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Abstract

This dissertation focuses on the identification of disfluent sequences and their distinct structural

regions. Reported experiments are based on audio segmentation and prosodic features, calculated

from a corpus of university lectures in European Portuguese, containing about 32 hours of speech and

about 7.7% of disfluencies.

The set of features automatically extracted from the forced alignment corpus proved to be discrimi-

nant of the regions contained in the production of a disfluency. The best results concern the detection of

the interregnum, followed by the detection of the interruption point. Several machine learning methods

have been applied, but experiments show that Classification and Regression Trees usually outperform

the other methods.

The set of most informative features for cross-region identification encompasses word duration ra-

tios, word confidence score, silent ratios, and pitch and energy slopes. Features such as the number of

phones and syllables per word proved to be more useful for the identification of the interregnum, whereas

energy slopes were most suited for identifying the interruption point.

We have also conducted initial experiments on automatic detecting filled pauses, the most frequent

disfluency type. For now, only force aligned transcripts were used, since the ASR system is not well

adapted to this domain.

This study is a step towards automatic detection of filled pauses for European Portuguese using

prosodic features. Future work will extend this study for fully automatic transcripts, and will also tackle

other domains, also exploring extended sets of linguistic features.





Resumo

Esta tese aborda a identificação de sequências disfluentes e respetivas regiões estruturais. As

experiências aqui descritas baseiam-se em segmentação e informação relativa a prosódia, calculadas

a partir de um corpus de aulas universitárias em Português Europeu, contendo cerca de 32 horas de

fala e de cerca de 7,7% de disfluências.

O conjunto de características utilizadas provou ser discriminatório na identificação das regiões con-

tidas na produção de disfluências. Os melhores resultados dizem respeito à deteção do interregnum,

seguida da deteção do ponto de interrupção. Foram testados vários métodos de aprendizagem au-

tomática, sendo as Árvores de Decisão e Regressão as que geralmente obtiveram os melhores resul-

tados.

O conjunto de características mais informativas para a identificação e distinção de regiões disflu-

entes abrange rácios de duração de palavras, nível de confiança da palavra atual, rácios envolvendo

silêncios e declives de pitch e de energia. Características tais como o número de fones e sílabas por

palavra provaram ser mais úteis para a identificação do interregnum, enquanto pitch e energia foram os

mais adequados para identificar o ponto de interrupção.

Foram também realizadas experiências focando a deteção de pausas preenchidas. Por enquanto,

para estas experiências foi utilizado apenas material proveniente de alinhamento forçado, já que o sis-

tema de reconhecimento automático não está bem adaptado a este domínio.

Este estudo representa um novo passo no sentido da deteção automática de pausas preenchidas

para Português Europeu, utilizando recursos prosódicos. Em trabalho futuro pretende-se estender esse

estudo para transcrições automáticas e também abordar outros domínios, explorando conjuntos mais

extensos de características linguísticas.
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“I don’t think... then you shouldn’t talk, said the Hatter.”

(Lewis Carroll, Alice in Wonderland)
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1Introduction

This dissertation focuses transversely on the automatic detection of disfluencies, a natural occurring

speech phenomena that is used for the online editing of information. These structures represent a chal-

lenge in developing speech processing systems (ASR), mostly because they interact with the detection

of surrounding words and sentence boundaries, interfering with overall error rates.

In this dissertation research aims at assessing the best suited cues and methods for automatically

discriminating such structures, the distinct regions of disfluency, and filled pauses (FPs) in particular for

European Portuguese. Additionally, the best results achieved in the FP classification experiments are

compared to the in-house ASR solution, implemented by adding possible phonetic disfluent sequences

to the lexicon of the recognizer. The corpus used is representative of the university lecture domain, being

mostly composed of spontaneous speech. This specific domain has received increased attention lately,

due to the potential for applications such as automatic multimedia content generation. Such application

could support hearing-impaired students, and also improve the students learning experience, by provid-

ing automatically transcribed material of the course, potentially aiding both in present or distant learning.

Additionally, this domain is similar to the one present on talks or public speeches, containing potential

for the production of applications also in these areas.

The feature set used in the classification experiments is based on prosodic and lexical character-

istics, but the overwhelming majority relies on prosody. Prosody can make ASR systems more robust

when lexical information is not reliable, and also in the opposite case, since it provides valuable infor-

mation for distinguishing disfluency types and inner-regions. The methodological approach is based on

state of the art supervised machine learning algorithms, comprising generative and discriminative clas-

sifiers: Classification Trees (CART, J48), an Artificial Neural Network (Multilayer Perceptron), Logistic

Regression, and a Naïve Bayes.

Research described here aims at answering the following questions: what features contain the most

relevant information for detecting disfluent structures in general? what are the most relevant features

for the detection of each disfluent zone, and what is the degree of difficulty associated to each of them?

what are the most relevant features for detecting FPs? and, how good is the achieved performance

in comparison to the achieved in-house solution baseline. Additionally, we also wanted to observe the



impact of including filled pauses and fragments as features (the most common disfluency genres) on the

classification experiments here performed. Doing so allows both to explore the impact of such information

on the classification of disfluencies, and also to determine the impact of the proposed set of acoustic

features on the performed classification tasks. Additionally, most results in an initial phase are exposed

both for automatic ASR transcriptions, and also for corresponding orthographically corrected versions

of the material, allowing to verify the impact of using ASR transcriptions on the suggested classification

experiments. The impact of filled pauses and fragments is verified on both setup cases. The results

achieved represent a step forward in the understanding and automatic detection of disfluent phenomena

for European Portuguese. Although reckoning the importance of understanding both how FPs and FRGs

behave, as well as that of the remaining disfluent genres is important, in this dissertation only the FP

genre is targeted in particular.

1.1 Disfluencies

(reparandum) * < interregnum > repair

disfluency fluentIP

Figure 1.1: Disfluency regions.

Disfluencies are a natural linguistic phenomena that interrupts the normal flow of the oration, being

used in one way or another by almost every speaker. These structures originate from several competing

cognitive processes: thinking what to say; how to say it, and; coordinate actions with others, frequently

resulting in non-linearity in speech (Swerts et al., 1996; Clark and Tree, 2002; Levelt, 1989). The effects

manifest through breaks, irregularities, or non-lexical vocables that arise from fluent speech, which can

either pass without notice or hamper message understanding, depending on the intensity at which they

are uttered. There are several degrees of disfluency, ranging from not noticeable, to making the speaker

hard to comprehend.

Disfluencies have a structure composed of several possible regions, vide Figure 1.1. The first region

represents the zone to be auto-corrected, the reparandum. At some point the speaker detects a problem,

and according to a “Main Interruption Rule” halts the production process, resulting in an interruption point

(IP) (Levelt, 1983). Follows an optional editing phase or interregnum, filled with expressions such as “uh”

or “you know”, silent pauses are also frequent (Levelt, 1983; Nakatani and Hirschberg, 1994; Shriberg,

1994; Levelt, 1989). Finally a repair region, where speech fluency is recovered. All these regions are

sequential in nature, and the true disfluent material relies solely on the reparandum and editing phase,

although some cues to disfluency may also be tracked in the repair region. Regarding the typology of

such events, according to Shriberg (1994) these can be: filled pauses (FPs), prolongations, repetitions,
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deletions, substitutions, fragments (FRGs), editing expressions, insertions or complex sequences (more

than one category uttered).

Disfluencies are studied from various angles (Psycholinguistics, Linguistics, Text-to-speech, Auto-

matic Speech Recognition), languages and settings (human-human and human-computer), depending

on the level of planning (spontaneous vs. prepared) and perspective (theoretical or applied) (Shriberg,

1994; Rodriguez and Torres, 2006; Dufour et al., 2009; Moniz et al., 2009). The studies comprised in

Fromkin (1971); Heike (1981); Levelt (1989); Allwood et al. (1990) argue that disfluencies are not simply

erratic waste left to chance when the speaker interrupts the structuring of his message, pointing the exis-

tence of linguistic patterns with systematic regularities. Disfluencies may sometimes aid in the process of

conversation, accounting for tasks such as maintaining / obtaining the conversation turn, or introducing

a new topic in conversation (Gravano et al., 2011). The most common disfluency types relate to filled

pauses, which are used as mechanisms to take or hold the floor (Hieke, 1981; O’Connell, 2005). Some

studies support the elimination of disfluencies in order to obtain the desired message by the speaker in

the cleanest possible form (Honal and Schultz, 2005; Liu et al., 2006), while other studies demonstrate

that disfluencies should be transcribed and integrated, so that the message can be the accurate portrayal

of what the speaker has produced, and can therefore illustrate the specificity of the communicative situ-

ation, the strategies of the speakers, the dual role being both a transmitters and receivers of messages,

or even the emotional states of the interlocutors and the dynamics of communicative interactions Benus

et al. (2006); Adell et al. (2008); Parlikar et al. (2010). Although distinct, these perspectives share the

consciousness that disfluencies display regular patterns that respect distributional rules, can adapt to the

adjacent linguistic material at different levels of linguistic analysis, and behave as structuring regulator

mechanisms for online planning.

It is known that the particular types of disfluency are unrelated to the corresponding rates in speech,

or localization in the speech segment, meaning that speakers display individual strategies. It is also

known in the literature that disfluency regions have idiosyncratic acoustic properties, that allow to dis-

tinguish between genres (Hindle, 1983; E. Shriberg, 1999; Shriberg, 2001), and the same applies for

distinguishing disfluent regions. The most relevant properties of disfluencies happen in the reparandum

and editing phases, but some effects can also be found in the repair. This dissertation focusses on

identifying these regions based on their distinct properties, the whole disfluent region, and FPs.

Two general trends seem to exist for disfluency: containing material only in the editing phase, such

as FPs; or on the other hand containing material in the reparandum and repair. Shriberg (2001) presents

evidence suggesting that disfluencies are related to factors associated with the speaking context. The

following section describes how these structures relate to the research objectives.
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1.2 Motivation and Goals

Despite significant recent advances many speech recognition systems still produce an output that

is hard to read and to treat by automated tools for natural language processing. The result generally

resembles a sequence of words where no detection of structural phenomena is considered (Consortium,

2004). Disfluencies in particular mitigate the reading and processing of results, disrupting normal speech

execution, while producing elements that may hamper understanding (Jones et al., 2003; Heeman and

Allen, 1999). Maximizing disfluency detection is vital in the production of robust ASR systems (Stouten

and Martens, 2004; Dannélls, 2007). These structures disrupt the normal course of the sentence and,

when for instance word interruptions are concerned, they also give rise to word-like speech elements

which have no representation in the lexicon of the recognizer. Since disfluencies characterize speech,

although displaying more accented contours in spontaneous speech, considering them becomes essen-

tial in speech recognition systems (Liu et al., 2006).

An automatic speech recognition system (ASR) is often a pipeline with several modules, where

each one feeds the subsequent with more levels of information. Disfluencies are known to have impact

in the ASR modules, since they are frequently miss-recognized and may also lead to the erroneous clas-

sification of adjacent words, increasing the word error rate (WER). Additionally, predicting disfluencies

permits a more clear filtering of the information, providing the base for structural and semantical analysis.

A trustworthy prediction of such events, would allow to disambiguate between sentence-like units, and

also between those units and disfluency boundaries (Liu et al., 2006). Detecting disfluencies, as well as

performing the segmentation and capitalization tasks, are relevant MDA (Metadata Annotation) tasks.

The study described in Kahn et al. (2004) stresses the importance of the detection of disfluencies

and sentence boundaries in the process of automatic segmentation, highlighting the importance of ac-

counting for structural metadata in the subsequent development of these systems. These sequences

have a huge impact on several post-processing tasks: language modeling, since disfluencies may occur

in clause or phrase boundaries; speech characterization, whether it is planned or spontaneous; speaker

characterization; production of multimedia content; speech summarization; automatic captioning; auto-

matic translation; production of multimedia content. Systems that use ASR and text-to-speech (TTS)

also benefit from predicting disfluencies, and also in the case of TTS alone, accounting for more natural

imitations.

Nakatani and Hirschberg (1994) shows that detecting disfluencies is not a trivial task, additionally

other studies found combinations of cues that can be used to identify disfluencies and repairs with rea-

sonable success (Clark, 1996; Hindle, 1983; Goto et al., 1999). It is known that some zones present

better cues for detecting the disfluent region. Clark (1996); Hindle (1983); Levelt (1983) point character-

istics for several disfluent types relating to segment duration, intonation characteristics, word completion,
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voice quality alternations, and pattern coarticulations.

It is known that fragments (FRGs) can be problematic for recognition if not considered and fairly

identified (Yeh and Yen, 2012; Yang Liu, 2003), but they are also referred to as important cues to disflu-

ent regions identifiable throughout prosodic features. Liu (2003) shows that FRGs can present different

significant characteristics across languages. Filled pauses (FPs) are also problematic since they can be

confused and recognized as small functional words, resulting in structures that decrease the ASR per-

formance. It is known that, even though the phenomena varies between languages, there are constant

similarities and pattern trends. Several studies point clues for detecting disfluencies such as: sentence

length, modifications in segment durations, intonation, voice quality, vowel quality and coarticulation

patterns, the presence of other disfluencies in the sentence, combinations of both these features both

across and within speakers, word related features of disfluency, the rate of the cut-off words and the rate

of editing phrases (Shriberg, 1994, 2001).

Studies such asGormana et al. (2000) show that speakers are capable of perceiving disfluency in un-

known languages, and that specific acoustic and temporal cues aid in disfluency perception. The results

presented show that the duration features robustly explain differences in the perception of disfluency,

and that pitch contours are correlated with differences in disfluency perception for different languages.

Lai et al. (2007) describes a cross-linguistic perception experiment in which FPs and partial words are

tested in terms of human perception, between English, German and, Mandarin. The results show that

the subjects can distinguish between fluent and non-fluent events at a level above chance, pointing the

existence of cross-linguistic phonetic cues. Additionally the results show that FPs were easier to identify

than partial words (fragments).

Currently, INESC-ID develops AUDIMUS (Meinedo et al., 2003; Meinedo, 2008), a speech pro-

cessing system that could benefit from an improved disfluency detection approach. Such module would

represent an alternative information treatment, that could improve both textual legibility and the automatic

scoring system’s performance (Jones et al., 2003; Kim and Woodland, 2001; Heeman and Allen, 1999).

Although the ASR system has to account for all the disfluent categories: FPs, prolongations, repetitions,

deletions, substitutions, FRGs, editing expressions, insertions, and complex sequences, in this study the

focus relies on the detection of regions related to disfluency, the disfluent structure as a whole, and FPs

in particular.

This dissertation represents a step forward towards the characterization and automatic detection of

disfluencies for European Portuguese. The proposed approach is based on machine learning methods,

which are known to produce robust results, instead of just adding possible disfluent phonetic sequences

to the ASR lexicon. Research aims at investigating the most expressive set of features for each target

class, and testing solutions for pattern recognition. The data set available is a disfluency rich corpus of

college classes, containing approximately 32 hours of speech and 7000 different disfluency occurrences
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(7.6%) (Trancoso et al., 2008). Corresponding automatically and manually annotated data is used as

a information source for both training and evaluation. Since the ASR system is not well adapted to the

specific domain, which is rich in spontaneous speech, both force aligned and raw transcripts are used.

The research questions are the following: how does an acoustically based approach and machine

learning techniques perform in comparison to the in-house implemented solution, that is based on the

introduction of disfluent elements in the ASR lexicon? what features contain themost relevant information

for detecting disfluent structures in a general way? what are the most relevant features for the detection

of each disfluent zone and what is the degree of difficulty associated to each of them? what are the

most relevant features for detecting FPs and how is the achieved performance in comparison to the

achieved in-house solution baseline? Additionally, initial experiments access the impact of filled pauses

and fragments, which are the most common occurrences, for both data modalities (recognition / forced

alignment).

The ASR AUDIMUS performs automatic identification of FPs with the aim of filtering and including

rich transcripts for broadcast news. The filtering process was achieved by identifying speech regions

with plateau pitch contours and energy values. The inclusion process was exclusively based on the

integration of FPs in the lexicon with alternative pronunciations. Using known phonetic sequences of

disfluencies to discriminate the phenomena makes the system intrinsically less robust to variations, and

also harder to adapt to new speech domains (He and Young, 2004). The experiments reported here are

a step forward in the prediction of FPs by means of encompassing a broader set of acoustic features,

and also by testing distinct classification methods to evaluate the best performance achieved. The best

results are obtained for the detection of FPs while using J48, corresponding to about 60% precision,

and 61% f-measure. The proposed approach is compared with the one currently in use by the in-house

speech recognition system, and promising results are achieved.

The following section describes the methodologies adopted from the literature.

1.3 Methodology

This subsection describes the methodological approaches adopted in this dissertation. The process

of identifying potential features was undertaken based on the study of Portuguese as well as foreign

languages, as there is evidence towards the existence of similar inter-linguistic phenomena related to

disfluencies. It is known in the literature that lexical features have a greater influence on classifications

than the ones that rely on prosody (O’Shaughnessy, 1994; Nakatani and Hirschberg, 1994; Heeman

and et al., 1994; Bear et al., 1992; Shriberg et al., 1997). These studies present reduced robustness

in cases where lexical information is not trustworthy, however, these also demonstrate that prosody is
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helpful if constrained by the lexical information. Liu et al. (2006) shows that the combination of acoustical

and prosodic information leads to improved results, while performing experiments on telephone speech,

and testing 3 machine learning approaches: Maximum Entropy Models, Conditional Random Field, and

Hidden Markov Model. This study reports a general superiority of discriminative over generative models.

