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Resumo

Este estudo insere-se no campo da Análise Discriminante Discreta (ADD) propondo uma combinação de
modelos, uma vez que se tem verificado que, em geral, a sua aplicação conduz a métodos mais estáveis
e robustos. O trabalho que se apresenta é particularmente focado no caso em que se dispõe de classes a
priori mal separadas e/ou amostras de pequena ou moderada dimensão, situações em que a tarefa de ADD
é mais difícil.
Procura-se com esta contribuição, ultrapassar a dificuldade de estimação de um grande número de
parâmetros em ADD e encontrar classificadores que melhor se ajustem aos dados em estudo, uma vez que
os erros de classificação obtidos por vários modelos não ocorrem sobre os mesmos objetos (Sousa Ferreira,
2000; Brito, 2002 e Brito et al., 2006).
Com este objetivo, propusemos uma combinação de dois modelos com especificidades diferentes, o Modelo
de Independência Condicional (Goldstein and Dillon, 1978) e o Modelo Gráfico Decomponível (Celeux
and Nakache, 1994; Pearl, 1988).
Tendo-nos deparado, em diversas aplicações do modelo proposto, com um número demasiado elevado
de variáveis explicativas face à dimensão da amostra considerada, direcionámos o trabalho na procura de
métodos de seleção de variáveis de forma a reduzir a complexidade dos dados a analisar.
Houve, ainda, necessidade de avaliar o impacto de alguns fatores no desempenho dos classificadores
propostos, nomeadamente: relação entre as variáveis explicativas intra-classes; grau de separabilidade
entre as classes; classes balanceadas ou não balanceadas; número de estados omissos e dimensão da amostra.

Palavras-Chave: Análise Discriminante Discreta; Combinação de modelos; Modelo de Independência
Condicional; Modelo Gráfico Decomponível; Modelo de Emparelhamento Hierárquico.

Classificação: C100; C400
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Abstract

This study falls within the scope of Discrete Discriminant Analysis (DDA) and proposes a combination
of models since, overall, its application has been found to lead to more stable and robust methods. The
work focuses particularly on the case where there are poorly separated a priori classes and/or small or
moderate-sized samples which tend to present more difficulties for the DDA task. This contribution sets
out to overcome the difficulty of estimating a large amount of DDA parameters and to find classifiers which
are better suited to the data under study, given that the classification errors obtained by diverse models do
not occur on the same objects (Sousa Ferreira, 2000; Brito, 2002 and Brito et al., 2006).
To this end, we have proposed a combination of two models with different specificities, the First-order
Independence Model (Goldstein and Dillon, 1978) and the Dependence Tree Model (Celeux and Nakache,
1994; Pearl, 1988).
In several applications of the proposed model, we were confronted with an excessive number of explanatory
variables in relation to the sample size under study. Therefore, our work has been geared towards seeking
variable selection methods, so as to reduce the complexity of the data to be analysed. It was also necessary
to evaluate the impact of certain factors on the performance of the proposed combined model, namely the
relationship among intra-class explanatory variables; the degree of separation between classes; balanced or
unbalanced classes; number of missing states and sample size.

Keyword: Discrete Discriminant Analysis; Combined models for classification; First-Order Independence
Model; Dependence Trees Model; Hierarchical Coupling Model.

Classification: C100; C400
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Sumário Executivo

Este estudo insere-se no campo da Análise Discriminante Discreta (ADD), usando uma abordagem pela
combinação de modelos, com o objectivo de encontrar classificadores que melhor se ajustem aos dados em
estudo, uma vez que os erros de classificação obtidos por vários modelos não ocorrem sobre os mesmos
objetos (Sousa Ferreira, 2000; Brito, 2002 e Brito et al., 2006).
Em ADD, existe frequentemente um problema de dimensionalidade dado o grande número de parâmetros
a estimar que os modelos mais naturais em classificação discreta exigem, particularmente porque estes
métodos são frequentemente aplicados nas áreas das Ciências Sociais e Humanas ou da Medicina onde
as amostras são geralmente de pequena dimensão face ao número de variáveis explicativas a analisar.
A investigação desenvolvida visa, pois, contribuir para a resolução deste problema de dimensionalidade
procurando conduzir assim ao incremento da precisão dos modelos.
O presente trabalho decorreu naturalmente do trabalho desenvolvido por Sousa Ferreira (2000), e propõe um
modelo que se define como uma combinação linear convexa dos modelos First-order Independence Model
(FOIM) (Goldstein and Dillon, 1978) e Dependence Trees Model (DTM) (Celeux and Nakache, 1994;
Pearl, 1988), usando um único coeficiente β, (0 ≤ β ≤ 1), supondo-se a independência entre as variáveis
explicativas dentro de cada classe no primeiro modelo e tendo em conta as interações entre as variáveis
explicativas no segundo. Para conhecer o campo privilegiado de aplicação da combinação FOIM-DTM o
desempenho do modelo foi avaliado quer sobre dados reais, quer sobre dados simulados.
No início deste estudo vários conjuntos de dados reais foram analisados. Foi determinada, no caso de
pequenas amostras, a vantagem das combinações FOIM-DTM face ao algoritmo CART.
No decorrer da investigação tornou-se pertinente considerar métodos de seleção de variáveis de forma a
reduzir a complexidade dos dados a analisar. Concluiu-se que a seleção de um pequeno subconjunto de
variáveis é capaz de produzir resultados com precisão idêntica ao conjunto inicial de variáveis, reduzindo
drasticamente o custo computacional. Um primeiro estudo sobre dados simulados foi realizado sobre 8
conjuntos de dados (com 2 e 4 classes, pequena e moderada dimensão das amostras e graus diversos
de interdependência entre as variáveis preditivas) e um conjunto de dados reais. Nele, comparou-se
o desempenho de diversas combinações FOIM-DTM com o de Random Forests. Concluiu-se que o
desempenho da combinação FOIM-DTM excede consistentemente o desempenho das Random Forests
nas amostras de pequena dimensão. Num estudo final, bastante exaustivo, sobre 540 conjuntos de
dados simulados, controlaram-se diversos fatores de complexidade associados á tarefa de classificação e o
desempenho da combinação FOIM-DTM foi analisado em comparação com os modelos singulares (FOIM
e DTM). Verificou-se então que a combinação FOIM-DTM revela efetivamente o seu interesse no caso de
amostras de muito pequena ou pequena dimensão e classes a priori mal separadas. Foi ainda possível, no
mesmo estudo, ordenar os fatores de complexidade de acordo com o seu nível de impacto no desempenho
do modelo: separação a priori entre classes, rácio entre o no de graus de liberdade e dimensão da amostra,
proporção de estados omissos na classe minoritária.
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Glossary

