sensors, visible attributes, actuators and actions. The algorithm shows how the static image

is created from a collection of agent parts. The process of creating the agent parts is presented

in algorithm 2 and 3.

The first part of the process (algorithm 2) describes how the static image of an agent part is

created from the part’s class attributes and their implementation classes. The algorithm shows

the way introspection is used on the attributes, declared in the part implementation class, to find

the part’s visible attributes, sensors, actuators and associated parts.

Algorithm 3 Creating the static image for the agent part declared in class (part2)
. BuildPartImage(class) - find static image elements in class methods

init partActuator
for all meth← the methods of class do

if meth has VisibleSensor annotation then . sensors
partSensor ← data from VisibleSensor annotation
add partSensor to part

end if
if meth has VisibleAction annotation then . actions

action← data from VisibleAction annotation
add action to partActuator

end if
end for
if partActuator has actions then

add partActuator to part
end if
return part

end function

The second part of the process (algorithm 3) describes how the static image is created from

the part implementation class methods. It shows the way introspection is used on the methods

declared in the part implementation class to find the part’s additional sensors and actions.

The process of creating the static image provides a unique identifier to the created software

image. This identifier distinguishes a software image from other software images. After being

created, the agent software image is automatically registered in the software image indexing, as

explained in section 3.4.3.

For the process to create an appropriate software image, agent developers have to pay atten-

tion to a simple rule. They must ensure that there are explicit links between the visible elements

and their parent objects, which can be achieved through class attributes. For example, an agent

part can be instantiated in an attribute in the agent’s main class and the sensor implementation
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class can be instantiated in an attribute in the corresponding agent part. Using these explicit

links facilitates the introspection of the necessary elements from the agent’s main class.

When considering a worst-case scenario, the time required for the software image creation

algorithm for a software image with n elements and depth a is Tmax(n) = 2an+5n3+7n2+3n+

5. For simplification purposes, the elementary unit of measurement regards only the operations

on the software image or on any of its elements. The time expended by each operation is

considered to be greater or equal than the time taken when performing any of the operations

represented by the elementary unit of measurement.

Using the big-O notation it is possible to determine that Tmax(n) is O(an) and therefore the

software image creation process has an exponential time complexity an. If ability to search

for agent parts inside agent parts (see section 3.2) is removed from the process, the total time

becomes Tmax(n) = 5n3+7n2+3n+5, which is O(n3) and the algorithm’s time complexity is

lowered to cubic n3. This shows that the ability to have several layers of agent parts inside other

agent parts is the factor that increases the complexity of the software image creation process,

which is proved by the experimental results in section 5.1.1.

The process described in algorithm 1 creates a static image that most closely resembles the

agent structure. Software agents are not required to use this process to create their software

image. Other processes can be used to create the software image as long as it represents the

agent and is accessible to itself and to other agents interested in observing it.

The static image represents the static aspects of the agent, its components and their structural

relations. Besides the static image, the software image is also composed of the dynamic image,

which changes with time. The dynamic image needs to be updated with the agent’s actions

and the conditions holding when the agent decided to execute those actions. The next section

describes the process responsible for updating this information.

3.4.2 Updating the Dynamic Image

This section describes two functionalities provided by the software created for the software

image. The Dynamic Image Update (see figure 3.9) presents a process for creating snapshots,

updating the dynamic image and managing the history record. The Condition Holder (see figure

3.9) maintains a copy of the conditions holding before the actions were executed by the agent,

which consist of the state of the world as it is perceived by the agent sensors and the instances

of the visible attributes.
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The dynamic image is responsible for displaying snapshots of the agent activity (see section

3.2.2). It allows other agents to observe the actions executed by the represented agent while it

is performing a task. Tangible entities take advantage of the laws and properties of the physical

world to make their actions automatically observable to others. Following this concept, the

Dynamic Image Update tries to do the same thing with the software image. This functionality

takes the burden of making the snapshots of the agent activity visible to other agents.

As described in section 3.2.2, the snapshot holds information on the conditions (the state

of the world as it is perceived by the agent sensors and the instances of its visible attributes)

and the actions that were executed since the moment these conditions were determined (when

the agent updated its perception of the world) until the moment in which the agent updates its

perception of the world once again. A snapshot can be seen as a positive training example (used

for training learning algorithms) consisting of the actions executed by the agent and the ideal

conditions in which those actions may be executed.

A new snapshot is created each time the agent updates its perception of the world and ex-

ecutes actions. The agent sensors acquire information on the state of the world, thus creating

the agent’s perception of the world. Each time the agent updates its perception of the world, it

uses this information, along with important aspects of its internal state (the visible attributes), to

select actions and execute them. Figure 3.12 presents a graphical description of how snapshots

are created.

Figure 3.12 shows that creating snapshots requires the functionalities of both the Condi-

tion Holder and the Dynamic Image Update. The figure also shows that the several activities

of snapshot creation (distinguished by a grey background) are triggered by aspect oriented pro-

gramming (AOP). As figure 3.12 shows the Condition Holder plays an important role in creating

snapshots. It is responsible for maintaining a copy of the information acquired from the sensors

and of the instances of the visible attributes, the conditions for the snapshot. This is the only

way to ensure that this information is not modified by any internal process of the agent.

As figure 3.12 shows, the conditions are collected when the agent updates its perception of

the world and acquires data from its sensors. Each time the agent acquires data from a sensor,

the Condition Holder stores a copy of this information. When the agent finishes updating its

perception of the world, the Condition Holder stores a copy of the instances of the visible

attributes at that given moment. After the agent selects the actions to execute, the snapshot is

initialized with the conditions stored in the Condition Holder.
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Figure 3.12: Creating snapshots and updating the dynamic image

When the agent starts executing the actions, that is, calling the annotated action methods

(see section 3.4.1), aspect oriented programming records the actions, as they are instantiated by

the agent, in the snapshot. After the agent has executed all actions and before it starts updating

its perception of the world, the snapshot is finalized and the dynamic image is updated with the

new snapshot.

Each time the dynamic image is updated with a new snapshot, the previous snapshot is

moved to the history record. If the history record’s size limit is reached, the oldest snapshot is

deleted to make space for new snapshots. History data is organized in a first-in first-out (FIFO)

approach, ensuring an uninterrupted sequence of snapshots from a given moment in the past up

to the present.

An important aspect to take into account when defining the history record’s size limit is the

consumption of memory space. In a worst-case scenario, the amount of memory required to

store n elements in the history record is fmax(n) = 2n2, where n represents either a condition

or an action instance. For simplification purposes the memory required to store n is considered

to be greater or equal than the amount of memory required to store a condition or an action in-

stance. Using the big-O notation it is possible to determine that fmax(n) is O(n2) and therefore

the history record has a quadratic memory complexity n2.

Creating and updating the software image are two important features for a general purpose

software image. However, the proposed software image is focused on learning by observation.

The following section shows additional functionalities that are shaped for learning by observa-

tion: the discovery, comparison and observation of software images.
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3.4.3 Discovering and Observing the Software Image

This section describes three services provided by the software for the software image (see figure

3.3) and a new protocol for observing the agent. The first service, the Software Image Index,

consists of a shared medium where all software images can be registered. The second service,

the Static Image Comparison, allows agents to compare their software image with the software

images of other agents. The third service, the Dynamic Image Notification, notifies agents

whenever new snapshots are available in the dynamic image.

To facilitate the discovery of agent software images, the proposed software image provides

a discovery service, the Software Image Index. This service allows software agents to register

their software images in a shared medium so that other agents are able to find them. The shared

medium holds pointers for the registered software images that can be examined by any agent that

wants to observe software images. The index service also allows software agents to unregister

their software images, making them unavailable for discovery.

The index service is automatically initialized when using the Software Image Creation to

create the software images (see section 3.4.1). The Software Image Creation automatically

registers all the software images in the index service. If another process of creating software

images is adopted, the index service provides the necessary instruments for initializing the

service and registering the software images.

The software images discovered through the Software Image Index can be compared with

the software image of the agent that is discovering them using the Static Image Comparison.

This service determines the constituents and capabilities, described in the static image, that are

identical in both agents. Knowing what capabilities and consituents are identical is important

for determining the extent to which two agents are identical, which is an essential aspect for

learning by observation as explained in section 4.3.

The process of comparing software images only uses the static image, since it contains all

the necessary information on the agent’s constituents and capabilities: what kind of parts the

agent has, how those parts understand the world and what actions they can perform. The static

image comparison is a recursive process, based on tree comparison. The agent’s static image

is regarded as a tree. Each agent part is a sub-tree of the static image. The part’s sensors and

visible attributes are leafs of the part sub-tree. Each part actuator is a sub-tree of the part whose

leafs represent the actions provided by that actuator.

The atomic elements of the static image (sensors, actions and visible attributes) are com-
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pared by their designation. The elements with the same designation are regarded by the compar-

ison process as being identical. As section 3.3 shows, the designations of the atomic elements

can be represented in an ontology. The ontology defines an additional relationship, the equiva-

lentTo relationship, that allows two different elements of two software images to be interpreted

as mutually corresponding elements. Section 5.1.2 shows the results of the tests performed to

the Static Image Comparison service.

The Dynamic Image Notification provides a new protocol for observing the represented

agent. It implements the observer design pattern (Freeman et al., 2004) to notify other agents

that a new snapshot has been created in the dynamic image of the represented agent. The agents

that want to receive these notifications must subscribe them using the Observer interface (see

figure 3.9). The notifications allow the agents to know when they can acquire a new snapshot

from the dynamic image.

74



Learning by Observation in Software Agents

Chapter 4

Learning by Observation

This chapter describes the proposed approach regarding learning by observation in software

agents. An overview of the proposed approach is presented in (Costa & Botelho, 2012). Learn-

ing by observation is one of the most commonly used learning techniques in humans and su-

perior mammals (see section 2.2.1). It consists of building control knowledge from the infor-

mation acquired by observation. It is similar to the supervised learning techniques with the

exception that the information acquired is about the executed actions and it only contains posi-

tive examples.

For learning by observation to be possible, software agents need to see themselves or other

agents in the same way as tangible entities see each other (see section 2.1). To get around this

problem, a universally accessible software image was developed in this research (see chapter 3).

Equipped with this software image, a software agent is able to ”see” a representation of itself

and of the other agents. The software image describes the static structures of the agent and the

executed actions and the conditions holding when those actions were executed. When agents

observe the expert they are effectively acquiring information on the actions performed by that

expert while it executes a task and on the conditions holding when those actions were selected

for execution.

The proposed approach presents a global view of the learning process which follows Ban-

dura’s definition of learning by observation (Bandura, 1977). The proposed learning process

comprises seven activities that not always happen in strict sequence:

1. Discovery of an expert agent from which it is potentially possible to learn;

2. Observation of the selected expert agent and acquisition of information regarding the
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expert actions and conditions holding for those actions;

3. Storage of the information acquired from the expert in the agent’s memory

4. Learning new control knowledge to propose actions;

5. Determining the current holding conditions;

6. Execution of the actions proposed by the new control knowledge to perform the agent

task; and

7. Evaluation of the agent progress

The agent may be in one of two states regarding the learning by observation process: the

learning state and the execution state. When agents are in the learning state, their only objective

is to observe experts and acquire new knowledge from them. When agents are in the execution

state, their only objective is to apply the acquired knowledge. In each of these states, the agent

will have access to only a subset of the activities of the learning process. Figure 4.1 shows the

activities available to each state.
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Figure 4.1: The activities of the learning process on each state

As figure 4.1 shows, the possible activities of the learning state concern discovering experts

from which it is potentially possible to learn (see section 4.3.1) and observing the discovered

expert, that is, acquire snapshots from its dynamic image (see section 4.3.2). Before storing the

information from the acquired snapshot (see section 4.4), the agent tests its ability to perform

the task it is observing. It does this by learning new control knowledge, from the information

already existing in its memory, and proposing actions for the conditions in the snapshot (see

section 4.5). The agent’s evaluation compares the proposed actions with the actions in the

observed snapshot to determine if the agent is able to propose the same actions as the observed

expert when facing the same conditions (see section 4.6).
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The possible activities of the execution state concern applying the agent’s knowledge to

execute a new task. The agent does this by acquiring the current state of the world from its

sensors and combining it with the relevant aspects of its internal state (which are manifested

in the visible attributes). Together this comprises the current conditions. The agent then learns

new control knowledge from the information in its memory and proposes actions for the current

conditions (see section 4.5). The proposed actions are executed by the agent actuators and

evaluated (see section 4.6).

Two distinct methods of learning new control knowledge from the information acquired

by observation, the recall and the classification methods, were specifically developed for the

approach (see section 4.5). They were inspired on the two most used algorithms for learning by

observation. The two methods are combined to present a single solution for apprentice agents,

which increases the agent’s ability to adapt to different situations. Agents are able to perform

the observed task when facing the same conditions as the experts and also a similar task when

facing different conditions.

Although the approach does not define any explicit mechanisms to motivate the agent to

learn by observing others, this motivation arises when the agent discovers that it cannot yet

perform a task. The agent’s evaluation, described in section 4.6, is responsible for monitoring

the agent’s ability to perform a task by testing the agents capability of proposing the correct

actions over time.
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Figure 4.2: The influence of the confidence thresholds in state transition

The result of this monitoring is a measure of the agent confidence on the learnt knowledge,

the confidence value. The agent will be on the learning or on the execution state depending

on its confidence regarding the acquired knowledge. Two configurable thresholds, the UPPER-

CONFIDENCETHRESHOLD and the LOWERCONFIDENCETHRESHOLD determine the values at
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which the agent changes to the learning or to the execution state. Figure 4.2 shows how the

thresholds affect the transition between these two states.

As Figure 4.2 shows, the LOWERCONFIDENCETHRESHOLD defines the value at which the

agent stops being confident on its knowledge and becomes motivated to learn more, thus chang-

ing to the learning state. The UPPERCONFIDENCETHRESHOLD defines the value at which the

agent has enough confidence to become motivated to use the acquired knowledge, thus chang-

ing to the execution state. Section 5.2.3 shows how the values selected for these thresholds

influence the agent’s performance.

The agent’s evaluation takes advantage of a special property of the proposed approach, the

ability to mimic the behaviour of mirror neurons (see section 4.1), which allows the agent to

propose actions both in the execution and in the learning state. The proposed approach also

extends the agent capabilities beyond learning by observation by allowing external entities such

as teachers and other evaluators to provide feedback about the executed actions (see section

4.6).

4.1 The Mirror Properties of the Learning Process

This section shows the way the proposed approach to learning by observation is able to mimic

the behaviour of mirror neurons. It explains why mimicking this behaviour is important in

learning by observation and how this ability is helpful for determining the agent’s confidence

on the learnt knowledge.

Section 2.2.4 shows that several approaches for learning by observation try to mimic the

behaviour of the mirror neurons, especially because they allow an agent to feel almost like

it is the one performing the actions it observes. The mirror neurons, which are active both

when agents are observing and executing the actions, associate the concepts of actions with

the actuators that execute them. This allows the agents to immediately recognize which of their

actuators are able to execute the actions being observed. It also allows the agents to know which

of their actuators execute the actions they decide to execute.

In the proposed approach, a similar effect is achieved by differentiating the description of an

action from its execution. Both the observation of an action executed by another and the action

executed by the agent are associated to the same description, which allows both the observation

and the execution of an action to evoke the same representation. Using descriptions of the
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actions is essential for making the actions of software agents visible to others. When a software

agent observes another agent performing an action it is actually acquiring a description of the

action being performed, which is generated by the software image (see chapter 3).

The agent uses the descriptions to reason about the actions and only executes them when

necessary, which allows the agent to test its skills while learning. The agent realizes if it is

capable (or not) of making the same decisions as the expert by comparing the actions it proposes,

with the observed actions. The evaluation uses the result of this comparison to decide how the

agent’s confidence changes through time (see section 4.6).

4.2 Architectural Components of the Learning Process

The learning process is accomplished by an agent architecture whose implementation is acces-

sible from a software versioning and revision control repository 1. When combined with the

software image (see chapter 3), the agent architecture provides all the necessary functionalities

for learning control knowledge by observing the actions executed by experts while they perform

a task.
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Figure 4.3: The components of the agent architecture

1https://github.com/coostax/lckosa-phd.git project LbOFramework
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Figure 4.3 describes the agent architecture which follows a modular design where each

module addresses specific activities of the learning process. The Software Vision component

addresses the discovery of experts from which it is potentially possible to learn (see section

4.3.1) and the observation of the selected expert (see section 4.3.2). It uses the Temporary Visual

Memory as a buffer for observation that allows the agent to handle the observed information at

a different rate from which it is observed.

The Sequential Memory, the Recall Learning and the Classification Learning components

define the learning algorithm of the proposed approach. The Sequential Memory component

holds the mechanisms for storing the information acquired from observing the expert (see sec-

tion 4.4). It is capable of holding the sequence on which the snapshots were observed.

The Recall Learning and Classification Learning components hold the mechanisms for

learning new control knowledge from the information in the agent’s memory and propose ac-

tions for the current conditions (see section 4.5). They provide the recall and the classification

methods of learning.

The Condition Handler is responsible for determining the currently holding conditions. It

holds the mechanisms that acquire the information that is necessary for the conditions and

provides the interfaces for the agent sensors and visible attributes. When the agent is in the

execution state, it uses the Recall Learning and Classification Learning components to propose

actions for the current conditions.

The proposed actions are executed by the Action Execution component. This component

links to the agent actuators that turn the descriptions of the actions in their effective execution.

The Evaluation component addresses the evaluation of the agent progress (see section 4.6).

It holds the mechanisms for testing the agent’s knowledge both when learning and when apply-

ing its knowledge. It also provides the interfaces for receiving external feedback from special-

ized experts and other kinds of evaluators.

The following sections describe the activities of the learning process in detail.

4.3 Discovering and Observing Software Agents

This section describes the capabilities of the software vision, which enables agents to discover

experts and observe the actions they execute while performing a task. The section also shows

the way the historic information contributes to a rapid increase of the agent’s knowledge.
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Agents are able to discover and observe experts only when in the learning state. Although

it would be possible for an agent to observe experts and at the same time to perform a task,

it would be harder to determine the influence of the newly acquired knowledge in the agent

performance. Therefore, in the proposed approach, when agents are learning they are only

focused on observing experts.

The process of discovering an expert and observing it is referred to as the observation period.

This process is cyclical meaning that apprentices may go through several observation periods

when in the learning state. In each observation period, the apprentice focuses on a single expert,

meaning that it only collects snapshots from that expert’s dynamic image. Figure 4.4 describes

the activities that take place in the observation period.
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Figure 4.4: The process of discovering and observing experts

As figure 4.4 shows, the observation period comprises three main activities that take place

in sequence: Discover an expert, collect the history record and collect the snapshots concerning

the current activity. The length of an observation period is controlled by a timeout, after which

a new period is started if the agent is still in the learning state. The observation period can also

be terminated when the agent switches to the execution state, ceasing all learning activities.

The timeout for the observation period is defined by a configurable setting whose configura-

tion depends on the application requirements. The shorter the observation period the greater the

variety of experts observed, because the agent is encouraged to discover a different expert each

time a new observation period starts. Observing different experts enhances the apprentice’s

knowledge, since these experts might provide a different perspective on the task to learn.

The different perspectives increase the agent’s knowledge with conditions that were never
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faced by any of the previously observed agents or with a different approach to the task to learn.

The agent’s memory is able to store different approaches for the task without conflicting with

the existing knowledge because of the way this information is stored (see section 4.4.2).

Another important quality of the diversification of the observed experts arises when experts

are not providing useful information, like for example, when the expert is doing nothing for a

long period of time. When the agent faces this kind of situation, the current observation period

is terminated, forcing the agent to discover another expert to observe. Thus, the agent has the

chance of finding another expert that might provide useful information.

The following sections describe the process of discovering an expert, subscribing for expert

updates and collecting snapshots from the expert.

4.3.1 Discovering and Selecting Experts to Observe

This section shows how experts are discovered, what kinds of experts are appropriate for an

agent to learn by observation and how this expert is distinguished from the others. To discover

other agents with software image, the proposed approach provides a discovery service, the soft-

ware image index, which is described in section 3.4.3. This service provides a shared medium

where software agents can find the software images of other agents.

Before starting to observe an expert, the agent must know if it is potentially possible to learn

by observing that particular expert. When it is not possible to determine what agent structures

are necessary for the task to learn (see section 3.3), the agents follow Bandura’s social learning

theory (Bandura, 1977) and learn by observing a similar expert, that is, an expert whose static

image has the same structure and the same atomic elements as the agent’s static image.