It is also known in the literature that removing disfluencies from the n-gram context contributes to reduce

language model perplexity (Stolcke and Shriberg, 1996). Studies such as Moniz et al. (2012b) analyzed

acoustic elements such as pitch, duration and, energy, to identify and distinguish between the various

types of disfluent moments. Prosody can be tracked in the speech signal using phrasing units, words, syl-

lables and phones. As mentioned in Moniz et al. (2012a) there are two main strategies widely used in the

literature for detecting the distinct possible regions inherent to disfluent structures, while using prosodic

features: (i) a contrastive strategy between the reparandum and the repair of fluency, manifested by pitch

and energy increases at the onset of the repair; and (ii) a parallel prosodic strategy between this same

areas, meaning, the repair mimics the tonal patterns of the reparandum (Levelt, 1983). Hindle (1983)

suggests the existence of an edit signal capable of denouncing an upcoming repair. Manifestations of

this signal can be tracked based on fragments (FRGs), repetition patterns, glottalizations, co-articulatory

gestures and, voice quality attributes, such as jitter (perturbations in the pitch period) in the reparandum.

Additionally it is also edited by means of significantly different pause durations from fluent boundaries,

by specific lexical items in the interregnum, and via pitch and energy increases in the repair. For the

task of detecting disfluencies the main focus thus becomes to detect the interruption point, or the frontier

between fluent and disfluent speech, due to the inherent potential for discriminating the phenomena.

However, in the excerpt used in this dissertation, the percentage of disfluencies that contain and inter-

ruption point is of 34.9% in the training set, and 35.2% in the test set, showing that these represent less

that half the totality of disfluencies.

Since statistically based techniques are known to be more robust for modeling variations of the phe-

nomena than a rule-based approach, this study tests such implementation. Experiments were conducted

using the data-mining and machine learning software, Weka 1. In the present work, the classification

tasks are performed by means of supervised machine learning approaches, comprising generative and

discriminative classifiers. Supervised methods use one or more inputs (x) and desired outputs (y), to

learn a general rule for mapping from x to y. Generative models learn the joint probability distribution

p(x, y), while discriminative models learn the conditional probability distribution p(y|x). Three discrim-

inative models are tested: Logistic regression (LR), Classification and Regression Tree (CART), J48

and, Multilayer Perceptron (MP). As for generative models only Naïve Bayes (NB) was tested. All these

methods are widely used in the literature, representing state of the art approaches. There are several

machine learning approaches that have performed well on previous work, such as Conditional Random

Field (CRF), which where not tested in the experiments described in this dissertation. Although not

1Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka
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experimented in the present work, these constitute potential targets for future experiments.

The ASR AUDIMUS (Meinedo et al., 2003; Meinedo, 2008) was trained for the Broadcast News

domain, for that reason, it presents a word error rate (WER) of about 50% while facing university lecture

recordings. The high WER and the scarcity of text materials in our language to train language models

for the university lectures domain has motivated the decision of using the ASR also in a forced alignment

mode, simulating perfect recognition conditions, in order not to bias the study with the poor results ob-

tained with an out-of-domain recognizer. The set of features proposed is mostly composed of prosody,

which is automatically extracted from the audio signal, and encoded into self contained XML files. Some

of these files are then enriched by human annotators with information such as, sentence boundaries,

disfluencies, disfluent genres, disfluent regions, etc, providing targets that allow to study and use such

information. For sake of comparison, several results in this dissertation will be reported for both force

aligned and automatic transcripts. To analyze feature influence the following processes were used: the

top-most branches of the Decision Trees; Logistic Regression model weights, since these offer insight

on feature influence as further reported in the next section.
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2Related Work

This chapter performs an overview of relevant literature for this work, comprising either European

Portuguese related material, and also foreign languages related studies, given that compelling evidence

exists towards the existence of cross language similarities in disfluencies. Research aims at exploring

well suited methods and features, providing an overview of the state of the art on detecting disfluencies.

Some studies overview other tasks in conjunction with detecting disfluencies, such as automatic seg-

mentation, since the same feature genres are also used to describe such data, although in the present

chapter only the perspective of disfluency is overviewed.

It is shown that the perception on disfluencies has suffered several mutations over time, going from

a notion of mere speech errors to important communication devices, that aid in the conversation process,

being used for several communicative functions. This notion however is still not widely accepted. Addi-

tionally, disfluency is reviewed in therms of the subjective human notion of behaving as fluent speech,

showing these are recurrently considered by humans as fluent communicative devices. Some studies

described focus on linguistic descriptions of the disfluencies, while others focus on the disfluency classi-

fication task, denoting more or less emphasis on the methodic, or feature representation strands of the

classification routine.

The features types suggested for disfluency detection relate to, energy, word confidence, back-

channel information, morphosyntactic information, etc. Several speech genres are included in the de-

scribed studies, however in this chapter the emphasis relies on spontaneous speech and school classes.

Domains such as telephone conversation, or task oriented dialogue are also target of overview, given

that these are rich in disfluencies. Some studies focus the interruption point and interregnum phase,

while other focus more on the repair. There are also studies that explore the relation between the disflu-

ent material and the surrounding fluent content. Additionally some studies comprise results performed

on mixed domain speech data.

The next sections are structured as follows: (i) overviews disfluencies under European Portuguese,

(ii) the focus is on filled pauses (FPs) under European Portuguese, (iii) overviews disfluencies for other

languages, (iv) describes FP detection directives found in other languages, (v) performs a summary of

the literature overview performed in the whole chapter.



2.1 Overview of Disfluencies in European Portuguese

This section describes related work on the topic of disfluency for European Portuguese. The study

byMoniz et al. (2011b) seeks to deepen the analysis of prosodic properties of disfluencies using the same

source used in this dissertation (LECTRA Trancoso et al. (2008)), and a corpus spoken by Adolescents

in School Context (CPE-FACES) Mata (1995). The time samples taken for the performed experiments

correspond to 2 hours for CPE-FACES and 1.5 hours for LECTRA. The sample collected from LECTRA

presents a percentage of disfluency of roughly 7%, in line with the value predicted by Shriberg (2001) of 5

to 10%. Two classification experiments are conducted using CARTs, and additionally an analysis over 10

hours of LECTRA is performed, characterizing disfluency both generally and in terms of distinguishable

traces between disfluent categories. Both classification experiments are based on an identical setup,

and the data is divided into training, validation and testing (60%, 20% and 20%, respectively). The

classification experiments target the characterization of disfluencies in general, and also the vicinity of

disfluency, in an attempt to capture disfluency related traces. For discriminating in a binary fashion fluent

from disfluent, all levels of annotation are taken into account: the judgments of fluency / disfluency

(as the main question), the prosodic information, morphosyntactic information, the speakers and the

communicative situation (prepared speech and spontaneous).

In order to analyze the disfluent properties, the authors resort to the ToBI system1, in order to asses

the degrees of cohesion between words. In this system the breaks are annotated in accordance to a

scale varying between 0 (maximum degree of cohesion) and 4. The authors report that the relevant

occurrences range from 2 to 4. The 2p index is used for temporal rupture occurrences (full or virtual

breaks associated with an intermediate prosodic constituent boundary), but the absence of tonal break.

In turn, the rupture index 4 matches intonational boundaries of major constituents, characterized by

strong temporal and melodic breaks, being associated with endings (full-stops, commas, question marks,

exclamation marks).

In a fist binary classification experiment, the respective results of the judgments of fluency vs. disflu-

ency indicated that prosodic cues are the most salient information, even more than the morphosyntactic

information, enabling the differentiation of events based on two essential partitions in the CART: the

phrasing and the prosodic contours. The boundaries of disfluency vs. fluency in the speech array prove

to be important locations to look for traces. As for the CART partition relative to phrasing, the authors

report that disfluencies produced after a prosodic constituent of 3 or 4 are majorly classified as fluent,

while the ones that are produced inside a constituent with break indices of 2p are majorly classified as

disfluent (78.3%). It is argued that the percentage of disfluencies occurring inside a constituent and still

classified as fluent (21.7%) can be explained by two distinct behaviors: they are events produced in

1The ToBI system is a set of conventions for the task of transcribing and annotating speech prosody. The resulting transcription
minimally indicates the intended prosodic grouping of an utterance and the corresponding tonal events.
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the initial position of a constituent, with pitch reinicialization (10.4%); they are events produced in the

final of a constituent with frontier tones that express discursive continuation, or even in the end of a

constituent with termination contours. The authors argue that this behavior is expectable in the euro-

pean portuguese neutral declarative phrases. The second most important CART partition (intonational

contours) evidences that the events are produced in either 3º or 4º constituent frontiers, with ascending

plateau intonational contours, are considered fluent (90%), while the events produced in the same loca-

tions but displaying descending contours, or with globalization effects are considered disfluent (72%).

In a second experiment the setup is only changed by the removal of the most important feature,

phrasing, which is motivated by the goal of studying features that are more easily detectable in an auto-

matic fashion. The results of this second experiment show that, if the events are produced with plateau

contours, or of rising intonation, and the morphosyntactic information indicates that the constituent cor-

responds to a phrase or sentence, they are significantly considered fluent (88.7 %). Also, if the events

are produced with pitch reset, then they are considered fluent in 70.7% of cases, were-as if there is a

reboot of pitch and pitch contours are descendant, or glottalization effects occur, events are significantly

classified as disfluent (95.3% and 80%, respectively).

In both experiments the performance for detecting disfluencies was above the baseline (better than

random guess), in the first experiment the error is of 29.05%, while in the second experiment 32.9% is

obtained respectively (when considering the 6 most important leaves of the CART tree). Surprisingly,

event duration was not an expressive feature, as predicted by Shriberg et al. (1997), this feature seemed

to have impact only when considering the first 12 leaves, but still the values remain bellow 50%.

Finally, an analysis is performed over the 10 hours recovered from LECTRA, showing the impor-

tance of prosodic patterns for detecting disfluencies, and verifying that the prosodic properties allow the

distinction between prosodic categories. As expected, the authors describe regularities on the prosodic

properties of disfluencies (energy, duration and, pitch) for the different categories. Filled pauses (FP) de-

note the lowest medium pitch, minimum maximum pitch, minimum minimum pitch, maximum maximum

energy and, maximum minimum energy, being among the most distinguishable categories. The contrast

of all categories clearly discriminates two patterns: i) FPs, complex sequences and prolongations are

the categories that most significantly differ in all parameters; ii) only the repetitions and substitutions are

indistinguishable.

Different conclusions are drawn from the obtained results: i) both the FPs and elongations are sus-

tained vocalizations, which may explain the distinctive characteristics that these present on all other

events; ii) the complex sequences may resemble (at least in the onset) to other prosodic constituents,

showing the highest levels of pitch); iii) repetitions and replacements can not be significantly distin-

guished, since both may be associated with emphasis and informational reinforcement. Another point

that this work stresses, is that disfluencies are under the control of the speaker, and that these require
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mastery to be effectively used, which reflects on the degree of using disfluencies in the speech.

Moniz et al. (2012a) studies the importance of various factors in characterizing prosodic disfluen-

cies, particularly in the repair moment (immediately after a disfluent structure), based on an analysis

performed over a subset of the LECTRA, comprising a total of 16 hours, 7 speakers, 110427 words,

from which 3.46% of words are disfluencies. The authors attend to answer several questions related

to the contrast between the disfluent region and the oncoming repair, namely: if the speakers exhibit

contrast / parallelism strategies; which prosodic parameters characterize these strategies, and; if distinct

degrees of speaking proficiency in the university lectures domain are related to the use of combined

prosodic strategies. As in this dissertation, several features are calculated for disfluent words, and the

2 adjacent words: pitch; raw energy; normalized mean; median, maxima, minima, and standard devi-

ation; as well as part-of-speech tags; number of phones; durations of phones; words, and; inter-word

pauses. It is reported a general tendency to repair fluency using prosodic contrast making strategies,

regardless of the disfluency genre, which is in discordance with the vision described in Levelt (1983),

that reports exclusivity for the corrections disfluent genre. In this view it is reported that upon the re-

turn to fluency, increases of both energy and pitch are produced. The authors find different contrastive

prosodic degrees in the different disfluent genres, denoting FPs as the most distinct genre in therms of

pitch increase and durational contours, and repetitions in respect to energy rising patterns. Substitutions

show similar significant pitch / energy increase differences on the onset of the repair, or even on the

slope within the repair. As for tempo patterns, it is reported that the region to repair is longer than the

repair itself, and there is a strong trend manifested in lengthy silences between these regions. However

the speakers monitor this lengthiness effect differently. The results point out to domain specificities, and

the distinct regions inherent to disfluencies are also uttered with distinct prosodic properties. It is also

reported that the selection of the disfluency types and distribution is speaker dependent, and that the

speakers contrast the disfluent regions of disfluency using the minimum context possible.

According to the results reported by Batista et al. (2012), the most representative features for de-

scribing disfluent regions as a whole are: pitch and energy slopes, the differences between the corre-

sponding slopes, and the tempo characteristics of the distinct regions and of the adjacent silent pauses.

Moniz et al. (2012b) addresses latter analysis performed over LECTRA corpus with the purpose of

characterizing disfluencies. The authors report several interesting facts: pitch and energy slopes are

significantly different between the disfluency and the onset of fluency and also for the unit before the

break point, that those features are also relevant to disfluency type differentiation and, they seem to

bee speaker-independent. It is also reported that the best set of linguistic features found for predicting

the onset of fluency are pitch and energy resets as well as the presence of a silent pause immediately

before a repair. The results reinforce a contrast strategy rather than one based on parallelism. For all

disfluencies there are pitch and energy increases in the repair, but for FPs, deletions, and repetitions,
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the degrees of contrast created between this zone and the reparandum are quite distinct.

2.2 Overview of Filled Pauses in European Portuguese

For European Portuguese, studies that rely on the topic of disfluency focus mostly on filled pauses

(FPs). However the nature of these studies relates more to the characterization of the phenomena, than

to the perspective of automatic classification.

Moniz et al. (2007) comprises a study based on a corpus of prepared (non-scripted) and sponta-

neous oral presentations in high school context under European Portuguese. This study provides an

opportunity to contrast disfluent phenomena in spontaneous and prepared speech under European Por-

tuguese. The focus relies on studying the contextual / prosodic distribution and temporal patterns of FPs

and segmental prolongations, as well as on the way those are rated by listeners. The relative rates of

disfluency types is also explored. The Corpus extracted from the CPE-FACES Mata (1995) is composed

of 10 oral presentations Mata (2000), and the used excerpt corresponds to 2 hours, 10 minutes and 3

seconds, translating to 11,851 words, 9,708 and 2,143 for the prepared and spontaneous presentations,

respectively. The speakers are 1 female teacher of Portuguese, representative of first language teach-

ing, and 4 students (2 male and 2 female). Disfluency annotation is marked according to Shriberg (1994),

and additional annotation was added containing information relative to the syntactic and prosodic context

of the disfluencies, as well as those of all the silent pauses in the corpus. A total of 1569 disfluencies

are observed, resulting in a proportion of 13.24% disfluencies, a higher rate than the one predicted by

Trancoso et al. (2008) for Portuguese or Candea (2000) for French. Three distinct forms of FPs were

found in the CPE-FACES corpus: (i) an elongated central vowel only; (ii) a nasal murmur only; and (iii) a

central vowel followed by a nasal murmur. Prolongations present the highest frequency rates, and may

occur as single isolated events far more often than FPs. The results suggest that FPs and segmental

prolongations occur in complementary distribution, being used as a device to both sustain fluency, and

gain time before syntactic complex units. The authors report similarities in terms of behavior and func-

tions between these categories, reporting that these may be considered in complementary distribution,

obeying to general syntactic and prosodic constraints.

As for other languages the results are consistent with task and speaker dependencies in therms of

characteristics and relative use of disfluencies. Filled pauses and prolongations differ from the remaining

disfluency types, as they often occur as single, isolated events, while repetitions, substitutions, trunca-

tions, insertions and editing expressions tend to combine with each other forming complex sequences.

Three facts are pointed out in FPs: (i) ”aam” generally occurs at major intonational phrase boundaries,

(ii) “aa” is the most likely form at minor intonational phrase boundaries, even though it may occur in prac-

tically all contexts, as it is the only form used by two of the speakers; (iii) “mm”, is always cliticized onto
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prior elongated words.

This study concludes that FPs may be viewed as as manifestations of planning effort at different

levels of the prosodic structure, also suggesting that FPs and prolongations occur in complementary

distribution and are used as a device to both sustain fluency and gain time before syntactic complex

units.

Following the previous study, Moniz et al. (2008) aims at extending previous analysis to an enlarged

corpus, in order to verify the consistency of previously assumed facts, namely: the listeners ratings of

several kinds of disfluencies, if segmental prolongations occur more frequently than FP and are better

rated by listeners. The authors report that, contrarily to other languages, FPs and prolongations are

used in European Portuguese to signal upcoming delays, and to gain time before syntactic complex

units, as instances of the same device occurring in complementary distribution. The corpus is the same

as the previously described study, now comprising about 12 hours with annotations for disfluencies,

from which 4 hours are annotated for fluency ratings (2 high school, 2 University), and the sentences are

annotated for ease of expression as felicitous or infelicitous. On a scale from 1 to 5, when only average

answers of 4 or 5 were considered felicitous, 3 different trends of disfluency phenomena emerge, which

are associated with different acceptability rates: (1) FPs and prolongations on top; (2) then substitutions

and deletions; (3) fragments (FRGs), repetitions and complex disfluent sequences are considered less

felicitous. Prolongations and FPs occurring in felicitous moments are regularly scaled relatively to their

adjacent constituents, but this is not the case for repetitions and FPs occurring in infelicitous moments.

In this view, for single FPs and prolongations, the presence of a silent pause preceding the repetition

appears to be crucial, since it’s removal strongly induces negative judgments.