AD - Análise Discriminante
ADD - Análise Discriminante Discreta
ADL - Análise Discriminante Linear
ADQ - Análise Discriminante Quadrática
AFD - Análise Factorial Discriminante
BON - -Bonferroni Correction
CART - Classification and Regression Trees
DA - Discriminant Analysis
DDA - Discrete Discriminant Analysis
DTM - Dependence Tree Model
DFA - Discriminant Factor Analysis
FDR - False Discovery Rate
FMM - Full Multinomial Model
FOIM - First-order Independence Model
HI - Huberty Index
I - Mutual Information Index
HIERM - Hierarchical Coupling Model
LDA - Linear Discriminant Analysis
LR - Logistic Regression
MGD - Modelo Gráfico Decomponível
MHIB - Hybrid Model
MHIER - Modelo de Emparelhamento Hieráquico
MIC - Modelo de Independência Condicional
MMC - Modelo Multinomial Completo
PCA - Principal Component Analysis
QDA - Quadratic Discriminant Analysis
SVM - Support Vector Machines
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CHAPTER 1

Introduction

1.1 Introduction to Discriminant Analysis

The human being has always been led to group or categorize objects according to the characteristics that

distinguish them, and has used methods of varying degrees of complexity to do so. In fact, classification

problems frequently occur in the activity of human life. The interest in this area of study is extended to the

most diverse areas of activity, and is particularly important in the field of social and human sciences and

medicine where, for example, it is possible:

• to classify an e-mail message as spam or not;

• to decide whether to attribute credit to a particular bank client or not;

• to classify a patient in one of a number of defined classes a priori corresponding to different

diagnoses, thus enabling the initiation of treatment for the disease in question, while awaiting the

final results of clinical tests, etc.

Many Classification or Discriminant Analysis methods have been put forward, with a view to resolving

classification problems such as those previously illustrated. When referring to classification, we can specify

if it is supervised or unsupervised depending on whether the class to which each observed object belongs is

known. In unsupervised classification, the class of each object is unknown and the algorithms have to find

a structure in the data in order to group them in classes. Within the context of this study, classification is

referred to in the sense of supervised classification. In other words, the class to which each of the observed

objects belongs is already known.

The first known studies on the problems of classification go back to the 1920s, having emerged in the

context of broader studies geared towards recognising human races by means of skull measurements

(see Das Gupta, 1973). In 1936, Fisher introduced a definition of the discriminant function as being a

combination of P variables which maximises the gap between the average values of two populations, when

studying taxonomy-related problems. Hence, the first formulation for a discriminant analysis problem was

introduced and a methodology for its resolution was also presented. Later on, Welch (1939) and Wald

(1955) presented a Bayesian approach for the classification of two populations and showed that whenever

1



1. Introduction

there are underlying multivariate normal distributions with an equal covariance matrix, Fisher’s (Fisher,

1936; Welch, 1939; Wald, 1955) linear function leads to an optimal rule, thus minimising a posteriori error

probability. Given the prevalence of this issue in daily life, and the huge development of data processing

during the second half of the twentieth century, a number of researchers, not necessarily from the area

of Statistics, have since taken an interest in the subject. Many publications have emerged over the last

few decades. particularly with regard to the continuous case, in an attempt to propose new techniques for

classifying objects, described by several characteristics, in two or more a priori defined classes, so as to

obtain classification rules that are better suited to the behaviour of the data.

The classification issue has increasingly been approached and developed by researchers from a diversity

of areas, namely Statistics and Machine Learning. Naturally, these approaches use very specific language

such as, for example, the term inputs is used in Machine Learning to designate predictors, explanatory or

independent variables, commonly used expressions in Statistical literature. Analogously, outputs is the

term used for dependent or response variables, etc.

Nevertheless, the classification methods proposed by such various approaches share the same aims.

They set out to define rules so that any new observation may be classified into one of the a priori defined

classes, with greater precision than random decisions and applicable to a broader scope of problems.

Therefore, any one of the designations referred to in the literature on classification is generally used by

authors from different research areas. The classic statistical approach to classification problems considers

discriminant analysis models based on Fisher’s linear function, encompassing rather restricting assumptions

on the distribution of explanatory variables. A more current approach considers more flexible models

without imposing restrictions on the data under study.

The Machine Learning approach uses non-parametric methodologies that automatically learn from a

series of examples. Generally, such methodologies call for prior parametrisation, which should be referred

to by the analyst as being a result of his/her former experience. Methods such as decision/classification trees,

where the classification of an object depends on the sequence of logical steps, are examples of this approach.

Within the context of Machine Learning, methodologies based on representations of artificial neural

networks have emerged in analogy with the functioning of the human brain. These methodologies are

based on a representation network of several inter-connected neurons. In this case, learning is characterised

by the estimation of weights associated with the connections. The first neuronal network was proposed by

McCulloch and Pitts (1943) and reproduces the characteristics of a neuron. The back-propagation algorithm

is the most common training process of multilayer perceptron networks: the latter was the first learning

process in 1970 created by Werbos (1990), although it only became established after its re-discovery by

other researchers (Rumelhart et al., 1988).