The agent uses the Static Image Comparison service of the software developed for the soft-

ware image (see section 3.4.3) to compare its static image SIagent with the static image of the

expert SIexpert. If both images match, SIagent = SIexpert, the expert can be observed because

the agent is able to immediately recognize the observed actions and conditions (see section

3.2.2), solving most of the correspondence problems (Alissandrakis et al., 2002; Argall et al.,

2009).

When using an ontology to describe the knowledge on the software image (see section

3.3) it is possible to determine which structures and abilities are necessary to perform a task

T . As explained in section 3.3, the performsTask relationship determines which elements are

necessary for carrying out the task. A partial static image, siT , is created from the elements that
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are necessary to perform the task. The concept of an expert from which it is potentially possible

to learn is extended, allowing agents to observe an expert as long as the intersection of their

software images contains those structures and abilities, (SIagent ∩SIexpert) ⊆ siT , as displayed

in figure 4.5.
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Software

Image

Apprentice

Software

Image

Task to learn

Figure 4.5: The concept of an observable expert

An important aspect to consider when discovering experts is that the observed expert might

not be executing the actions for the task to be learnt. When the apprentice knows which elements

are necessary to carry out the task, it is able to notice when the expert is not performing the

actions for that task. Whenever this happens, the observation period is restarted for the agent to

discover another expert. When it is not possible to know which elements are necessary to carry

out the task, the time limitation in the observation period is a way of increasing the chances of

finding an expert that is performing the actions for the task to learn while the agent is in the

learning state.

Either way, the experts participating in the application scenarios where this approach was

tested (see chapter 5) are programmed to only perform the actions for the task to learn. Another

way of looking at this problem is assuming that agents have no specific goal or task to learn.

This means that like in the initial stages of human development (Meltzoff & Moore, 1977;

Lopes & Santos-Victor, 2007), the apprentices observe any expert, as long as it has the same

visible structures, regardless of what the expert is doing. Thus, the agents are open to all the

knowledge they can obtain from experts.

After discovering an expert from which the apprentice can potentially learn, the expert’s

image unique identifier (see section 3.4.1) is compared with the identifiers of previously ob-

served experts. This allows the apprentice to determine if that expert was observed before. The

proposed approach favours the observation of different experts, thus if the expert was already

observed, the discovery process proceeds, in hopes of finding another expert that has not yet

been observed.

If the discovered expert was not previously observed or if any other experts were found, the
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agent proceeds with the observation of the expert, which is described in the following section.

4.3.2 Observing the Selected Expert

After discovering an expert from which it is potentially possible to learn, the agent starts ob-

serving it. As section 3.4.3 describes, observation consists of acquiring snapshots of the ex-

pert’s activity from its dynamic image. The acquired snapshots describe a relation between

an optimal set of conditions (C1 ∧ · · · ∧ Cn) and a sequence of actions (a1 ∧ · · · ∧ am),

C1 ∧ C2 ∧ · · · ∧ Cn → a1 ∧ · · · ∧ am.

Before starting to acquire snapshots from the expert’s dynamic image, the agent subscribes

the dynamic image notification, a service provided by the software developed for the software

image (see section 3.4.3) that facilitates the process of observing the expert. The notifications

determine the ideal moment for the agent to observe, which is when a new snapshot is created

in the expert’s dynamic image

The first snapshots the agent acquires from an expert are the ones stored in the history

record. The agent acquires all the snapshots in the history record, which allows the agent to

obtain a large set of experiences in a small amount of time. This is more efficient than other

solutions such as searching the history record on demand to find relevant information for a

particular problem. Acquiring all the history record not only ensures that the solution for a

particular problem is found (if it really exists in the history) but also provides the apprentice

with an increased amount of information that might be important to solve other problems in the

future.

Acquiring the history record at the beginning of observation provides the agent with an

uninterrupted sequence of snapshots from a given moment in the past until the current moment.

To prevent this sequence from being broken with the current activity from the expert, the history

snapshots are handled before the snapshots regarding the current activity. While the agent is

handling the snapshots from the history record, the snapshots regarding the current activity are

acquired and stored in a temporary memory, thereby preventing their loss.

The temporary memory functions as a buffer for observation because it allows the agent to

handle snapshots at a different rate from which they are acquired. It also allows the agent to keep

record of the expert’s actions that might take place while it is reading the history. Therefore,

from the agent’s point of view, it is like starting to observe the expert from a given moment in

the past.
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The following section explains how the knowledge provided by the acquired snapshots (both

current and historic) is stored in the agent’s memory.

4.4 Storing the Information Acquired in Observation

This section shows the way the agent holds the information contained in the observed snapshots

in its memory. It describes the agent’s internal knowledge representation and the data-structure

where this information is stored. In the proposed approach, the information acquired from ob-

servation is stored in the agent’s memory which holds the sequence in which this information

was observed and therefore the sequence of actions executed by the agent while it was perform-

ing that task.

The agent learns from the information stored in its memory using the learning methods

described in section 4.5, which provide the agent with new control knowledge. This control

knowledge is used to propose actions for the current conditions.

4.4.1 The Internal Knowledge Representation

The snapshots acquired in observation resemble positive training examples (condition-action

pairs), each describing the actions to execute when facing a set of conditions (see section 3.2.2).

When a snapshot is observed, the relation between the conditions and the sequence of actions

is stored in the agent’s memory as an Experience.
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Figure 4.6: The EXPERIENCE and its relation with the snapshot
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The Experience holds the knowledge on the actions the agent should execute when facing

the observed conditions. It is created from the information contained in the observed snapshot.

Figure 4.6 shows a representation of the Experience. The figure shows that, like the snapshot,

the Experience holds a set of conditions and a set of action instances.

In the snapshot, the actions were performed by the expert and the conditions represent the

information acquired by the expert’s sensors and the instances of the expert’s visible attributes.

When the Experience is created, the actions from the observed snapshot are converted to the

agent’s own actions and the conditions are converted to the information acquired by the agent

sensors and the instances of its visible attributes. The conversion uses the functionalities of the

software image ontology described in section 3.3.

Given the properties of the proposed approach, the agent can determine which of its ac-

tuators provides the actions represented in the Experience because both the agent actions and

the actions in the Experience use the same descriptions (see section 4.1). The agent is also

capable of understanding the conditions in the Experience and determine the sensors and visi-

ble attributes that provide that information because the conditions are of the same kind as the

information acquired by its sensors and in its visible attributes (see section 3.1).

Figure 4.6 also shows that the agent’s memory is a tree of Experiences because each Ex-

perience can be linked to one or more Experiences, each representing the snapshot that was

observed immediately after. Figure 4.7 shows a representation of the agent’s memory.
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Figure 4.7: A representation of the structure holding the agent’s memory

Using a tree structure to hold the agent’s memory enables the sequence in which the snap-

shots were observed to be intrinsically preserved. Unlike the linear structures, which also in-

trinsically preserve the sequence in which the snapshots were observed, the tree structures fa-
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cilitate the consolidation of the knowledge obtained when observing different experts because

they store different approaches for the same task as alternative paths.

Figure 4.7 shows that the tree structure holding the agent’s memory allows the agent’s

knowledge to be expressed as a decision tree, where each node of the tree is an Experience.

Depending on the number of branches starting from the node, each Experience can be followed

by one or more Experience, which adds the possibility of choosing which sequence to follow

and therefore provide different alternatives for executing a task.
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Figure 4.8: An example of the agent’s memory

The relation between an Experience and the ones that follow it is characterized by a strength.

The strength defines the absolute number of times the agent observed one Experience being

followed by the other one. Figure 4.8 shows the agent’s memory after observing three ex-

perts, each performing one of the sequences of snapshots [Sa, Sc, Sd, Se], [Sa, Sd, Se, Sf ] and

[Sa, Sd, Se, Sf ]. After observing the three experts, in the agent’s memory Ea (the result of ob-

serving Sa) is followed by Ec (the result of observing Sc) with a strength of 1 and by Ed (the

result of observing Sd) with a strength of 2.

The strength of the relation between an experience and its following plays an essential role

on choosing the approach to follow when observing experts with different approaches for the

same task. An expert has a different approach when it executes a different sequence of actions,

which in turn leads to a different sequence of snapshots, to perform a task. The relations be-

tween an experience and the experiences that follow it are strengthened each time the agent

observes an expert with the same approach to a task, that is, when it observes the same se-

quence of snapshots. Therefore, for the agent to choose an approach over another it has to

observe several experts following that approach.
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4.4.2 Storing Experiences in the Agent’s Memory

This section shows the way the Experiences created from the snapshots observed on different

experts are stored in the agent’s memory and how the size of the conditions in the Experiences in

memory is controlled. To simplify the methods of learning from the information in the agent’s

memory (see section 4.5), the size of the conditions in the Experience is the same as the size of

the conditions acquired by the agent (the information on the state of the world as it is acquired by

the agent sensors and the instances of the visible attributes). This allows the learning methods

to directly compare the current conditions with the conditions in the Experience.

The size of the conditions in the Experience depends on the size of the conditions in the

observed snapshot. If the agent was limited to observing experts with the same sensors and

visible attributes there would be no concern regarding the conditions in the observed snapshots

because all of them would have the same size as the conditions faced by the agent. However,

as section 4.3.1 describes, the proposed approach extends the notion of an expert from which

it is potentially possible to learn to allow agents to observe experts that might have a different

number and different kinds of sensors and visible attributes.

The snapshots observed on those experts may have conditions with different sizes that pro-

vide information from sensors and visible attributes that the agent might not understand. The

conditions may also miss information on certain aspects of the state of the world or on certain

visible attributes that are not necessary for the task to learn. Therefore, the conditions in the

Experiences obtained from those snapshots would have different size from the conditions in the

Experiences in memory

To keep the size of the conditions constant for all the Experiences in memory, whenever the

conditions in an observed snapshot have a different size or are of a different kind, the unknown

or unnecessary information is discarded. This information is provided by sensors or visible

attributes that do not exist in the agent and therefore are useless for learning. Information from

the sensors and visible attributes that do not exist in the observed expert is also added to the

conditions as EMPTY data. The EMPTY a special kind of data that represents information that

is not important for deciding the actions to execute. It is identical to any condition of the same

kind.

Given that agents can observe different experts, the sequence on which the snapshots are

observed is broken, in the agent’s memory, each time the agent starts observing another expert.

When this happens, the snapshot observed before represents the activity of another expert and
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therefore cannot be followed by the new snapshots. To prevent the fragmentation and duplica-

tion (multiple instances of identical Experiences) of the agent’s memory, the process of storing

a new Experience in the agent’s memory compares the new experience with the ones existing

in memory before storing it. Algorithm 4 shows how the process takes place.

Algorithm 4 Storing Experience nexp in the agent’s memory
Require: nexp not from the first snapshot of expert . It cannot be the first snapshot observed

on that expert
Require: prevexp to be the experience from the snapshot observed before

function ADDEXPERIENCE(nexp)
found← false
for all exp← experiences in memory do

if exp has the same conditions and the same action instances as nexp then . nexp
already in memory

if exp is already following prevexp then
increase strength by one

else
add exp to the list of following experiences of prevexp . exp follows

prevexp
end if
found← true
prevexp← exp
break cycle

end if
end for
if found is false then . nexp not in memory

add nexp to agent memory . store nexp in memory
add nexp to the list of following experiences of prevexp . nexp follows prevexp
prevexp← nexp

end if
end function

The process described in algorithm 4 shows that an Experience is stored in the agent’s

memory only when no identical Experiences are found. If an identical Experience is found,

the process only creates a connection between the Experience regarding the snapshot observed

before and the identical Experience in memory. If the connection already exists the strength of

that connection increases because the agent has observed the same sequence before.

The process in algorithm 4 shows how an Experience is stored when it is not obtained from

the first snapshot observed on the expert. The only difference in storing an Experience from the

first snapshot is the lack of a previous experience. Therefore, if an identical Experience is not

found in the memory, there will not be a link from another experience to the newly stored one.

The process is the same whether the Experience comes from a snapshot on the history record or
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from a snapshot from the expert’s current activity.

Considering a worst-case scenario, the time required to store a set of n elements in the

agent’s memory is Tmax(n) = n2 + n+ 3, where n represents a condition or an action instance

from an Experience. For simplification purposes, the elementary unit of measurement regards

only the operations on Experiences, its conditions and action instances. The time it takes to

perform an operation is considered to be greater or equal than the time it takes to perform any

of the operations represented by the elementary unit.

Under the same worst-case scenario, the amount of memory required to store n elements

in the agent’s memory is fmax(n) = 2n2, where n represents a condition or an action instance

from an Experience. Using the big-O notation it is possible to determine that Tmax(n) is O(n2)

and that fmax(n) is O(n2). Thus, the process of storing an Experience in the agent’s memory

has a quadratic time complexity n2 and a quadratic memory complexity n2.

The knowledge stored in the agent’s memory is used by the learning methods to propose

actions for the current conditions. The following section explains these methods in detail.

4.5 Learning from the Information in the Agent’s Memory

This section describes the learning algorithm of the proposed approach. It shows the way agents

learn new control knowledge from the information acquired in observation and how this control

knowledge is used to propose actions both in the learning and execution states. It presents

the two methods for learning, the recall and classification methods, and explains how they are

combined to present a single solution for proposing actions.

Several possibilities for the learning algorithm were experimented throughout the research.

Many of these possibilities included implementations of known supervised learning algorithms.

The results of the experiments in appendix C determined which of the supervised learning

algorithms was best suited for the proposed approach and gave rise to the classification method

of learning, which is an adaptation of the KStar algorithm to the kind of data used by the

proposed approach, the snapshot (see section 4.5.2).

A second method of learning, the recall method (see section 4.5.1), was developed from the

necessity of having a sequencing approach to learning because sequencing is one of the most

used methods in the surveyed approaches to learning by observation (see section 2.2.2). The

recall method was completely developed for this approach and is inspired on sequencing and
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on sequence learning because it focuses on the same problems as sequencing.

The proposed learning algorithm is a combination of these two methods, which allows the

agent to adapt to different situations. The recall and the classification methods use the informa-

tion contained in the agent’s memory (the tree of Experiences as explained in section 4.4.1) to

propose actions for the current conditions. The two methods are used both when the agent is

learning and when it is preparing to apply its knowledge and execute actions (see section 4.1).

The way the current conditions are acquired depends on whether the agent is in the learning

or in the execution state. When the agent is in the learning state, the current conditions are

the conditions in the observed snapshot. When the agent is in the execution state, the current

conditions represent the current state of the environment, as it is acquired by the agent sensors,

and the current instances of the agent visible attributes.

The recall and classification methods can be distinguished by the way they use the infor-

mation in the agent’s memory. The recall method proposes actions by analyzing the way the

Experiences are connected with each other in the tree. The current conditions help to select the

correct path in the tree (see section 4.5.1). The classification method categorizes the informa-

tion in the observed data and determines which actions to perform according to the categories

of the new problems (see section 4.5.2).

The recall method is best suited for learning tasks that require repetitive sequences of actions

(for example, ordering a list). It is also suited for when the agent faces the same problems as

the expert, like for example, in situations where the agent is following the expert. When facing

the same problem, the current conditions are always found on an Experience in the agent’s

memory because the agent has observed an expert facing the same conditions. This is of extreme

importance for determining where to start following the sequence of Experiences, as explained

in section 4.5.1.

The classification method is best suited for dynamic environments where tasks do not de-

pend on a specific sequence of actions (for example, a personal assistant learning how to interact

with users). It is also important for when the agent faces a problem that is different from the

problem faced by the expert. When the agent faces a different problem, the current conditions

may not always be found on an Experience in the agent’s memory because the agent has not

observed an expert facing them. The classification method is resilient to this kind of situations

and capable of proposing actions based on similar situations observed by the agent.

Both the recall and the classification methods provide several possibilities when proposing
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actions, that is, they provide more than one solution for the actions to execute. To determine

which of these solutions is the best suited, a RELIABILITY value is associated to each of them.

The RELIABILITY of a solution is calculated by each method and ranges between zero and one,

inclusive. It determines how reliable a solution is (zero - not reliable; one - fully reliable).

Section 4.5.1 shows the way the RELIABILITY is calculated by the recall method and section

4.5.2 shows the way the the RELIABILITY is calculated by the classification method.

The recall and the classification methods of learning are combined in a single solution. The

agent uses both methods to propose actions and to choose the best solution for the current

situation. To help deciding which solution is best for the current situation, both the recall and

the classification methods are associated to a WEIGHTFACTOR, whose initial and minimum

value is zero. The WEIGHTFACTOR determines which of the methods is capable of proposing

the most suitable action for the current situation.

The RELIABILITY of the proposed action is combined with the relative WEIGHTFACTOR

of the method that proposed it, which results in the FINALRELIABILITY (finalReliability =

reliability×relativeWeightFactor). The way the FINALRELIABILITY is calculated gives the

same proportion to the RELIABILITY and to the WEIGHTFACTOR. The action with the highest

FINALRELIABILITY is the best one for the current situation.

The WEIGHTFACTORS change each time the agent’s capacity of proposing actions is evalu-

ated (see section 4.6). The WEIGHTFACTOR of a method increases if the action with the highest

RELIABILITY proposed by that method is proven to be an appropriate choice by the internal

evaluation. If the evaluation determines that the action was not appropriate, the WEIGHTFAC-

TOR of the method decreases. As explained in section 4.6, the amount on which the WEIGHT-

FACTOR increases or decreases depends on the value of the RELIABILITY of the proposed ac-

tion.

The time complexity of the proposed learning algorithm is given by the combination of

the big-O notations for the recall method T recall
max (n) is O(n3) (see section 4.5.1) and the clas-

sification method T class
max (n) is O(log n) (see section 4.5.2). Given that (T recall

max + T class
max )(n) is

O(max(n3, log n)) ≡ O(n3), the proposed learning algorithm has a cubic time complexity n3.

The following sections describe the two methods of learning in detail.
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4.5.1 The Recall Method

This section shows the way an Experience is selected from the agent’s memory based on its

relationship with the previous Experience and on the similarity between its conditions and the

CURRENTCONDITIONS. The section also shows how the recall method calculates the RELIA-

BILITY of the proposed solutions.

The recall method is inspired in sequencing, which is one of the most used methods in the

surveyed approaches for learning by observation (see section 2.2.2). The sequencing approach

relies on the sequence of actions executed by the expert, while it is performing a task, to tell the

agent the sequence of actions it should execute to reach a specific goal.

Sequencing usually only uses the conditions to determine where to start following the se-

quence of actions. However, in the proposed approach, the current conditions determine which

alternative paths to follow in the sequence. For example, an agent can decide which action to

execute in a sequence depending on the conditions holding for those actions, as in a decision

tree. The recall method and was totally developed for the proposed approach following this

concept. The information stored in the agent’s memory is regarded as a decision tree containing

different approaches, provided by different experts, for accomplishing several tasks (see section

4.4).

Algorithm 5 Obtaining the REFERENCEEXPERIENCE refEx from the agent’s memory
Require: cond to be of the same size as conditions in memory
Require: the agent to be in the execution state

function DISCOVERREFERENCEEXPERIENCE(cond,act):refEx
similarity ← 0
for all exp← experiences in memory do

if actions from exp are identical to act then
if conditions from exp are identical to cond then

return exp . found identical to reference
else

val← similarityBetween(conditions in exp,cond)
if val larger than similarity then

refEx← exp
similarity ← val

end if
end if

end if
end for
return refEx . returns the most similar to reference

end function

To propose actions, the method requires a reference to an Experience in the agent’s memory,
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called the REFERENCEEXPERIENCE, which indicates where to start following the connections

in the tree. When the agent is in the learning state, the REFERENCEEXPERIENCE is the expe-

rience, stored in the agent’s memory, concerning the snapshot that was observed before (see

section 4.4). When the agent is in the execution state the REFERENCEEXPERIENCE represents

the last sequence of actions executed, act, and the conditions holding, cond, when those ac-

tions were selected by the agent. Algorithm 5 shows the way the REFERENCEEXPERIENCE is

discovered in the agent’s memory when in the execution state.

The process in algorithm 5 shows that, when in the execution state, the REFERENCEEX-

PERIENCE is the experience in memory whose action is the same as the last action executed

by the agent and whose conditions are the same as the conditions holding for the last executed

action. Given that the agent might not be facing the same conditions as the expert, it is possible

that the conditions holding for the last executed action are not found in the agent’s memory.

In these cases, the REFERENCEEXPERIENCE is the one with the same action who shares the

largest number of similar conditions as calculated by the process shown in algorithm 6.