The work described in Moniz et al. (2009) represents further work on exploring the prosodic cues

of disfluencies under European Portuguese. A classification experiment using CART is performed, in

an attempt to discriminate the most salient prosodic features for the task of classifying disfluencies as

either fluent or disfluent, as considered by listeners. The corpus used is a subset of CPE-FACES and

LECTRA, comprising 15h for the former (two teachers and twenty five students), and 10h for the latter

(five teachers) (Trancoso et al., 2008). Manual annotations for disfluencies and disfluency ratings were

added to subsets of these corpora, 2h for the CPE-FACES, and 1.5h for LECTRA. The corresponding

disfluency rate is 13.24% (1569 disfluencies and 11,851 words) in the CPE-FACES sample, and 3.16%

(273 disfluencies and 8636 words) on LECTRA. For the classification experiment the data is divided

into training, validation and test data (60%, 20% and 20%, respectively). The set of features used for

the experiment are: (dis)fluent judgements (as target feature), disfluency type, break indices, pitch (f0)

contour, f0 restart, morphosyntactic information of the adjacent words, morphosyntactic information of

the disfluency, speaker and speech situation (spontaneous and prepared non-scripted speech). The test

misclassification rate was 29.05%, and 56.4% of disfluencies where considered disfluent and 43.6% as
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fluent.

Since the results of the previous experiments where consistent with those of Moniz et al. (2007),

in the sense that pointed out the importance of break indices and phrasing in fluency judgements, an

additional study is performed to evaluate the prosodic constituents of the stimuli. The study focuses

on segmental prolongations, FPs and repetitions, all categories previously associated to planing efforts

(Clark and Tree, 2002; Clark and Wasow, 1998). The results point that the FPs judged fluent are uttered

in a tonal space in-between the prosodic adjacent constituents, have stationary f0 contours, and behave

mostly as parentheticals. When FPs are considered infelicitous, they are produced in a lower register

with descending contours, disrupting tonal scaling. It is reported FPs tend to occur between the previous

brake and the ongoing of the conversation, and are uttered at a tonal space in between adjacent prosodic

constituents.

In sum it has been demonstrated that prosodic phrasing is of crucial importance for the task of clas-

sifying the perception of disfluency, and also that contour shape is also important. The results support

the view that disfluencies may behave and even be rated as fluent devices, and that speakers control dif-

ferent segmental and suprasegmental aspects when producing disfluencies, which in many occurrences

seems to happen in a surgical way, adequately adjusting to the adjacent constituents.

The work described in Veiga et al. (2011) explores the acoustic-phonetic properties of hesitation

phenomena, in order to identify and annotate some of these events in a spontaneous speech corpus

of Portuguese broadcast television news collected by the authors. The authors use a corpus collected

from podcaster television news, comprising around 22 hours of non-annotated speech not representa-

tive of spontaneous speech, and not much populated by hesitations. Filled pauses and Hesitations are

annotated in a semi automatic way using a phone recognizer with several restrictions in therms of phone

sequences and durations, and posterior human revision is performed. The goal is to study the possible

acoustic-phonetic cues to detect FPs and hesitations (the same as prolongations), such as pitch, energy,

spectral and durational characteristics, as well as their relation with phones, in an attempt to contribute

to improve the acoustic modeling for spontaneous speech recognition systems under European Por-

tuguese, and to confirm the constancy of the acoustic parameters in comparison to other languages. For

every event, average values for pitch and energy, as well its deviation are computed, along with equiva-

lent values for spectrum, using 32 frequency bands (on a mel scale), and corresponding deviation from

the average spectrum in the segment. Additionally, the event detector implements a confidence measure

based on the phone durations in each occurrence. Sometimes the difference from FPs or hesitations is

not obvious, and is distinguished only via phonetic context. The authors report that, extensions occur

mainly in prepositions and on the last syllable. It is shown that, most of the times, hesitation segments

present negative gradient values, decaying smoothly during hesitations. The variation produced is very

small, the standard deviation of pitch is on average around 15 Hz and standard deviation of energy is on
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average around 2.7 dB. The parameter based on standard deviation of spectral band energies shows a

similar behavior. Additionally the authors argue that the pointed characteristics do not separate well FPs

and hesitations, supporting the fact that distinguishing between these types is highly ambiguous without

a context.

2.3 Overview of Disfluencies in Other Languages

The work described in Shriberg et al. (1997) aims at assessing the detection results of four disflu-

ent categories: filled pauses (FPs), repetitions, repairs and, false starts, based on an acoustic model.

The corpus used consists of ”mixed sex” telephone conversations, and the training set is composed of

500,000 words, reserving 60,000 for testing (12%). Several classification experiments take place, fea-

turing a database of speech-based automatic and manual transcriptions of disfluent phrase boundaries,

timestamps and raw acoustic measurements. The classification approach is based on CART-like deci-

sion tree classifiers. Results suggest that prosody presents a valuable knowledge source for the task of

automatically detecting disfluencies in spontaneous speech. The classification is based almost exclu-

sively on features extracted before, or at the zone immediately preceding a silence found between the

reparandum and repair. The main features reported are length, the distance from a pause, and pitch

(fundamental frequency). It is reported that, the relative use of these features was generally similar for

the four different disfluency types. Using a prosody-exclusive model, better results than the baseline on

the task of identifying FPs, repetitions, repairs and false starts, are achieved, denoting the superiority

of the prosodic model for the task of detecting false starts given a correct transcription. Finally, results

show that the combination of a prosodic model with a specialized language model overcomes the use of

only one of these models.

The work described in E. Shriberg (1999) aims at understanding phonetic consequences of disflu-

ency on changes in segment duration, intonation, level of spoken word completion, voice quality and,

quality / patterns of vowel coarticulation. The authors highlight markings located on the reparandum and

editing phase, the characteristics pointed for disfluency detection are: changes in the length of segments,

features on intonation, word completion, voice quality, and quality of vowel coarticulation patterns.

Savova and Bachenko (2003) studies 4 disfluency types (repetitions, substitutions, replacements

with repetitions and, repetitions with insertions) from an acoustic perspective, relating exclusively to

intonation and duration. Experiments are conducted based on an English corpus, representative of

semi-spontaneous speech. Results suggest that the detection of different disfluent types is only feasible

thru the combined use of various prosodic characteristics. Research also point that the prosodic features

vary depending on the type of discourse, identifying an interdependence between the characteristics of

early repair (error correction), and the start / end of Reparandum (disfluent moment). Additionally this
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study evidences that their offsets and prosodic features vary depending on the type of discourse.

The work described in Stolcke and Shriberg (1996) verifies the impact of excluding, in turn, FPs,

deletions and, repetitions, prior to creating a language model. The authors build language models based

on the n-gram philosophy, one considering disfluencies, and the others without considering disfluent

information. Disfluencies are modeled in a tri-gram fashion. Based on large portions of the switchboard

corpus, the language models are used to study the before-mentioned disfluent categories. The authors

omit FRGs from the annotations, but argue that successful FRG recognition may serve as extra evidence

for repetitions and deletions, as well as for other disfluent events. The perplexity of the surrounding words

to the disfluency is also studied, in order to assure the model doesn’t penalize these tokens.

Results show that the removal of FPs augments model perplexity, particularly at the following word.

Filled pauses are, on average, the best predictor of the following word, and not the context preceding the

FP. The achieved disfluency model reduces word perplexity on neighboring words, however, the number

of disfluent events in the corpus is very reduced, and the impact is not notorious in the accuracy.

Another experiment takes place based on excerpts of the Switchboard corpus, annotated for

clauses, and deleting only medial FPs. This experiment showed that FPs tend to occur at clause bound-

aries (between clauses), since perplexity on the word following FPs increased greatly. This supports

the view that disfluencies should be considered jointly with the sentence segmentation task. Removing

repetitions and deletions results in slightly lower perplexity than in the FP case, but the error rate suf-

fers no influence. Contrarily to FPs, the complete removal of repetitions yields a positive impact in the

surrounding context perplexity. The authors also test if the words following repetition might be better

predicted by the repetition itself as in the FP case, or by the words themselves. In this case the words

turn out to be better predictors.

The following words to deletions are also tested for predictability based on the disfluent class or

the constituting words, but as for repetitions the words themselves are better predictors. This study

showed the reduced potential of cleaning up disfluencies from the transcription, in therms of language

model perplexity. The authors thus argue that modeling disfluencies solely on the language modeling

probably will not improve theWER significantly, and suggest the use of acoustic and prosodic information

to improve classification performance.

The study comprised in Shriberg and Stolcke (2002) presents a framework for automatically de-

tecting structural phenomena in ASR outputs, combining prosodic and lexical information to perform

several classification or tagging tasks, namely: sentence segmentation, disfluencies (interruption point

detection), topic segmentation, dialog act tagging, overlap modeling, among others. The classification

approach is mainly based on CARTs. Additionally, strategies for combining prosodic and lexical infor-

mation are explored.
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Prosodic feature extraction is done directly and in a fully automatic way, using a forced alignment of

the transcripts to extract features for target classes, providing the model opportunity to choose the level

of granularity of the representation that is best suited for the task.

A set of features based either on raw elements pitch (f0), pauses, segment durations, and en-

ergy), or derived features based on subsequent computations is acquired for the target classes. These

are normalized in various ways, conditioned on certain extraction regions, or conditioned on values of

other features, without the use of intermediate abstract phonological categories such as pitch accent

or boundary tone labels. From the phone level alignments several temporal elements are obtained,

namely: durations of pauses and various measures of lengthening (syllable, rhyme, and vowel dura-

tions) and speaking rate. Post processing allows to obtain the f0 baseline, f0 estimates, computation

of pitch movements and contours over the length of utterances or individual words, or over the length

of windows positioned relative to a location of interest (e.g., around a word boundary), energy-based

features follow the same trend.

Regarding the decision trees, the authors report 2 problems: greediness, and sensitivity in the case

of highly skewed class sizes. The authors deal with these problems in the following manner: (i) to over-

come greediness a feature subset algorithm wraps the standard tree growing algorithm, which performs

the task of eliminating detrimental features from consideration; (ii) To deal with highly skewed class sizes

the authors resample the training data in order to achieve similar class distributions, allowing the sub-

sequent comparison of classification models either quantitatively and qualitatively, and also allowing an

adequate integration of these with the language models.

Among other experiments the authors apply the previously described framework to the detection

of interruption points in an excerpt of the Switchboard corpus representative of spontaneous speech,

targeting several disfluency types, namely: hesitations, repetitions, deletions. This task is performed in

conjunction with the sentence segmentation task. The testing is performed using a the language model.

The goal of the language model it to model the joint probability of classes, word classes, and words

P (W,S), using the training data, using P (S|W ) for testing on the test data.

Using reference material tagged with information such as interruption points and disfluency cate-

gories, the authors use the HMM-based model integration philosophy. In HMM-based integration, the

probability of the features given the class and the word sequence is computed from the prosodic model,

and then used as observation likelihoods in a HMM derived from the language model. The goal of the

HMM is to encode the unobserved classification possibilities in its state space. Finally an association

of these states and the prosodic likelihood allow the computation of a joint model comprising the infor-

mation of word sequence, features and, classes. Then, the HMM can compute the posteriors of the

probability of the class, given the prosodic features, and word sequence. A language model is calcu-

lated standardly from the training text, and is then used as a HMM in which the states correspond to the
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unobserved hidden word-boundary events. The HMM then calculates de joint probability of the prosodic

likelihood scores based on the boundary event, given the features and word sequence, and uses them in

combination with the HMM states, in order to constrain the HMM tagging result on the prosodic features.

Results show that the combination of word and prosodic knowledge offered the best results, and

point pause duration as the strongest feature. Additionally, the classifiers trained on the Switchboard

corpus (spontaneous speech) material relied primarily on phone duration features. The authors also con-

clude that speech recognition accuracy can also benefit from prosody, by constraining word hypotheses

through a combined prosody / language model.

The study described in Jones et al. (2003), is based on the premise that most disfluencies can be

detected using primarily lexical cues, including characteristics that exclusively relate either to the word

itself, or to the corresponding grammatical relation to the rest of the sentence. This study confirms

the feasibility of obtaining disfluency detection results comparable to those of prosody based systems,

using a lexically driven approach, without relying extensively on prosodic features. In order to verify this

comparisons, several experiments are performed using two systems based on prosodic features. The

data available is from phone conversations and television news, representative of both spontaneous and

prepared speech, containing: marks for speaker (detection), sentence boundaries, editing disfluencies ,

fills and, breakpoints (zone between reparandum and repair). The aim is to classify each word as being

a filler, an edition or a fluent element.

The learning strategy is based on ”transformation based learning” (TBL), a technique that relies on

learning a referenced set of rules that transform an initial hypothesis with the purpose of reducing the

corresponding error rate. The set of possible rules is found by expanding the imputed rule templates.

The algorithm greedily selects the rule that reduces the maximum error rate, applies it to the data, and

forwards the research to the next rule, stoping when no more rules can reduce the error rate below a

certain threshold. The system output is an ordered set of rules, that can then be applied to test data in

order to (in this case) annotate it with disfluencies.

Results are divided by reference manual, transcription, and speech domain. The highest error

source concerns the presence of lengthy editing disfluencies. These elements resemble the repair re-

gion, having no apparent cues in the prosodic level, influential in detecting disfluencies. To this type,

the suggested solution is based on the analysis of long distance dependencies, based on parsing, and

semantically analyzing the text.

One of the most relevant and complete work that is still state-of-the-art in the field is described in Liu

et al. (2006), this paper describes a system capable of detecting structural sentence limits, disfluencies

and, fillers (filled pauses). The system combines information from several sources, including: lexical,

and information from a prosodic classifier. This combination allows the detection of a set of disfluencies

that would not be detectable using only one information type. The authors address the following set of
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questions: i) what sources of information are useful in detecting various events, ii) what are the most

effective approaches regarding statistical models in combining different sources of information iii) how

is performance affected by several factors such as the domain of the data set, transcripts and event

types, iv) if the extraction of metadata can be improved considering alternative hypotheses of words.

Experiments use discriminative statistical models, including Conditional RandomFields (CRF), Maximum

Entropy Models (ME) and a generative model based on Hidden Markov Model (HMM). Combinations of

these models are applied in transcripts from television news (broadcast news) and as telephone calls,

mainly characterized by spontaneous speech. The rating system is based on manually transcribed data,

simulating perfect recognition results. Such methodology allows subsequent comparisons since the

results of the classifiers depend on the performance of the recognizer transcription.

Results vary depending on the task, method and material used for training, revealing that discrimi-

native statistical models generally outperform generative models. The results show that the use of the 3

listed models, together with lexical and prosodic features, represent the best approach towards obtaining

maximum performance for disfluency detection, and that the use of several sources of textual information

produces better results than the use of single-language models based only on words.

2.4 Overview of Filled Pauses in Other Languages

Literature on filled pauses (FPs) points out to several features used for predicting such events.

O’Shaughnessy (1992) shows that FPs exhibit low pitch and plateau or falling tones. Shriberg (1994);

Shriberg et al. (1997) evidence that FPs can be fairly detected using prosodic features related to du-

ration, silent pauses, and pitch. The work of Goto et al. (1999) describes experiments on 100 utter-

ances extracted from a Japanese spoken language corpus O. Hasegawa S. Hayamizu K. Tanaka K. Itou

(1999). Based on small and constant pitch transitions and small spectral envelope deformations, this

study achieves 91.5% precision and 84.9% recall on FP detection. Swerts et al. (1996) explore the in-

terplay between FPs and discourse structure based on Dutch spontaneous monologues from a corpus

of 45 minutes of speech containing 310 FPs. This work reports that stronger breaks in the discourse

are more likely to co-occur with FPs than do weaker ones, that FPs at stronger breaks also tend to be

segmentally and prosodically different from the other ones and they have more often silent pauses pre-

ceding and following them. Tsiaras et al. (2000) perform experiences on a corpus of Greek university

lectures of approximately 7 hours containing 1124 occurrences of FPs. The authors report the utility of

video information for improving precision and recall on the task of detecting FPs, achieving a precision

rate of 99.6% and recall rate of 84.7%. This represents a considerable improvement over the 98.5%

precision and 80.6 recall achieved using solely the audio stream.
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2.5 Summary of the Literature Review

In sum, the literature overviewed in this section describes insights on the disfluent phenomena for

several perspectives, languages, disfluency types, disfluency regions, as well as approach methodolo-

gies regarding the task of automatically detecting such information. Results are described for several

speech domains and transcription conditions. Disfluencies are studied from a fluent and disfluent per-

spective, both on human subjective perceptions, and on the perspective of computerized classification

results, based on hand annotated material.

Two distinct strategies are pointed for detecting disfluencyes, a contrastive strategy between the

reparandum and the repair of fluency, manifested by pitch and energy increases at the onset of the re-

pair, and a parallel prosodic strategy between this same areas, meaning, the repair mimics the tonal

patterns of the reparandum Levelt (1983). The existence of an edit signal is confirmed, which is capable

of denouncing an upcoming repair, producing cues such as: fragments; repetition patterns; glottaliza-

tions; co-articulatory gestures; voice quality attributes, such as jitter (perturbations in the pitch period) in

the reparandum; differences pause durations from fluent boundaries; the occurrence of specific lexical

items in the interregnum, and; pitch and energy increases in the repair. Several studies stress the im-

portance of the boundaries of disfluency vs. fluency in the speech array to look for traces, and also the

existence of contrastive characteristics between the disfluent region and the oncoming repair. For Eu-

ropean Portuguese, it is reported a tendency towards repairing fluency using prosodic contrast making

strategies, regardless of the disfluency genre, producing increases of both energy and pitch, which is

confirmed in the results described in this dissertation. Filled pauses are pointed as themost distinct genre

in therms of pitch increase, durational contours and, repetitions, in respect to energy rising patterns.