Some of the most common classification methods are presented below.

2



1.2. Discriminant Analysis Methods

1.2 Discriminant Analysis Methods

1.2.1 Introduction

The problems of the aforementioned supervised classification fall under the scope of Multivariate Statistics,

referred to as Discriminant Analysis (DA), which includes methods for classifying new objects into one of

the classes defined a priori, according to the knowledge of several explanatory variables. DA can, therefore,

be seen as a statistical decision-making method that induces the use of probabilistic models to classify new

objects (for which the class to which they belong is unknown). However, DA can also have a descriptive

objective, when geared towards identifying the variables that best differentiate the a priori defined classes.

In such cases, geometric models based on Principal Component Analysis or Correspondence Analysis may

be used. Usually, the proposed models in DA give priority to the core aim (classification of new objects),

despite the concern of a number of authors in finding procedures to simultaneously classify new objects

and identify the most discriminative variables.

In a general manner, a Discriminant Analysis problem may be defined in the following way: In an

n-dimensional sample, X = (x1, x2, ..., xn) where xi represents the observation ith (i ∈ {1, ..., n}),
described by P variables, xi = (xi1, xi2, ..., xiP ), knowing the class to which each observation belongs,

among the K a priori defined classes and mutually exclusive, (C1, C2, ..., CK).

As already mentioned, in 1936 Fisher proposed the first discriminant function definition as a combination

of the P explanatory variables which maximizes the gap between the average values of the two classes

under study. This method set out to determine the line, in the case of 2 classes a priori, or the plane,

in the case of three classes, that maximised the gap between each class. In Figure 1.1, by means of the

well-known Iris dataset, the linear separability, observable between two of the three presented classes has

been illustrated (iris virginica, iris versicolor, iris setosa).

Figure 1.1: Iris Data

In DA we are able to distinguish several model types. For example, we may consider a geometric approach,

geared towards grouping the initial P variables into homogeneous K classes, with K<P analysing the

dispersion of data. Whenever we have a set of quantitative data, this method is referred to as Discriminant

Factor Analysis (DFA), defined by analogy with some multivariate dimensionality reduction methods such

3
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as the Principal Component Analysis (PCA), obtaining K-1 new variables as the linear combination of the

initial P variables, thus, reducing the dimensionality of the original data, but now in completely separate

classes. Whenever there are only two classes, the DFA determines a single factor that minimises variability

within classes and maximises variability outside them. This factor, the linear combination of the initial P

variables, coincides with Fisher’s linear function. Although these types of method are easy to use, they do

not enable calculation of the classification probabilities of new objects, nor do they provide necessarily

optimal solutions.

With a view to identifying the classification probabilities of a new object, new methods based on

Bayes’ theorem have emerged, and are referred to as probabilistic methods. These methods make it

possible to identify the a posteriori classification probability of a new object in one of the defined K classes

a priori. The a posteriori probability is given as:

P (x∗ ∈ Ck|X,π) =
πkfk(x∗|X)

K∑

k=1

πkfk(x∗|X)

, k = 1, . . . ,K (1.2.1)

where πk represents the a priori probability of the class Ck and fk(x) represents the probability function

of x for each k class.

Therefore, a new object x∗, will be classified into the k class of maximum a posteriori probability, thus,

minimising the classification error rate.

Naturally, in most classification problems, the a priori probabilities πk of each class and the functions

fk(x) are unknown. The various probabilistic methods differ in the way of estimating the probabilities πk
and functions fk(x) .

The estimation of a priori probabilities, πk generally varies according to the type of sampling carried out

in order to extract a population sample. In other words, if the sample is randomly collected, without taking

the class from which each object has come into consideration, the maximum likelihood estimators are used

πk = nk
n , where nk represents the dimension of class k. On the other hand, if the sample is the result of

joint independent k samples sized nk, and randomly selected within each population class, the maximum

likelihood estimators cannot be used and these probabilities a priori are regarded as equal for all classes,

namely πk = 1
K .

There are several ways of estimating functions fk(x) depending also on the type of explanatory variables

under study (continuous or discrete).

Fisher’s (1936) linear function proposal made no assumption regarding either the distribution of

explanatory random variables nor the covariance matrix, despite using the pooled covariance matrix S

to estimate the covariance matrix Σ. According to the developments of Welch (1939) and Wald (1955),

usually, whenever we have a classification problem with a set of continuous explanatory P variables, the

most common classification rule is based on Normal distribution.

Therefore, when the probability density functions fk(x) follow a normal p-dimensional distribution,

we may have two distinct situations: homogeneous variance/covariance matrices in the K classes

4



1.2. Discriminant Analysis Methods

or different variance/covariance matrices for each class. In the former, Bayes rule leads to a linear

classification rule referred to as Linear Discriminant Analysis (LDA) . In the latter situation, however,

Bayes rule leads to a quadratic rule, referred to as Quadratic Discriminant Analysis (QDA).

LDA is easy to use but considers assumptions that are too distant from reality, while QDA, more adapted

to the reality of most of the phenomena under study, is difficult to apply, since it requires the estimation of

many parameters.

Despite the fact that Fisher’s linear classifier presents satisfactory results when applied to problems

with linearly separable classes, the same may not be said when the data do not present this characteristic.

Furthermore, the normality assumption may frequently be very restricting, or even unsuitable, which has

led to a search for non-parametric methods to enable the estimation of the probability functions fk(x) in

each class, thus, overcoming this problem.

Another frequently used method in classification is Logistic Regression (LR) (Lemeshow and Hosmer,

2000). LR follows an approach that may be described as semi-parametric, whereby the a posteriori

probabilities and not the probability density functions, are estimated for each class. In other words, on the

basis of a set of continuous and/or discrete variables, it produces a model that enables the classification of

objects in a categorical variable frequently binary {0,1}. For example, in a binary case, the classification

probability is estimated in one of two classes (Y = 0 or Y = 1), in the following manner:

P (Y = 1) =
exp(β0 + β′x)

1 + exp(β0 + β′x)
(1.2.2)

where the parameters β are estimated on the basis of a sample, by the maximum likelihood estimators. This

function is then linearised from the transformation Logit.