Algorithm 6 Calculating the similarity between two conditions, condA and condB
Require: condA and condB to have the same size

function SIMILARITYBETWEEN(condA,condB)
sum← 0
size← the size of condA
for all cA← condition in condA do . compare the conditions

for all Cb← condition in condB do
if cA is identical to cB then

add 1 to sum
BREAK inner cycle

end if
end for

end for
return sum/size

end function

After discovering the REFERENCEEXPERIENCE in the agent’s memory, its tree subset (the

set of tree branches) is retrieved. Figure 4.9 shows that the tree subset represents the choices

of the Experiences that follow the REFERENCEEXPERIENCE. The sequence of action instances

contained in those Experiences (displayed with a grey background in figure 4.9) represents the

possible solutions (the possible sequences of actions) to be proposed by the recall method.

The RELIABILITY of a solution sol proposed by the recall method depends on two factors.

The first one is the similarity between the conditions holding for the actions (in the experience)
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Figure 4.9: The action possibilities to be proposed by the recall method

condSol and the current conditions, which is calculated in algorithm 6. The second one is the

strength of the connection to the REFERENCEEXPERIENCE str. Algorithm 7 shows the way the

reliability is calculated for a proposed solution.

Algorithm 7 Calculating the RELIABILITY of a proposed solution sol by the recall method
Require: all conditions in the experiences in memory have the same size

function RELIABILITYINRECALL(condSol, currentConditions, str)
maxStr ← the maximum value for the strength in the tree set
sim← similarityBetween(condSol,currentConditions)
if sim = 1 then . conditions holding for sol are identical to currentConditions

return sim x 0.99 + (str / maxStr) x 0.01 . strength has a minimal impact
else . conditions holding for sol are not identical to currentConditions

return sim x 0.5 + (str / maxStr) x 0.5
end if

end function

As algorithm 7 shows, the highest reliability is assigned to the solution whose conditions

are identical to the current conditions. When this happens, the strength of the connection to

the REFERENCEEXPERIENCE has a minimal impact (only 1%) to prevent the algorithm from

assigning a higher reliability to a solution whose conditions are not identical. In all other cases,

both the similarity between the conditions and the strength of the connection have a similar

impact because it is the simplest way of giving the same relevance for these factors.

The strength of the connection to the REFERENCEEXPERIENCE cannot be ignored even

when the conditions are identical because there might be other solutions whose conditions are

also identical to the CURRENTCONDITIONS. When this happens, the higher reliability is given

to the solution with the highest strength because it is the one that was observed more often.

Considering a worst-case scenario, the time required to obtain the reference experience

with n elements is T refExp
max (n) = n3 + n and the time required to calculate the reliability

is T reliability
max (n) = n2 + 2. The total time for the recall method is therefore T recall

max (n) =
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T refExp
max (n) + T reliability

max (n) = n3 + n2 + n + 2. For simplification purposes, the elementary

unit of measurement regards only the operations on the elements of an Experience. The time

expended by an elementary unit is considered to be greater or equal than the time taken when

performing any of the actions it represents. Using the big-O notation it is possible to determine

that T recall
max (n) is O(n3) and therefore the recall method has a cubic time complexity n3.

Besides the recall method, the proposed learning algorithm provides another method for

proposing actions, the classification method, which is explained in the following section.

4.5.2 The Classification Method

This section explains how the classification method was developed, what kinds of machine

learning algorithms were assessed and how the agent’s memory is used to train the machine

learning algorithms. The section also shows how the classification method calculates the RELI-

ABILITY of the solutions it proposes.

One of the tasks of this research focused on determining if a supervised machine learn-

ing approach could be used for interpreting the knowledge obtained from the observed actions,

because learning by observation was often regarded as a subset of supervised learning. The clas-

sification method of proposing actions emerged from an analysis of the application of several

known supervised machine learning algorithms presented in appendix C.

The analysis of the supervised learning algorithms concluded that the most suited algorithm

for learning by observation is an implementation of the KStar algorithm provided by the WEKA

(Waikato Environment for Knowledge Analysis) software workbench (Hall et al., 2009). The

classification method is an adaptation of the KStar algorithm to the proposed approach that

enables the algorithm to propose representations of agent actions. The algorithm was also mod-

ified to allow the EXPERIENCES in the agent’s memory to be regarded as positive examples from

which the proposed actions are deduced. The categorization capabilities were also enhanced to

allow the data-types of the conditions to define the differences between the classes.

Unlike the recall method, the classification method does not require a reference to an ex-

perience in the agent’s memory to propose actions. It calculates the distances between the

conditions to find the experiences whose conditions are closer to the current conditions. The

KStar algorithm uses an entropy based function to measure the distance between the conditions

(Cleary & Trigg, 1995). The algorithm was improved to allow the condition data-types to de-

fine the similarities between the conditions. For example, the Text data-type can define that the
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instance ”hello” is identical to the instance ”HELLO”. The data-type can also define that the

instance ”hello” is closer to the instance ”hi” than the instance ”goodbye”.

According to Clearly and Trigg (Cleary & Trigg, 1995), the KStar function can be calculated

as K∗(b|a) = − logP ∗(b|a), where P ∗ is the probability function representing all paths from

a to b. Using the big-O notation it is possible to determine that K∗(n) is O(log n). Since the

improvements made to the KStar algorithm had minimal impact on the time complexity, the

classification method has a logarithmic time complexity log n.

The RELIABILITY of the actions proposed by the classification method is directly associated

with how much the conditions holding for that action are close to the current conditions. Once

again, the modified entropy function is used to measure this distance. For example, if the

conditions holding for a proposed action are identical to the current conditions the RELIABILITY

of that action is 1, that is, the action is fully reliable from the standpoint of the classification

method.

In addition to the learning algorithm, another important aspect of the proposed approach is

the constant evaluation of the agent’s knowledge, which is explained in the following section.

4.6 Evaluation of the Agent’s Progress

This section shows the way the agent’s evaluation operates and how it affects the transition be-

tween the two states of the learning process, the learning and the execution state. It describes the

way the agent’s confidence is updated and how it is related with the agent’s ability to propose

appropriate actions. The section also shows that evaluation goes beyond controlling the confi-

dence value and the transition between the learning and execution states, it is also determinant

for ensuring that the apprentice does not execute incorrect sequences of actions.

The evaluation is a transversal process that covers both the learning and the execution state.

The main purpose of evaluation is to ensure that the agent’s knowledge is appropriate for mas-

tering a task, which influences the agent’s internal confidence. The agent’s internal confidence

expresses the successes and failures in proposing the appropriate actions for the current con-

ditions. Depending on the value of the internal confidence the agent may be in the learning

state or in the execution state of the learning process. Two configurable thresholds, the UPPER-

CONFIDENCETHRESHOLD and the LOWERCONFIDENCETHRESHOLD determine the values at

which the agent changes to the learning or to the execution state. Section 5.2.3 shows how the
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values selected for these thresholds influence the agent’s performance.

When the agent’s confidence goes over the UPPERCONFIDENCETHRESHOLD the agent is

confident enough on its knowledge and switches to the execution state where it executes the ac-

tions it proposes (see section 4.5) for the conditions provided by its sensors and by the relevant

aspects of its internal state (the visible attributes). When the confidence goes under the LOW-

ERCONFIDENCETHRESHOLD the agent stops being confident on its knowledge and switches to

the learning state where it acquires more knowledge by observing experts (see figure 4.2). The

value of the internal confidence is affected by the agent’s capacity to propose the appropriate

actions both when it is observing (in the learning state) and when it is preparing to execute them

(in the execution state).

In the learning state, the agent is tested for its ability to propose actions for the conditions

in the observed snapshots. The agent’s confidence increases when the best solution it proposes

(the one with the highest FINALRELIABILITY as explained in section 4.5) contains the same

actions as the ones observed in the snapshot, otherwise the confidence decreases. The amount

with which the confidence increases or decreases depends on the RELIABILITY of the proposed

solution. For example, if A is the action in the snapshot, B is the action from the best proposed

solution (with a RELIABILITY of 0.8) and A 6= B, the agent’s confidence decreases 0.8.

Using the RELIABILITY of the best proposed solution as a factor for increasing or decreasing

the agent’s confidence is the simplest way of including the confidence the learning methods

have on the solutions they propose (see section 4.5) in the calculation of the agent’s internal

confidence. The way the internal confidence is updated gives more importance to the solutions

with a high RELIABILITY, that is, when the learning methods have a high confidence on the

actions they propose. In these cases, if the solution is not correct the penalization in the internal

confidence should be larger than when the methods have low confidence on the actions they

propose because it means the agent learnt something wrong.

In the execution state, the agent is tested for its ability to execute the correct actions for

the current conditions, which reflect the agent’s perception from its sensors and the important

aspects of its internal state. As section 4.5 shows, the agent selects the solution with the high-

est FINALRELIABILITY, from those proposed by the recall and classification methods, to be

executed. A simple monitoring detects if there was any problem that prevented the correct

execution of the actions in that solution. Whenever a problem is detected the agent’s confi-

dence decreases. Once again the amount with which the confidence decreases depends on the
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RELIABILITY of the selected solution.

The simple monitoring of the executed actions has some limitations because even though

there are no problems when executing the actions it is not possible to ensure that the selected

solution was the most appropriate for the current conditions. To overcome this problem, the

proposed approach extends the concept of learning by observation by allowing the evaluation

to receive external feedback on the executed actions from specialized experts, the teachers, or

from other evaluators that are specific to the application domain. This possibility for evaluation

approximates the approach to the paradigm of learning by teaching.

The teachers are a special kind of experts that know how to evaluate the task executed by

the agent. They observe the actions executed by the agent and determine if those actions were

appropriate for the current conditions. They provide evaluation with a positive or negative

feedback on the executed actions. The evaluation can also receive basic feedback (positive or

negative) from software components that are specialized in evaluating certain aspects of agent

tasks when teachers are not available. The components know which actions are appropriate

for the current conditions and use this knowledge to determine if the agent executed the same

actions.

The external feedback influences the agent’s confidence in the same way as the monitoring

of the execution of the actions. If the feedback is positive, meaning the agent was able to execute

the appropriate actions, the confidence increases. If the feedback is negative, meaning the agent

has not executed the appropriate actions, the confidence decreases. Once again, the amount

with which the confidence increases or decreases depends on the RELIABILITY of the proposed

actions.

In addition to decreasing the agent’s confidence, which may cause the agent to return to

the learning state, the negative feedback provides useful information on what the agent should

not do. It represents the actions that cannot be executed when facing certain conditions - a

negative training example. When it is possible to use external feedback, the evaluation collects

the negative training examples and uses them to prevent the agent from executing the actions

in those examples when facing the same conditions. Each time the agent selects the actions

to execute from the solutions provided by the learning methods (see section 4.5), the selected

actions are validated before the agent executes them, as shown in algorithm 8.

As algorithm 8 shows, the validation consists of comparing the conditions in the negative

examples with the current conditions. If identical conditions are found in a negative example
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Algorithm 8 Validating the sequence of actions seqAct
function VALIDATE(seqAct) . allows or blocks the execution of seqAct

pCond← the current conditions
nteList← list of negative training examples
for all nte← example in nteList do . go through all negative examples

cond← conditions in nte
if cond are identical to pCond then

act← the actions in nte
if act is identical to seqAct then

return blockActions . blocks the execution of the actions
end if

end if
end for
return allowActions . allows the execution of the actions

end function

and the actions of that negative example are identical to the actions of the selected solution, the

agent is prevented from executing those actions, which forces the actions from the next best

solution to be selected and validated once again. This happens until the selected actions are

approved and executed, or until there are no more solutions, which causes the agent to execute

no actions.

In addition to the external feedback that changes the agent’s confidence, the agent can be

forced to switch to the learning state independently of its confidence. This additional possibil-

ity of switching to the learning state happens when the agent is faced with a certain amount

of unfamiliar conditions, that is, conditions not found on the observed snapshots. The amount

of unfamiliar conditions is controlled by a configurable threshold, the AMOUNTUNFAMILIAR-

CONDITIONS, whose value depends of the application domain. As explained in section 3.2.2,

the conditions consist of the information provided by the agent sensors and visible attributes.

The conditions are familiar when the agent has observed an expert facing the same conditions

and therefore knows exactly the correct actions to propose.

If the conditions are not familiar, the agent has never observed an expert facing them which

probably means that it does not know what actions to propose. Under these circumstances, the

amount of unfamiliar conditions rises only when the evaluation determines that the executed

action was inappropriate. To turn this additional possibility to switch to the learning state in a

measure of last resort, the amount of unfamiliar conditions resets each time the agent faces a

familiar condition. Therefore, this amount represents the number of consecutive times the agent

faces unfamiliar conditions.
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After switching to the learning state because of the amount of unfamiliar conditions, the

agent’s confidence is decreased to a configurable reference value, the UNFAMILARCONFI-

DENCEREFERENCE, which has to be lower than the LOWERCONFIDENCETHRESHOLD to al-

low the agent to remain in the learning state for a while. The lower the value of UNFAMILAR-

CONFIDENCEREFERENCE in relation to the LOWERCONFIDENCETHRESHOLD the longer the

agent takes to change back to the execution state. This is the simplest solution to keep the agent

in the learning state for some time.

Other solutions could take the unfamiliar conditions into account. For example, the agent

can remain in the learning state until it finds an expert that is facing those unfamiliar conditions.

However, the solution requires a complex timeout mechanism to prevent the agent from remain

in the learning state for a long time if it does not find an expert facing the unfamiliar conditions.

A similar behaviour can be easily achieved by reducing the confidence and letting the internal

evaluation decide when to return to the execution state by testing the agent’s knowledge while

it is observing.

The role played by evaluation, namely making the agent return to the learning state, con-

tributes to overcome one of the major problems faced by learning by observation, the fact that

the agents are limited to performing only the actions they have observed. Forcing the agent to

return to the learning state (and thus to observe other experts) gives the agent an opportunity to

increase its knowledge since other experts may have different experiences that might provide

the agent with new knowledge. This is validated in the following section where the approach is

tested in different scenarios were experts have different experiences.
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Chapter 5

Application Scenarios

This chapter describes three scenarios in which the proposed approach was implemented. It

also presents the tests performed on the proposed software image (see chapter 3). The chapter

ends with the validation of the evaluation criteria defined in section 1.3. Since the scenarios are

software implementations, the observation noise when acquiring the snapshots or the current

conditions makes no sense and therefore is not considered in the experiments.

The tests on the software image determine the time to create, compare and observe the

software images of different agents (see section 5.1). In the first scenario, the agent learns how

to manipulate their virtual hand to display numbers using sign language (see section 5.2). In the

second scenario, the agent learns how to calculate mathematical expressions using the numbers

and operators acquired from the environment (see section 5.3). In the third scenario, the agent

learns how to reach the top of a simulated mountain by going backwards and forwards to gain

momentum (see section 5.4).

The tests on the software image determine how the complexity of an agent affects the cre-

ation, comparison and observation of software images. The agent complexity is measured by the

number of parts, the number of atomic elements in those parts and the depth of sub-parts. The

tests also determine how accurate is the software image comparison process when comparing

similar software images.

The first scenario was designed to be appropriate for learning by observation because the

majority of the agent actions does not affect the state of the environment. It was specially

conceived to test the abilities of the proposed approach. It shows the way the configurable con-

fidence thresholds influence the agent’s capacity to learn, the way the proposed meta-ontology

(see section 3.3) enhances software image comparison and also the influence of the two methods
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of proposing actions, the recall and classification methods, when the expert and the apprentice

agent face the same conditions and when they face different conditions.

The second and third scenarios present a direct comparison between the proposed approach

and implementations of the KStar, multi-layer perceptron back-propagation (MLP) and rein-

forcement learning algorithms. The statistical relevance of the data collected for the compar-

isons is ensured by the student’s t-test.

The second scenario (see section 5.3) compares the proposed approach with implementa-

tions of the KStar and of the multi-layer perceptron back-propagation algorithms that only learn

from the effects of the actions. The scenario presents a situation where not all the effects of the

agent actions are visible in the environment.

The third scenario (see section 5.4) compares the proposed approach with a reinforcement

learning approach in a typical reinforcement learning experiment, the mountain car experiment

from Sutton and Barto (Sutton & Barto, 1998). In this scenario all the agent actions are visible

in the environment.

The scenarios are software implementations where all developed agents have a software

image. When apprentice software agents observe the experts they are effectively acquiring

snapshots from the expert’s software image. As a simplification, the software images of the

apprentice agents have the same constituents as the software images of the experts they observe.

With the exception of one of the settings of the first scenario (see section 5.2.4), in all scenarios

the apprentice agents do not receive external feedback from teachers or other evaluators (see

section 4.6) so that the results reflect a pure learning by observation approach.

The process of discovering and identifying a similar expert is an important step for the

proposed approach. However, for the purpose of focusing the results on the benefits of learning

by observation, this process is only considered in the tests of the proposed software image (see

section 5.1) and in the first scenario (see section 5.2.5). In the remaining scenarios it is implicit

that the apprentice agent uses the software image for discovering, identifying and collecting the

information that is necessary for observing the experts.

The following sections describe the scenarios and the results of the experiments. To provide

the learning by observation agent with a broader set of experiences, the experiments use more

than one expert and each expert experiences the scenario in different ways, that is, they receive

different information from the environment through their sensors. On the other hand, only

one apprentice agent is used. This simplification ensures that there is no risk for the tested
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apprentice agent to observe other apprentices, which may mislead it with incorrect actions,

instead of observing the experts.

The unit of time used for the experimental results is the simulation step. A simulation step

represents the time slot where the participant agents take a decision. For learning by observation

agents, a simulation step can either represent an observation (the acquisition of a snapshot from

the expert) and the subsequent learning (when the agent is in the learning state), or updating the

current conditions, proposing and executing the best suited actions for those conditions (when

the agent is in the execution state) (see chapter 4).

For the KStar and the multi-layer perceptron back-propagation learning agents a simulation

step can represent collecting a training example when the agents are in the learning state or

updating the current conditions, selecting the actions for those conditions (training the algorithm

with the collected training examples and proposing actions) and executing the actions when in

the execution state.

For reinforcement learning agents a simulation step represents updating the current condi-

tions, selecting an action for those conditions (from the action-state pairs stored in their memo-

ries) executing the action and interpreting the rewards (updating the action-state pairs).

For expert agents, a simulation step represents updating the current conditions and using

their control knowledge to select and execute the best suited actions.

5.1 Tests on the Software Image

This section presents the tests performed on the proposed software image described in chapter

3. The first part of the test (section 5.1.1) provides a measure of the agent’s complexity and

shows how this complexity affects the time to create the software image and to discover and

observe an identical agent. The complexity of an agent depends on the number of parts, the

number of atomic elements in those parts and the depth of sub-parts.

The second part of the test (section 5.1.2) shows the capabilities of the software image

comparison process. It determines the accuracy of the software image comparison process and

the time it takes to compare different software images.
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5.1.1 Creating and Observing the Software Image

This section shows how the agent complexity affects the time to create the software image. It

shows the effect of the process of creating the software image in the time it takes to initialize the

agent. It also shows how the agent complexity affects the time it takes to discover and observe

an agent.

The agent’s complexity is measured by three aspects of the agent constituents: the number

of parts, the number of elements in each part and the depth (agent parts inside of agent parts).

The test uses six agents with different arrangements of parts, elements and depth to determine

which of these aspects has more influence in the time to create and observe the software image.

Table 5.1 shows the arrangement of the parts, elements and depth in the tested agents.

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6
No. of parts 1 1 1 20 1 1
No. of sensors and
visible attributes in
part

2 40 40 2 4 2

No. of actuators in
part 1 20 1 1 2 1

No. of actions in ac-
tuator 1 1 20 1 1 1

Depth 0 0 0 0 1 20

Table 5.1: Description of the agents used in the test

The arrangement in table 5.1 determines the influence of several parameters of the agent

architecture in the agent’s complexity. It determines how an increase in a factor of twenty

on the number of agent parts, the number of elements in the parts or the depth influences the

results of the tests. It also determines the influence of the distribution of the agent actions in the

actuators.