Several feature genres are reported as adequate for detecting disfluencies: prosodic, lexical, mor-

phosyntactic informations and, semantic information. A multitude of features are reported for detecting

disfluencies: pitch, pitch and energy slopes, the differences between the corresponding slopes, the

tempo characteristics of the distinct regions and of the adjacent silent pauses, phrasing, the degree

of cohesion between words, spectral characteristics, duration characteristics (word, pauses, syllables,

phones), number of phones, modifications in segment durations, intonation, voice quality, vowel quality,

coarticulation patterns, distance from a pause and, level of spoken word completion. Other reported

features concern regular trends in disfluency relating to: sentence length, the presence of other disflu-

encies in the sentence, combinations of both these features both across and within speakers, the rate

of the cut-off words and, the rate of editing phrases. Additionally, Shriberg and Stolcke (1996) suggests

that speakers hesitate before less predictable words, pointing the utility of certain words transition prob-

abilities as information source for discriminating disfluency. As for tempo patterns, it is reported that

the region to repair is longer than the repair itself, and that there is a strong trend manifested in lengthy

silences between these regions, and also the potential of pitch and energy slopes for disfluency type
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differentiation, which seems to be independent of speaker gender. Some studies describe difficulties re-

lated to the classification of the distinct disfluent regions, pointing the interregnum as the easiest zone in

terms of achieving a good detection performance, and the reparandum as the hardest. It is reported that

the different disfluent regions are characterized by distinct prosodic properties. Concerning the repair

region, the best linguistic features found are pitch and energy resets as well as the presence of a silent

pause immediately before a repair.

As for filled pauses, the authors reported that elements that are considered disfluent are produced in

a lower register, with descending contours that disrupt tonal scaling. Additionally it is reported that filled

pauses tend to occur between the previous brake and the ongoing of the conversation, and are uttered

at a tonal space in between adjacent prosodic constituents, that prosodic phrasing plays a crucial role

in the task of classifying the perception of disfluency and, that contour shape is also important. The

importance of the presence of a silent pause preceding the repetition, in the case of single filled pauses

and prolongations, are also reported. The main features reported for detecting filled pauses are length,

the distance from a pause, and pitch (fundamental frequency).

In what concerns classification methodologies several approaches are reported: maximum entropy

models (CART, Logistic Regression), language model discrimination, Hidden Markov Model and, Con-

ditional Random Fields, but CARTs generally achieve the best results.
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3Research Process and Data

This chapter describes the Corpus used in the experiments described in Chapter 4, the extracted

feature set, as well as the corresponding extraction process. The following section describes the corpus

used in the experiments performed in this dissertation. Section 3.2 describes a parser program, devel-

oped to extract the necessary representations for the target classes from the XML registries. Finally,

Section 3.3 describes the set of features extracted from the XML references, using the parser described

in Section 3.2.

3.1 Corpus

All work described in this dissertation is based on LECTRA Trancoso et al. (2008), a speech corpus

of university lectures in European Portuguese, originally created for multimedia content production, and

to support hearing-impaired students.

The speech signal is a rich source of information from which several information genres can be

extracted. ASR systems use the speech signal to detect phones and transcribe them into an array of

lowercase characters, grouped in words or word fragments, and separated by whitespace characters.

Corpus subset → train+dev test
Time (h) 28:00 3:24
Number of disfluent sequences 8390 950
Number of words + filled pauses 216435 24516
Number of elements in a disfluency 16360 2043
Elements in disfluencies (%) 7.6 8.3
Filled pauses in disfluencies (%) 23.5 18.0
Fragments in disfluencies (%) 10.9 11.3
Disfluencies containing IP (%) 34.9 35.2
Disfluencies with interregnum (%) 23.5 18.0
Disfluencies followed by repair (%) 34.7 35.2

Table 3.1: Properties of the Lectra Corpus.



Using the audio speech source, most ASR systems are able to calculate and store the time period

of speech events such as words, syllables and, phones. Based on the computed intervals, and on

the pitch, energy and, duration characteristics of the audio signal, a multitude of descriptors can be

automatically computed: word confidence scores, syllable stress, speaker gender, background speech

conditions (clean / noise), among others. However, the resulting automatic transcription contains a brute

representation, that must be cleaned, ascertained in terms of consistency, and enriched with missing

information by a reliable source such as linguists, in order to be legible, and for further processing tasks.

In the present work, the automatic transcripts were produced by the audio pre-processing and

speech recognition modules of AUDIMUS (Meinedo et al., 2003; Meinedo, 2008). Among other encoding

types, the resulting material is stored into a set of self contained XML files, to keep all the information

required for further experiments in an interoperable format, possibly including for every word token in-

formation about, the time period corresponding to each word, confidence measures, background noise,

speaker cluster, speaker gender and other metadata. Speech transcriptions are typically a combination

of automatically acquiredmaterial, and orthographically transcribed information, performed by human an-

notators. The manual annotations account for structural meta-information such as disfluencies, disfluent

types, disfluent regions, punctuation marks, capitalization, paralinguistic annotation and, further prosodic

information, etc, which can either be seen as targets or features when performing classifications.

In the present work, the references concerning disfluencies were produced using AUDIMUS to obtain

a forced alignment between the manual and automatic transcriptions, which are finally merged into single

XML files. In this process, the calculated word boundaries are adjusted using prosodic features (pitch,

energy, duration) and by applying post-processing rules. The transcription alignment task is not trivial

due to the occurrence of recognition errors. To perform the alignment task the NIST SCLite tool1 is used,

followed by an automatic post-processing stage, for correcting possible SCLite errors and aligning special

words which can be written / recognized differently. The framework used for producing the reference

material is described in Batista et al. (2012).

Table 3.1 presents relevant information about the corpus concerning disfluencies, both for the train-

ing / development phase, which were performed in conjunction, and also for the data used in the test

phase. The corpus contains records from seven 1-semester courses, where most of the classes are

60-90 minutes long, and consist of spontaneous speech. Due to a recent extension, the corpus con-

tains about 32h of manual orthographic transcripts, which were split into 2 different subsets (train-

ing+development and test).

The work conducted in the scope of this dissertation is performed into 2 stages. In the first phase,

our research aimed at compiling, based on the existing literature, a good feature set for detecting the

disfluent region, it’s inherent structures and, filled pauses (FPs). Literature for several languages was

1available from http://www.nist.gov/speech.
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considered, since it is known that cross-language similarities exist in describing disfluent phenomena.

The extracted set of features concern lexical and prosodic cues, but the vast majority relies on prosody,

vide Section 3.3. A supervised learning approach was chosen based on several methods widely used

and described in the literature, and also on the existing annotated data, and nature of the scope of

feature data types. In a second phase, the focus shifts to applying different classification methods to

the detection of FPs, a specific type of disfluency that is often mistaken with words in a language by

automatic speech recognition systems.

The following subsection describes a parser program, developed to extract the features used in the

experiments performed in this dissertation.

3.2 XML Parser

Since all transcribed data available from LECTRA Trancoso et al. (2008) corpus is stored in XML

format, a parser program was written using the Java programing language, to extract the features and

produce the input for Weka 2. The XML registry contains both automatically acquired information arising

from the ASR and manually transcribed information. Ah example of the material used for extraction is

comprised in Figure 3.1, note that, empty lines were added simply for visualization purposes. The speech

information must be extracted from a large amount of data stored in several generated arff files. A final

version is then generated, comprising one general header and the remaining content is concatenated,

producing the input for theWeka suite (Figure 3.2). In the prediction process, respecting the nature of the

data is mandatory for engineering a faithful corresponding representation. Not doing so is guaranteed

to compromise results of a real test, since several important information aspects are being ignored.

For linguistic data, respecting the nature of the material concerns taking into account information that

relates to higher structures than word or sentence, respecting the inherent relation of the word elements

in the sequential pack of a conversation. In this view, dealing with sequential sentences may demand

different extracting proceedings than when processing phrases, since phrases are always uttered in

interconnection, and sentences may be separated by long silences, but still be semantically part of the

same conversation pack. In the present work, all sentences are considered to be interconnected, and

the calculation of boundary word variables is performed in a straight forward fashion.

As can be seen in the first row bellow the @data tag in Figure 3.2, some variable slots present a

question mark instead of an outcome. This is foreseen by Weka as elements that can not be calculated,

and are not treated as an outcome, but rather an empty value. Some feature calculations may be nat-

urally impossible to calculate, such as the pitch of some phones, since in some cases a phone may be

verbalized without pitch. Examples of question marks appear at the beginning and at the end of each
2Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka
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transcript segment. For instance, the first occurring question mark in the first line after the @data tag

relates to the feature that quantifies the amount of time taken in the silence preceding the current word.

Since the actual token represents the first word occurrence, a preceding silence cannot be calculated.

Additionally, a question mark may be generated in cases where some feature cannot be calculated, such

as in pitch slope comparisons, in cases where one of the corresponding values happens to be 0. This

can happen when the vowel is cut off from a word while being spelled, as is example “de” (the), leaving

only a consonant sound that is recognized with no pitch, since it is an unvoiced consonant. In the case

of extracting features from sequential XML files, representative of different classes, for the first and last

words of each XML file some features concerning the previous and following word cannot be calculated,

since performing this calculation would violate the true continuity of the speech material. This issues

demand the use of methodologies that can deal with unknown feature values, such as the ones tested in

this work. Disfluency annotation is marked according to Shriberg (1994), and additional annotation was

added containing information relative to the syntactic and prosodic context of the disfluencies, as well as

those of all the silent pauses in the LECTRA.

The set of features extracted relates mostly to prosody, and can be consulted in the next section.

3.3 Feature Set

This section presents the extracted set of features, the feature scope focusses on the description

of the current word, the surrounding silences, and first level neighboring words, from which informa-

tion about pitch, segmentation, and energy, are extracted. From these sources most of the remaining

descriptors are computed. A minority of cues accounts for lexical information related to word equality

comparisons.

The proposed set of features encompasses distinct genres: numerical information (real or inte-

ger), binary, or sets of possible categorical outcomes. Some features such as fragment (cw_isfrag

in Figure 3.2) represent binary values, while other features comprise categorical possibilities, such as

pslope.w0.w+1 (cw_fw_pslope in Figure 3.2). The categorical possibilities are defined inside brackets,

surrounded by quotes and separated by commas. In the declaration of cw_fw_pslopes (pslope.w0.w+1)

and cw_fw_eslopes (eslope.w0.w+1), the categorical values ’R’ and ’F’ represent the rise and fall pitch

contours on the previous and following words, and the ’-’ character denotes situations where the pitch

contour remains stable (plateau contours). The categorical possibilities of the features silence.comp

and durationcomp.w0.w1 (<, >, =) represent silence and duration comparisons between two consecutive

units. These two features are consensually described in the literature as having a major impact in the

identification of the different disfluent regions. The use of quotes is discarded in case of the predicted bi-

nary possibility yes / no ({y, n}). Note that, bellow the@data tag in Figure 3.2 the token “out” corresponds
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to the disfpos categorical entry and denotes the end of the array of a particular word occurrence descrip-

tion. The feature set composition is described as follows: filled.p (checks if the current word is a filled

pause), filled.p.w+1 (checks if the following word is a filled pause), fragment (checks if the current word

is a fragment), conf.w0 (current word confidence score), conf.w+1 (following word confidence score),

num.phones.w0 (number of phones of the current word), num.phones.w+1 (number of phones present in

the following word), num.syl.w0 (number of syllable(s) in the current word), num.syl.w+1 (number of syl-

lable(s) present in the following word), equality.w0.w−1 (checks if the current word is exactly equal to the

word said before), equality.w0.w+1 (checks if the current word is exactly equal to the next word), dur.w0

(current word duration), dur.w+1 (the duration of the word after the current word), dur.comp.w0.w+1 (a

comparison between the duration of the current word and the duration of the next word), dur.ratio.w0.w+1

(the ratio between the duration of the current word and the duration of the following word), e.min.w0 (cur-

rent word minimum energy), e.max.w0 (current word maximum energy), e.med.w0 (current word median

energy), e.med.ratio.w0.w+1 (the ratio between the median energy of the current word and the median

energy of the following word), e.dif.w0.w−1 (the energy difference between the current word and the

previous word), e.dif.w0.w+1 (the energy difference between the current word and the following word),

e.slope.w0 (current word energy slope), e.slope.w0.w+1 (compares energy slope values between the cur-

rent word and the following word), p.dif.w0.w−1 (difference between the current word and the last in

terms of pitch), p.dif.w0.w+1 (difference between the current word and the subsequent word in terms of

pitch), p.slope.w0 (the pitch slope shape of the current word), p.slope.w0.w+1 (compares the pitch slope

shape of the current word and the one obtained by the next word), p.med.ratio.w0.w+1 (the ratio be-

tween the median pitch of the current word, and the median pitch of the following word), b.sil.w0 (the

duration of the silence before the current word), b.sil.w+1 (the duration of the silence after the current

word), b.sil.comp.w0.w+1 (a comparison between the silence before the current word and the one af-

ter), b.sil.ratio.w0.w+1 (a ratio between the silence duration before and after the current word). Initial

tests have included the calculation of current word minimum pitch, current word maximum pitch and,

current word median pitch, however the corresponding impact on classifications was not significant, and

these where excluded from further experiments, for simplification. Note that the only lexical features are

equality.w0.w+1 and, equality.w0.w−1. The resulting extraction file is used as input in Weka3, where the

data can be visualized, and algorithm configuration and training performed. Figure 3.2 shows the result-

ing arff file.4 The empty line separating the 1º and 2º data rows, was added for visualization purposes.

The use of filled pauses (FPs) and fragments (FRG) as features, is motivated by the fact that these

are the most common disfluencies, known to largely populate the disfluent regions. Filled pauses are

more abundant in the interregnum, while FRGs tendentiously occur before this zone. Therefore, both

these features are expected to have a big impact on classifications, which makes them a priority for build-

3Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka
4Arff file syntax - http://www.cs.waikato.ac.nz/ml/weka/arff.html
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(...)

<TranscriptSegment>

<TranscriptGUID>1</TranscriptGUID>
<AudioType conf="1.000000" end="2560" start="2536">Clean</AudioType>
<Time end="2560" reasons="" sns_conf="1.000000" start="2536"/>
<Speaker gender="U" gender_conf="1.000000" id="0" id_conf="1.000000" known="T" name="

Unknown"/>
<SpeakerLanguage native="T">PT</SpeakerLanguage>

<TranscriptWordList ph_avg="5.0" ph_duration="10" phones="2" syl_avg="10.0" syl_duration="
10" syls="1">

<Word conf="0.994262" eavg="46.5" emax="52.7" emed="49.4" emin="35.0" end="2552" eslope="
2.0" focus="F1" name="bom" pavg="140.9" phseq="_bo~+" pmax="152.7" pmed="141.0" pmin
="128.8" pos="A." ps_med="-5.9" pslope="-5.9" punct="." start="2543">

<syl dur="10" eavg="46.5" emax="52.7" emed="49.4" emin="35.0" eslope="2.0" pavg="140.9"
pmax="152.7" pmed="141.0" pmin="128.8" ps_med="-5.9" pslope="-5.9" start="2543"
stress="y">

<ph dur="4" eavg="39.5" emax="43.7" emed="39.6" emin="35.0" eslope="2.7" name="b" pavg="
0.0" pmax="0.0" pmed="0" pmin="0.0" ps_med="0.0" pslope="0.0" start="2543"/>

<ph dur="6" eavg="51.1" emax="52.7" emed="51.7" emin="47.5" eslope="0.7" name="o~" pavg="
140.9" pmax="152.7" pmed="141.0" pmin="128.8" ps_med="-5.9" pslope="-5.9" start="
2547"/>

</syl>
</Word>

</TranscriptWordList>

</TranscriptSegment>

(...)

Figure 3.1: XML excerpt example.

ing a disfluency detection module. Comparing results of including and excluding these elements allows

both to understand the corresponding weight on classifications, and also to evaluate the expressiveness

of the proposed acoustic feature set on the classification tasks. It is known that the initial words of a

disfluency may be in fact fluent, since there are no cues at the onset of a reparandum, which contributes

to making this task even more difficult. Note that, not knowing whether the current element is a FRG or

a FP may have a strong impact in the results.
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@relation disf
@attribute cw_isfrag {y, n}
@attribute cw_isfp {y, n}
@attribute cw_pslope real
@attribute cw_emin real
@attribute cw_emax real
@attribute cw_emed real
@attribute cw_eslope real
@attribute cw_conf real
@attribute cw_dur real
@attribute cw_phones numeric
@attribute cw_syls numeric
@attribute cw_bsil real
@attribute fw_isfp {y, n}
@attribute fw_pslope real
@attribute fw_eslope real
@attribute fw_conf real
@attribute fw_dur real
@attribute fw_phones numeric
@attribute fw_syls numeric
@attribute fw_bsil real
@attribute cw_fw_sil_comp {"<", ">", "="}
@attribute cw_fw_dur_comp {"<", ">", "="}
@attribute cw_fw_equals {y, n}
@attribute cw_fw_pslopes {"RR","R-","RF","-R","--","-F","FR","F-","FF"}
@attribute cw_fw_eslopes {"RR","R-","RF","-R","--","-F","FR","F-","FF"}
@attribute cw_fw_pdiff real
@attribute cw_fw_ediff real
@attribute pw_cw_pdiff real
@attribute pw_cw_ediff real
@attribute pw_cw_equals {y, n}
@attribute cw_dur_fw_dur_ratio real
@attribute cw_bsil_fw_bsil_ratio real
@attribute cw_pmed_fw_pmed_ratio real
@attribute cw_emed_fw_emed_ratio real
@attribute disf {y, n}
@attribute ip {y, n}
@attribute interregnum {y, n}
@attribute repair {y, n}
@attribute disfpos {"ip", "int", "disf", "repair", "out"}
@data
n,n,-5.9,35.0,52.7,49.4,2.0,0.994262,9,2,1,?,n,3.3,1.7,0.988117,8,5,1,34,?,">",n,"FR","RR

",6.47,-5.7,?,?,?,0.53,?,0.41,0.53,n,n,n,n,"out"

n,n,3.3,26.4,45.4,43.7,1.7,0.988117,8,5,1,34,n,-4.3,-0.2,0.990069,14,5,2,1,">","<",n,"RF
","R-",0.87,0.4,6.47,-5.7,n,0.36,0.97,0.49,0.5,n,n,n,n,"out"

(...)