As already mentioned, in order to overcome the limitations presented by the models that impose

conditions on the distribution of the variables under study, a number of non-parametric methods have

recently been suggested. Some of these are Kernel Methods and Nearest-Neighbors Methods or even other

types of non-parametric density function estimators, such as those based on maximum likelihood. Since the

first two models are the most commonly referred to in the literature, they are described in more detail below.

The Kernel (Shawe-Taylor and Cristianini, 2004) type methods are non-parametric methods to estimate the

probability density function fk(x), where each observation is considered according to the distance from

a central value, the nucleus. In other words, each xi observation is centred and a h parameter is defined,

which represents the nearest neighbour of xi, thus, taking all the neighbouring points into consideration for

estimation.

In general, the likelihood function estimators fk(x) may be represented in the following way:

f̂k (x | h) =
1

n

n∑

i=1

Kh(x− xi) (1.2.3)

where h represents the smoothing parameter that defines the proximity between these estimators and the

maximum likelihood estimator, whereby K(x) is the non-negative Kernel function which defines the

5
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contribution of each point xi.

Hence, this method will depend on the kernel function used. It is best to choose a function that will

facilitate the processing period, since these methods have been found to require a longer processing period

in comparison with the previously presented methods (Silverman, 1986).

The Nearest-Neighbors (Hill, 1967) type methods use the similarity principle, and set out to classify

unknown objects into the nearest class of similar objects. Therefore, the application of this method

requires a definition of the r number of the nearest neighbour and, consequently, the use of a distance

function between pairs of observations. The estimator of the r nearest neighbours (0 ≤ r ≤ p− 1), of the

probability function by class is given by:

f̂k (x∗ | X) =
# {xi ∈ Ck : ‖xi − x∗‖ ≤ r}

nk
, k = 1, . . . ,K (1.2.4)

This method is very lengthy in computer terms, since all the distances between a new object and each

element of the considered sample have to be calculated for construction of the model.

1.2.2 Other Approaches

As already mentioned, significant developments in the field of Computer Science as well as in the increased

volume and complexity of the data to be analysed have been observed, which raise new challenges regarding

the storage, organisation and analysis of data . This technological advance has led several researchers, from

a range of different areas, to search for methods enabling them to extract patterns, tendencies and important

information from the data.

So, new learning algorithms became available which are capable of predicting the class of a new

object, extracting knowledge from a data set . For example, classification rules may be implemented

through: Classification Trees ( e.g. using CART Breiman et al., 1984 or C4.5 Quinlan, 1993), the

most frequently mentioned in the literature), Random Forests (Breiman, 2001), Neuronal Networks (e.g

using Retropropagation, (Rumelhart, 1986), the most commonly used algorithm for learning based on

multi-layered networks) or Support Vector Machines (SVM) (Cortes and Vapnik, 1995).

One of the important issues in the application of these methods is obtaining reliable estimates of the

classification errors based on the new data. Therefore, after learning has been completed on the training

data, the classification rules should be applied in new cases (test cases) to verify the accuracy of the

obtained results. It is important to prevent an overfit to training data so that the algorithms may perform

well on test samples. In fact, a good classifier should be capable of the same accuracy when confronted

with both training data and new data (test data). Throughout the learning process, the possibility of using

a validation set - data that guide learning - is an added bonus. Naturally, in all these methods, a sufficient

amount of available data to make up the training , validation and test samples is required. Cross-validation

is a common alternative to be used to obtain reliable error estimates when available data is restricted.
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1.2. Discriminant Analysis Methods

Classification Trees

Classification trees are non-parametric methods , since they do not require assumptions on the distribution

of the variables under study. Trees make it possible to handle a large number of explanatory variables

of any nature (qualitative or quantitative) and include techniques for dealing with missing data. The

construction of a tree involves recursive partitioning of a data set. This partitioning process begins at the

root node (set of learning data) and creates a hierarchical structure which is developed from the root to the

leaves. On each level of the tree, decisions are made with regard to the following level, and the tree nodes

- data sub-sets - branch out in order to reduce their diversity (in relation to the target variable (classes)).

The predictive variables are partitioning instruments which enable divisions in the nodes, for example, on

the basis of their possible categorisations. Different methods propose different diversity measures of the

target variable, using different branching criteria. Furthermore, stopping rules for ending the partitioning or

ramification process, as well as the pruning criteria of tree branches vary according to the methodologies.

Classification and Regression Trees - CART

The CART (Breiman et al., 1984) algorithm for the construction of classification trees performs

binary recursive partitioning on the data set as a means to finding the most homogeneous data sub-sets

regarding the target variable (classes). This process begins at the root node, which includes all the objects

of the learning sample. The CART algorithm examines all the explanatory variables (and analyses all the

possible values these variables may have) in order to perform the first ramification in two descending nodes.

It then selects the variable and the corresponding categorisation that provides the highest diversity decrease

of the target in the descending nodes. More specifically, the CART uses the Gini index as a diversity

measure. The algorithm continues the binary ramification process until a stopping rule is imposed upon it.

Finally, a class is attributed to each terminal node, namely the modal class in the sub-set of observations

assigned to this node.

Interpretation of the results obtained by the CART method is simple, which is why it is a very popular

method in the areas of social and human sciences and medicine. However, it should be noted that whenever

the amount of available observations is low and/or not representative of the patterns in the population, the

CART method classification accuracy in the training set may be difficult to replicate in a test sample.