As section 3.4.1 shows, the software image is created when the agent is initialized. The

tested agents, described in table 5.1, are initialized to determine the time it takes to create the

software image. In addition, the test also determines the proportion of time spent by the process

of creating the software image in the time it takes to initialize the agent. Table 5.2 presents both

the average values and the standard deviation from running the test 100 times to encompass the

time variations.
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Agent1 Agent2 Agent3 Agent4 Agent5 Agent6
Time to create the Avg 0.1 0.37 0.25 0.22 0.17 0.29
software image (sec.) StDev 0.03 0.1 0.08 0.07 0.07 0.07
Proportion of time Avg 95.4% 94.9% 92.6% 96% 87.2% 70.2%
in agent initialization StDev 3.1 pp 1.5 pp 1.7 pp 2.3 pp 1.4 pp 2.6 pp

Table 5.2: Results for the test on creating the software image

The results in table 5.2 show that it takes less time to create the software image when the

number of parts, elements in the part and depth are small (Agent1). The software image creation

process is largely affected by the increase of the number of elements in the agent parts and the

depth (Agent2 and Agent6). The software image also takes less time to create when all the

actions are in the same actuator (Agent3) instead of being one in each actuator (Agent2).

The results also show that the software image creation process is responsible for almost all

the time required to initialize the agent (more than 90%). This proportion is lower (about 70%)

only when the agent has a large depth (Agent6). Even though this is one of the situations that

requires more time to create the software image the agent takes even longer to initialize.

A second test on the software image determines the effect of the agent complexity in the

time it takes to discover and to observe an expert. The test also determines the proportion of

time spent by the software image comparison process in the time it takes to discover the agent.

The test uses six apprentice agents (Ap1 to Ap6) that are identical to the agents described in

table 5.1. The apprentices have to discover their identical expert from the six agents of the

previous experiment and observe the discovered expert, that is, collect a snapshot from the

expert’s dynamic image. Table 5.3 presents both the average values and the standard deviation

from running this test 100 times to encompass the time variations.

Ap1 Ap2 Ap3 Ap4 Ap5 Ap6
Time to discover Avg 0.38 41.35 157.35 0.39 29.9 38.2
expert agent (sec.) StDev 0.06 2.01 13.9 0.05 0.29 1.56
Proportion of time Avg 95.2% 86.13% 89.6% 94.4% 93.2% 95.4%
spent comparing expert StDev 1.2 pp 2.1 pp 1.3 pp 1.4 pp 1.1 pp 2.2 pp
Time to acquire snapshot Avg 0.01 0.012 0.014 0.01 0.014 0.01
from expert (sec.) StDev 0.003 0.002 0.004 0.002 0.004 0.002

Table 5.3: Results for the test on discovering experts and observing the software image

The results in table 5.3 show that the software image comparison process is responsible

for about 90% of the time spent to discover the expert. The results indicate that the discovery

process is largely affected by the complexity of the apprentice because of its impact in the com-
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parison process (see section 5.1.2). It takes less time to discover experts when the apprentice

has a small number of parts, elements in the part and depth (Ap1). The results also show that

the discovery of expert agents is largely affected by the increase of the number of elements in

the agent parts, especially when the actuators have a large number of actions (Ap3).

Table 5.3 also shows that observation is not affected by the agent complexity. The time spent

acquiring a snapshot from the expert’s dynamic image is the same for all tested apprentices. The

time fluctuations in the results can be disregarded because they are inside the standard deviation.

5.1.2 Comparing Software Images

This section presents two tests on the software image comparison process described in section

3.4.3. The first one shows the capabilities of the software image comparison process when

comparing different software images. The second one shows the performance of the software

image comparison process in terms of the time it takes to compare different kinds of software

images.

The software image comparison process determines if two agents have the same constituents

and capabilities, that is, if two static images have the same sensors, actions and visible attributes

arranged in the same way (see section 3.4.3). The comparison process is based on tree compar-

ison because of the way the static image is organized (see section 3.2.1).
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Figure 5.1: The static images of agent A and A*
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Figure 5.2: The static images of agent B and C
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Figure 5.3: The static images of agent D and E

The accuracy of the comparison process is determined by comparing static images that have

small differences between them. The test uses the static images of six agents, shown in figures

5.1, 5.2 and 5.3. It consists of comparing the static image of agent A with the static images of

the remaining agents A*,B,C, D and E. All static images have the same elements but the static

image of agent A* is the only one where the elements are organized in the same way as the

static image of agent A. Thus, the static image of agent A* is the only one that is identical to A.
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The test also determines the time it takes to compare the static image of agent A with the

remaining static images. Results show that the comparison process correctly determines the

identical and non-identical static images. Figure 5.4 shows the results from repeating the test

5000 times to encompass the time variations. It presents the average time taken to create the

software images of each agent and the time it takes to compare them with the static image of

agent A.
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Figure 5.4: Results for the first software image comparison test

Figure 5.4 shows that comparing software images spends less time than creating them even

though both processes are similar. As explained in section 3.4.1, the software image creation

process uses code introspection to discover the elements of the software image, which takes

more time to complete the process. The fact that creating the software image takes more time

is not disadvantageous because software images are created once but can be compared many

times.

Figure 5.4 also shows that comparing identical images (A and A*) takes more time than

comparing images that are not similar. This situation requires the largest number of iterations

because it is necessary to compare all elements with each other to prove that both images are

identical.

The second test determines how the complexity of the agent affects the performance of the

comparison process in terms of the time and memory required for comparing two identical static
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images. The test shows how the performance is affected when changing the number of agent

parts, the number of visible elements (sensors, actuators, visual attributes and internal agent

parts) and the depth of the related agent parts.
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Figure 5.5: Results for the second software image comparison test

Figure 5.5 shows the results from repeating the second test 5000 times to encompass the time

variations. To provide a large number of different possibilities, a new pair of identical software

images was randomly generated in each comparison. The random generation ensures minimal

deviation of the non-varying parameters (depth, number of elements or number of agent parts).

The random generation also used a set of parameters that ensured minimal deviation for the

tested depth, number of elements and number of agent parts.
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Figure 5.5 displays the results of the test in three graphics. The x axis represents the test pro-

gression (the increments of the number of parts, elements and depth). The y axis represents the

average time taken, in milliseconds, and the memory required, in megabytes, by the comparison

process.

The first graphic shows the effect of increasing the number of agent parts while maintaining

the same number of elements (thirty elements) and the same depth (four levels of internal parts).

The second graphic shows the effect of increasing the number of elements while maintaining

the same number of agent parts (five agent parts) and the same depth (four levels). The third

graphic shows the effect of increasing the depth while maintaining the same number of elements

(thirty elements) and the same number of agent parts (five agent parts).

The graphics in figure 5.5 show that the time required for the comparison process increases

exponentially when any of the three tested aspects increase. The exponential growth is more

pronounced when increasing the number of elements and the depth. Increasing the depth is also

more significant when considering the amount of memory required for comparison.

The results show that building agents with a large number of small parts (with a small

number of elements and depth) is a better choice than building agents with few parts that have

lots of elements or a large depth. These results support the design choice of decomposing a

problem into smaller problems, each one solved by a simpler agent part.

5.2 The Virtual Hand Scenario

This section describes the first scenario in which the proposed approach was implemented and

shows the results of simulating this scenario in different settings. The scenario simulates an

agent with a virtual hand that displays numbers using sign language. The numbers are provided

to the agent by a software number generator which provides numbers between one and five.

Each agent is associated to a single number generator and has no knowledge of the other

number generators associated to the other agents that participate in the scenario. Each time a

new number is provided to the agent, the virtual hand is changed to display that number by

means of sign language. The virtual hand is used only for communicating with users through

a graphical display and it is not accessible to other agents, except by using the agent software

image.

The only way software agents can obtain information on the state of the agent’s virtual hand
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is through a visible attribute in the software image (see section 3.2), the hand visible attribute.

The hand visible attribute represents the state of the visible hand as an object with five attributes

each representing one finger. Each attribute can be in one of two states, UP or DOWN. Figure

5.6 shows a representation of the type of data provided by the hand visible attribute.

Hand

+indicator: State

+ring: State

+middle: State

+pinky: State

+thumb: State

<<enum>>

State

+UP

+DOWN

Figure 5.6: The data-type of the hand visible attribute

The expert agent designed for this scenario has a specialized part that holds the knowledge

on the most efficient way of changing the virtual hand so that it represents the number provided

by the number generator. For example, when the agent perceives the number one, if the virtual

hand is showing the number two (the index and middle fingers are UP) it is only necessary to

change the state of the middle finger to DOWN, whereas if the hand was showing the number

four, it would be necessary to change the state of the middle, ring and pinky fingers to DOWN.

The part perceives the numbers from the number generator through a specialized sensor. It has

an actuator with five actions, one for each finger, that change the state of that finger.

To increase the complexity of the scenario, the number generators need to be reset from

time to time or else they will stop generating new numbers. The number sources can either be

in the ACTIVE state or in the INACTIVE state. The source stops providing numbers when it

is INACTIVE. Resetting the source leaves it in the ACTIVE state. Because of this, the expert

agent has another specialized part which holds the knowledge on when and how to reset the

random number generator. The state of the number generator is perceived by this specialized

part through a sensor which indicates the state of the generator. The agent part has one actuator

with a single action that resets the source.

The apprentice agent developed for this scenario has to learn how to master these two tasks,

manipulating the agent’s virtual hand to display the perceived numbers and resetting the source,

by observing experts with the same constituents and capabilities. Like the experts, apprentice

agents have two parts. One of them specializes in manipulating the virtual hand and has one

sensor that perceives the numbers provided by the number generator, one visible attribute that

displays the state of the virtual hand and one actuator with five actions that change the state of
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each finger.

The other part of the apprentice agent specializes in managing the source that provides the

numbers and has one sensor that perceives the state of the number source and one actuator with

a single action that resets the source. Given the description of the agent sensors and visible

attributes, the conditions for this scenario (see section 3.2.2) consist of the number provided by

the agent source, the state of the virtual hand and the state of the number source. Appendix D

shows the distribution of the elements that participate in the scenario.

The scenario was experimented in four different settings that depend on the sequence of

numbers provided by the number generators and on the visibility of the hand visible attribute,

as shown in table 5.4. To control the results of the experiment, the numbers provided by the

generators follow a pre-determined sequence. The number generators provide the numbers

following that sequence and when the end of the sequence is reached the source needs to be

reset by the agent. Resetting the number generator makes it provide the numbers following the

same sequence.

Setting Sequences in number generator hand visible attribute
exp1 same for experts and apprentice is visible
exp2 different for experts and apprentice is visible
exp3 same for experts and apprentice not visible
exp4 different for experts and apprentice not visible

Table 5.4: The settings for the virtual hand scenario

Table 5.4 shows that on the first (exp1) and third settings (exp3), the number generators

of both apprentice and expert agents provide the same sequence of numbers. In this setting

both the expert and the apprentice agent face the same conditions in the same sequence, which

provides a good testing ground for the recall method (see section 4.5.1). On the second (exp2)

and fourth setting (exp4), the number generators have different sequences of numbers with

different sizes, that is, the number generators need to be reset at different times. The expert

and the apprentice agent face different conditions which provides a good testing ground for the

classification method of learning (see section 4.5.2).

The difference between the first two (exp1 and exp2) and the last two settings (exp3 and

exp4) is the visibility of the hand. On exp1 and exp2 the hand is visible in the agent’s software

image whereas in exp3 and exp4, the hand is not visible in the software image. Since the in-

formation on the state of the hand is not visible, it will not be in the conditions of the observed

snapshots. Thereby, apprentices face a situation where important information is missing. With-
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out this information the same set of conditions may lead to different actions since the decision

to perform those actions also depends on the state of the hand.

A practical example of this situation is when the agent is observing an expert and the expert’s

number generator provides the number one. When this happens, the expert can either change

the state of the index finger if all fingers are down or change the state of the middle finger if

the index and middle fingers are up. If the information on the current state of the agent’s hand

is removed from the conditions in the observed snapshots, those conditions will only contain

information on the number provided by the generator source. When the agent is applying the

knowledge acquired from those snapshots, whenever the source provides the number one, it can

either change the state of the index finger or change the state of the middle finger. Without the

visible attribute to tell the agent what should be the state of its hand when proposing actions,

the apprentice does not know which of the actions to execute.

As described in appendix C, this kind of situation is usually catastrophic for the majority of

supervised learning algorithms, because for each set of conditions there can be more than one

possible action. Therefore, the two last settings (exp3 and exp4) determine how the approach to

learning by observation copes with the lack of important information.

The virtual hand scenario is the background for several experiments with the proposed ap-

proach. The following sections show the results of these experiments in these four settings.

5.2.1 Results for the First Two Settings

This section presents the results of testing the scenario for the first two settings (see table 5.4)

in a 4000 step experiment which was repeated 100 times to encompass the time variations

that might exist in the experiments. The configurable parameters were set with the optimal val-

ues, 0.3 for the UPPERCONFIDENCETHRESHOLD, 0.05 for the LOWERCONFIDENCETHRESH-

OLD, 3 for the AMOUNTUNFAMILIARCONDITIONS and 0.04 for the UNFAMILARCONFI-

DENCEREFERENCE. Section 5.2.3 explains how these optimal values can be obtained.

Setting Recall Weight Classification Weight
exp1 avg 0.509 0.491

stdev 0.008 0.008
exp2 avg 0.317 0.683

stdev 0.022 0.022

Table 5.5: The average weights of the recall and classification methods on each setting
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Since the two settings were prepared with the two learning methods in mind, it is important

to look at the importance given by the agent to these methods on each setting. Table 5.5 shows

the normalized values of the weights of the recall and classification methods of learning (see

section 4.5) on each setting.

Table 5.5 shows that, as expected, the recall method has more influence on the proposed

actions when the expert and the apprentice agent face the same conditions (exp1) than when

they face different conditions (exp2). In the first setting, the weight of the recall method makes

it more likely (more than 50% chance) for the actions proposed by this method to be executed,

even though the actions proposed by the classification method can also be executed. In the

second setting, the classification method has more influence on the proposed actions because it

has the largest weight. The agent is not able to use the recall method very often to follow the

same sequence of actions as the expert because it is facing conditions that are different from

those observed on the expert (see section 4.5).

The overview of the results of the scenario experiment in exp1 and exp2 is presented in table

5.6. The table compares the time spent on the learning state and on the execution state, the

number of actions the agent was able to execute, how many of those actions were appropriate

and also the time of a simulation step when learning and when executing actions. The results in

table 5.6 present both the average values and the standard deviation from running the experiment

100 times.

Apprentice Apprentice
Expert (exp1) (exp2)

Time spent average - 2.09 177.5
learning (seconds) stdev - 0.54 45.43
Time spent average 1.72 11.44 16.75
execution (seconds) stdev 0.46 1.76 4.34
Total actions average 4000 3931 3588.7
executed stdev 0 0 853.33
% of appropriate average 100% 100% 93.41%
actions executed stdev 0 0 10.15 p.p.
Step time in average - 32.17 269.41
learning state (ms) stdev - 10.5 153
Step time in average 0.43 2.9 4.68
execution state (ms) stdev 0.115 0.45 0.67

Table 5.6: Results of experimenting the first two settings of the virtual hand scenario

The results in table 5.6 show that when the expert and the apprentice agent face the same

conditions (exp1), the apprentice spends less time in the learning state and is able to perform
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more actions throughout the experiment than when facing different conditions (exp2). When

the expert and the apprentice agent face different conditions (exp2), the apprentice spends more

time learning because it needs to acquire more knowledge and requires this knowledge to come

from different sources to improve the generalization in the classification method (see section

4.5.2). This leads the agent to spend more time discovering different experts to learn from and

also causes the agent to return to the learning state more often. Section 5.1.1 shows how the

time spent discovering an expert influences the time spent learning.

In addition, the high standard deviation values show that when the agent faces different

conditions (exp2) the number of actions executed throughout the experiment, the time spent

learning, the time spent executing actions and the simulation step time when learning differs

considerably. This variation is directly associated with the randomness of the observed experts.

Each time the experiment is run, the apprentice observes different subsets of the available ex-

perts in a different sequence, which changes the knowledge retained by the agent throughout

the experiment and affects the number of actions executed and the time spent on learning and

on executing actions.

Table 5.6 also shows that when facing the same conditions (exp1) all the actions executed by

the agent were appropriate, whereas when facing different conditions (exp2) only approximately

93% of the executed actions were appropriate. This is an important indicator that the agent is

more likely to return to the learning state, after starting to execute actions, when it is facing

different conditions (exp2).

As for the average time spent in the simulation steps, table 5.6 shows that both in exp1 and

exp2, the simulation step is longer when agents are learning. This was expected since when the

agent is in the learning state it has to perform various tasks such as discovering expert agents,

comparing its software image with the software images of the discovered experts, acquiring the

snapshots and storing its information, proposing actions for the conditions from the snapshots

and evaluating those proposals (see chapter 4).

When executing actions, the simulation step of the apprentice agents is longer than the

simulation step of the experts, which is understandable given that apprentice agents require

more processing than the expert. Besides using two methods for proposing actions it is also

necessary to take into account the influence of the agent’s evaluation (see section 4.6). The

step time while executing actions is also longer when the apprentice agent is facing different

conditions (exp2).

116



Learning by Observation in Software Agents

Table 5.6 shows that, when compared with exp1, in exp2 the agent executes fewer actions

and spends more time executing them (an average of 3589 actions in exp2 and 3931 actions in

all trials in exp1). The same effect is observed in the time spent by the simulation step when

learning. When facing different conditions (exp2) the agent needs to acquire more knowledge

which increases the amount of information in the agent’s memory. Since the recall and classifi-

cation methods of learning need to process the information contained in memory, the larger the

amount of information the longer it takes to process it. This effect is felt both when learning

and when executing actions because the agent uses these methods in both cases.

A closer look at the experiment results for exp1 and exp2 is presented in figure 5.7, which

shows the progress of the agent, in terms of the number of correct actions it has executed,

throughout the experiment. The figure also shows the progress of the state of the learning

process (see chapter 4) throughout the experiment. To provide a clearer presentation, the results

are combined in groups of 100 simulation steps.
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Figure 5.7: The progress of the agent in exp1 and exp2 throughout the experiment

Figure 5.7 shows that, when the expert and the apprentice agent face the same conditions

(exp1) after a short learning period (of about 200 steps) all the actions executed by the apprentice
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are correct. When the expert and the apprentice agent face different conditions (exp2), the

learning period lasts longer than when they face the same conditions and only approximately

90% of the actions executed by the apprentice are correct.

The agent also experiences additional learning periods (of short duration) throughout the

experiment. The additional learning periods are mainly caused by the evaluation activity mech-

anism that switches the agent to the learning state when facing conditions that were not observed

(see section 4.6). Although the subsequent learning periods affect the time spent on learning

they are of short duration. As figure 5.7 shows, the overall permanence in these subsequent

learning periods does not exceed more than 3% of the total simulation steps.

The scenario was also experimented in a situation where the hand is not visible in the agent

software image (exp3 and exp4 from table 5.4). The following section presents the results of

simulating the scenario in these settings.

5.2.2 Results for the Last Two Settings

As in the first two settings, the scenario was experimented in the last two settings (see table

5.4) in a 4000 step experiment which was repeated 100 times to encompass the time variations.

The average values of the weights of the recall and classification methods of learning were also

obtained for these two settings because on the third setting the expert and the apprentice agent

face the same conditions and on the fourth setting they face different conditions. Table 5.7

presents these values.

Setting Recall Weight Classification Weight
exp3 avg 0.935 0.065

stdev 0.024 0.024
exp4 avg 0.996 0.004

stdev 0.05 0.05

Table 5.7: The average weights of the recall and classification methods on each setting

Unlike what happens on the first two settings (see table 5.5), the results in table 5.7 show

that when the expert and the apprentice agent face different conditions (exp4), the recall method

has a larger influence on the proposed actions. This happens because of the problems faced

by the classification algorithm and, in general, by all other supervised learning algorithms (see

appendix C). When important information is missing from the training examples (in this case the

visible attribute representing the state of the hand is missing from the conditions) the algorithm

is not capable of proposing correct actions.
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This problem caused the classification method to propose incorrect actions throughout the

evaluation in the learning state (see section 4.6), which resulted in a decrease of the method’s

weight. This means that even though the agent is facing different conditions from the observed

experts, it is more likely for the actions proposed by the recall method to be executed. On

the other hand, the actions proposed by the classification method would be unreliable because

of the problems faced by the missing information on the state of the hand in the conditions.

Therefore, the weight mechanism plays an important role on lowering the FINALRELIABILITY

of the actions proposed by the classification method, thus preventing the agent from executing

those actions (see section 4.5).

Table 5.8 shows an overview of the results of experimenting the scenario in exp3 and exp4.

The table compares the time spent on the learning state and on the execution state, the number

of actions the agent was able to execute, how many of those actions were appropriate and also

the time of a simulation step when learning and when executing actions. The results in table

5.8 present both the average values and the standard deviation from running the experiment 100

times.