Figure 3.2: Arff excerpt example.
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4Experiments

This chapter describes our experiments concerning the automatic detection of disfluencies and their

structural elements, and also initial experiments on the detection of filled pauses. Experiments are per-

formed using Weka1, an open source collection of machine learning algorithms and tools for data pre-

processing and visualization. Several approaches are tested, namely: Naïve Bayes, Logistic Regres-

sion, Multilayer Perceptron (MP), J48 or Classification and Regression Trees (CART). Algorithm default

configuration parameters where used, as contained in Weka (3-6-8).

The reminder of this chapter is structured as follows: Section 4.1 starts with the presentation of all the

considered metrics. Section 4.2 reports on the first binary experiments aiming at automatically identifying

which words belong to a disfluent sequence. Section 4.3 describes the results of the binary experiments

in detail, and also the results a multi-class classification that aims at distinguishing between five different

regions related with disfluencies: IP, interregnum, any other position in a disfluency, repair, any other

position outside a disfluency. Concerning the multi-class classification, details relative to distinct disflu-

ent zone classification performance will be presented. Finally, Section 4.4 describes binary classification

experiments aimed at automatically identifying filled pauses, using a set of acoustic features. Disfluen-

cies are classified according to Shriberg (1994), being the most frequent categories: repetitions, FPs,

prolongations, deletions, substitutions, inserts, fragments (FRGs) and, editing expressions.

4.1 Evaluation Metrics

Accuracy = TP+TN
N (1)

Precision = TP
TP+FP (2)

Recall = Sensitivity = TP
TP+FN (3)

1Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka



Condition Positive Condition negative Total
Test outcome Positive TP FP TP + FP
Test outcome negative FN TN FN + TN

Total TP + FN FP + TN N

Table 4.1: Matrix Example.

fpRate = Fallout = FP
FP+TN (4)

F1 = 2 · Precision·Recall
Precision+Recall (5)

Chance = (TP+FP
N ) · (TP+FN

N ) + (FN+TN
N ) · (FP+TN

N ) (6)

KAPPA = Recall−Chance
1−Chance (7)

SER = FP+FN
TP+FN (8)

tnRate = Specificity = TN
FP+TN (9)

This subsection describes the statistical measures of inter-rater agreement used in this chapter to

evaluate results. Table 4.1 comprises a graphic example of a classification matrix, a standard tool for

statistical model evaluation. In classification experiments such as the ones performed in the present

chapter, a model (Test) sorts all cases present in a population (word tokens in this case) into

categories. The results are matched against a reference (Condition) resulting in 4 distinct classification

situations, as exemplified in Table 4.1: true positives (corrections / correctly classified slot occurrences,

TP), false positives (insertions / false acceptances, FP), false negatives (deletions / false rejections,

FN), true negatives (substitutions / correctly classified non slot occurrences, TN). Note that in Table 4.1,

N referees to the total amount of elements in the population (word tokens). In multi-class classifications

a model is given a multitude of slots to rate, resulting in an expanded version of the matrix present in

Table 4.1.

Standard evaluation metrics were applied, encompassing: accuracy (equation 1), precision (2), re-

call (3), f-measure (5) and, Slot Error Rate (8). The metrics used in the present work are based on

slots, which correspond to the elements that are the target for classification. For example, for the task

of classifying words as being part of a disfluency, a slot corresponds to a word marked as being part of

a disfluency in an occasion where a disfluency is in fact present, represented as TP in Table 4.1. Since

the aim is on classifying slots, only a minority of metrics involve the use of true negatives, which are usu-

ally present in much larger proportion in comparison to slot occurrences. Note that, obtaining too many

substitutions (TN) is in fact undesirable, since this may denounce an overfitting case, which means the

method has adapted too much to the prevalent class, resulting in a naive tendency towards perform-

ing slot classifications. The intrinsic asymmetry of TP vs. TN present in the experiments performed
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throughout this chapter, makes it much more difficult to get a good precision than a good specificity,

while avoiding sensitivity (Recall) alterations. Since there are much more irrelevant occurrences than

relevant in the corpus, there are also more occasions for deletions (FN) than for corrections (TP), and

the insertion occurrences can overcome the true positive amount even if the classifier has impressive

accuracy on a balanced size class test set.

Accuracy can be described as the proportion of the true results (true positives and true negatives)

resultant from classifications, against the total population (N), being 100% when the measured values

are exactly the same as the given values. It is a known fact that a high accuracy is not synonym for

predictive power, and that it is possible a corresponding lower accuracy record may in fact reflect better

performance. For this reason other metrics such as precision and recall are preferred.

Precision and recall are important base metrics that are concisely interconnected, presenting an

explicit trade-of that is a prevalent element in classification results, different trade-off points between

these metrics are appropriate in different situations. Both these metrics are slot oriented, meaning that

TN is not used for calculations. Precision, also called positive predictive value, is the proportion of true

positives against all positive results (TP + FP), which may also be seen as the probability that a positive

classification is relevant (a correction), accounting for insertion errors. A hight precision means that the

algorithm returned more relevant than irrelevant results. Recall on the other hand is the probability that

a relevant classification is performed, accounting for the deletion errors. A hight recall means that the

algorithm returned most of the relevant material. In choosing between approaches, the best performance

depends on the specifics (application goals), and a trade off between these metrics dictates the final

choice, depending on the preferred: positive examples or on positive predictions. A good precision is

preferred when reliable classifications are important, such as in the case of fraud detection or natural

catastrophe prediction tasks, while recall is better for capturing higher amounts of slot occurrences, being

preferred for research tasks such as searching a hard disk for information.

F-measure is the standard way of combining these metrics, being defined as the weighed harmonic

mean between precision and recall. In situations where the least prevalent class is more important, F-

measure may be more appropriate than precision and recall, especially in cases with very skewed class

imbalance. Calculating f-measure generates a value that is closer to the minimum of the two numbers

than either the corresponding arithmetic and geometric means, making f-measure a very conservative

measure / average. Makhoul et al. (1999) reports “this measure (f-measure) implicitly discounts the over-

all error rate, making the systems look like they are much better than they really are”. Recall, precision

and f-measure have been target of several critiques: they ignore performance in correctly handling neg-

ative examples (TN), they propagate the underlying marginal prevalences and biases and, they fail to

take into account the chance level performance. For the presented reasons, the preferred performance

metric for performance evaluation is the SER.
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The SERmeasure accounts for combining the different types of error directly (FP, FN), without having

to resort to precision and recall as preliminary measures. This metric can be described as the division

of the total number of non slot decisions (insertions, deletions), by the total number of slots (corrections

and deletions). Note that precision, recall and f-measure produce values ranging from 0 and 1, while

SER produces values higher than 1 whenever the number of errors exceeds the number of slots in the

reference (condition).

Apart from the abovementioned performancemetrics, two other additional metrics are often reported

in this document. Kappa represents a way of debiasing and renormalizing accuracy, providing a notion of

whether a classifier is doing better than chance. In the KAPPA equation (7), c represents the chance level

decision or the hypothetical probability of chance agreement, which is displayed in Equation (6), being

produced by using the observed data to calculate the probabilities of the observer randomly guessing

each event.

The following two metrics, although not directly used in this work, are involved in the calculation of

the ROC area. The false positive rate, also known as false alarm rate, represents the probability of falsely

rejecting the null hypothesis, it can be seen as the expectancy of the false positive ratio. The true positives

rate, also known as corrections rate, measures the proportion of actual positives, being complementary

to the false negative rate. Note the true positives rate is also known as sensitivity (recall), while specificity

(true negative rate) denotes the proportion of negatives which are correctly identified. Specificity can be

seen as precision from the perspective of a TN rather than from a TP. Receiver Operating Characteristic

(ROC) is a metric based on performance curves that can also be used for more adequate analysis (Liu

and Shriberg, 2007). This metric consists of plotting the false alarm rate on the horizontal axis, while the

correct detection rate is plotted on vertical, and calculating the area bellow the resulting line (Fawcett,

2006). This performance metric provides a notion of the relation between the amount of risk taken and

the amount of correct classifications. The results related to this metric account for the area bellow the

curve, a value of 0.5% represents chance agreement, and higher values represent improvements above

chance. Methods based on trees do not provide probabilities over the classes and for that reason the

corresponding ROC area cannot be fairly computed.

4.2 Detecting Elements that Belong to Disfluent Sequences

This section presents a high level performance analysis on results for detecting elements belonging

to disfluent sequences, using forced alignment data and including filled pauses (FPs) and fragments

(FRGs) as features. The classification judgements are always performed at the word level, resulting in
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Method Time Train Time Test Accuracy Kappa

IP

ZeroR 0.1 3.5 97.06 0.000
Simple CART 3665.4 2.2 97.83 0.489

J48 3810.9 1.9 97.79 0.485
Logistic Regression 47.4 2.3 97.69 0.464
Multilayer Perceptron 6268.7 15.1 97.59 0.453

Naïve Bayes 741.0 4.1 92.05 0.214

Int

ZeroR 0.1 34.9 98.50 0.000
Simple CART 708.7 2.1 99.95 0.982

J48 552.0 2.7 99.95 0.982
Logistic Regression 67.4 41.2 99.94 0.980
Multilayer Perceptron 9176.3 9.6 99.92 0.974

Naïve Bayes 723.5 4.4 99.24 0.779

Repair

ZeroR 0.1 3.0 97.06 0.000
Simple CART 2688.9 2.1 97.27 0.203

J48 2364.6 2.4 97.30 0.207
Logistic Regression 42.5 2.5 97.21 0.204
Multilayer Perceptron 6348.3 9.9 97.25 0.187

Naïve Bayes 553.0 5.4 88.54 0.133

Disf

ZeroR 0.1 3.2 91.67 0.000
Simple CART 3412.4 2.0 94.44 0.502

J48 3818.5 1.9 94.37 0.505
Logistic Regression 40.5 3.1 94.40 0.503
Multilayer Perceptron 8473.2 9.2 93.93 0.489

Naïve Bayes 551.9 5.6 89.84 0.362

DisfPos

ZeroR 0.1 3.4 88.73 0.000
Simple CART 6148.8 1.8 91.55 0.420

J48 4602.1 1.9 91.39 0.414
Logistic Regression 1391.1 3.9 91.36 0.416
Multilayer Perceptron 10209.7 12.3 91.40 0.414

Naïve Bayes 574.7 7.4 76.48 0.223

Table 4.2: High level performance analysis for detecting elements belonging to disfluent sequences using
alignment data and including FP and FRG as features.

the classification of the current word as one of the possible classification outcomes. The performance

results presented in Table 4.2 are obtained using the forced aligned version of the data, the following

section comprises results for corresponding automatically recognized material. The first column of this

table presents the regions targeted for classification.

All disfluent related regions are targeted in separate binary classifications, namely: the interruption

point (IP), the interregnum region (Int), and the repair (Repair). Disf represents a binary classification,

aimed at classifying words that rely inside the disfluent event boundary. Finally, DisfPos represents a

multi-class classification experiment, in which all the disfluency related regions targeted in the binary

experiments are treated as possible classification slots, plus a slot for fluent elements other than those

found inside the repair. In this work, the previous word to the IP event is used to discriminate this region,

note that the IP is not definable as a word, but by marginal properties of the words that surround the gap,

and the properties of the gap itself. The second column of Table 4.2 presents the applied methods per
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classification zone. The subsequent columns represent measurement indicators. Time Train presents

the amount of time consumed in model building, and Time Test represents the time required for applying

the model. The percentage of correctly classified Instances (Accuracy) considers all the elements that

are being classified and not only slots. ZeroR represents the baseline obtained by forwarding all clas-

sifications towards the predominant classification category, by ignoring all predictors, thus providing a

baseline for performance comparison and evaluation.

Regarding the binary classifications, the results displayed in Table 4.2 reveal the IP and Disf re-

gions are the most extensive in terms of training time consumption. As for Accuracy and Kappa, the

most affordable area concerns the interregnum, followed by the interruption point, for which a similar

performance as the one seen for the repair region is achieved, followed by the classification of the whole

disfluent region. Although based on these metrics the performance of the multi-class experiments seems

to be lower than the ones achieved for the disfluent regions individually, an analysis performed in the

following section on the same results reveals that the performance achieved for each individual region

is superior to accounting for the region individually in a binary classification. For the binary classifica-

tion of distinct in-disfluency areas, sometimes the repair obtains similar accuracy to the one recorded in

the classification of interruption point, although slightly lower. However the latter presents much higher

Kappa values, suggesting the adopted set of features provides a better representation for this zone.

Classifying the interregnum generally results in close to perfect performance, a fact that is associated

with the inclusion of FPs as features, which strongly characterize this zone. Detecting the whole disfluent

region (Disf) culminates in the worst classification results within the binary classifications.

For classifying all regions simultaneously (DisfPos) we assist to a general increase in time required

for model building, and better classification results in comparison to the binary classification of any other

zone individually. It seems that considering all zones for classification accounts for increased disam-

biguations. In general, the required time for model building increases along with the increase in slot

number, especially for Multilayer Perceptron, while test time does not suffer considerable variations.

Multilayer Perceptron is the most costly approach in terms of training time, achieving similar results to

J48, while consumingmore than twice the time taken by the latter approach. Although CARTs achieve the

best results among the multi-class classifications, Logistic Regression presents a kappa value greater

than J48 and Multilayer perceptron. This value is identical to the best result achieved with CARTs, at

cost of a widely reduced time interval than any other approach.

In comparison to the interregnum region, all areas present reduced Kappa records. As regards

the accuracy metric, the Disf region is the hardest to reliably detect, all the remaining classification

targets obtain better Accuracy. The interregnum region contrasts with this trend, displaying a smaller

difference. The results presented show that Multilayer Perceptron consistently requires far more training

time than the remaining approaches, frequently resulting in mediocre performance when compared to
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the remaining approaches. In fact, Logistic Regression achieves similar results while performing much

briefly in the training phase. However, based on thesemetrics this inference is not conclusive, due to both

the closeness of the achieved results and the potentially deceiving nature of both Kappa and Accuracy

parameters. Naïve Bayes clearly presents the less suited approach, resulting in much lower Kappa

values. CARTs consistently provide best performance. Despite generally performing slightly lower in

comparison to other state of the art methods, Logistic Regressionmay present considerable advantage in

situations where large amounts of data are considered, since this approach consistently produces timely

and acceptable results. Both decision trees consistently perform better than the remaining methods while

requiring considerably less time for training than Multilayer Perceptron, its nearest competitor in therms

of performance.

The next section holds amore detailed and performance oriented analysis towards the discrimination

of the distinct regions of a disfluency.

4.3 Detecting and Distinguishing Elements Between the Disfluent

Regions

This section presents results for the binary classifications of the disfluent regions, including the

disfluent region as a whole, an overview of binary performances, a multi-class experiment, a summary

of results achieved in these experiments and, a final subsection comprising feature impact analysis.

The following subsections explore results of classification experiments described in the previous

section in a more performance oriented fashion. Comparable results are obtained for the same tasks

using recognized data. The reminder of this section is organized as follows: Subsections 4.3.1 to 4.3.6,

perform individual result analyses using 4 distinct setup combinations, varying in the use of either, forced

alignment material, or raw ASR recognition data, and the inclusion or not of filled pauses (FPs) and FRGs

as features; Subsection 4.3.1 refers to the interruption point detection task; Subsection 4.3.2 refers to

the interregnum; Subsection 4.3.3 refers to the repair region; Subsection 4.3.4 refers to detecting the

disfluent region in it’s totality; Subsection 4.3.5 provides an overview on the binary classification results,

which are performed by summing the amounts of, corrections, and insertions, from the results of all

the binary experiments, and using the data to compute the relevant metrics described in Section 4.1;

Subsection 4.3.6 is somewhat different, since it additionally contains the detailed analysis of the best

results achieved in themulti-class experiment, achievedwith CART for the alignment data while excluding

FPs and FRGs as features, and finally the corresponding result matrix analysis. These experiments

target the disfluent regions, including a slot for the reparandum, and a slot for elements located outside

of disfluent sequences; Subsection 4.3.7 presents a summary and conclusions; Finally, Subsection 4.3.8
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 762 71 1899 81.5 27.6 41.2 75.0
J48 749 96 1891 77.4 27.1 40.2 76.4
LR 763 118 1883 76.5 27.6 40.6 76.7 0.79
MP 753 99 1891 77.5 27.3 40.3 76.3 0.78
NB 980 3983 1317 18.1 35.5 23.9 208.7 0.73

Recognition

CART 17 6 684 73.9 2.4 4.7 98.4
J48 41 83 660 33.1 5.8 9.9 106.0
LR 21 22 680 48.8 3.0 5.6 100.1 0.78
MP 72 127 629 36.2 10.3 16.0 107.8 0.72
NB 128 795 573 13.9 18.3 15.8 195.1 0.72

Table 4.3: Detailed performance analysis on predicting the interruption point obtained while including FP
and FRG as features.

Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 85 34 635 71.4 11.8 203 92.9 0.60
J48 71 51 649 58.2 9.9 16.9 97.2 0.80
LR 75 63 645 54.3 10.4 17.5 98.3 0.79
MP 221 1672 499 11.7 30.7 16.9 301.5 0.77
NB 73 38 647 65.8 10.1 17.6 95.1 0.57

Recognition

CART 16 9 685 64.0 2.3 4.4 99.0 0.53
J48 16 30 685 34.8 2.3 4.3 102.0 0.52
LR 3 13 698 18.8 0.4 0.8 101.4 0.75
MP 23 31 678 42.6 3.3 6.1 101.1 0.74
NB 102 865 599 10.5 14.6 12.2 208.8 0.67

Table 4.4: Detailed performance analysis on predicting the interruption point obtained while excluding
FP and FRG as features.

presents a feature impact analysis of the top-20 cues for the experiments performed on forced alignment

material, while including or excluding FPs and FRGs, focussing on both feature weight and potential for

distinguishing between zones.