Random Forests

The Random Forests algorithm was developed by Breiman (2001) and combines the idea of "bagging"[1]-

constructing a forest with various trees on the basis of several samples with replacement of the initial

sample - with a random selection of predictive variable sub-sets for ramification in each node. This idea

was independently introduced by Ho (1995, 1998) and Amit and Geman (1997). Classification on the basis

of the forest or tree committee is finally conducted by means of a voting process (weighted or otherwise)

from several trees. In this case, precision estimates are not necessarily based on test samples since the

so called "out of bag" estimates are available: in each sample with replacement, the excluded cases are

used for testing and the corresponding classification errors are determined. On completion of the forest

construction process, all the original sample cases will have been potentially included in an "out of bag"

[1]The "bagging" idea will be developed further on in point 1.3.3, page 15
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1. Introduction

sample, and finally joined in the final confusion matrix.

The trees (and random forests) deal well with discrete data and accommodate the specificities of

their mensuration. As for the neural networks, the modelling of categorical variables generally involves

a neuron that corresponds to each category (with the inherent connections), which easily gives rise to

dimensionality problems in applications. Finally, it should be noted that the use of SVM in discrete data is

naturally hampered by the transformations the method proposes for the variables input.

1.3 Discrete Discriminant Analysis

1.3.1 Brief Introduction

As already observed, some of the presented classification techniques may be applied to classification

problems where the objects are described by quantitative or qualitative variables.

From the methods mentioned in point 1.2, the Kernel (Shawe-Taylor and Cristianini, 2004) type methods

and those that use the r Nearest neighbours (Hill, 1967), may be easily generalisable to the discrete case.

Logistic regression (Lemeshow and Hosmer, 2000), in accordance with the definition, may also be applied

to explanatory qualitative variables.

With the development of technologies, other types of approaches have emerged to address classification

problems, namely those described in point 1.2, Classification Trees (CART) (Breiman et al., 1984); Support

Vector Machines (Cortes and Vapnik, 1995) and Random Forest (Breiman, 2001). Among these, and due

to their nature, the CART algorithm and the Random Forest are models that can be applied to discrete

cases. Other models, such as the SVM (Cortes and Vapnik, 1995), in accordance with its definition, implies

an increase in the number of variables under study, thus, further complicating the problem of parameter

estimation, one of the main problems confronted by researchers in discrete discriminant analysis. However,

the specific problems of discrete classification have not been considered in the definition of these models,

in other words, where all the explanatory variables are qualitative. It only happens that these models are

applicable to the continuous case and to the discrete case.

Our research study falls within the scope of Discrete Discriminant Analysis, which has been far less

explored by research than the continuous case. Hence, some models and specific characteristics of discrete

classification problems will be presented.

Let us then consider a generic discrete classification problem defined in the following way: In the case of

an n-dimensional sample, X = (x1, x2, ..., xn) where xi represents the ith observation (i ∈ {1, ..., n}),
described by P qualitative variables, xi = (xi1, xi2, ..., xiP ), where the class to which each observation

belongs is known, from the K a priori defined classes, mutually exclusive, (C1, C2, ..., CK).

In this case, when we have P discrete variables the vector xi = (xi1, xi2, ..., xiP ) represents the ith

observation (i ∈ {1, ..., n}) and corresponds to one of the observed states. In other words, in the discrete

field, we resume the information of a data set by presenting the state matrix and respective observed

frequencies.

To exemplify:

Let us assume a problem with two classes and two binary explanatory variables: 0,1. The values observed

in this problem can only take on the following values: 00, 01, 10 and 11, which are referred to as observed
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1.3. Discrete Discriminant Analysis

states.

Therefore, in general terms, the data set under study is resumed in a state matrix whose dimension will

depend on the number of categories of each explanatory variable. In other words, for a sample composed

of P binary explanatory variables, the corresponding state matrix will have 2P states to analyse.

The distribution of observed frequencies is presented in Table 1.1, in a sample of 30 observations, described

by 4 binary variables for two defined a priori classes (n1 = 10 e n2 = 20).

Table 1.1: Distribution of the observed frequencies, by state and by class

State (x1, x2, x3, x4) C1 C2

Observ. Freq.Rel. Observ. Freq.Rel.
1 (0,0,0,0) 0 0.000 0 0.000
2 (0,0,0,1) 4 0.400 0 0.000
3 (0,0,1,0) 1 0.100 0 0.000
4 (0,0,1,1) 1 0.100 0 0.000
5 (0,1,0,0) 0 0.000 0 0.000
6 (0,1,0,1) 2 0.200 0 0.000
7 (0,1,1,0) 0 0.000 0 0.000
8 (0,1,1,1) 2 0.200 1 0.050
9 (1,0,0,0) 0 0.000 0 0.000

10 (1,0,0,1) 0 0.000 0 0.000
11 (1,0,1,0) 0 0.000 11 0.550
12 (1,0,1,1) 0 0.000 3 0.150
13 (1,1,0,0) 0 0.000 0 0.000
14 (1,1,0,1) 0 0.000 0 0.000
15 (1,1,1,0) 0 0.000 3 0.150
16 (1,1,1,1) 0 0.000 2 0.100

Total 10 1.000 20 1.000

1.3.2 DDA Methods

The classification methods differ according to the nature of the explanatory variables, due to the fact

that the latter reflect the underlying structure to the data under study. Therefore, methods that take such

characteristics into account when dealing with a set of qualitative variables are naturally sought.

The most natural model to represent a problem with qualitative explanatory variables, whether binary or

not, is the Full Multinomial Model (FMM )(Goldstein and Dillon, 1978).