Apprentice Apprentice
Expert (exp3) (exp4)

Time spent average - 1.97 2.39
learning (seconds) stdev - 0.5 0.67
Time spent average 1.72 7.57 13.17
execution (seconds) stdev 0.46 1.52 0.85
Total actions average 4000 3905 3696.2
executed stdev 0 0 24.43
% of appropriate average 100% 100% 11.9%
actions executed stdev 0 0 7.9 p.p.
Step time in average - 21.42 8.77
learning state (ms) stdev - 5.62 0.87
Step time in average 0.43 2.1 3.56
execution state (ms) stdev 0.12 0.34 0.24

Table 5.8: Results of experimenting the last two settings of the virtual hand scenario

Table 5.8 shows that the results are similar when the apprentice agent and the expert face

the same conditions both when the hand attribute is visible (exp1 as shown in section 5.2.1)

and when it is not visible in the software image (exp3). The only significant difference is the

total number of actions executed, which is lower in (exp3). Therefore, when the expert and the

apprentice agent face the same conditions, the missing information on the hand attribute is not

enough to mislead the recall method because the agent merely follows the same sequence of
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actions as it has observed in the expert.

When the expert and the apprentice agent face different conditions (exp4), even though the

apprentice executes a similar number of actions as when the hand attribute is visible (exp2 as

shown in section 5.2.1), only 12% of those actions are appropriate for the faced conditions. The

agent also spends less time in the learning state in exp4 when compared with exp2. This makes

it impossible for the agent to collect a large amount of knowledge because spending less time

learning makes it harder to find snapshots that resemble the faced conditions. In addition, table

5.7 shows that the majority of the executed actions was proposed by the recall method, which

requires the agent to observe a sequence of events that resemble the faced conditions.

As for the average time spent in the simulation steps, table 5.8 shows that, once again, the

simulation step is longer when agents are learning because of the additional effort of discover-

ing, observing the experts and storing the acquired knowledge (see section 5.1.1). The simu-

lation step of the apprentice agents is also longer than the simulation step of the expert when

executing actions because of the two methods for proposing actions and the agent’s evaluation.
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Figure 5.8: The progress of the agent in exp3 and exp4 throughout the experiment

The agent also spends less time in the simulation step, both when learning and when exe-

cuting actions in exp4 when compared with exp2. This happens because the agent acquires less

information and also because the conditions in the observed data lack the information on the

state of the hand (the visible attribute) and therefore the agent handles less data when storing
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the acquired knowledge and when proposing actions.

A closer look at the results of the experiment for the last two settings is presented in figure

5.8, which shows the progress of the agent, in terms of the number of correct actions it has

executed, throughout the experiment. The figure also shows the progress of the state of the

learning process (see chapter 4) throughout the experiment. To provide a clearer presentation,

the results are combined in groups of 100 simulation steps.

Figure 5.8 shows that the agent behaves in a similar way when it faces the same conditions

as the expert (exp1 and exp3). As for the fourth setting (exp4), the time spent learning is about

the same time as the initial learning period in (exp2). The agent switches to the execution state

because the recall method proposes the correct actions for the conditions faced by the expert,

which increases the agent’s confidence.

However, unlike what happens exp3, the recall method is not capable of proposing actions

for the current conditions because they are different from those faced by the expert and the

number of observed snapshots is not enough for the agent’s memory to hold a sequence of

experiences containing the current conditions. One way of increasing the experiences in the

agent’s memory is through subsequent learning periods, which are not happening in this setting.

The agent also has no subsequent learning periods in exp4 because the conditions in the

observed snapshots only contain the number provided by the source and therefore the amount

of different combinations of conditions is smaller. With a smaller set of different conditions

it becomes harder for the agent’s evaluation to detect when it is facing unfamiliar conditions

and thus force the agent to return to the learning state (see section 4.6). The agent’s evaluation

also has no way of determining if the agent is executing the appropriate actions for the faced

conditions and thus influence the agent’s confidence.

One way of overcoming this problem is using external feedback (see section 4.6). Section

5.2.4 shows how the external feedback increases the agent’s performance in terms of the amount

of appropriate actions executed in this case.

5.2.3 Setting the Configurable Parameters

One of the experiments with the virtual hand scenario is determining the impact of changing the

values for the UPPERCONFIDENCETHRESHOLD and the LOWERCONFIDENCETHRESHOLD

(see section 4.6). For this reason, the first and second settings of the scenario (see table 5.4)

were tested on agents using different values for these thresholds. Figure 5.9 presents a summary
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of the results obtained in the second setting in experiments with 4000 steps (each variation of the

thresholds is tested in an experiment that lasts 4000 steps). The reason for selecting the results

for the second setting is because it is where changing the thresholds has more influence and

also because it is a more realistic approach for the scenario, since the chances for the apprentice

agent and the expert to face the same conditions are very small.
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Figure 5.9: The impact of changing the confidence thresholds

As explained in section 4.6, the confidence thresholds affect the length of the learning pe-

riod and the number of subsequent learning periods which in turn affects the total number of

correct actions performed by the agent throughout the experiment. When the UPPERCONFI-

DENCETHRESHOLD is low, the agent may not have enough time to learn, which decreases the

agent’s performance in terms of being able to execute the correct actions. When the UPPER-

CONFIDENCETHRESHOLD is too high the agent spends a lot of time learning, which reduces

the time spent in the execution state and therefore the total number of actions executed by the

agent is lower.
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When the LOWERCONFIDENCETHRESHOLD is too close to the UPPERCONFIDENCETHRESH-

OLD the agent switches between the learning and execution state more often (see chapter 4).

This may hinder the agent‘s ability to complete a task because the slightest error causes the

agent to return to the learning state. When the LOWERCONFIDENCETHRESHOLD is too far

apart from the UPPERCONFIDENCETHRESHOLD, the agent takes longer to switch between

learning and execution. This slows down the ability to recognize the mistakes and switching to

the learning state. It also slows down the recovery from the learning state to the execution state.

The results presented in figure 5.9 fall in the region where the LOWERCONFIDENCETHRESH-

OLD changes between 0 and 0.2 and the UPPERCONFIDENCETHRESHOLD changes between

0.2 and 0.3 units more than the LOWERCONFIDENCETHRESHOLD. This is where the agent is

able to perform the maximum number of correct actions in the time spent by the experiment

(4000 steps). If the difference between the thresholds is larger than 0.3, the total number of cor-

rect actions decreases since the agent takes longer to change between the learning and execution

states.

Figure 5.9 also shows that the length of the initial learning period increases as the LOWER-

CONFIDENCETHRESHOLD increases. The longer the agent spends learning the less time it has

to perform the actions. Therefore, as Figure 5.9 shows, the optimal values (for this scenario)

for the thresholds are 0.05 for the LOWERCONFIDENCETHRESHOLD and 0.3 for the UPPER-

CONFIDENCETHRESHOLD. This provides the agent with a learning period that is long enough

for the agent to learn all the necessary skills (so that the majority of the actions it performs are

correct) but short enough to allow the agent to perform the maximum amount of actions (which

is 3920 actions according to figure 5.9).

In addition to the LOWERCONFIDENCETHRESHOLD and the UPPERCONFIDENCETHRESH-

OLD, the AMOUNTUNFAMILIARCONDITIONS and the UNFAMILARCONFIDENCEREFERENCE

are also configurable parameters of the proposed approach (see section 4.6). Additional tests on

these configurable parameters show that the AMOUNTUNFAMILIARCONDITIONS must have a

low value (below 10) and the UNFAMILARCONFIDENCEREFERENCE must not be much lower

than the LOWERCONFIDENCETHRESHOLD, usually not more than 0.03 units below.

A low value for the AMOUNTUNFAMILIARCONDITIONS allows the agent to go back learn-

ing after being faced with a small and uninterrupted sequence of unfamiliar conditions. When

the UNFAMILARCONFIDENCEREFERENCE is only a little lower than the lower confidence

threshold, the agent spends less time to regain confidence on its knowledge and to go back
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executing actions. The tests show that, for this scenario, the appropriate value for the AMOUN-

TUNFAMILIARCONDITIONS is three and the appropriate value for the UNFAMILARCONFI-

DENCEREFERENCE is 0.04 (0.01 units bellow the reference LOWERCONFIDENCETHRESH-

OLD).

Additional experiments also revealed that the size of the history record (see section 3.2.2)

and the timeout for the observation period (see section 4.3) have little influence in the agent’s

performance in the tested scenarios. Therefore, all scenarios were experimented with the ref-

erence values for these configurable thresholds: ten snapshots for the size of the history record

and fifty snapshots for the observation period.

In addition to determining the impact of the configurable threshold, the virtual hand sce-

nario was also the background for experimenting the influence of the external feedback (see

section 5.2.4) and the capabilities of the software image meta-ontology when comparing soft-

ware agents (see section 5.2.5).

5.2.4 The Influence of the External Feedback

This section shows how the external feedback provided by a specialized expert influences the

agent’s ability to execute appropriate actions in the fourth setting of the scenario (exp4 in table

5.4). In this new setting, exp5, the expert and the apprentice agent face different conditions, the

hand attribute is not visible and one of the experts is a teacher. The scenario was experimented

in a 4000 step experiment which was repeated 100 times to encompass the time variations.

Table 5.9 shows an overview of the results for this setting.

Time spent Time spent Total actions Amount of
learning (s) execution (s) executed approp. actions

avg 19 22.37 3515.9 81.8%
std 14.7 7.4 200.3 11 p.p.

Step time in Step time in Recall Classification
learning state (ms) execution state (ms) weight weight

avg 14.47 6.35 99% 1%
std 10.9 2.01 4.9 p.p. 4.9 p.p.

Table 5.9: Results of experimenting the fifth setting of the virtual hand scenario

Table 5.9 shows that, when compared with the fourth setting (exp4), the teacher increases

the agent’s performance, in terms of the amount of actions correctly executed (up to 82% of

the executed actions are correct), without affecting the total amount of executed actions. The
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teacher provides the agent’s evaluation with additional feedback on the executed actions, in-

dicating those that were appropriate or inappropriate for the faced conditions. The feedback

influences the agent’s confidence which allows the agent to return to the learning state more

often, and acquire a broader set of experiences from the experts.

Table 5.9 also shows that, as in exp4, the majority of the executed actions is proposed by

the recall method. In the case of exp5 the teacher feedback affects the time the agent spends

learning, which is longer than in exp4. Therefore, the agent acquires more knowledge which

makes it more likely to find a sequence of experiences, in the agent’s memory, whose conditions

are similar to faced the conditions. The high standard deviation values for both the time spent

learning and the simulation step time in the learning state is the result of the randomness of

the observed experts. As in the previous settings, the agent observes different subsets of the

available experts in a different sequence, which changes the knowledge retained by the agent.

Given that the agent acquires more knowledge, the time taken by a simulation step is larger

than in exp4 because the agent handles more data when proposing the actions. Table 5.9 shows

that, in comparison with the other settings (exp1,exp2 and exp3) using a teacher does not in-

crease the simulation step time when the agent is in the execution state. The amount of data

acquired when observing has a much larger influence in the simulation step time in the execution

state, as the results for exp2 in table 5.6 show.
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Figure 5.10: The progress of the agent in exp5 throughout the experiment

A closer look at the results of the experiment for exp5 is presented in figure 5.10, which

shows the progress of the agent, in terms of the number of correct actions it has executed,

throughout the experiment. The figure also shows the progress of the state of the learning

process (see chapter 4) throughout the experiment. To provide a clearer presentation, the results

125



Learning by Observation in Software Agents

are combined in groups of 100 simulation steps.

As figure 5.10 shows, unlike in exp4, the amount of correct actions has the tendency to

grow as the experiment advances. The teacher allowed the agent to return to the learning state

for several times throughout the experiment, which provided the recall method with a greater

amount of sequences of experiences (see section 4.5.1). Even though the agent returned to

the learning state several times throughout the experiment, these subsequent learning periods

represent less than 10% of the simulation steps.

In addition, the teacher also prevented the apprentice from executing incorrect actions that

could lead to situations that would never be observed in the expert and from where the appren-

tice would never know how to get out. For example, a hand with the pinky finger up and all

other fingers down does not represent a number so the expert hand structure would never present

that state. The results from this setting show that using external feedback in the agent’s evalu-

ation increase the agent’s performance in terms of the actions executed correctly with minimal

effects on the total number of actions executed by the agent and on the time spent executing

those actions.

5.2.5 The Impact of the Software Image Meta-ontology

This section shows two experiments with the virtual hand scenario that show the capabilities

of the software image meta-ontology, especially the abilities concerning the comparison of

software images (see section 3.4.3). The first experiment shows the way the agent discovers an

expert whose static image contains the elements that are necessary to accomplish a task. The

second experiment shows the way the agent observes an expert whose hand visible attribute has

a different designation.

In the first experiment, the agent has to discover and observe an expert that only shares part

of the constituents and capabilities of the agent. Figure 5.11 shows a representation of the agent

parts that are shared by both agents and of the ontology that describes the knowledge on the

designations of those parts.

The expert (expert1) has a specialized part which holds the knowledge on the most efficient

way of changing the virtual hand. The part has the same constituents as the agent, that is, a

sensor that perceives numbers from the environment, a hand visible attribute that shows the

current state of the agent’s virtual hand and one actuator with five actions that change the state

of each finger of the virtual hand. Another specialized part holds the knowledge on how to

126



Learning by Observation in Software Agents

interact with a graphical interface, whose constituents are different from those of the agent.

Figure 5.11 shows that the ontology indicates that all the elements that are shared by the

agent and expert1 are necessary to perform the task handleHand. As explained in section 4.3.1,

the agent can observe an expert as long as it has the elements that are necessary for the task

to accomplish. Therefore, it is possible for the agent to observe this expert and learn how to

perform the task of handling the hand.
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Figure 5.11: The parts shared by the agent and expert1

Table 5.10 shows a comparison of learning from expert1 and from an identical expert that

has the same constituents and capabilities (expert2). The experiment for this comparison lasts

200 steps and both the experts and the apprentice agent face the same conditions. The ex-

periments were repeated 100 times to encompass the time variations that might exist in the

experiments. Table 5.10 shows the average values and the standard deviation of the time spent

learning, the total actions executed and the amount of correct actions executed by the agent.

expert1 expert2
Time spent average 2.92 1.98

learning (seconds) stdev 0.55 0.51
Total actions average 104 104

executed stdev 0 0

Table 5.10: Comparison between learning from expert1 and from expert2

The results from table 5.10 show that not only it is possible to learn from an expert with

only one identical part but also there are no significant differences between learning from an

identical expert and from an expert containing the elements that are necessary to perform a task.
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In both cases, the agent was able to perform the same amount of actions and all of the executed

actions were appropriate for the faced conditions.

The only difference between the two cases is in the time spent learning, which is 50% larger

when learning from an expert containing the elements that are necessary for the task to learn.

This was expected because of the extra processing required when comparing and observing

such experts. As explained in section 4.3, when agents observe such kind of experts they have

to initially identify the elements required to perform a task and determine if the expert contains

those elements. When observing, the agent also has to remove all unnecessary conditions.

In addition to experimenting learning from an expert containing the elements necessary

for a task, the virtual hand scenario was also used to experiment ontology translation using

the equivalentTo relationship of the software image meta-ontology (see section 3.3). In this

experiment, the agent has to discover and observe an expert with a different designation and

representation for the hand visible attribute. Figure 5.12 shows the differences between the two

designations for the visible attribute.
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Figure 5.12: Representation of the different designations for the visible attribute

As figure 5.12 shows, the ontology states that the simpleHand visible attribute of the expert

is equivalent to the hand visible attribute of the agent, even though they represent the state of

the virtual hand with different kinds of data. The equivalentTo relationship defines a translation

class, the HandToSimpleHand, which converts the instances of the visible attribute from one

kind to the other. This translation class is essential for the agent to understand the information

provided by the expert’s visible attribute (see section 3.3).

Table 5.11 shows a comparison between the time it takes to discover and observe this expert

and an expert with an identical visible attribute. The comparison was repeated 100 times to
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encompass the time variations. The table shows the average values and the standard deviation

of the time spent discovering the agent and the time spent observing one snapshot on both

experts.

Identical Equivalent
Visible Att. Visible Att.

Time spent average 1.47 1.48
discovering (s) stdev 0.2 0.2

Time spent average 15.54 15.6
observing (ms) stdev 2.3 2.4

Table 5.11: Comparison between learning from a task and from an identical agent

The results in table 5.11 show that there are no differences between discovering and ob-

serving an identical expert and an expert with an equivalent visible attribute that needs to be

translated. Even though discovering and observing an identical expert is, on average, a little

faster, the difference falls in the standard deviation which makes it statistically irrelevant. As

for the ability to learn from the expert with an equivalent visible attribute, the results obtained

from experimenting all the settings with those experts are similar to the results obtained from

experimenting the settings with identical experts.

The following sections compare the proposed approach with other approaches to learning.

5.3 The Calculator Scenario

This section describes the second scenario in which the proposed approach was implemented.

The scenario compares the proposed learning approach with two supervised learning algorithms

(KStar and multi-layer perceptron back-propagation) that are limited to observing the visible

effects of the agent actions on the state of the environment in a situation where only some of

these effects are visible.

In this scenario an agent learns how to calculate mathematical expressions composed of

numbers and operations acquired from the environment. The software environment is com-

posed of generators that provide the numbers (from 0 to 9) and the operations to be performed

(addition, subtraction, multiplication and division). The numbers and the operators are acquired

from the environment, one at a time, and combined to create a mathematical expression that is

calculated by the agents. For example, when an agent acquires the sequence (1,+, 1,=) it has

to calculate the expression 1 + 1 and output its result.
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The experts, provided for this scenario, know the optimal way of acquiring, retaining and

calculating the acquired expressions. The experts acquire the numbers and operations using

specialized sensors. Depending on what is acquired, the experts can store the acquired number,

perform a calculation or output a result. For example, if the expert acquires the number 1 and

then the number 5, it stores 1 in the memory and then joins 5, which results in having 15 in

memory. If the expert perceives 1 followed by the plus sign (addition) followed by 5 it stores

1 in the memory and then adds 5 to the memory, which results in having 6 in memory. When

experts acquire the equals sign they output the number stored in their memories.

The effect of acquiring the numbers and operations is only partially visible in the environ-

ment. The visible part of the effect of these actions is the disappearance of the number or the

operator from the environment, which is the same for all actions. The invisible part of the effect

is the processing in the agent’s memory. The agents perform several calculations when acquir-

ing the numbers and operators and store the results in their memories. The only action whose

effects are completely visible in the environment is the output of the result stored in the agent’s

memory, which only happens when the equals sign is acquired. Therefore, observing only the

visible effects of the actions in the environment makes it harder for agents to learn.

Apprentice agents have to learn how to build and calculate the expressions from the ac-

quired numbers and operators to provide the correct outputs. The scenario includes three kinds

of apprentice agents to compare the proposed approach with two implementations of super-

vised learning algorithms. The first kind of apprentice uses the proposed approach to learning

by observation. The second kind of apprentice uses a KStar supervised learning algorithm

implemented in the WEKA software workbench (Hall et al., 2009). The third kind of appren-

tice uses a multi-layer perceptron back-propagation classifier (MLP) also implemented in the

WEKA software workbench (Hall et al., 2009).

The apprentice agents have the same constituents and capabilities of the experts, a single

part with two sensors and two actuators. One of the sensors perceives the numbers from the

environment and the other perceives the operations. The first actuator provides access to the

agent’s memory and outputs the stored number. The second actuator acquires the numbers and

operators from the environment and performs five operations on numbers, the four arithmetic

operations (addition, subtraction, multiplication and division) and joining two numbers (for

example, the result of joining 1 with 1 is 11). Additional information on the scenario setting is

presented in appendix D.
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The configurable parameters of the learning by observation agent were set with the optimal

values for this experiment: 0.4 for the UPPERCONFIDENCETHRESHOLD, 0.05 for the LOW-

ERCONFIDENCETHRESHOLD, 3 for the AMOUNTUNFAMILIARCONDITIONS and 0.04 for the

UNFAMILARCONFIDENCEREFERENCE. Section 5.2.3 explains the way these optimal values

are obtained.

To reduce the accumulation of the effects of the actions in the environment, the agents were

tested individually with a single expert performing the task. Both the learning by observation

and the supervised learning agents acquire their training data from the same kind of expert

performing the same task. The learning by observation agent learns by observing the actions

executed by the expert while performing that task. The supervised learning agents learn (acquire

their training data) by observing the changes on the state of the environment while the expert

performs the same task.