4.3.1 Interruption Point Detection

Table 4.3 comprises results for detecting the interruption point region, regarding: the Cor, correct

classifications; Del, marked in the reference but not correctly classified; and Insert slots, not marked in

the reference. The values presented for precision, Prec, recall, Rec, f-measure, F, and Slot Error Rate,

SER represent percentages. CART and J48 are not probabilistic classifiers, therefore the ROC curve

area can not be fairly computed.
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The quality of the alignment results can be seen in linear fashion as the quality of method perfor-

mance decreases from the top to the bottom of Table 4.3. Regarding this data, CART stands out as the

best option for detecting the interruption point region, performing better in almost all metrics. In fact, the

same applies for the CART’s results achieved including filled pauses and fragments, and using recogni-

tion data, but in this case the performance difference in comparison to the remaining methods is quite

larger.

For the alignment data experiments, performed including filled pauses and fragments as features,

CART consistently performs better than J48, obtaining considerably better precision (the best record),

and good recall. This suggests that, given reliable data CART tends to overcome J48 in therms of

assertiveness. Multilayer Perceptron risks even more than Logistic Regression, while achieving residual

gain in terms of correct slot classifications, in conjunction with considerably higher insertion rates and

higher SER ratings. Naïve Bayes takes by far the highest risk amount among the tested approaches,

presenting highly dilated error rates for both insertions and deletions, failing even for the detection of the

most common occurrences. Multilayer Perceptron risks even more than Logistic Regression, resulting in

residual gain for correct slot classifications, in line with a considerably higher insertion level, and worse

SER performance. Under this conditions, the best approach for obtaining increased precision is CART,

while Logistic Regression accounts for better recall.

For the alignment data related experiments, excluding filled pauses (FPs) and fragments (FRGs)

as features, mostly affects the recall metric, having a blunt impact on overall performance. This trend

prevails throughout the results achieved using recognition data, while excluding these features. For the

alignment experiments the removal of these two features results in recall losses prowling on average 10

units when accounting for Multilayer Perceptron, and 13 otherwise, given that the corresponding recall

score is very discrepant in comparison to the remaining methods. The precision metric is also severely

affected with the removal of these features, losing an average of 14 units when accounting for all tested

methodologies. Concerning precision and recall the smallest loss belongs to CART, contrasting with

Logistic Regression, holder of the sharpest deterioration. In general, we assist to severe decreases for

corrections and increased deletions, showing the expressiveness of FPs and FRGs for discriminating this

region. Given these conditions, CART presents the best results, providing considerably better precision

and recall than the remaining methods, except for Naïve Bayes that generally presents high recall values

at the expense of a pronounced precision loss.

For the recognition experiments, achieved including FPs and FRGs the results are not linear and

the best choice is debatable. CART stands out as the best choice in terms of assertiveness, featuring

quite larger precision values than the remaining methods. Nonetheless, the corresponding recall result

suggest that this method tends to classify correct slot occurrences only in the presence of a high level

of certainty, resulting in lower SER and correction records in comparison to the remaining approaches.
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 366 12 1 96.8 99.7 98.3 3.5
J48 366 12 1 96.8 99.7 98.3 3.5
LR 364 12 3 96.8 99.2 98.0 4.1 1.00
MP 359 11 8 97.0 97.8 97.4 5.2 1.00
NB 337 157 30 68.2 91.8 78.3 51.0 0.99

Recognition

CART 199 60 48 76.8 80.6 78.7 43.7
J48 200 63 47 76.0 81.0 78.4 44.5
LR 210 54 37 79.5 85.0 82.2 36.8 1.00
MP 204 55 43 78.8 82.6 80.6 39.7 1.00
NB 223 105 24 68.0 90.3 77.6 52.2 0.99

Table 4.5: Detailed performance analysis on predicting the interregnum obtained while including FP and
FRG as features.

This could represent an advantage depending on the application targets. In comparison to CART, J48

risks markedly more when facing data of this nature, resulting in a much higher level of corrections /

insertions, followed by fewer deletion levels. Although Logistic Regression offers the most balanced

option, the corresponding corrections amount is not much higher in comparison with CART, contrasting

with a markedly lower insertion rate in the latter case, and also a slightly higher number of deletions. This

seems to point CART as a slightly superior approach for these conditions. Multilayer Perceptron seems

to be the best option for hedging data. Nonetheless, this approach also presents a significantly higher

error level than the other approaches (except Naïve Bayes), and much lower ROC area in comparison

to Logistic Regression.

For recognition the removal of FPs and FRGs results in a large loss of precision for Logistic Regres-

sion, matched by an almost negligible recall loss. Interestingly, Multilayer Perceptron gains in precision

but loses a slightly higher recall amount, outperforming J48. CART’s achieve the best results obtaining a

much higher accuracy than Multilayer Perceptron in conjunction with slightly lower recall. However Mul-

tilayer Perceptron achieves a considerable larger amount of corrections and insertions in comparison to

CART, together with a smaller number of deletions, suggesting it is a valuable choice if data coverage is

preferred.

In general, results obtained under these conditions are quite weak, as can be seen via baseline

comparison present in Table 4.2. CART is the only method presenting results above this threshold, but

still the improvement does not exceed half a percentage point.

4.3.2 Interregnum Detection
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 155 69 212 69.2 42.2 52.5 76.6
J48 195 107 172 64.6 53.1 58.3 76.0
LR 135 56 232 70.7 36.8 48.4 78.5 0.97
MP 178 92 189 65.9 48.5 55.9 76.6 0.97
NB 253 988 114 20.4 68.9 31.5 300.3 0.94

Recognition

CART 94 48 153 66.2 38.1 48.3 81.4
J48 120 65 127 64.9 48.6 55.6 77.7
LR 99 40 148 71.2 40.1 51.3 76.1 0.99
MP 131 103 116 56.0 53.0 54.5 88.7 0.98
NB 186 519 61 26.4 75.3 39.1 234.8 0.96

Table 4.6: Detailed performance analysis on predicting the interregnum obtained while excluding FP and
FRG as features.

This subsection comprises results and analysis for the detection of the interregnum region. As ex-

pected the interregnum results are very satisfactory, mostly due to the presence of filled pauses (FPs)

as features, as it can be seen in Tables 4.5 and 4.6. Note that this zone is largely populated by these ele-

ments. Roughly all alignment results present in Table 4.5 are close to perfect, except the ones registered

for Naïve Bayes. It seems this method has a consistent tendency towards slot classification, resulting in

widely dilated insertion and error rates. This trend prevails in the recognition data results, except in this

case parameter values do not vary as much, which does not occur for the remaining methods. This may

indicate hight insensitivity to this type of data, revealing inappropriateness for this kind of task. Since

both best methods performed identically (CART and J48), the tiebreaker is the time consumption for

model construction. Based on this premise, J48 is best suited approach, accounting for less insertions

and deletions, and taking considerably less time for model construction. To account for fast model build-

ing, note that Logistic Regression presents suitable results while consuming solely approximately 70

seconds, achieving better SER than Multilayer Perceptron while consuming far less time in the building

phase.

Removing filled pauses (FPs) and fragments (FRGs) from the alignment data experiments results

in drastic performance losses at all levels, producing a severe impact on both precision and recall, in

all cases. All metrics suffer a sharp increase, emphasizing the importance of FPs and FRGs for the

characterization of this area. Note a sharp increase in all cases for the occurrences of insertions and

deletions. J48 clearly seems the best option, holding a combination of the best: recall, f-measure, and

SER results. The best precision record is achieved using CART, but at cost of a considerable recall loss.

The following best approach in this case is Multilayer Perceptron costing far more time for training than

J48.

The recognition outcomes comprised in Table 4.5, show remarkable results for Logistic Regression,

revealing an advantaged performance over other methods in all metrics. Interestingly Multilayer Per-

ceptron performs better than CART and J48, countering the trend experienced in most classifications.
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 89 38 631 70.1 12.4 21.0 92.9
J48 90 31 630 74.4 12.5 21.4 91.8
LR 92 55 628 62.6 12.8 21.2 94.9 0.80
MP 81 34 639 70.4 11.3 19.4 93.5 0.74
NB 293 2382 427 11.0 40.7 17.3 390.1 0.73

Recognition

CART 13 8 686 61.9 1.9 3.6 99.3
J48 22 14 677 61.1 3.1 6.0 98.9
LR 5 7 694 41.7 0.7 1.4 100.3 0.71
MP 50 225 649 18.2 7.2 10.3 125.0 0.66
NB 84 582 615 12.6 12.0 12.3 171.2 0.67

Table 4.7: Detailed performance analysis on predicting the repair obtained while including FP and FRG
as features.

Comparing CART and J48 reveals the former performs slightly better.

For recognition the removal of FPs and FRGs does not impact results as heavily as for alignment,

as can be seen in Table 4.6. However the results remain consistently below those seen for the alignment

data experiments. Removing these features leads to a general correction occurrences reduction to half,

together with a marked deletion increase. For insertions, these values do not suffer large changes. Multi-

layer Perceptron seems to obtain the most balanced results, however, the corresponding f-measure and

SER value remain bellow the one obtained by J48. AlthoughMultilayer Perceptron achieves a higher cor-

rection record than J48, the latter obtains better precision, and a significantly lower insertion value. Apart

from Logistic Regression, all approaches suffered considerable training time increases, in consequence

to the removal of FPs and FRGs. Although Multilayer Perceptron achieves more corrections, J48 obtains

better precision and a significantly lower insertions amount. The best approach is J48, presenting better

recall then CART, more corrections and, less SER.

4.3.3 Repair Detection

This subsection, describes results for the detection of the repair region.

Table 4.7 shows that J48 stands as the best solution for the alignment data, while including filled

pauses and fragments, obtaining a sharper higher precision amount than CART, which seems to be the

second best choice, and also better recall and SER. Logistic Regression achieves a non-expressive

highest correction rate, but the corresponding recall relies well bellow the one achieved by J48. Despite

performing inferiorly, the corresponding timely results may present sufficient motivation for choosing
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 81 36 639 69.2 11.3 19.4 93.8
J48 80 31 640 72.1 11.1 19.3 93.2
LR 88 52 632 62.9 12.2 20.5 95.0 0.79
MP 85 40 635 68.0 11.8 20.1 93.8 0.74
NB 292 2402 428 10.8 40.6 17.1 393.1 0.77

Recognition

CART 11 7 688 61.1 1.6 3.1 99.4
J48 23 19 676 54.8 3.3 6.2 99.4
LR 5 7 694 41.7 0.7 1.4 100.3 0.71
MP 38 89 661 29.9 5.4 9.2 107.3 0.67
NB 83 580 616 12.5 11.9 12.2 171.1 0.67

Table 4.8: Detailed performance analysis on predicting the repair while excluding FP and FRG as
features.

this approach, since Logistic Regression performed 64 times faster in the model building phase. J48

consistently outperformsMultilayer Perceptron in all metrics, while consuming less time in model training.

Naïve Bayes risks too much, resulting in large insertion amounts, contrasting with the corresponding

corrections and deletions, resulting in poor classification results. The results for alignment comprised in

Table 4.8 reveal that, filled pauses (FPs) and fragments (FRGs) don’t seem to have a blunt impact on

results.

The results of alignment comprised in Table 4.8 show that the removal of FPs and FRGs negatively

impacts overall SER records. Multilayer Perceptron and J48 perform similarly, obtaining an identical

SER value. Multilayer Perceptron accounts for slightly better recall, while J48 obtains a better precision.

The f-measure value obtained by Multilayer Perceptron points this approach performs slightly better than

CART. J48 outperforms CART under these conditions, obtaining a combination of: identical corrections

amount, lower SER and, the best precision record among all other methods for these conditions. Logistic

Regression presents the best option for hedging data, presenting a higher ROC area that Multilayer

Perceptron, and also an increased corrections amount. However, Multilayer Perceptron obtains a better

SER record and also a fairly similar amount of corrections, suggesting this method presents a more

balanced approach.

For recognition, including FPs and FRGs slightly affect results. J48 offers the best option, although

none of the decision trees achieve sparkling results. CART provides slightly better precision, but this

improvement is dwarfed by the amount recorded in the recall metric. Logistic Regression obtains con-

siderably lower overall results than both decision trees, featuring a marked deletion rate and very low

correct classifications. Multilayer Perceptron is themain surprise obtaining a very high correction amount,

followed by a marked SER rate. However, CARTs achieve very similar results to Multilayer Perceptron,

while consuming less than half the time for training.

For recognition, excluding FPs and FRGs results in slight recall losses, while the precision decays

are somewhat more pronounced. The same trend seen for Multilayer Perceptron results, present in
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 754 73 1289 91.2 36.9 52.5 66.7
J48 778 115 1265 87.1 38.1 53.0 67.5
LR 765 95 1278 89.0 37.4 52.7 67.2 0.80
MP 799 244 1244 76.6 39.1 51.8 72.8 0.78
NB 891 1339 1152 40.0 43.6 41.7 121.9 0.77

Recognition

CART 284 115 1783 71.2 13.7 23.0 91.8
J48 301 184 1766 62.1 14.6 23.6 94.3
LR 257 102 1810 71.6 12.4 21.2 92.5 0.70
MP 306 136 1761 69.2 14.8 24.4 91.8 0.69
NB 461 825 1606 35.8 22.3 27.5 117.6 0.68

Table 4.9: Detailed performance analysis on predicting the disfluent region as a whole while including
FP and FRG as features.

Table 4.7 for recognition data, is observed, in respect to obtaining much better correction values than

the remaining approaches, except in this case the negative SER impact is considerably less severe, but

still well above the record obtained by Logistic Regression. The results of Logistic Regression remained

intact except for a very slight improvement in the ROCmetric, suggesting that the removal FPs and FRGs

impacts positively the classification performance. For the decision trees the overall impact of removing

these features is consistently negative, although not very pronounced. Naïve Bayes performance is

clearly naively orientated towards classifying slots, obtaining very high correction, insertion, deletion

and, SER records, clearly representing the worst option. The best results are achieved by J48, obtaining

an identical SER than CART, but producing a better f-measure, although none of these methods present

acceptable results.

For these experiments, the overall correction amounts are slightly above the baseline, as can be

seen in Table 4.2. This zone is mainly composed by elements that resemble fluent words, representing

fluency onset, which hardens the classification task, e.g., in cases where the repair does not resemble

the reparandum. Consequentially, results for this region are the poorest among the performed binary

classifications.

4.3.4 Disfluency Detection

This subsection comprises the outcomes of the binary detection of the disfluent zone as a whole,

which are displayed in Tables 4.9 and 4.10.

For the alignment experiments, achieved including filled pauses and fragments as features, CART

represents the best option for reliability, obtaining the best precision and SER records, but also lower
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 414 210 1629 66,3 20,3 31,0 90,0
J48 476 297 1567 61,6 23,3 33,8 91,2
LR 320 109 1723 74,6 15,7 25,9 89,7 0,75
MP 490 247 1553 66,5 24,0 35,3 88,1 0,76
NB 604 1487 1439 28,9 29,6 29,2 143,2 0,72

Recognition

CART 260 123 1807 67,9 12,6 21,2 93,4
J48 305 189 1762 61,7 14,8 23,8 94,4
LR 152 69 1915 68,8 7,4 13,3 96,0 0,69
MP 322 183 1745 63,8 15,6 25,0 93,3 0,69
NB 344 805 1723 29,9 16,6 21,4 122,3 0,67

Table 4.10: Detailed performance analysis on predicting the disfluent region as a whole while excluding
FP and FRG as features.

recall than the remaining approaches. In terms of recall, Multilayer perceptron stands as the best option,

however, the corresponding precision remains well bellow the one obtained by either J48 or Logistic

Regression, and moreover the SER metric stresses that Multilayer Perceptron obtains a higher error

amount than both these approaches. J48 stands as a less error prone approach than Multilayer Percep-

tron for obtaining increased recall, obtaining a better f-measure record than the remaining methods. In

this case, Logistic Regression represents a half way choice between precision and recall, producing the

2º best records for precision, f-measure and, SER, while producing timely results.

For the alignment data experiments achieved excluding filled pauses (FPs) and fragments (FRGs),

both CART and J48 suffer a major loss of precision, showing slightly more pronounced contours in the

J48 case. Logistic Regression achieves a combination of: lowest precision, lowest insertion, highest

deletion, and the most severe recall degradation. The corresponding SER value remains below the one

achieved by the tested decision trees approaches, but still not exceeding half a unit. Multilayer Per-

ceptron performs best, achieving better precision and recall than the decision trees, performing best in

almost all performance metrics. Logistic Regression achieves better precision, but suffers substantially

the same ratio for recall, resulting in a higher SER record than Multilayer Perceptron. Additionally, Mul-

tilayer Perceptron also gets a considerably higher correction amount, representing the most balanced

approach among the tested ones.

In what regards the results obtained using recognition data while including FPs and FRGs, the

deletion rates suffer sharp increases, followed by less sharper insertion increases. The correction rates

are also severely affected with the removal of these features. Multilayer Perceptron stands out as the

best option, achieving a slightly lower precision level in comparison to the best records, together with

the best results for recall (except Naïve Bayes), f-measure and, SER. For precision, Logistic Regression

stands out as the best option, however this approach produces a much inferior recall than CART and

J48, resulting in a much lower f-measure record. The decision trees (CART, J48) perform considerably

worse than Multilayer Perceptron, obtaining a better f-measure than Logistic Regression, but worse SER
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Cor Ins Del Prec Rec F SER

Alignment

CART 1473 199 2377 88.1 38.3 53.4 66.9
J48 1499 244 2351 86.0 38.9 53.6 67.4
LR 1476 263 2374 84.9 38.3 52.8 68.5
MP 1495 416 2355 78.2 38.8 51.9 72.0
NB 1841 5427 2009 25.3 47.8 33.1 193.1

Recognition

CART 513 189 3201 73.1 13.8 23.2 91.3
J48 564 344 3150 62.1 15.2 24.4 94.1
LR 493 185 3221 72.7 13.3 22.4 91.7
MP 632 543 3082 53.8 17.0 25.9 97.6
NB 896 2307 2818 28.0 24.1 25.9 138.0

Table 4.11: Detailed performance analysis on overall binary performances obtained while including FP
and FRG as features.