As with the continuous case, when handling qualitative variables, there are also reference models that play

similar roles to the known methods of Linear Discriminant Analysis (LDA) and Quadratic Discriminant

Analysis (QDA). Despite being the most natural model, the FMM model requires samples of a considerable

size to enable estimation of their parameters, and has a similar role in DDA to that of QDA. Since it is

not possible in most real situations to satisfy this request, various models have been suggested that stem

from the most well-known model in the literature, namely the First-order Independence Model (FOIM),

(Goldstein and Dillon, 1978). The FOIM assumes independence among the explanatory variables within

each class, which is too unrealistic in many situations. Therefore, the FOIM model represents a reference

in DDA similar to that of LDA.
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Full Multinomial Model (FMM )

The FMM, where the probability functions per class are multinomial probability functions on the set

of all possible states, requires however samples of a considerable size to make the estimation of the

parameters of the probability functions possible. In fact, the maximum likelihood estimator of the

probability of occurrence of each state l, represented by x∗ observation, in each class k is the relative

frequency observed in each class:

f̂k (x∗ | X) =
# {xi ∈ Ck : x∗ = xi}

nk
, k = 1, . . . ,K (1.3.1)

Considering the same afore-mentioned example, Table 1.2 presents the values obtained through application

of the FMM to the set of all possible states.

Table 1.2: Probability estimates of the occurrence of state 1 in class k through the FMM (l=1,...,16 e k=1,2)

State (x1, x2, x3, x4) f̂1 (x∗ | X) f̂2 (x∗ | X) Decision
(Class chosen by the model)

1 (0,0,0,0) 0.000 0.000 C1

2 (0,0,0,1) 0.400 0.000 C1

3 (0,0,1,0) 0.100 0.000 C1

4 (0,0,1,1) 0.100 0.000 C1

5 (0,1,0,0) 0.000 0.000 C1

6 (0,1,0,1) 0.200 0.000 C1

7 (0,1,1,0) 0.000 0.000 C1

8 (0,1,1,1) 0.200 0.050 C1

9 (1,0,0,0) 0.000 0.000 C1

10 (1,0,0,1) 0.000 0.000 C1

11 (1,0,1,0) 0.000 0.550 C2

12 (1,0,1,1) 0.000 0.150 C2

13 (1,1,0,0) 0.000 0.000 C1

14 (1,1,0,1) 0.000 0.000 C1

15 (1,1,1,0) 0.000 0.150 C2

16 (1,1,1,1) 0.000 0.100 C2

Nevertheless, since large samples are necessary in order to estimate the parameters of the FMM model,

has become difficult to use it in many practical cases. For example, considering the case of P binary

explanatory variables, there will be 2P possible states for analysis, thus, leading to an estimation of 2P − 1

parameters. If P=10, then 1024 parameters will have to be estimated. In order to overcome this difficulty,

several variants of the FMM have been proposed (Goldstein and Dillon, 1978; Celeux and Nakache, 1994),

among which the First-order Independence Model and some models based on the observed frequencies

smoothed for each state, according to the application of non-parametric techniques, namely the Kernel

Method and the Nearest-Neighbour Method.
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1.3. Discrete Discriminant Analysis

First-order Independence Model (FOIM)

Application of the First-order Independence Model (FOIM) makes it possible to reduce the number

of parameters to be estimated from 2P − 1 to P , considering that within each class Ck the explanatory

variables are independent from each other. For this model, the conditional probabilities in each class Ck, is

estimated in the following way:

f̂k (x∗ | X) =
P∏

p=1

#
{
xj ∈ Ck : xjp = x∗p

}

nk
, j = 1, . . . , n ; k = 1, . . . ,K (1.3.2)

where nk represents the dimension of the class Ck.

In Table 1.3, the values of the conditional probabilities estimates through application of the FOIM

to the previously presented data are set out.

Table 1.3: Probability estimates of the occurrence of state 1 in class k through FOIM (l=1,...,16 e k=1,2)

State (x1, x2, x3, x4) f̂1 (x∗ | X) f̂2 (x∗ | X) Decision
(Class chosen by the model)

1 (0,0,0,0) 0.036 0.000 C1

2 (0,0,0,1) 0.324 0.000 C1

3 (0,0,1,0) 0.024 0.025 C2

4 (0,0,1,1) 0.216 0.011 C1

5 (0,1,0,0) 0.024 0.000 C1

6 (0,1,0,1) 0.216 0.000 C1

7 (0,1,1,0) 0.016 0.011 C1

8 (0,1,1,1) 0.144 0.005 C1

9 (1,0,0,0) 0.000 0.000 C1

10 (1,0,0,1) 0.000 0.000 C1

11 (1,0,1,0) 0.000 0.466 C2

12 (1,0,1,1) 0.000 0.200 C2

13 (1,1,0,0) 0.000 0.000 C1

14 (1,1,0,1) 0.000 0.000 C1

15 (1,1,1,0) 0.000 0.200 C2

16 (1,1,1,1) 0.000 0.086 C2

When the independence assumption between the variables is too unrealistic, classification methods which

take into account interactions between explanatory variables can be used, namely the Dependence Trees

Model (DTM) (Celeux and Nakache, 1994; Pearl, 1988) and the Bahadur Model (Celeux and Nakache,

1994; Bahadur, 1961).
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Dependence Trees Model (DTM)

The Dependence Trees Model (DTM), takes into account conditional dependence relationships between

the predictors. DTM provides for each class an estimate of the conditional probability function based on

the idea proposed by Pearl (1988). Pearl demonstrated that through the knowledge of a graph G, where

X1, ..., XP represent its P vertices, the probability distribution fG, associated with this graph, can be

calculated as the product of the conditional probabilities:

fG(x1, ..., xP ) = f(xr(p))
P−1∏

l(p)=1

f
(
xp | xl(p)

)
(1.3.3)

where xl(p) represents a variable that is linked to the variable xp in this graph, arbitrarily choosing one

vertex as the root of the graph, xr(p).

In order to construct the graph for each class, we rely on the algorithm of Chow and Liu (Celeux and

Nakache, 1994; Pearl, 1988), where the length of each edge refers to the pair of variables (xp, xp′)

represents a measure of the association between the same variables, particularly mutual information. Mutual

information - I - is defined as follows:

I(Xp, Xp′) =
∑∑

f(xp, xp′) log
f(xp, xp′)

f(xp)f(xp′)
(1.3.4)

where f(xp, xp′) is estimated using the maximum-likelihood approach.