As with all supervised learning approaches, the two supervised learning agents have an

initial learning period where they acquire all the necessary training data. This initial learning

period lasts the same number of simulation steps as the learning by observation agent takes in

the learning state. This ensures that both the learning by observation and the supervised learning

agents acquire a similar amount of training examples, even though one of them observes the

actions while the others observe their effects.

The scenario was experimented in two different settings. In the first setting both the expert

and the apprentice agent face the same conditions, that is, they acquire the same numbers and

operations in the same sequence throughout the experiment. In the second setting, the expert

and the apprentice agent face different conditions, that is, the apprentice acquires a different se-

quence of numbers and operators throughout the experiment. Both settings last 4000 simulation

steps and were repeated 100 times to encompass the time variations.

The results of the experiments present a comparison of the time the agents spent learning and

executing actions, the amount of expressions they were able to calculate and how many of those

calculations were correct. Table 5.12 presents a summary of these results for the first setting,

that is, when the expert and the apprentice agents face the same conditions. The student’s t-test

was used to ensure the statistical relevance of the comparison.

Table 5.12 shows that, as expected, the expert agent exhibits the best results in all aspects.

The table also shows that the learning by observation agent was the only one who learned how

to perform the task correctly, outperforming the two supervised learning agents (KStar and
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multi-layer perceptron). Even though the KStar algorithm spends less time executing actions,

more than 50% of the task is incorrect. The learning by observation agent spends more time

executing actions than the KStar agent because it uses two methods to propose actions whereas

the KStar algorithm only uses one.

Time spent Expressions % correct
learning (s) executing (s) calculated outputs

Expert - 1.13 2824 100%
Agent (LbO) 8.37 5.07 2794 100%
Agent (KStar) 0.12 3.27 2794 48.97%
T-TEST
(LbO-Kstar) 4× 10−7 2.8× 10−6 0 0

Agent (MLP) 0.14 40745 2794 48.97%
T-TEST
(LbO-MLP) 4× 10−9 1× 10−49 0 0

Table 5.12: Overview of the results of the experiment of the number calculator scenario when
facing the same conditions

The multi-layer perceptron agent takes more time to execute the actions because the knowl-

edge is organized in a way that increases the algorithm’s recovery capacity, which requires a

larger amount of processing when executing actions (Hall et al., 2009). Even with an increased

recovery capacity, more than 50% of the task performed by the multi-layer perceptron agent is

incorrect.

Table 5.12 also shows that both the KStar and the multi-layer perceptron agents spend less

time learning than the learning by observation agent even though they acquire the same number

of training examples. The learning by observation agent spends more time learning because it

performs additional tasks such as discovering the experts to observe and evaluating its knowl-

edge. Even though it spends more time, the learning by observation agent is the only one who

can perform all the actions correctly.

Even though the KStar and the multi-layer perceptron agents calculate the same amount of

expressions as the learning by observation agent (2794), more than 50% of their outputs are

incorrect. This proves that even though facing the same conditions as the expert, the tested

supervised learning algorithms cannot provide reliable results.

Figure 5.13 shows the progress of the apprentice agents (learning by observation, KStar and

multi-layer perceptron) throughout the experiment in terms of the amount of correct outputs and

the time spent learning. For a clearer presentation, the results are combined in groups of 100

simulation steps.
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Figure 5.13: Progress of the apprentice agents for the first setting of the calculator scenario

Figure 5.13 shows that the learning by observation agent provides correct outputs throughout

all the experiment whereas only between 49% and 51% of the outputs provided by the KStar and

the multi-layer perceptron agents are correct. The figure also shows that all agents have the same

behaviour regarding learning. The agents require only 33% of the first 100 steps to learn. For

the rest of the experiment the agents apply the knowledge they acquired by executing actions.

The initial steps spent learning also explain the difference between the amount of expressions

calculated by the expert and those calculated by the apprentice agents because while the agents

were learning the expert was already performing calculations.

Time spent Expressions % correct
learning (s) executing (s) calculated outputs

Expert - 1.13 2824 100%
Agent (LbO) 391.9 9.115 2710 98.9%
Agent (KStar) 0.13 3.07 2710 4.07%
T-TEST
(LbO-Kstar) 1× 10−31 3.2× 10−18 0 0

Agent (MLP) 0.12 34091 2710 12.2%
T-TEST
(LbO-MLP) 1.4× 10−31 1.3× 10−56 0 0

Table 5.13: Overview of the results of experimenting the number calculator scenario when
facing different conditions
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Table 5.13 presents a summary of the results for the second setting, where the expert and

the apprentice agents face different conditions. The second setting shows an example where

the tested supervised learning algorithms are commonly used, which is when the agent faces

a problem that is different from the problem presented in the training examples. The table

presents a comparison based on the time the agents spent learning and executing actions, the

amount of expressions they were able to calculate and how many outputs of those calculations

were correct. The data in table 5.13 was obtained from running the scenario 100 times to

encompass time variations. The student’s t-test was used to ensure the statistical relevance of

the comparison.

Table 5.13 shows that the learning by observation agent is, once again, the one who provides

the highest number of correct outputs (about 99% of them are correct). When compared with

facing the same conditions (see table 5.12), the amount of correct outputs of both the KStar

and the multi-layer perceptron agents decreases when the agents face different conditions. The

same does not apply to the learning by observation agent, whose effect on the number of correct

outputs is much smaller (less than 1%). This shows that facing different conditions has a larger

impact on the tested supervised learning algorithms than on the learning by observation agent.

Table 5.13 also shows that the multi-layer perceptron agent has a better recovery capacity

than the KStar agent, even though only 12% of its outputs are correct. Once again, the KStar

algorithm takes less time to execute the actions but only about 4% of its outputs are correct. The

learning by observation agent takes longer than the KStar algorithm to execute but provides a

larger number of correct outputs. The multi-layer perceptron agent takes even longer to execute

the actions because of the way the knowledge is organized (Hall et al., 2009).

For the learning by observation agent, facing different conditions only affects the time spent

learning and the time spent executing actions (see table 5.13) when compared with facing the

same conditions as the expert (see table 5.12). The agent spends more time learning and also

executing actions, even though it calculates fewer expressions than when facing the same condi-

tions (2710 expressions instead of the 2794 expressions, as shown in table 5.12). The increased

amount of training examples is the reason for the increase in the time spent learning and exe-

cuting actions because it requires more processing (see section 4.5).

Figure 5.14 shows the progress of the apprentice agents (learning by observation, KStar and

multi-layer perceptron) throughout the experiment in terms of the number of correct outputs

and the number of simulation steps spent learning. For a clearer presentation, the results are
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combined in groups of 100 simulation steps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0

0.2

0.4

0.6

0.8

1
Correct outputs when facing different conditions Lbo

Simulation steps (x100)

%
 c

o
rr

e
ct

 a
ct

io
n

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0

0.05

0.1

0.15

0.2
Kstar ML Perceptron

Simulation steps (x100)

%
 c

o
rr

e
ct

 a
ct

io
n

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0

0.2

0.4

0.6

0.8

1
Time spent learning when facing different conditions LbO Kstar, MLP

Simulation steps (x100)

%
 ti

m
e

 le
a

rn
in

g

Figure 5.14: Progress of the apprentice agents for the second setting of the calculator scenario

Figure 5.14 shows that, when compared with the first setting, the agents spend more simu-

lation steps learning. Spending more time learning allows the agents to acquire more examples

which increases the diversity of the agent’s knowledge. The effect of spending more time learn-

ing is larger in the learning by observation agent because of the amount of additional processing,

which includes using two methods to propose actions, evaluate the proposed actions and store

the knowledge (see chapter 4), which does not happen for the two supervised learning agents.

Figure 5.14 also shows that all agents spend the same amount of simulation steps when

learning (about 146 steps). The learning by observation agent has an initial learning period

of about 86 steps which is followed by several subsequent short term learning periods. The

incorrect outputs provided by the learning by observation agent come from this initial period,

which explains the decrease of the amount of correct outputs in table 5.13. Nevertheless, after

that initial period the outputs provided by the agent are all correct as what happens when the

apprentice and the expert agent face the same conditions.

An important aspect to take into account when comparing the two settings is the average

time spent in a simulation step. Table 5.14 shows the average times and the standard devi-
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ation for all agents in both settings. The results in table 5.14 were obtained by running the

experiments 100 times to encompass time variations.

Simulation step Facing same conditions Facing different conditions
times (ms) Learning Executing Learning Executing

Expert avg - 0.28 - 0.28
stdev - 0.08 - 0.08

Agent avg 179.7 1.2 233.3 2.31
(LbO) stdev 19.3 0.13 9.7 0.19
Agent avg 1.45 0.83 1.45 0.78

(KStar) stdev 0.41 0.1 0.41 0.23
Agent avg 1.68 10394 1.35 8698
(MLP) stdev 0.6 31.9 0.3 12.9

Table 5.14: The time spent by a simulation step for the calculator scenario

Table 5.14 shows that the KStar agent has the shortest simulation steps. The simulation

steps of the multi-layer perceptron agent are similar to those of the KStar agent when learning,

but when executing, the simulation steps are the longest because of the way the knowledge

is organized. The learning by observation agent has the second longest simulation step when

executing because it uses two methods for proposing actions (see section 4.5) and evaluates the

executed actions (see section 4.6) whereas the KStar agent only uses one method and does not

evaluate the executed actions.

The learning by observation agent also has the longest simulation step when learning be-

cause of the additional processing of the proposed approach. This processing does not exist in

the tested supervised learning agents (KStar and multi-layer perceptron) and part of it, espe-

cially the agent’s evaluation (see section 4.6), is what allows the agent to overcome the others

in terms of the amount of correct outputs (see tables 5.12 and 5.13).

Figure 5.14 shows that when agents face different conditions they spend more simulation

steps learning and therefore can acquire more examples. However, this does not mean that all

agents take benefit of that and are able to acquire a larger diversity of knowledge from those

examples.

Being able to only observe the effects of actions may reduce the variety of the examples

to the point that increasing the amount of examples acquired in learning has no effect on the

amount of knowledge acquired because many examples will be identical to those already ac-

quired. The small difference in the simulation steps when facing the same conditions and when

facing different conditions from the expert is a good indicator that, for both the KStar and the

multi-layer perceptron agents, increasing the amount of examples does not increase the acquired
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knowledge.

In addition to comparing the proposed approach with common supervised learning algo-

rithms, the application scenarios also compare it with other learning techniques such as rein-

forcement learning, as described in the following section.

5.4 The Mountain Car Scenario

This section describes the third scenario in which the proposed approach was tested. The sce-

nario was proposed by Sutton and Barto (Sutton & Barto, 1998) and is a software implemen-

tation of an agent that learns how to climb a mountain simulated by a sinusoidal wave. The

agent must abide by the laws of physics to climb the mountain, and because it has no sufficient

force, it will not be able to climb the mountain by going forward only. It needs to accelerate

backwards and forwards to gain momentum. The goal of this scenario is to reach the top of

the mountain, that is, the peak of the sinusoidal wave, taking the least number of decisions and

travelling the smallest distance (up and down the mountain) as possible.

The experts provided for this scenario know the optimal way (the exact moment and direc-

tion they need to accelerate) to climb the mountain and reach its top. The experts perceive their

current speed and direction and their location in the mountain through their sensors and use this

information to decide the direction with which they should accelerate next. They can choose

between accelerating forward, accelerating backward or not accelerating (which maintains their

current speed).

The apprentice agents have to learn to decide which direction to accelerate according to their

location, speed and direction. The scenario includes two kinds of apprentice agents to compare

two different learning methods. The first kind of apprentice uses a reinforcement learning algo-

rithm (Q-Learning, implemented in the PIQLE tool (Comité, 2005)). The reinforcement learn-

ing agent is able to perform three actions, accelerate forward, accelerate backwards or maintain

speed.

The reinforcement learning agent is configured with a learning rate α = 0.2 and a discount

factor/rate γ = 0.9, which are the settings that present the best results. The learning rate also

decreases with time following a geometrical decay, which allows the agent to eventually stop

learning after a period of time. A simple reward scheme is used for the reinforcement learning

algorithm. The agent is only rewarded when it reaches the goal of this scenario, the top of the
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mountain.

Any other reward schemes would require the development of some kind of supervisor to

determine the ideal situations to apply the reinforcements. This would have changed the com-

parison we intended for this scenario, which is to compare learning by observation with a situ-

ation where there is no effort for developing supervisors or reward schemes. Even though this

specific scenario required the development of expert agents, in a typical application of learning

by observation, the experts already exist. The only situation in reinforcement learning where

there is no effort in developing reward schemes is with this simple reward. The only information

provided is the goal, which is embedded in the agent.

The second kind of apprentice agent uses learning by observation to acquire the knowledge

about climbing the mountain. The agent has the same constituents and capabilities of the experts

it observes: a single part with two sensors and one actuator. The sensors provide the agent

with its location in the mountain and its current speed (which can be positive if the agent is

moving forwards or negative if the agent is moving backwards). The actuator provides the agent

with three actions, accelerate forwards, accelerate backwards and maintain speed. Additional

information on the scenario setting is presented in appendix D.

The configurable parameters of the learning by observation agent were set with the optimal

values for this experiment: 0.45 for the UPPERCONFIDENCETHRESHOLD, 0.1 for the LOW-

ERCONFIDENCETHRESHOLD, 3 for the AMOUNTUNFAMILIARCONDITIONS and 0.08 for the

UNFAMILARCONFIDENCEREFERENCE. Section 5.2.3 explains the way these optimal values

are obtained.

The scenario was experimented in a setting where all the participant agents face the same

conditions. All agents are placed in identical mountains at the same starting point, about 1

meter away from the top of the mountain. At this point, moving forwards only does not provide

enough momentum for the agent to reach the top. The agent has to move backwards first. The

results of the experiment present a comparison of the number of actions, the distance travelled

and the time spent until reaching the top of the mountain (the goal of the experiment). The

results also determine the average time of a simulation step for each agent and how much time

it takes for an agent to learn the task, that is, how much time it takes for an agent to reach the

top of the mountain for the first time.

Since this scenario provides a goal, the time-frame of the experiment is grouped in attempts

of achieving the goal. Each attempt lasts a variable number of simulation steps, with a maximum
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duration of 500 simulation steps. If the agent achieves the goal before the 500 steps the attempt

is completed and is regarded as successful. If after the 500 steps the goal is not achieved, the

attempt is regarded as failed. The experiment lasts 50000 attempts, to provide the reinforcement

learning agents with enough time for testing all the hypotheses and provide their best results.

Table 5.15 presents a summary of the important aspects of the scenario such as the amount

of time, number of attempts, number of actions and distance travelled by each agent to reach

the top for the first time. The table also shows how many times the agent reached the top of

the mountain, the average time of a simulation step and the average number of simulation steps

in an attempt to reach the goal. The data in table 5.15 was obtained from running the scenario

100 times to encompass time variations. The student’s t-test was used to ensure the statistical

relevance of the comparison of the two agents.

Agent Agent T-TEST
Expert (LbO) (RL) (LbO - RL)

Time to reach top
first time (ns) 30 3300 14660 2.2× 10−7

Attempts for reach-
ing top first time 1 1 105 3.4× 10−10

Actions executed to
reach top first time 136 278 52471 3.2× 10−10

Distance travelled to
reach top first time
(meters)

2.73 2.73 610.37 2.5× 10−9

Number of times
reached top 50000 50000 49895 2.9× 10−10

Average simulation
step time (ms) 0.28 4.94 0.31 2.7× 10−39

Average simulation
steps spent in an at-
tempt

136 136.01 229.92 4.9× 10−12

Table 5.15: Overview of the results of experimenting the mountain car scenario

Table 5.15 shows that, as expected, the expert agent exhibits the best results in all aspects.

The table also shows that the learning by observation agent outperforms the reinforcement learn-

ing agent in all aspects with the exception of the time of a simulation step. The learning by ob-

servation agent also gets close to the same results as the expert in all aspects with the exception

of the time it takes to reach the top and of the simulation step time.

When compared with the reinforcement learning agent, the simulation step of a learning by

observation agent lasts longer because of the amount of processing behind that decision. The
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learning by observation agent uses two methods for proposing the actions (the recall and clas-

sification methods as explained in section 4.5) which requires an additional effort of combining

the results and choosing the best action from them. The agent also has to perform a set of other

tasks, like for example the agent’s evaluation (see section 4.6). Nevertheless, the learning by

observation agent learns faster and is able to reach the goal first. It also requires less simulation

steps to reach the goal after learning how to do it.

Although the simulation step of a reinforcement learning agent takes less time, the agent

requires more steps and attempts to reach the top of the mountain for the first time. It also takes

more time to learn how to reach the top of the mountain as the results in table 5.15 show. This

puts the reinforcement learning agent in last place when considering the time it takes to reach

the top for the first time. The results of the t-test in table 5.15 show that the data acquired in the

experiments is statistically relevant.

In addition to the information on achieving the goal for the first time, it is also important to

know how the agents performed throughout the experiment. Figure 5.15 shows the progress of

the expert and the two apprentice agents (learning by observation and reinforcement learning)

throughout the experiment in terms of the number of simulation steps required to reach the top.

For a clearer presentation, the results are combined in groups of 100 attempts to reach the goal.

Each attempt lasts a number of simulation steps that ranges from 136 to 500, depending on the

number of steps that are necessary to reach the top of the mountain (see table 5.15).
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Figure 5.15: Results of experimenting the mountain car scenario - steps to reach the top

Figure 5.15 shows that the learning by observation agent requires less simulation steps (in

comparison with the reinforcement learning apprentice) to go from the starting point to the top

of the mountain after learning how to do it. The simulation steps spent in each attempt stabilizes

at 136 (which is the same number steps spent by the expert) right after the agent has learnt the

task of climbing the mountain. The learning by observation agent also requires less attempts to
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learn how to reach the top (1 attempt as shown in table 5.15).

Figure 5.16 shows the progress of the expert and the two apprentice agents (learning by

observation and reinforcement learning) throughout the experiment in terms of the distance

travelled and the number of times reaching the top. Once again, for a clearer presentation, the

results are combined in groups of 100 attempts to reach the goal.
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Figure 5.16: Results of experimenting the mountain car scenario - distance travelled and number
of times reached the top

Figure 5.16 shows that the distance travelled by the learning by observation agent is smaller

than the distance travelled by the reinforcement learning agent. The value of the distance, in

the learning by observation agent, stabilizes at 2.73 meters (the same as the expert as table 5.15

shows) right after the agent learns the task of climbing the mountain, unlike what happens with

the reinforcement learning agent. Even after a long learning period, the reinforcement learning

agent is not able to learn the most efficient way to climb the mountain (the one that requires the

least amount of actions and the smallest distance). Even the lowest values of the fluctuations of

the number of actions and the travelled distance are still far away from those obtained by the

learning by observation agent.

In addition, the reinforcement learning agent’s capability of reaching the goal fluctuates

between 90% and 100% of the times, until almost the end of the experiment. This means that

even after learning how to reach the goal, the reinforcement learning agent is not always able to

do it, something that is also reflected in the total number of times the agent reaches the top of
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the mountain in table 5.15. In contrast, the learning by observation agent is always capable of

reaching the top of the mountain after learning how to do it.

5.5 Validation of the Evaluation Criteria

The evaluation criteria, defined in section 1.3, can be validated from the outcome of the tests on

the application scenarios. The first criterion indicates that agents must be capable of discovering

experts from which they can potentially learn. The outcome of the tests confirms that the agents

are capable of discovering and observing experts from which they learn how to perform a task.

The tests on the software image (see section 5.1) also provide important information on the

agent discovery and comparison processes.

The second criterion indicates that agents must be capable of solving a problem after observ-

ing an expert solving that same problem. The criterion is validated by testing the application

scenarios in a setting where both the expert and the apprentice agents face the same conditions.

The outcome of testing the application scenarios in this setting confirms that agents are capable

of solving the same problems as the experts they observe.

The third criterion indicates that agents must be capable of solving a problem after observing

an expert solving the same problem in different circumstances. The criterion is validated by

testing the first and second application scenarios in a setting where the expert and the apprentice

agents face different conditions. The outcome of testing the application scenarios in this setting

confirms that agents are capable of solving a similar problem when facing different conditions.

The fourth criterion indicates that, after learning, the agent’s performance, in terms of the

number of actions correctly executed, must be similar to the performance of the observed ex-

perts. When both the expert and the apprentice agent face the same conditions, the apprentice

is capable of executing the task with a performance that is identical to the performance of the

experts it has observed. When facing different conditions, the agent is also capable of executing

the task with a performance that is similar to the performance of the experts it has observed.