Cor Ins Del Prec Rec F SER

Alignment

CART 513 189 3201 73.1 13.8 23.2 91.3
J48 564 344 3150 62.1 15.2 24.4 94.1
LR 493 185 3221 72.7 13.3 22.4 91.7
MP 632 543 3082 53.8 17 25.9 97.6
NB 896 2307 2818 28 24.1 25.9 138

Recognition

CART 192 85 2485 52,5 6.9 12.3 96.1
J48 186 171 2466 39,5 6.7 11.5 99.5
LR 140 54 2567 55,3 5.1 9.3 96.9
MP 215 117 2455 50,2 7.8 13.5 96.5
NB 399 2102 1973 13,8 14.4 14.1 161.6

Table 4.12: Detailed performance analysis on overall binary performances obtained while excluding FP
and FRG as features.

than either Logistic Regression And Multilayer Perceptron.

The results of the recognition data experiments performed excluding FPs and FRGs, reveal lower

losses in comparison to the alignment data case. In this case, CART performs better than J48, producing

less error, but also considerably lower recall. Logistic regression obtains roughly half the recall felt

in the remaining cases, together with the highest precision record, but the corresponding SER metric

denounces high error propensity. Naïve Bayes presents an enormous insertion rate, resulting in very

high error amounts. Multilayer Perceptron performs best, achieving a higher number of corrections than

when FPs and FRGs are included, followed by a considerable increase in recall. In this case the results

of the removal of these two features are particularly evident in the outcomes of precision, resulting in

linear losses for all methods.

4.3.5 Overall Binary Performance
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This subsection analyses method performances relative to all the binary classifications. The data

exposed in Table 4.11 is achieved by adding the results of all classifications, while using only: corrections,

insertions, and deletions for parameter calculations. The following analysis pretends solely to compare

the performance of each method in a general perspective, performing the same calculations as in the

binary classifications, while using a summed version of the results of the binary classifications in terms

of correct, insertion, and deletion records, each individually.

For the alignment data experiments, performed while including filled pauses and fragments as fea-

tures, CART and J48 generally achieve the best records. CART accounts for better precision and SER

records, while J48 is better in terms of recall and f-measure. Logistic Regression achieves similar results

to CART and J48 although slightly lower in therms of precision and SER, presenting a similar recall value

as CARTs. Apart from Naïve Bayes, Multilayer Perceptron achieves the lowest precision results, con-

trasting with a very similar recall record to J48. Naïve Bayes also risks much towards the classification

of the less prevalent classification element, resulting in very high error levels.

As presented in Table 4.12, for the alignment data the results achieved excluding filled pauses

(FPs) and fragments (FRGs) show significant and transversal performance losses in comparison to the

results obtained for alignment. The decision trees and Multilayer Perceptron are most affected in terms

of precision, in particular J48, resulting in considerably higher losses in comparison to the remaining

methods. Logistic Regression suffers the greatest recall loss, together with a much lower precision

reduction in comparison to the decision trees. Except for the decision trees the recall reductions were

more severe than the ones seen for precision. Apart from Naïve Bayes, all methods experience large

correction amounts, coupled with a quite larger deletion increase. The insertions rate is also inflated,

but in this case the increase was only slight in contrast to the SER results, a metric which suffered

an accented increase. Multilayer Perceptron seems to perform best, however, the corresponding SER

shows this approach is much more error prone than both CART and LR. Although the results achieved

by CART outperform those of LR, it is remarkable the resemblance of the performance achieved under

these conditions, while LR performs consistently briefer in terms of training phase time consumption.

The recognition data results, achieved while including filled pauses and fragments as features, com-

prise generalized losses in comparison to the corresponding alignment results, showing considerable

performance reductions for both f-measure and SER. Regarding the decision trees, CART accounts for

better precision and SER records, while J48 is better in terms of recall and f-measure. However, J48

achieves a considerably worse SER record than CART, and also a somehow daunting precision in com-

parison to CART and LR. Concerning this metric, LR obtains a close record to CART, while performing

much briefly in the training phase. Multilayer Perceptron and Naïve Bayes perform very poorly under

these circumstances, resulting in the highest SER records and very low precision.

For the recognition data experiments, the removal of FPs and FRGs generates much less abrupt
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 762 71 1899 81.5 27.6 41.2 75.0
J48 749 96 1891 77.4 27.1 40.2 76.4
LR 763 118 1883 76.5 27.6 40.6 76.7 0.9
MP 753 99 1891 77.5 27.3 40.3 76.3 0.9
NB 980 3983 1317 18.1 35.5 23.9 208.7 0.8

Recognition

CART 274 109 2451 64.6 9.9 17.2 94.0
J48 290 144 2411 58.1 10.5 17.8 94.7
LR 256 83 2475 68.4 9.3 16.3 93.7 0.8
MP 311 154 2396 59.4 11.2 18.9 94.3 0.7
NB 522 1972 1994 19.0 18.9 18.9 152.4 0.7

Table 4.13: Detailed performance analysis for a multi-class prediction performed while including FP and
FRG as features.

losses than for alignment, although the results achieved including both these features are already fairly

low. Logistic Regression achieves the best precision, however the associated recall record suggests

this approach might not be adequate for this conditions, especially when compared to the CART result,

that presents a more balanced choice, and also lower SER. Additionally CART covers more correct

slot occurrences. J48 performs frankly lower than CART in this case. Multilayer Perceptron achieves

the highest amount of corrections, a good SER record (similar to J48) and, a high insertion level. It is

noticeable that Multilayer Perceptron registers precision increases with the deletion of FPs and FRGs,

together with one of the smallest recall losses. The choice of the best approach is now tied between

Logistic Regression and CART, the tier will be based on the SER metric which seems to point CART as

the less error prone approach, and Multilayer Perceptron the best for slot coverage. As a final point, note

that CART obtains more deletions, while Multilayer Perceptron performs better in this indicator, but more

insertions are produced.

4.3.6 Multi-Class Classification

This subsection presents results of a multi-class classification experiment, performed accounting

for several distinct disfluency related regions, and also words that rely out of disfluent sequences. The

results for every slot where summed and used for the calculation of the overall performances present in

Table 4.13.
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Cor Ins Del Prec Rec F SER ROC Area

Alignment

CART 414 156 2213 15.0 23.9 90.7 0.719
J48 430 249 2159 15.6 23.8 93.4 0.683
LR 359 143 2285 13.0 21.2 92.2 0.754 0.9
MP 400 117 2249 14.5 23.6 89.8 0.767 0.9
NB 741 4312 1469 26.8 17.7 229.2 0.690 0.8

Recognition

CART 192 85 2485 6.9 12.3 96.1 0.606
J48 186 171 2466 6.7 11.5 99.5 0.594
LR 140 54 2567 5.1 9.3 96.9 0.690 0.8
MP 215 117 2455 7.8 13.5 96.5 0.689 0.7
NB 399 2102 1973 14.4 14.1 161.6 0.659 0.7

Table 4.14: Detailed performance analysis for a multi-class prediction performed while excluding FP and
FRG as features.

Cor Ins Del Prec Rec F SER

Alignment

ip 271 82 449 76.8 37.6 50.5 73.8
interregnum 366 12 1 96.8 99.7 98.3 3.5
reparandum 19 33 937 36.5 2.0 3.8 101.5
repair 106 46 614 69.7 14.7 24.3 91.7
out 21682 1899 71 87.7 95.9 92.1 12.5
overall performance 762 71 1899 81.5 27.6 41.2 75.0

Cor Ins Del Prec Rec F SER

Recognition

ip 38 53 663 41.8 5.4 9.6 102.1
interregnum 209 68 38 75.5 84.6 79.8 42.9
reparandum 6 4 1113 60.0 0.5 1.1 99.8
repair 21 25 678 45.7 3.0 5.6 100.6
out 18152 2451 109 88.1 99.4 93.4 14.0
overall performance 274 109 2451 64.6 9.9 17.2 94.0

Table 4.15: Detailed Multi-class classification CART alignment results obtained while including FP and
FRG as features.

For the alignment data experiments, performed while including filled pauses and fragments as fea-

tures, the best results are achieved by CART, obtaining the best precision, recall and, SER records.

Logistic Regression shares the best recall record with CART, however, the corresponding performance

for precision and SER remains bellow those obtained by using the latter approach. Multilayer Perceptron

also performs consistently worse than CART in this case, as does J48.

For alignment, discarding filled pauses (FPs) and fragments (FRGs) results in large losses for all

methods. CART suffers a severe precision loss followed by a less sharper recall decay, the correspond-

ing SER also denounces a high performance impact related with the usage of raw recognition transcripts.

J48 obtains a worse precision and SER, showing this method performs lower than CART. CART obtains

a better precision and SER, but also a lower correction amount. Multilayer Perceptron achieves a worse

SER value than CART. Logistic Regression achieves the lowest error, but also the lowest correction

amount. The results show that Multilayer Perceptron achieves a smaller number of corrections in com-

parison to J48, also a proportionally higher amount of deletions. In sum, for these conditions CART

represents the best approach for increased precision, and MP is best for increased recall, performing
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Classified as ip interregnum reparandum repair outside disf
ip 271 0 19 5 425
interregnum 0 366 0 0 1
reparandum 58 0 19 14 865
repair 0 3 3 106 608
outside disfluency 24 9 11 27 21682

Table 4.16: Multi-class classification result matrix of CART results, obtained using forced alignment data
and including FP and FRG as features.

better in terms of SER than J48, while at the same time obtaining more corrections.

For the experiments that used recognition data, while including filled pauses and fragments as fea-

tures, Logistic Regression presents solid results, performing well in the presence of noisy data, obtaining

the lowest SER, good precision and also a larger ROC area in comparison to Multilayer Perceptron. In

this case CARTs and Multilayer Perceptron share the best option, whereas the former presents better

SER and precision while the latter increased correct slot classifications and higher recall values. In com-

parison to J48, Multilayer Perceptron presents a higher insertion rate, but this is compensated by the

corresponding lower deletion values. Naïve Bayes remains the worst option, presenting a much higher

SER record than the remaining approaches.

For recognition, the removal of FPs and FRGs results in much less abrupt recall losses than for

alignment, although the results fall by half and rely below 10 units. The precision metric suffers dilated

losses in a generalized way. J48 obtains the best SER record, but Multilayer Perceptron achieves the

best precision, recall and, corrections amount, achieving the best slot oriented performance. Logistic

regression presents a balanced choice, but still weaker than either Multilayer Perceptron or CART. CART

outperforms J48, obtaining a better correction rate, followed by a well bellow amount of insertions, which

does not reflect much in the corresponding deletions, and also a higher amount of corrections. The

results corresponding to Naïve Bayes are somehow very poor, in the sense that this approach takes a

huge amount of error, resulting in very high rates for corrections and insertions.

Table 4.15 comprises results for the multi-class experiments achieved using CART, for both forced

aligned material and raw ASR transcriptions. From all the structural elements related to disfluency, the

interregnum region is by far the easiest to detect for both data conditions. This behavior was expected

since information about FPs and FRGs is being provided as features, which are known to strongly popu-

late this zone. The reparandum region presents very low classification outcomes, specially when facing

recognition data, presenting a very low recall in both cases.

Detecting the interregnum produces the worst classification results, which is expected, due to the

resemblance the elements contained present to fluent material. The surrounding regions to an interrup-

tion point are often referred in the literature as containing good cues for detecting disfluencies, which

is attributed to corresponding characteristic contours known to populate the surrounding word regions.
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For the alignment data, the results for this element generate good f-measure and SER records, which

is attributed to the fact that the interruption point is often followed by FPs, and sometimes preceded by

FRGs, for which information is included as features.

The corresponding results for recognition reveal sharp performance decreases. The repair region

presents considerably better results than the reparandum, obtaining more corrections and less deletions,

but the performance achieved is still quite weak. For detecting the repair, considerably high precision is

achieved, resulting in marked recall losses. In order to improve the recall rate for classifying this zone,

a more deep word context analysis is needed. The corresponding results for recognition show marked

reductions in both recall and precision, presenting an SER exceeding 100 units.

In Table 4.16 the line concerning the elements outside a disfluency refers to elements that were not

considered one of the 4 possible structural elements of a disfluency, and correspond to non-slots. The

matrix present in this table concerns the alignment results achieved using CART, showing the interreg-

num region is the easiest to detect producing only one insertion. Follows the interruption point region,

also presenting a high number of corrections, but also a high number of substitutions, pointing out that

an improved representation strategy can improve the detection of this zone. The next successful classifi-

cation zone is the repair, presenting considerably higher perplexity than the one seen for the interruption

point. The classification of other words inside disfluency presents the highest perplexity, showing more

propensity towards deciding for the interruption point region than for in-disf or repair, but still the ’outside

disf’ category massively retains classifications, since these words might resemble words that occur out-

side disfluencies. The majority of classifications are oriented towards elements that are placed “outside

of a disfluency”, which is the most common situation in the corpus.

The performance for each of the individual structures is even better than performing each one sep-

arately, but the result matrix shows that the results are still much influenced by the number of deletions.

The overall performance is affected by the low detection performance for the reparandumwords, because

most of such words are in fact fluent and thus difficult to distinguish from words outside of a disfluency

(Nakatani and Hirschberg, 1994; Shriberg, 2001).

4.3.7 Summary of Results

The present subsection comprises a summary of results obtained in the previously described ex-

periments. For the alignment data binary experiments, Logistic Regression outperforms Multilayer Per-

ceptron, performing better while risking roughly the same, showing a tendency towards producing the

best results when facing noisy data. These methods presented a clear tendency towards performing

better when facing recognition data while either exempting filled pauses and fragments as features or

not, which are known to strongly characterize the disfluent region. Logistic Regression tends to achieve
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close results to the decision trees, while requiring far less time. However, for the repair region, Logistic

Regression does not perform acceptably against the recognition data, Multilayer Perceptron does not

run any better in this case. For the detection of the disfluent region as a whole, which is a very gen-

eral classification in terms of heterogeneity, Logistic Regression reveals comparable performance to the

Decision Trees.

Results for the overall binary classifications point the decision trees as the most reliable approach,

revealing that CART’s provide better precision and SER, while J48 provides better recall and f-measure.

Logistic Regression produces similar results to both CART and J48, although slightly lower. Multilayer

Perceptron results in much lower precision than both the decision trees and Logistic Regression. Naïve

Bayes doesn’t seem sensitive to this type of data, since it performs similarly for both alignment and

recognition, resulting in very low precision and SER ratings. As for the alignment, Multilayer Perceptron

proved to be better for both data-set conditions. For recognition data, Logistic Regression and Multilayer

Perceptron tend to provide better performance. In line with J48, Multilayer Perceptron tends to risk much

towards the classification of the less prevalent element, resulting in high recall but reduced precision,

specially for the alignment data. Multilayer Perceptron tends to perform better when facing noisy data,

achieving good results for detecting the whole disfluent region.

The multi-class classifications reveal conflicting results regarding the binary classifications. For

alignment, CARTs provide the best results, obtaining the best records for insertions, substitutions, preci-

sion, f-measure and, SER. In this case, Logistic Regression performs similarly to Multilayer Perceptron,

and better than J48. For recognition, CART and Logistic Regression achieve the best records, revealing

once again the latter’s potential to perform well towards noisy data, while producing timely results. Naïve

Bayes consistently obtains the poorest results showing a consistent tendency towards slot classification,

generating very high insertion values in relation to the other approaches. This denounces a hight level

of risk acceptance, leading to high recall values, and also very high slot error rates, resulting in drastic

performance reductions. The build time consumed by Naïve Bayes tends to decrease proportionally to

the increase in the number of slots, as seen in the multi-class classifications results, which also seems to

support the view that Multilayer Perceptron is very conductive to risk acceptance. However this is not the

case for the interregnum region while using the alignment data, for which Naïve Bayes was the second

most costly approach in therms of time consumption. In general the decision trees suffer accentuated

performance losses when facing recognition data. This relates to a corresponding disjunctive nature,

that leads to less tolerance to strange elements that income from the ASR, which may resemble learned

elements. The repair results confirm this fact, since for recognition the best methods for dealing with

reliable information are the decision trees. Note the repair region is mostly composed of fluent elements.

In general CARTs and J48 achieve the best records when facing forced aligned material, generally

achieving better precision records, while Logistic Regression and Multilayer perception tend to perform
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Feature inDisf ip int. repair All
1 num.syl.w0 ��� ����� �����
2 duration.racio.w0.w1 ����� ����� ����� ����� �����
3 equality.w0.w+1 ����� ����� ����� ����
4 b.sil.racio.w0.w+1 ����� ����� ����� �����
5 p.med.ratio.w0.w+1 ���� �� ����� ���� �����
6 conf.w0 ����� ���� ���� ���� ���
7 equality.w0.w−1 ����� ���� ��� ����� ����
8 e.med.ratio.w0.w+1 ���� ��� ���� �� ����
9 num.phones.w0 ���� �� ���� ����
10 e.slope.w0w+1(RR) ��� ����� � �� ��
11 b.sil.comp.w0.w+1(>) ��� ���� ���� ��� ���
12 conf.w+1 �� � ���� ����
13 b.sil.comp.w0.w+1(<) ���� ��� ���� �� ���
14 e.slope.w0w+1(FF ) ��� ���� �� ���� �
15 p.slope.w0w+1(R−) ��� � ��� ���� ���
16 b.sil.comp.w0.w+1(=) ���� ���� ��� �� ��
17 p.slope.w0w+1(RF ) �� �� ��� � ���
18 pslopes : RFcw,fw � � �� ��� ��
19 e.slope.w0w+1(RF ) � ��� � � �
20 e.slope.w0w+1(R−) ���

Table 4.17: Top 20 most influent features for forced alignment obtained while discarding FP and FRG.

better when facing noisy data, and also when facing a poorer set of features. Although based on these

metrics the performance of the multi-class experiments seems to be lower than the ones achieved for

the disfluent regions individually, an analysis performed in the following section on the same results

reveals that the performance achieved for each individual region is superior to accounting for the region

individually in binary classifications. Regarding the binary classifications, we observe a clear trend in the

Decision Tree’s behavior, CARTs produce better precision and SER records, while J48 provides better

recall and higher correction rates. This trend tends to prevail while facing both forced alignment, and

automatically recognized data types. For alignment, CARTs tend to only classify slots in the presence

high assurance levels. In contrast, J48 risks much more towards data of this kind. For the repair region,

J48 seems more accurate than CARTs when facing data with few cues such as the repair region, on

which J48 performs slightly better for both recognition, and alignment data.