After calculation of the CP
2 mutual information values, graph G, with P − 1 edges, corresponding

to the highest total mutual information is selected.

For example, the following values are obtained for mutual information and presented in Table 1.4

Table 1.4: Mutual Information

(Xp, Xp′) I(Xp, Xp′)
C1 C2

(1,2) 0.000 0.063
(1,3) 0.000 0.000
(1,4) 0.000 0.063
(2,3) 0.014 0.000
(2,4) 0.055 0.039
(3,4) 0.100 0.000

and the probability distribution of the first-order dependence tree is

fC1 (x∗|X) = f̂(x∗2|X)f̂(x∗4|x∗3, X)f̂(x∗4|x∗2, X) (1.3.5)

fC2 (x∗|X) = f̂(x∗1|X)f̂(x∗2|x∗1, X)f̂(x∗4|x∗1, X) (1.3.6)
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1.3. Discrete Discriminant Analysis

where the marginal and conditional probability functions are determined simply using the observed relative

frequencies in sample X .

x2

x4 x3

Class C1

x4

x1 x2

Class C2

Figure 1.2: Example of a dependence tree for the case of P=4 variables

In accordance with the probability distribution of the first-order dependence tree (10) e (11), the value for

the 8th state (0, 1, 1, 1), is calculated in the following way:

• class C1:

fC1 (x∗|(0, 1, 1, 1)) = f̂(x2 = 1)f̂(x4 = 1|x2 = 1)f̂(x4 = 1|x3 = 1) =

=
4

10
× 1× 3

4
= 0.300

(1.3.7)

• class C2:

fC2 (x∗|(0, 1, 1, 1)) = f̂(x1 = 0)f̂(x2 = 1|x1 = 0)f̂(x4 = 1|x1 = 0) =

=
1

20
× 1× 1 = 0.050

(1.3.8)

According to these results, a future object, described according to this state, should be classified in class

C1.

The values of the conditioned probability estimates through application of the DTM to the previously

presented data are as follows:
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Table 1.5: Probability estimates of occurrence of state 1 in class k by the DTM (l=1,...,16 e k=1,2)

State (x1, x2, x3, x4) f̂1 (x∗ | X) f̂2 (x∗ | X) Decision
(Class chosen by the model)

1 (1,1,1,1) 0.300 0.066 C1

2 (1,1,1,0) 0.000 0.184 C2

3 (1,1,0,1) 0.400 0.066 C1

4 (1,1,0,0) 0.000 0.184 C2

5 (1,0,1,1) 0.375 0.184 C1

6 (1,0,1,0) 0.025 0.516 C2

7 (1,0,0,1) 0.500 0.184 C1

8 (1,0,0,0) 0.000 0.516 C2

9 (0,1,1,1) 0.300 0.050 C1

10 (0,1,1,0) 0.000 0.000 C1

11 (0,1,0,1) 0.400 0.050 C1

12 (0,1,0,0) 0.000 0.000 C1

13 (0,0,1,1) 0.375 0.000 C1

14 (0,0,1,0) 0.025 0.000 C1

15 (0,0,0,1) 0.000 0.000 C1

16 (0,0,0,0) 0.000 0.000 C1

1.3.3 Model Combination

Usually, when presented with a classification problem, a number of models are applied in order to select

the one that proves to be the most precise. However, this procedure brings about a loss of considerable

information obtained by the competing models, which is particularly important when the classification

errors of some of these models are found to not occur in the same objects. The model combination

approach, instead of selecting a unique model, emerged in DDA as a means to finding a classification rule

that could be better adapted to the structure of the data under study. The combination of models tends to

frequently improve predictive value.

Over recent years, a large number of publications from various research areas have increasingly presented

proposals for combining classification methods in order to improve the models’ predictive value. The

results already obtained are apparently promising (for example, Wolpert, 1992; Breiman, 1996, 1998;

Freund et al., 1996; Friedman et al., 1998; Sousa Ferreira et al., 2000; Friedman, 2001; Milgram et al.,

2004; Sabourin, 2004; Brito, 2002; Kotsiantis et al., 2006; Cesa-Bianchi et al., 2006; Friedman and

Popescu, 2008; Amershi and Conati, 2009; Janusz, 2010; Kotsiantis, 2011; Re and Valentini, 2011).

Over the years, the several model combination proposals have given rise to a broader range of terminology

to designate this type of approach: Blending by Elder and Pregibon (1995), Ensemble of Classifiers by

Dietterich (1997), Committee of Experts by Steinberg (1997), Perturb and Combine (P&C) by Breiman

(1996) and Combiners by Jain et al. (2000).

Many model combination strategies have been proposed by different researchers, whether by applying

several methods to the same data set or by repeatedly using the same method on various data sets.

Generally, the final prediction is decided by vote. In this chapter, a number of works in the field of model

combination are referred to in chronological order.

In 1992, Wolpert proposed a classifier combination approach with stacking. This proposal consists of

applying several algorithms to a data set and then a combined model is applied to attain the final prediction

14



1.3. Discrete Discriminant Analysis

on the basis of the predictions from the previous step. This type of combination is illustrated in Figure

1.3. The use of this classifier combination strategy shows that by moving from one level to another, the

combined model seems to learn from the errors in the previous levels and, consequently, improves its

performance.

d1 d2 d3

x

f()

y

Figure 1.3: Illustration of the Stacking Method

where di with i = 1, 2, 3 represent the values of the predictions found in the application of three different

models to the x data set, and f() represents the model that will combine the results obtained in the previous

iteration.

This strategy presents certain aspects requiring further analysis, since there are no clear recommendations

regarding the number and specificity of the models for the first level nor for the model to be applied in the

last level.