The fifth criterion indicates that agents must improve their ability to master a task after

returning from an additional learning period. The outcome of the tests proves that when the

apprentice goes through additional learning periods it increases its ability to perform a task

because it performs less incorrect actions. This is more noticeable when the expert and the

apprentice agent face different conditions.
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The sixth criterion indicates that the learning by observation agent must obtain better results,

in terms of the ability to master a task and the time it takes to learn that task, than other learning

mechanisms under similar circumstances. The criterion is validated by the outcome of the tests

on the second and third scenarios. The outcome of testing the second scenario shows that the

learning by observation agent is the only one who performs the task correctly. Even though

one of the agents executes the actions faster (the KStar agent), more than 50% of the task is

incorrect (see section 5.3). The outcome of testing the third scenario shows that the learning by

observation agent learns faster and performs the task more efficiently in terms of the distance

travelled (see section 5.4).
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Chapter 6

Conclusions and Future Work

The adoption of learning by observation solutions is relatively new in computer science and,

as the latest approaches show (Sullivan, 2011; Kulic et al., 2011; Tan, 2012; Fonooni et al.,

2012), it is still under development. With the exception of Machado’s work (Machado, 2006;

Machado & Botelho, 2006), the software approaches for learning by observation are commonly

focused on state change information, completely ignoring the possibility of directly observing

the agent performing the task. Even Machado’s work has limitations since it only addressed the

problem of learning vocabulary and it does not allow generalizations of the acquired knowledge.

This means that, unlike the proposed approach, her apprentice agent is not able to learn control

knowledge neither is it capable of dealing with conditions that are different from those faced by

the observed experts.

Therefore, the proposed approach clearly contributes to advance the state of the art of learn-

ing by observation, providing software agents with a learning solution that is different from all

other methods that are usually applied for software agents. Unlike the robotic approaches for

learning by observation, which usually rely on physical sensors, the proposed software approach

is not limited to software agents. It can also be used by robotic agents with minor adaptations,

since all their physical actions are controlled by or reflected in software events. Even the data

collected by robotic sensors needs a software representation (however complex it can be), since

in its core the robot is effectively running a program and all high level decisions are made by

that program.

Using the proposed approach, robotic agents could learn not only by observing actions in

the tangible world but also by observing the interactions in the software world. For example,

robot agents can learn how to use a remote control by observing software agents interacting

144



Learning by Observation in Software Agents

with the software API of the remote and also by observing someone pressing the buttons on

the remote. A software approach for learning by observation provides a broader solution than

approaches that are limited to the physical properties of robotic environments.

The experimental results in chapter 5 show that the proposed approach can be adapted to

different domains. Learning by observation agents are capable of learning a task by observing

an expert performing that same task and also by observing experts performing a similar task

under different circumstances. The results show that the classification method is essential for

situations in which the expert and the apprentice agent face different conditions and the recall

method is essential for situations in which both the expert and the apprentice agent face the same

conditions. The most usual scenarios for learning by observation, reported in the literature,

address cases in which the apprentice and the expert agents face exactly the same conditions.

However, in these cases the apprentice agent is only capable of learning the task performed by

the expert. The inclusion of the classification method in the proposed approach extends the

ability to learn by observation to other problems and domains.

The results also show that learning by observation agents are capable of determining when

they need to acquire more knowledge and return to the learning state. The agent’s evaluation en-

ables learning by observation agents to enhance their knowledge even after they stop observing

experts and start using the acquired knowledge, since after starting to use their knowledge they

may go back to the learning state. This was one of the major drawbacks of previous learning

approaches. The usual way of handling this is by manually feeding new examples whenever

the agent requires them. In the case of the proposed approach, the agent is able to decide by

itself when it needs to return to a learning state to observe experts. The process does not require

any intervention since the agent can find the experts from which to collect the new training

examples.

The outcome of the tests on the software image (see section 5.1) validates the proposed

software image. The tests determine that the complexity of the agent’s constituents can be

measured by the number of parts, the number of elements in the part and depth of the parts.

This complexity affects the time required to build and to compare the software image. The time

required to observe the expert is not affected by this measure of the agent’s complexity.

The outcome of the tests on the first scenario shows how the configurable parameters can

influence the agent’s performance and the importance of the software image meta-ontology.

The results show that the agent is able to discover and correctly identify expert agents with
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similar constituents and capabilities and also different experts containing the constituents and

capabilities that are necessary for the task to learn. In both cases the agent was able to improve

its knowledge on the task to learn. The outcome of the tests in section 5.2.5 also shows that it

is possible to learn from an agent whose constituents have a different designation.

The outcome of the tests on the second and third scenarios shows that the proposed ap-

proach leads to better results than other learning mechanisms on similar circumstances. The

second scenario shows that when some of the agent actions have no effects on the environment,

observing only the effects of the actions is not enough for learning. Agents that only rely on

observing the visible effects of agent actions were unable to learn how to perform the task cor-

rectly. The learning by observation agent was the only one who learnt how to perform the task

both when facing the same conditions as the expert and when facing different conditions. Re-

lying only on the effects of actions is even worst when the experts and the apprentice agents do

not face the same conditions, which is usually the kind of situation where supervised learning

algorithms are used.

The third scenario shows that the learning by observation agent is able to learn faster than

the reinforcement learning agent in a situation where additional effort in developing expert

knowledge is not necessary. The learning by observation is capable of reaching the goal for

the first time faster than the reinforcement learning agent. It also does it more efficiently when

considering the distance travelled and the number of actions required to reach the goal.

The only setback of the results of the tests on the second and third scenario is the time it

takes for the learning by observation agent to propose and execute the actions. Even though the

learning by observation agent is not the fastest to execute the actions, in the second scenario it

is the only one who can execute the task correctly and in the third scenario it is the first to reach

the goal. In addition, the performance of the learning by observation agent in the third scenario,

in terms of the distance travelled and the number of actions, is approximately the same as the

expert’s performance.

Despite the contributions of the proposed approach, there are still problems left to solve,

which means the approach can still be further improved. One of these problems is the necessity

of an appropriate motivation mechanism that motivates the agent to learn new tasks regardless

of the confidence in their knowledge. Other problems to solve consist of considering situations

in which the observed experts are not executing the task to learn, where the conditions in ob-

servation hold the perspective of the observer and where agents can learn by observation and,
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at the same time, execute actions. Future work may also consider opening the possibility of an

agent learning how to perform a task that is radically different from the tasks performed by the

observed experts.

The proposed software image can also provide important contributions to the software em-

bodiment problem. Although the software image in this thesis is directed to learning by obser-

vation, its main purpose was to provide software agents with means to represent themselves on

what can be called a body. As future work, the software image can continue its development

beyond the purpose of learning by observation. Additional features of the software image can

adapt it for the software embodiment and the grounding problems.

In the proposed approach the agent’s motivation to learn is directly related to the confidence

on its knowledge. The agent loses confidence, and returns to a state where it learns by observa-

tion, whenever it detects that it is executing incorrect actions or when it faces a certain amount

of unfamiliar conditions. This limits the ability to learn new tasks because the agent only learns

new things when it loses confidence on its knowledge.

The problem of the agent’s motivation can be solved with an independent motivation mecha-

nism. The mechanism could provide the agent with control over the decision to execute actions

or learn by observation, establishing new rules for switching between these two states. The

rules can include the confidence on the agent’s knowledge, the tasks to learn, the agent’s ob-

jectives and goals, which tasks are necessary to accomplish a goal and also the kind of experts

available for observation. The motivation mechanism could also help the agent to focus obser-

vation on the experts that provide the knowledge for the task to learn. However, the solution

requires additional processing, which depends on the amount of rules that are necessary to de-

scribe the agent’s motivation. This eventually increases the time spent both when learning and

when executing actions because the agent has to decide if it learns or executes actions in each

iteration.

In the tested scenarios, all experts execute the actions that are necessary for the task to

learn. However, this is not always true in real world situations. Even though the experts hold

the knowledge on how to perform a task, they are not necessarily always executing that task. A

possible solution for this problem consists of improving the communication between the expert

and the apprentice. As future work, the feedback from the teachers could be enhanced and a

communication protocol can be established between the apprentice agents and the teachers. The

protocol allows apprentices to request the teacher to perform a specific task. The protocol can
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also be used by the teachers to provide the corrections for the incorrect actions executed by the

apprentices.

The solution for this problem only works when there are specialized experts that know how

to communicate with the apprentices. This requires an additional effort in developing expert

agents, something that is not required for the approach proposed in this thesis. The proposed

approach does not require additional effort in developing expert knowledge because agents

discover and observe the experts that already exist in the agent society. The functionalities of

the software image gives the experts a passive role. They do not even need to know if they are

being observed.

Another problem to solve is using the perspective of the apprentice agent in the observed

conditions. In the proposed approach, the observed conditions hold the perspective of the expert

agent because of the history record. Without the expert’s perspective it is impossible to deter-

mine the conditions holding when the actions in the history record were executed. However, if

the history record is disregarded, is it possible for an approach to acquire the conditions holding

the apprentice’s perspective and combine them with the actions in the snapshot.

The biggest obstacle of using the conditions holding the apprentice’s perspective is the syn-

chronization between the expert and the apprentice. The apprentice needs to know exactly

when the expert acquires the conditions holding for the observed actions so that it can acquire

the conditions at the same moment. A possible solution for this problem is enhancing the soft-

ware image notifications and time-stamping the conditions in the snapshot. The timestamps

point to the moment at which the expert acquired the conditions.

All agents should also have internal clocks that are synchronized each time the apprentice

registers for notifications on new snapshots. The apprentice only needs to keep a record of

the changes in the environment between the observed snapshots and use the timestamps to

discover the correct conditions from this record. Even though this solution requires a simple

synchronization it increases the amount of processing and storage space in the apprentice, which

eventually increases the time spent learning.

Another innovation for the proposed approach is enabling the agent to learn and execute

actions at the same time. This can be easily achieved by changing the possible activities of the

learning and of the execution state. The agent would be able to discover and observe experts

both in the learning and in the execution state. It would only need to be in the learning state

when it has a low confidence on its knowledge and therefore needs to stop executing actions.
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Although this is a simple improvement it does not guarantee an improvement in the agent’s

performance. It may even increase the time spent executing the actions because the agent has

to share the resources with observation and the proposal and execution of actions.

Finally, future work may also consider the possibility of learning how to perform a task that

is completely different from the tasks performed by the observed experts. With the proposed

approach agents can only perform similar tasks when facing different conditions. To be able to

perform a completely different task using only the information in its memory, the agent has to

be able to rearrange it. The rearrangement can follow a specific logic or, as a simplification, it

can be random. The agent rearranges its memory tree and executes actions according to this new

arrangement. If it is capable of reaching a goal with this new arrangement, the path followed in

the new arrangement is added to the memory.

This solution represents an additional method of learning for the proposed approach. Com-

bining it with the agent’s motivation mechanism may allow the motivation to indicate which

of the two learning methods, learning by observation or learning from the agent’s memory, are

best suited for the current situation. Thereby, the agent’s motivation not only indicates when

the agent needs to learn but also which learning method it should use.
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ARÉVALO, G., DUCASSE, S., GORDILLO, S. & NIERSTRASZ, O. (2010). Generating a
catalog of unanticipated schemas in class hierarchies using formal concept analysis. Inf.
Softw. Technol., 52, 1167–1187. Available from: http://dx.doi.org/10.1016/j.
infsof.2010.05.010, doi:10.1016/j.infsof.2010.05.010.

ARGALL, B.D., CHERNOVA, S., VELOSO, M. & BROWNING, B. (2009). A survey of robot
learning from demonstration. Robot. Auton. Syst., 57, 469–483. Available from: http:
//dx.doi.org/10.1016/j.robot.2008.10.024, doi:10.1016/j.robot.
2008.10.024.

BABES-VROMAN, M., MARIVATE, V.N., SUBRAMANIAN, K. & LITTMAN, M.L. (2011).
Apprenticeship Learning About Multiple Intentions. In L. Getoor & T. Scheffer, eds., ICML,
897–904, Omnipress. Available from: http://dblp.uni-trier.de/db/conf/
icml/icml2011.html#BabesMLS11.

BANDURA, A. (1977). Social Learning Theory. Prentice Hall, New York. Available from:
http://books.google.pt/books?id=ehlxQgAACAAJ.

BEER, R.D. (1995). A dynamical systems perspective on agent-environment interaction. Artif.
Intell., 72, 173–215. Available from: http://portal.acm.org/citation.cfm?
id=201268.

BILLARD, A. (1999). Experiments in learning by imitation - Grounding and Use of Commu-
nication in Robotic Agents. Adaptive Behavior. Available from: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7685.

BILLARD, A. & HAYES, G. (1999). Drama, a connectionist architecture for control and
learning in autonomous robots. Adaptive Behavior, 7, 35—-64. Available from: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8708.

BILLING, E., HELLSTROM, T. & JANLERT, L. (2010). Behavior recognition for learning from
demonstration. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 866–872. doi:10.1109/ROBOT.2010.5509912.

150

http://dx.doi.org/10.1109/TSMCA.2002.804820
http://dx.doi.org/10.1109/TSMCA.2002.804820
http://dx.doi.org/10.1016/j.infsof.2010.05.010
http://dx.doi.org/10.1016/j.infsof.2010.05.010
http://dx.doi.org/10.1016/j.infsof.2010.05.010
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#BabesMLS11
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#BabesMLS11
http://books.google.pt/books?id=ehlxQgAACAAJ
http://portal.acm.org/citation.cfm?id=201268
http://portal.acm.org/citation.cfm?id=201268
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7685
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7685
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8708
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8708
http://dx.doi.org/10.1109/ROBOT.2010.5509912
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Problèmes Décisionnels de Markov et Intelligence Artificielle PDMIA 2005, 100–
107. Available from: http://www.grappa.univ-lille3.fr/˜ppreux/
pdmia2005/pdmia_decomite.pdf.

CONSENS, M., MENDELZON, A. & RYMAN, A. (1992). Visualizing and querying soft-
ware structures. In Proceedings of the 14th International Conference on Software Engineer-
ing, 138–156, ACM. Available from: http://dl.acm.org/citation.cfm?id=
1925807, doi:10.1109/ICSE.1992.753496.
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Appendix A

Embodiment and Embodied Cognition

This section describes what is embodiment and how embodiment evolved throughout history. It

provides an insight on the importance of the role of the body and shows how embodiment can

be useful to solve the grounding problem.

Embodiment consists of giving the notion of body to an entity. It is supported by the phe-

nomenology school, which believes that the role of the body, in the interaction between agent

and environment, should be more significant. Agent involvement in the world cannot be un-

derstood without the existence of a body, thus embodiment is a necessity (Kushmerick, 1997).

Under the phenomenological perspective, instead of characterizing the body, at best, as an in-

sensitive support and input/output system for the generative apparatus of the mind, the entire

human agent is seen as a material system that is born, develops and reasons through material

action and interaction in a material environment (Quick et al., 2000).

A.1 Embodiment Through History

The significance of the role of the body became the ground for strong criticism to classical AI.

Within this criticism a new paradigm, the nouvelle AI, was born. Nouvelle AI holds a phe-

nomenological view of how body and intelligence are related. Classical AI is supported by the

traditional cognitivist school, which believes that cognition is purely a symbolic manipulation

of mental representations. Under the cognitivist view, embodiment and the body are assigned

to peripheral roles (Quick et al., 2000). According to Plato and Decartes, major supporters

of the cognitivist school, the body was getting in the way of intelligence, rather than being

indispensable for it (Descartes, 1960).
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On the other hand, the nouvelle AI view claims that agent involvement in the world cannot

be understood only through mental and symbolical representations. An agent can only make

sense of its surroundings if the world is described as the agent perceives it, from its sensors, and

as the agent interacts with it, through its actions (Brooks, 1990, 1991). For a full understanding

of the agent’s involvement in the world, the agent’s body, that is, its constituents and capabilities,

must also be taken into account (Kushmerick, 1997).

According to Dreyfus (Dreyfus, 1992), phenomenological observations allow shifting the

need of proof to those who give priority to mental representations. Although these observations

are more illustrative than conclusive, they reveal that humans do not need mental states in their

everyday activities. Activities such as opening a door, or simply walking do not need internal

symbolic representations in our minds. We can do them easily without thinking too much on

them.

The need of a more relevant role for the body is also unveiled by Lakoff and Johnson (Lakoff

& Johnson, 1980) on their psycholinguistic analysis of metaphorical projections. Under their

perspective, our ability to understand and reason abstractly derives from our bodily experience

rather than the other way around. This theory is based on their analysis of metaphorical pro-

jections, such as the use of physical properties when one refers to an argument. The argument

’stands’ or ’falls’ according to its foundation, which can have a ’solid support’ or a ’week sup-

port’.

Lakoff and Johnson observed that bodily movement, manipulation of objects and perceptual

interactions involve recurring patterns, which they call the image schemata. The metaphorical

projection is explained as the transformation of the image schemata into new situations. Taking

the previous example, the original image schemata may have come from a regular object that can

fall or stand, depending on the structure of its foundation. By metaphorical projection this image

schemata was transformed from the observable object to the abstract term ’argument’. The

relation between metaphor and embodiment is due to its origin from a bodily experience. This

claim is based on empirical evidence since there are several examples of non-physical structures

being treated as physical structures. The same does not happen in the other direction (Lakoff &

Johnson, 1980).

Besides the support by empirical evidence, the image schemata encodes patterns of activ-

ity in ways that are well suited for the sorts of transformations that metaphorical projection

requires. This means that image schemata are encoded in a way that efficiently renders the
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natural transformations needed for metaphorical projection.

Both phenomenological and psycholinguistic observations defend that even high cognitive

functions such as reasoning and understanding require the notion of body. Even though men-

tal representations are also required by these high cognitive functions, we still need to orient

ourselves in a familiar world in order to act deliberately (Lakoff & Johnson, 1980; Dreyfus,

1992).

A.2 The Grounding Problem

If software agents had a notion of their bodies they would be able to overcome some of the diffi-

culties they face when solving traditional AI problems. Many of those are related to the fact that,

for too long, AI systems have simply manipulated ungrounded meaningless internal symbols.

Standard AI theories of action reduce moving one block on top of another to symbolic structures

such as STACK(BLOCK-A, BLOCK-B). Since these symbols have no first-person meaning for

AI systems, there is no reliable way to create internal mappings between those symbols and the

real world. This observation led Harnad (Harnad, 1990) to be faced with the symbol grounding

problem.

The symbol grounding problem is not limited to symbolic representations and it compre-

hends more than simply symbol grounding. Savage (Savage, 2003) includes to this problem

all the transactions the agent makes with the world. Such transactions need to have an intrin-

sic meaning that cannot result exclusively from assumptions and predispositions made by the

designer.

For nouvelle AI, the development of cognitive and intelligent systems depends on overcom-

ing the grounding problem (Quick et al., 2000; Esteves & Botelho, 2007). To do it, agents need

to be linked to the environment in the same way as organisms are. Only with the embedding

of the agent in the real word can the grounding problem be solved.”Without an ongoing partici-

pation and perception of the world there is no meaning for an agent” (Brooks, 1991). Embodi-

ment emerges from this direct interplay between agent and environment. Through embodiment,

agents can dwell in the world in such a way as to avoid the task of formalizing everything be-

cause the body enables it to bypass this formal analysis (Quick et al., 2000; Dreyfus, 1992;

Brooks, 1990; Esteves & Botelho, 2007).

Several authors managed to create environment embedded robot architectures (behaviour
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based robots) that are able to directly map sensor inputs to actuators (Brooks, 1990; Dautenhahn,

1997; Beer, 1995). Robots built in this way prove that there is no need for symbolic models of

the world, neither any kind of symbolic processing, discarding the need for symbol grounding.

These robot architectures also prove that it is possible to carry out open-ended tasks in un-

constrained environments while at the same time remaining simple. Solving this same problem

through classical AI requires an increase in agent complexity. Classical AI symbol systems tend

to increase their complexity as their beliefs grow. This is a necessity for symbol systems, since

they need objectivity (Dreyfus, 1992; Brooks, 1990; Beer, 1995; Quick et al., 2000; Botelho &

Figueiredo, 2004).

The classical AI solution would also be limited to isolated cognitive skills in restricted task

domains. This makes this solution ever more biologically implausible, proving that the symbol

system used by classical AI is an inadequate path to strong AI (Brooks, 1990; Dreyfus, 1992;

Beer, 1995).