4.3.8 Feature Impact Analysis

In order to access the influence of the adopted features on the classification, the approach relies on

the analysis of the tree generated by CARTs. In general, the set of features that proved most informative

for cross-region identification encompasses word duration ratios, word confidence score, silent ratios,

and pitch and energy slopes. Moniz et al. (2009, 2011a) use the same university lectures corpus subset

also used in the present study and concluded that the best features to identify whether an element should

be rated as fluent or disfluent are: prosodic phrasing, contour shape, and presence / absence of silent
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Feature inDisf ip int. repair All
1 fragment ����� ����� ����� ����� �����
2 filled.p ����� ����� ���� ����� �����
3 num.syl.w0 ����� �����
4 dur.ratio.w0.w+1 ���� ����� ��� ���� ����
5 equality.w0.w+1 ����� ����� � ����� ����
6 conf.w0 ����� ���� ����� ���� �����
7 b.sil.ratio.w0.w+1 ��� ����� ����� ����
8 p.med.ratio.w0.w+1 ��� ���� ���� ����
9 conf.w+1 ��� ���� ���� ���� ����
10 e.med.ratio.w0.w+1 ���� ���� ��� � ���
11 filled.p.w+1 ��� ���� �� ���
12 equality.w0.w−1 ���� ���� ���� ��
13 p.slope.w0.w+1(F−) ���� ���
14 num.phones.w0 ���� �� ���� ��
15 e.slope.w0.w+1(RR) ���� ��� ��
16 p.slope.w0.w+1(FR) � ��� ��� ���
17 p.slope.w0.w+1(R−) �� �� ��� ��� ���
18 e.slope.w0.w+1(FF ) �� �� ��� �
19 p.slope.w0.w+1(FR) � ���
20 b.sil.comp.w0.w+1(=<) ��� � �� �

Table 4.18: Top 20 most influent features for forced alignment, obtained while considering FP and FRG.

pauses.

As shown in Table 4.17, for the experiments that excluded filled pauses (FPs) and fragments (FRGs),

features such as num.syl.w0, num.phones.w0, p.med.ratio.w0.w+1 and, dur.comp.w0.w+1, proved to be

more useful for the identification of the interregnum, whereas energy slopes were most suited for identi-

fying the interruption point, although these tend to be confounded with the repair. For detecting the repair

while excluding these features, the most reliable cues are, conf.w0, e.slope.w0.w+1, p.slope.w0.w+1 and,

equality.w0.w−1. The best features for discriminating the disfluent region are, conf.w0, dur.ratio.w0.w+1

and, word equality comparisons. For detecting all disfluency related regions simultaneously (reparan-

dum, interruption point, interregnum, repair), including a slot for words outside of disfluency and exclud-

ing FPs and FRGs, the most relevant features are num.syl.w0, dur.ratio.w0.w+1, b.sil.ratio.w0.w+1 and

p.med.ratio.w0.w+1.

The best features for the experiments performed including FPs and FRGs are displayed in Table

4.18. For the interruption point task, performed including FPs and FRGs as features, the best fea-

tures in terms of zone differentiation potential are, p.slope.w0.w+1 and e.slope.w0.w+1, although the latter

also strongly characterizes the repair region. Another feature that is also very representative of both

these regions is equality.w0.w+1. In terms of distinguishable characteristics between zones, the best

features for detecting the interregnum when including FPs and FRGs are: num.syl.w0, num.phones.w0

and, p.slope.w0.w+1. The best features for detecting the repair region, when including FPs and FRGs

are, e.slope.w0.w+1, and b.sil.ratio.w0.w+1. For detecting the disfluent region in it’s totality, while in-
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time(sec.) overall perf. detailed slot performance
train test acc. kappa cor ins del prec rec F SER ROC

ZeroR 0.1 2.1 98.42 0.00 0 0 388 0.50
Simple CART 1257 1.7 98.82 0.55 179 80 209 69.1 46.1 55.3 74.5
J48 1800 1.9 98.87 0.60 217 107 171 67.0 55.9 61.0 71.6
Logistic Regression 33 2.1 98.74 0.47 139 59 249 70.2 35.8 47.4 79.4 0.98
Multilayer Perceptron 3516 7.9 98.71 0.55 201 129 187 60.9 51.8 56.0 81.4 0.97

Table 4.19: Performance Analysis on Predicting filled pauses

cluding FPs and FRGs, the most relevant features are, conf.w0 and equality.w0.w+1. Features such

as dur.ratio.w0.w+1, e.med.ratio.w0.w+1 and, equality.w0.w−1, are also highly relevant. In terms of

weight the best features for the multi-class experiment when including FPs and FRGs are num.syl.w0

and conf.w0, but dur.ratio.w0.w+1, b.sil.ratio.w0.w+1 and, p.med.ratio.w0.w+1, are also highly relevant.

4.4 Filled Pause Detection

This subsection studies the viability of automatically identifying filled pause events (FP), based on

both the existing audio segmentation given by the recognizer, and additional prosodic features. The

study of filled pauses (FPs) is motivated by the fact that these are very frequent in several European

Portuguese speech domains analyzed in previous work, and also because these are generally described

in the literature as the most frequent event.

The lexicon of the ASR AUDIMUS (Meinedo et al., 2003; Meinedo, 2008) was recently upgraded

with entries containing possible phonetic sequences for a FP. Such additional entries made it possible to

automatically detect these structures. Experiments used the same conditions used in previous sections,

except for the exclusion of FPs and fragments from the feature set, and the abandonment of Naïve Bayes,

since this approach consistently performed poorly in the previous experiments. The tests in this section

exclude fragments (FRGs) as cues, in order to explore the impact of the proposed prosodic features on

the FP detection task.

Table 4.19 summarizes the classification results, which are analyzed using metrics described in

Section 4.1. The second and third columns of this table report on the time (seconds) taken for training

and testing the models, revealing that Logistic Regression is considerably faster on the training phase

in comparison to the other methods, performing 38 times faster than any other approach. The values

presented in the remaining columns consider only slots, which in this case are FPs, corresponding to

more meaningful performance metrics, as described in Section 4.1. The high accuracy values present in

Table 4.19 point that the data is highly unbalanced. In fact regular words correspond to 98.42% of the total
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Cor Ins Del Prec Rec F SER
Current ASR system 223 146 140 60.4 61.4 60.9 78.8
J48 217 107 171 67.0 55.9 61.0 71.6

Table 4.20: Current ASR Results.

events, which poses increased difficulty for the classification task. J48 is clearly the best suited method

for this task, achieving simultaneously the highest percentage of overall correct classifications and the

best performance when considering slots only. This method generates a fairly low amount of insertions

and deletions, while achieving a significantly higher number of correct instances than the remaining

methods. Logistic Regression obtains a contrasting highest precision, and lowest recall, resulting in a

very low f-measure record. The tree based approaches (CART / J48) consume approximately half the

time of Multilayer Perceptron (MP) for model training, while achieving better performance.

4.4.1 Feature Impact Analysis

In order to access the influence of the adopted features on the classification of filled pauses (FP),

the tree generated by J48 is analyzed. A total of 498 leaves are produced, but the top most decisions

in the tree lead to the set of most informative descriptors. Following are the features sorted by order or

relevance for the classification of FPs: i) confidence score of the current word; ii) current word is com-

posed of a single phone and is lengthier than the following word and; iii) current word has adjacent silent

pauses, plateau pitch contours; and iv) current word maximum energy. The obtained findings are inline

with work for English, reported by O’Shaughnessy (1992) and Shriberg et al. (1997), a.o., since adjacent

silent pauses, plateau pitch contours, and constant energy values stand out as the most discriminant

features. The fact that European Portuguese shares with English those properties represents a contri-

bution more to cross-language understanding, than for the goals pursued in the present work. What this

study adds, is the crucial importance of two features: the confidence level and the number of phones.

4.4.2 ASR Approach Comparison

This section comprises results and analysis for comparing the best outcomes of the proposed ap-

proach for detecting filled pauses (FP), achieved with J48, and the currently implemented ASR approach,

aiming at assessing whether an approach that uses prosodic features may be useful for extending our

current system. The results achieved represent a parallel way to assess the prediction of FP in the ASR

system. The lexicon of the ASR AUDIMUS (Meinedo et al., 2003; Meinedo, 2008) was recently upgraded

with entries containing possible phonetic sequences for a FP. Such additional entries made it possible
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to automatically detect these structures. Experiments use the same data subset used in the previous

sections, and Table 4.20 comprises the resulting data.

Results are quite similar in terms of f-measure. The precision and recall metrics show a much more

dilated discrepancy, still the current ASR system tends to perform similarly in terms of both precision

and recall. J48 achieves a significantly higher precision, while the current ASR approach better recall,

revealing a higher propensity for error in the latter case, which becomes obvious based on the analysis

of the corresponding SER. It is also noteworthy the impact of including FPs in the lexicon with alternative

pronunciations achieved by the ASR. Results suggest that combining both approachesmay lead to better

performances.

4.4.3 Filled Pause Conclusion

This section presented a number of experiments aimed at automatically detecting filled pauses (FP)

in a corpus of university lectures, using four different machine learning methods: CART, J48, Logistic

Regression, Multilayer Perceptron. The aim relies on assessing how well a system relying on prosodic

features can complement or outperform the current ASR FP detection system, which is based on adding

possible phonetic sequences of FPs to the lexicon of the recognizer. The Experiments described in 4.3

assumed that information about FPs was previously given by a manual annotation. The experiments

presented in this section represent a step forward automatically detecting disfluencies, since the perfor-

mance for automatically calculating FPs information is now given. Although both approaches perform

quite similarly in terms of f-measure, the SER is almost 7% (absolute) better for J48. The best results

are achieved by J48, inline several literature forecasts (Shriberg, 1994; Nakatani and Hirschberg, 1994;

Shriberg et al., 1997).

Several variables difficult the process of comparing results with further work, namely: corpora dif-

ferences, languages, domains, and evaluation setups. From a linguistic point of view, Portuguese FPs

are often ambiguous with very frequent functional words. The filled pause “aam” is also ambiguous with

verbal forms due mostly to possible vowel reduction or deletion in the word final position, as well as with

acronyms. As another example note the filled pause “mm” may be recognized as the article “um” / ’a’,

or the cardinal number “um” / “one”.

From a state of the art perspective, this work does not include phoneme related information, part-

of-speech, syntactic and other multimodal information. This study shows that prosodic features alone

produce results comparable to accounting for these phenomena using both language (syntactic) and

acoustic models.
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5Conclusion

The work described in this dissertation presents a number of experiments focusing: on the automatic

identification of disfluent sequences, on distinguishing between their structural elements, and on the

filled pause (FP) detection task. Different machine learning methods have been tested, using a corpus

of university lectures in European Portuguese.

Initial experiments target the detection of all zones related to disfluency, performing comparisons

between alignment and recognition data results, and also for the impact of FPs and fragments (FRG)

under both data conditions. To the best of our knowledge, this is the first work that automatically identifies

disfluencies and their structural elements for a Portuguese corpus using a machine learning approach

and using mostly prosodic cues, and represents an important step in the development of this kind of

systems for our language. The results for these experiments using alignment data and including filled

pauses and fragments as features, show that the performance achieved for detecting words inside of

disfluent sequences when FP and FRG are used as a features, is about 91% precision and 37% recall,

corresponding to the CART results. Multilayer Perceptron presents the best approaches for increased

recall, while Logistic Regression achieves the most balanced results, while performing much faster in

the building phase. Results for this region achieved by CART, while removing FPs and FRGs from the

alignment experiments, show precision lowers to 66% and recall to 20%, respectively, stressing the

importances of these cues.

The results of the alignment experiments regarding the detection of disfluent sequences, while ex-

cluding FPs and FRGs, suggest that CARTs and Logistic Regression can achieve similar results. While

CART tends to achieve better precision, Logistic Regression accounts for increased recall. Logistic

Regression presents the best choice in terms of computational effort, performing much faster than the

remaining classification approaches on the binary classifications. The best approach for detecting dis-

fluencies while using recognition data and including filled pauses and fragments belongs to Multilayer

Perceptron for recall, and Logistic Regression for increased precision. Results for detecting the disfluent

region, achieved without filled pauses and fragments and using the alignment data, reveal that Multilayer

Perception represents the best approach for both recall and SER. LR achieves good precision but also

a very low recall. CARTs seem to outperform Logistic Regression on the FP and FRG disproved exper-



iments, however, the SER obtained by Logistic Regression remains below the records achieved by the

decision trees.

Results for the overall binary classifications concerning the alignment data, point the decision trees

as the most reliable approaches, revealing that CART’s provide better precision and SER, while J48

provides better recall and f-measure. Logistic Regression produces similar results to both CART and

J48, although slightly lower. Multilayer Perceptron results in much lower precision than both the decision

trees and Logistic Regression. Naïve Bayes doesn’t seem sensitive to this type of data, since it performs

similarly for both alignment and recognition, resulting in very low precision and SER ratings. As for the

alignment, Multilayer Perceptron proved to be better for both data-set conditions.

The multi-class classifications reveal conflicting results regarding the binary classifications. For

the alignment experiments that excluded filled pauses and fragments, CARTs provide the best results,

obtaining the best records for insertions, substitutions, precision, and also f-measure and SER. For

recognition, including filled pauses and fragments, shows that in this case the best choice is J48 for

increased correction rates, and Multilayer Perceptron if a higher recall is preferred. Interestingly, better

results are achieved for the classification of the distinct disfluency zones than for the binary classifications

of these zone individually, showing that accounting for all disfluent regions simultaneously results in

enhanced disambiguations.

Concerning the detection of the disfluent parts of a disfluency, the interregnum region is the easiest

to detect, maintaining this position even when unreliable transcripts and the FPs and FRGs, resulting

in the best classification performance under all condition combinations. Follows the interruption point

region, presenting a high number of corrections, but also a high number of substitutions, pointing that an

improved representation strategy can improve the detection of this zone. The next successful classifica-

tion zone is the repair, presenting considerably higher perplexity than one registered for the interruption

point. The classification of other words inside disfluency presents the highest perplexity, showing more

propensity towards deciding for the interruption point region than for both in-disf or repair, but still the

’outside disf’ category massively retains classifications, since these words might resemble words that

occur outside disfluencies. The vast majority of classifications are oriented towards elements that relay

“outside of a disfluency”, the most common situation in the corpus.

The set of features that proved most informative for cross-region identification encompasses word

duration ratios, word confidence score, silent ratios, and pitch and energy slopes. The interruption point

is best distinguished by energy slopes, whereas features such as the number of phones and syllables

per word proved to be more useful for the identification of the interregnum. The proposed feature set

generates acceptable results for discriminating the interruption point and repair, resulting in reasonable

precision (53% and 64%, respectively), but the recall metric is transversely negatively impacted. In

general, the results show that the most expressive features are confidence scores, word duration ratio,
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and knowing when words are equal. On the other hand, features like number of syllables, and number of

phones have more impact in specific tasks. Features such as pitch shapes, energy slopes and, silence

and duration comparisons, proved to be very informative.

As for the experiments aimed at detecting FPs, the best results are achieved by J48, inline with

several literature previews (Levelt, 1989; Liu and Shriberg, 2007; Liu et al., 2006; Makhoul et al., 1999).

In these experiments Naïve Bayes is abandoned, since it consistently performed poorly on previous

classifications. In order to access how well a system relying on prosodic features could complement or

outperform the current ASR filled pause detection system, the best approach (J48) is compared to the

in-house implemented solution, revealing that J48 accounts for better precision, while the ASR solution

produces better recall. The f-measure values achieved are quite similar, but the SER metric shows

the proposed approach is almost 7% absolute better, which might be a more appropriate metric. The

main outcome of the FP experiments concerns the fact that prosodic features by themselves do have a

strong impact in this task, comparable to accounting for these phenomena in both language and acoustic

models. Following are the features sorted by order or relevance for the classification of FPs: i) confidence

score of the current word; ii) current word is composed of a single phone and is lengthier than the following

word; and iii) current word has adjacent silent pauses, plateau pitch contours; and iv) current word energy

maximum. This comes inline with findings for English, reported by O’Shaughnessy (1992); Shriberg et al.

(1997). From a state-of-the-art perspective, this study does not include phone related information, part-

of-speech, syntactic and other multimodal information. The present study demonstrated that prosodic

features by themselves do have a strong impact in the task of detecting FPs, producing comparable

results to accounting for these phenomena in both language and acoustic models.

Future experiments will focus on performing similar experiments with two existent Portuguese cor-

pora (broadcast news and map-task), complementing the on-going cross-domain analysis. Additionally,

we are planning a similar work for distinguishing between disfluency locations and punctuation marks.

In what concerns FPs, in the future the intent relies in combining this proposal with the current ASR sys-

tem for better identifying FPs in European Portuguese, and also in the exploration of additional lexical

features, as an attempt to improve the FP detection task. Future experiments will apply the proposed

system for tasks such as charactering speaking styles and even the speaker. There are several ma-

chine learning approaches that have performed well on previous work, such as Conditional Random

Field (CRF). Therefore, there is also the intent of experimenting other classification approaches such as

Conditional Random Fields.
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