A.3 Computational Approaches for Embodiment

Defining what is embodiment and devising a way to achieve it are some of the questions posed

when embracing a computational approach for embodiment. Despite several proposals on com-

putational embodiment (Quick et al., 2000; Kushmerick, 1997; Beer, 1995; Franklin, 1997;

Brooks, 1990; Etzioni, 1993), there are still no full implementations of embodied agents, espe-

cially on software agents because of the need for a physical body (Ziemke, 2003; Quick et al.,

2000). As Ziemke (Ziemke, 2003) noticed, one of the main reasons for this is the lack of a

common understanding on what exactly is embodiment, what kind of body, if any, is necessary

for embodiment and how it can be implemented.

Computer programs can sometimes be considered the epitome of abstract, detached and

disembodied reasoning. This is one of the reasons why it can be difficult to understand how

to embody something in a software world, given that claims about embodiment revolve around

materiality and the physical world (Quick et al., 2000). Dreyfus (Dreyfus, 1992) suggests that

embodiment needs relatively little emphasis on the actual form of the body, but rather on quali-

tative features such as the capacity to act, ”the ’I can’ ability to respond to situational solicita-

tions” (Dreyfus, 1992).

The possibility of performing actions is not something that is inherited from being material,
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unless the action is happening in the material world. This makes being a material agent not

immediately significant (Quick et al., 2000). Therefore, stripping embodiment from its associ-

ation to physicality makes it possible to find applications of it for software agents. One of these

possible applications is learning by observation, as stated by Botelho and Figueiredo (Botelho

& Figueiredo, 2004) and Mataric (Mataric, 1997).

Etzioni (Etzioni, 1993) was one of the first authors that realized the importance of embod-

iment in software environments. He introduced the softbots paradigm as the application of

Brooks (Brooks, 1990) tangible world robots on software environments such as operating sys-

tems and databases. In his perspective, agents should be able to interact with these environments

using commands and interpreting the responses to those commands.

For Etzioni, using softbots is preferred to using mobile robots, since the first are easier to

build, provide an easier embodiment and their environment is subject to less noise. Etzioni

also highlights the importance of providing software agents with sensing abilities. For him, a

software agent can be situated in the software environment in the same way as a robot is situated

in the physical world, if it is characterized by what it can do (its actions) and also by the kind of

inputs it is able to collect from the software environment (Etzioni, 1993).

Etzioni’s ideas were followed by Kushmerick (Kushmerick, 1997) and Franklin (Franklin,

1997), who also tried import benefits of embodiment to the software agent world by putting

aside the materiality clause of embodiment. Kushmerick’s solution for embodiment consists on

broadcasting environmental information and making agents respond to it in an interrupt-driven

manner because, in the physical world, the environment information is constantly broadcasted

to agents and when the agent sensors receive it they immediately send it to the responsible

higher cognitive mechanisms (Kushmerick, 1997)

This solution has, however, some other problems such as the costs associated with the high-

bandwidth coupling, and the large amounts of information that need to be processed by the

agent. A possible solution for handling this large amount of information is throwing most of

it out. Various high bandwidth sensors that humans and animals have, such as the eyes with

foveation, do this. Eyes have a relatively small area of high-resolution capture, the fovea, sur-

rounded by a much larger area of low-resolution sensors. Another possibility is using attention

mechanisms which may help the agent to focus its sensors on a particular event. When some-

thing relevant is happening, or something suddenly changes its state, the attention is immedi-

ately caught by that event (Kushmerick, 1997).
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Recent approaches for software embodiment are usually associated to the representation of

virtual characters, such as described in (Morel & Ach., 2011). Like the robotic approaches, the

problem of the existence of a body is overcome by replacing it with a virtual representation

of something that exists in the physical world, which in this case is the body of the virtual

character.
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Appendix B

Description of The Software Image

Ontology

This appendix presents the owl specification of the software image meta-ontology and of the

ontologies used in the examples of section 3.3. The software image meta-ontology defines the

basic elements and the possible relationships between those elements for the ontologies used

to represent the agent sensors, visible attributes, actions and tasks. Figure B.1 shows the OWL

representation of the software image meta-ontology presented in figure 3.6.

Any ontology that represents the designations of the tasks and atomic elements of the soft-

ware image must follow the specification described in figure B.1. Figure B.2 shows the OWL

specification of the example provided in section 3.3 (see figure 3.7 and 3.8).

The OWL specification in figure B.2 shows an example of how the equivalentTo relationship

can be used. The relationship allows the dateAsObj sensor to be regarded as corresponding to

the dateAsStr sensor. A conversion class, the DateConverter converts the information provided

by one sensor to the information provided by the other.
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<owl : C l a s s r d f : ID=” Task ”/>
<owl : C l a s s r d f : ID=” Atomic ”/>
<owl : C l a s s r d f : ID=” Ac t io n”>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =”# Atomic ” />
</owl : C las s>
<owl : C l a s s r d f : ID=” Da taSource”>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =”# Atomic ” />
</owl : C las s>
<owl : C l a s s r d f : ID=” Sen so r”>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =”# Da taSource ” />
</owl : C las s>
<owl : C l a s s r d f : ID=” V i s i b l e A t t r i b u t e ”>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =”# Da taSource ” />
</owl : C las s>
<owl : C l a s s r d f : ID=” E q u i v a l e n t T o ”>

< r d f s : subClassOf>
<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e =”# t r a n s l a t i o n ”/>
<owl : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ;

n o n N e g a t i v e I n t e g e r ”>
1

</owl : m a x C a r d i n a l i t y>
</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>
</owl : C las s>
<owl : O b j e c t P r o p e r t y r d f : ID=” p e r f o r m s T a s k”>

< r d f s : domain r d f : r e s o u r c e =”# Atomic ” />
< r d f s : r a n g e r d f : r e s o u r c e =”# Task ” />

</owl : O b j e c t P r o p e r t y>
<owl : O b j e c t P r o p e r t y r d f : ID=” e q u i v a l e n t T o ”>

< r d f s : domain r d f : r e s o u r c e =”# Atomic ” />
< r d f s : r a n g e r d f : r e s o u r c e =”# E q u i v a l e n t T o ” />

</owl : O b j e c t P r o p e r t y>
<owl : D a t a t y p e P r o p e r t y r d f : ID=” t r a n s l a t i o n ”>

< r d f s : domain r d f : r e s o u r c e =”# E q u i v a l e n t T o ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</owl : D a t a t y p e P r o p e r t y>
<owl : D a t a t y p e P r o p e r t y r d f : ID=” d a t a t y p e ”>

< r d f s : domain r d f : r e s o u r c e =”# Da taSource ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</owl : D a t a t y p e P r o p e r t y>

Figure B.1: The OWL specification of the software image meta-ontology
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%Agent A’ s s e n s o r
<Se ns o r r d f : ID=” da teAsObj”>

<d a t a t y p e r d f : d a t a t y p e =”&xsd ; s t r i n g ”>Date </ d a t a t y p e>
<e q u i v a l e n t T o r d f : r e s o u r c e =”# D a t e O b j S t r ”/>

</ Sensor>
%Agent B’ s s e n s o r
<Se ns o r r d f : ID=” d a t e A s S t r ”>

<d a t a t y p e r d f : d a t a t y p e =”&xsd ; s t r i n g ”>S t r i n g </ d a t a t y p e>
<e q u i v a l e n t T o r d f : r e s o u r c e =”# D a t e O b j S t r ”/>

</ Sensor>
%The e q u i v a l e n t T o p r o p e r t y
<E q u i v a l e n t T o r d f : ID=” D a t e O b j S t r ”>

< t r a n s l a t i o n r d f : d a t a t y p e =”&xsd ; s t r i n g ”>
D a t e C o n v e r t e r

</ t r a n s l a t i o n >
</ Equ iv a l en t To>

Figure B.2: An example of an agent ontology in OWL
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Appendix C

Testing Machine Learning Algorithms

This section describes the experiment that tests several machine learning algorithms in learning

by observation environments. The analysis of these algorithms gave rise to the classification

method of learning described in section 4.5.2. The experiment shows what types of algorithms

are best suited for this learning approach and how the different settings affect the algorithm’s

performance.

A test framework was developed to allow the creation of small test scenarios consisting of

one expert that provides examples and one apprentice agent using different learning algorithms.

In this framework, the state of the environment is described by four variables with a limited set

of possible values: two numerical, one string and one enumerate. The expert agent performs

actions when the state of the environment reflects specific combinations of the four environment

variables.

The unit of time in the test scenarios is the simulation step. In each simulation step the

expert acquires the current state of the environment and performs a sequence of actions. The

apprentice agent acquires a training example consisting of the state of the environment before

the expert actions were executed and the actions executed by the expert.

After acquiring the training example, the apprentice faces a sequence of twenty different

states of the environment and uses its learning algorithm to propose actions for each state in

the sequence. An external evaluator observes the actions proposed by the apprentice for those

twenty different states and determines how many actions were appropriate.

Table C.1 presents the settings of four tested scenarios. The settings show how facing the

same problem or a different problem influences the efficiency of the learning algorithm in terms

of the number of correct actions proposed. When the agent faces the same problem as the

169



Learning by Observation in Software Agents

observed expert, the states of the environment in the sequence faced by the apprentice (in each

simulation step) are also faced by the expert. When this happens, after twenty simulation steps

the agent has observed all the possible states.

Table C.1: The settings for the test scenarios.
Setting 1 2 3 4

Is facing the same problem yes no yes no
Can observe the whole environment yes yes no no

On the other hand, when the agent faces a different problem, the states of the environment

in the sequence faced by the apprentice are different from those observed on the expert. In this

case, the agent has to rely on the learning algorithm to choose the examples that most closely

resemble the faced states of the environment.

The settings in table C.1 also show how the algorithm behaves when the agent cannot ac-

quire all the variables that describe the state of the environment. These third and fourth setting

simulate a situation where the effects of some actions are not visible in the state of the envi-

ronment. They show how machine learning algorithms that can only observe the effects of the

actions in the environment behave in these situations.

The experiment tested six different algorithms in the four different settings. The tested al-

gorithms faced exactly the same circumstances. The tested algorithms are implementations of

the conjuntive rule, Multi-Layer Perceptron back-propagation (MLP), KStar, Nearest Neigh-

bour like algorithm using non-nested Generalized Exemplars (NNGE), ID3 and Naive Bayes,

provided by the WEKA (Waikato Environment for Knowledge Analysis) software workbench

(Hall et al., 2009). Each test lasted thirty simulation steps, meaning the apprentice had the

chance to observe the expert thirty times. Figure C.1 shows how the performance of each algo-

rithm, in terms of being able to propose the correct actions, evolved throughout the test for the

first and second settings.

Figure C.1 shows that all algorithms performed better on the first setting. Even though

the MLP proposes all the actions correctly after observing the expert only fourteen times, its

performance is not stable throughout the simulation. From that point forward, the rate of correct

actions changes between being all correct and only 95% correct. On the other hand, all the

actions proposed by the NNGE, the ID3 and the KStar algorithm are correct after observing

the expert twenty times, which means the agent was able to learn the task. However, the KStar

outperforms these three algorithms because it holds the highest rate of correct actions before
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the twenty observations.
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Figure C.1: The results for first and second settings

On the second setting the KStar and the MLP have the best performance, even though they

take more time for all the proposed actions to be correct (about twenty seven simulation steps).

Once again the performance of the MLP does not stabilize after being capable of proposing all

actions correctly, which is not the case for the KStar algorithm. As for the remaining algorithms,

they were not capable of proposing all actions correctly until the end of the simulation.

Further research on this matter revealed that the algorithm’s confidence on the proposed ac-

tions was quite low, meaning the algorithm’s decision is prone to errors. It would be possible for

some of these algorithms (such as the NNGE and the ID3) to achieve this goal if the simulation

lasted longer. However, the data collected from running the experiment in these two settings is

sufficient for determining that the KStar algorithm is a good choice for learning by observation.

Figure C.2 shows the test results for the third and fourth setting.
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Figure C.2: The results for third and fourth settings

Figure C.2 shows that, once again, the algorithms performed better when facing the same

problems as the observed expert (the third setting), even though the results are worse than on

the first two settings. This is a clear indicator that observing only the effects of actions when

some of those actions have no visible effects in the environment hinders learning. With the

exception of the Conjuntive Rule algorithm, all the algorithms have similar performances. The

ML perceptron was the only algorithm capable of proposing all actions correctly in the time the

simulation takes (26 simulation steps). However, the remaining algorithms, with the exception

of the Conjuntive Rule, could easily achieve that goal if the simulation took longer.

The same does not happen in the fourth setting, as figure C.2 shows. Only 40% or less of

the actions proposed by the algorithms are correct when the apprentice and the expert face dif-

ferent problems. The agent has no way of knowing what actions to propose using the observed

examples because it is not possible to see all the effects of the actions. When the expert and the

apprentice do not face the same transition of states, it becomes impossible for the apprentice
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agent to know exactly what actions to execute. Therefore, relying only on the changes in the

environment leads to ineffective learning.

Although only a small set of training examples was used for these experiments, the first two

settings show that the agent is able to learn almost all the expert’s actions in a small amount of

time (see figure C.1). When compared with other learning techniques that need longer train-

ing periods such as reinforcement learning, results show that these learning algorithms allow

software agents to achieve results faster.

The results also show that the KStar and the MLP algorithms are those from which it is

possible to learn from fewer examples. In addition to the ability to learn from few examples,

the algorithms must also be efficient in the time it takes to learn from the examples and propose

actions. Table C.2 shows the average time taken by the tested algorithms to learn from the

examples and propose actions.

Algorithm N. Bayes ID3 NNGE KStar ML Perceptron Conj. Rule
Time (ms) 3.09 1.18 0.94 0.47 118.03 0.58

St. Deviation 1.16 0.48 0.61 0.33 85.43 0.33

Table C.2: The average time taken to learn from the examples and propose actions

Table C.2 shows that the KStar is the fastest algorithm to learn and execute the task and the

MLP is the slowest. Even though the MLP learns faster it takes longer to execute the task. The

combination of the results from figure C.1 and table C.2 reveals that KStar is the most suited

algorithm for the classification method of the proposed approach.
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Appendix D

Scenario Settings

This appendix describes the distribution of the elements that participate in the application sce-

narios. It shows the UML component diagrams of the scenario elements and the class diagrams

of the participant agents. The implementation of the scenarios and their source code is accessi-

ble from a a software versioning and revision control repository 1.

NumberSource
NumberSource

NumberSource
<<Agent>>

VHandExpert

<<Agent>>

DiffVHandExpert

<<Agent>>

VHandApprentice

NumSensor

NumSrcActivity

Figure D.1: The component diagram of the elements of the virtual hand scenario

1https://github.com/coostax/lckosa-phd.git
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<<@VisibleAgent>>

VHandExpert

<<@VisibleAgentPart>>

VHandHandler

 @VisibleAttribute(designation=hand)

-expertHand: Hand

 @VisibleSensor(designation=numSensor)

+receiveNumber()

 @VisibleAction(designation=changeIndicator)

+changeInd()

 @VisibleAction(designation=changeRing)

+changeRing()

 @VisibleAction(designation=changeMiddle)

+changeMiddle()

 @VisibleAction(designation=changePinky)

+changePinky()

 @VisibleAction(designation=changeThumb)

+changeThumb()

1

1

<<@VisibleAgentPart>>

NumberSrcManager

 @VisibleSensor(designation=numSrcActivity)

+infoOnSource()

 @VisibleAction(designation=resetSource)

+resetSrc()

<<@VisibleAgentPart>>

SimpleVHandHandler

 @VisibleAttribute(designation=simplehand)

-expertHand: SimpleHand

 @VisibleSensor(designation=numSensor)

+receiveNumber()

 @VisibleAction(designation=changeIndicator)

+changeInd()

 @VisibleAction(designation=changeRing)

+changeRing()

 @VisibleAction(designation=changeMiddle)

+changeMiddle()

 @VisibleAction(designation=changePinky)

+changePinky()

 @VisibleAction(designation=changeThumb)

+changeThumb()

<<@VisibleAgent>>

DiffVHandExpert

1

1

1

1

1

1

Figure D.2: The class diagram of the two kinds of expert agents in the virtual hand scenario

<<@VisibleAgent>>

VHandApprentice

<<@VisibleAgentPart>>

VHandControl

 @VisibleAttribute(designation=hand)

-hand: Hand

 @VisibleSensor(designation=numSensor)

+receiveNumber()

 @VisibleAction(designation=changeIndicator)

+moveInd()

 @VisibleAction(designation=changeRing)

+moveRing()

 @VisibleAction(designation=changeMiddle)

+moveMiddle()

 @VisibleAction(designation=changePinky)

+movePinky()

 @VisibleAction(designation=changeThumb)

+moveThumb()

1

1

<<@VisibleAgentPart>>

SourceInfo

 @VisibleSensor(designation=numSrcActivity)

+updateInfoOnSource()

 @VisibleAction(designation=resetSource)

+reset()

1

1

Figure D.3: The class diagram of the apprentice agent in the virtual hand scenario
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Generators

<<Agent>>

NumberExpert

<<Agent>>

LbOApprentice

<<Agent>>

SLApprentice

<<Agent>>

KstarApprentice

<<Agent>>

MLPApprentice

Generators
Generators

ResultHolder

numReader

operatorReader

output

Figure D.4: The component diagram of the elements of the number calculator scenario
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<<@VisibleActuator>>

InternalMemoryExpertAct

 @VisibleAction(designation=stringToNumber)

+convertToNumber()

 @VisibleAction(designation=updateInternalNumHolder)

+updateNumHolder()

 @VisibleAction(designation=writeToResultHolder)

+writeToHolder()

Expert Agent

Learning by Observation Agent

Supervised Learning Agent

SLNumberApprentice

+acquireNumber()

+acquireOperator()

+outputResult()

SLAlgorithm

KstarAlgorithm MLPAlgorithm

<<@VisibleAgent @VisibleAgentPart>>

NumberExpert

 @VisibleSensor(designation=numberReader)

+updateNumber()

 @VisibleSensor(designation=operatorReader)

+updateOperator()

<<@VisibleActuator>>

NumberOpsExpertAct

 @VisibleAction(designation=join,argTypes=[numberReader])

+join(number)

 @VisibleAction(designation=add,argTypes=[numberReader])

+add(number)

 @VisibleAction(designation=subtract,argTypes=[numberReader])

+subtract(number)

 @VisibleAction(designation=multiply,argTypes=[numberReader])

+multiply(number)

 @VisibleAction(designation=divide,argTypes=[numberReader])

+divide(number)

1

1

1

1

<<@VisibleActuator>>

LbOApprenticeActMem

 @VisibleAction(designation=stringToNumber)

+convert()

 @VisibleAction(designation=updateInternalNumHolder)

+updateHolder()

 @VisibleAction(designation=writeToResultHolder)

+writeToHolder()

<<@VisibleAgent @VisibleAgentPart>>

NumberLbOApprentice

 @VisibleSensor(designation=numberReader)

+perceiveNumber()

 @VisibleSensor(designation=operatorReader)

+perceiveOperator()

<<@VisibleActuator>>

LbOApprenticeActNumOps

 @VisibleAction(designation=join,argTypes=[numberReader])

+join(number)

 @VisibleAction(designation=add,argTypes=[numberReader])

+add(number)

 @VisibleAction(designation=subtract,argTypes=[numberReader])

+subtract(number)

 @VisibleAction(designation=multiply,argTypes=[numberReader])

+multiply(number)

 @VisibleAction(designation=divide,argTypes=[numberReader])

+divide(number)

1

1

1

1

Figure D.5: The class diagram of the expert and the apprentice agent in the number calculator
scenario
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<<Agent>>

MCExpert

<<Agent>>

MCLbOApprentice

<<Agent>>

MCRLApprentice

Mountain
agentLocation

agentSpeed

Figure D.6: The component diagram of the elements of the mountain car scenario

<<@VisibleAgent @VisibleAgentPart>>

MCExpert

 @VisibleSensor(designation=agentSpeed)

+updateSpeed()

 @VisibleSensor(designation=agentLocation)

+updateLocation()

 @VisibleAction(designation=agentForward)

+goForward()

 @VisibleAction(designation=agentBackward)

+goBackward()

 @VisibleAction(designation=agentStill)

+stayStill()

<<@VisibleAgent @VisibleAgentPart>>

MCLbOApprentice

 @VisibleSensor(designation=agentSpeed)

+updateSpeed()

 @VisibleSensor(designation=agentLocation)

+updateLocation()

 @VisibleAction(designation=agentForward)

+forwards()

 @VisibleAction(designation=agentBackward)

+backwards()

 @VisibleAction(designation=agentStill)

+still()

MCRLApprentice

+updateInfoOnEnvironment()

+forward()

+backward()

+still()

Figure D.7: The class diagram of the expert and the apprentice agents in the mountain car
scenario
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