Bootstrap Aggregating (bagging) was proposed by Breiman (1996) to improve the stability and precision of

the algorithms used in classification, and was found to reduce variability and contribute towards preventing

an overfit of the models. This method has appeared in connection with classification tree methods, however,

it can be extended to any type of learning model. The bagging strategy builds a set of models based

on the creation of equally-sized random samples, with replacement, stemming from the training sample

(bootstrap samples). A classification algorithm is applied to each one of these samples and then a final

decision is obtained by vote. This method may increase the quality of unstable algorithms such as Decision

Trees and Neural Networks, but may also slightly unbalance methods considered to be stable such as the

Nearest-neighbours method (Breiman, 1996).

Freund et al. (1996) proposed the boosting strategy, geared towards improving the performance of

the classification model. This approach is based on the iterative combination of "weak" classifiers, giving

more weight, in each iteration, to the incorrectly classified observations in the previous iteration, thus,

giving rise to a "strong" classifier. A classifier is regarded as "weak" if its predictive value is lower than

0.5 (in a binary classification problem and in a balanced case). In other words, it is lower than a random

classifier, while a "strong" classifier has a high predictive value, namely higher than random classification.

Let us consider a combination of three "weak" classifiers, where there is a learning sample in which three

learning sub-samples that randomly divide the original sample are defined. So, method d1 is applied to
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sample X1 and method d1 to sample X2. All the misclassified X1 objects and all the well classified X2 are

now considered, and d2 is applied to this sample. Sample X3 is now taken into consideration and methods

d1 and d2 are applied to this sample. The objects, for which the decision d1 and d2 differ, form the d3
learning sample.

In this final stage, the decision for each object is compared by d1 and d2. If the methods agree, this is the

final decision, otherwise the decision by d3 is used (Schapire, 1990). demonstrated how this methodology

reduced the error rate. The disadvantage of this proposal is that a large sized original sample is necessary

so that the following sub-samples are of a non-negligible size. One of the most well-known boosting

algorithms is AdaBoost (Adaptative boosting) (Freund et al., 1996) which repeatedly uses the same learning

sample, overcoming the need to rely on a large sized sample. However, the classification algorithms used

should prevent overfit problems.

Several variants of the AdaBoost model have been proposed. Breiman (1998) regarded it as a variation of

the boosting model and referred to it as "arcing" (adaptively resampling and combining).

Within the scope of bagging and boosting methods, the researcher uses a single classification method,

making the learning samples vary, believing that the application of this classification method to different

sub-samples extracted from the original sample may increase the precision of the results. However, the

use of a single classification method may lead to a loss of relevant information for the classification of

future objects, since the application of different DA methods to the same observation set has been found

to produce different classification errors in the majority of cases. This is due to the fact that each method

presents different specificities and, therefore, the behaviour of the sample’s distribution should be taken

into account. (Sousa Ferreira, 2000; Brito, 2002; Brito et al., 2006).

Several researchers have taken an interest in this study area and have engaged in developing model

combination methods for both continuous and discrete cases, although there are still very few studies on

the latter.

Among the methods presented in point 1.2, the Random Forest stands out as being the closest method to

a model combination approach, given that it stems from a combination of several decision trees using the

bagging strategy.

Breiman (1996, 1998) demonstrated that the bagging and arcing strategies improve the performance of a

CART model in 11 machine learning databases. Dietterich (2000) proved that the bagging and boosting

methods systematically increased the performance of the decision tree algorithm C4.5.

Several researchers have pointed to the advantage of a neural combination network approach (Wolpert,

1992; Opitz and Shavlik, 1996).

Friedman (Friedman et al., 1998; Friedman, 2001) also invested in model combination, using the

boosting strategy to withdraw subsequent sub-samples.

In 2000, Sousa Ferreira (Sousa Ferreira, 2000; Sousa Ferreira et al., 1999, 2000) addressed the problem

of dimensionality in Discrete Discriminant Analysis (DDA) for small scale samples by following a model

combination approach. Among the models proposed by Sousa Ferreira (2000) the Hybrid Model (MHIB)

is the most salient, due to its particular way of combining two models, in the case of two a priori defined

classes, since the objects of one class are classified according to the FOIM model, while those of the other
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are classified according to the DTM model. The MHIB model proved to be of particular interest in the fields

of medicine and social and human sciences, where the study of classification problems with two classes is

frequent. Usually, one of the classes consists of a control group and the other class an experimental group.

In such situations, independence between the explanatory variables of one class is sometimes, but not so

rarely observed, while in the other class relations among the explanatory variables may be found.

In the work developed by Sousa Ferreira (2000), a linear combination between the FOIM model and the

FMM model was also proposed, using a single coefficient β, (0 ≤ β ≤ 1), thus producing an intermediate

classification rule between these two models. Later on, the proposed approach was extended to the case

where more than two a priori defined classes are available.

The performance of this approach was assessed in terms of both real and simulated data, described by

qualitative binary variables, and made it possible to ascertain the preferential field of application of the

various proposed models, in accordance with the strategy used for estimation of the coefficient β. The

results obtained with this approach proved to be promising in terms of increasing the predictive value of

the models.

A performance analysis of the proposed approach made it possible to verify that, despite the promising

results, the suggested combination tended strongly towards the FOIM model, reducing the contribution of

the FMM model. This finding is what led to the model combination proposal presented in this dissertation.

Brito (Brito, 2002; Brito et al., 2006) proposed a model combination approach in a Gaussian context.

Taking into account a number of assumptions regarding the parameters of the Gaussian model (covariance

matrix, volume, orientation and form), Brito (Brito, 2002; Brito et al., 2006) considered fourteen models

in its combination: eight elliptic, 4 diagonal and two spherical models. Performance assessment of the

various proposed combinations was carried out on a number of renowned real databases, such as four at the

Machine Learning Repository of California University (MLR), one at the Oxford University Repository

(OR) and another at Habema and Van Den Broek (1974).

Milgram et al. (2004) proposed a combination of models with support vectors machines (SVM) and,

using recognition data for digital manuscripts (the learning sample consisted of 60.000 cases, 10.000 of

which were used as test-samples), showed that the necessary computation time was drastically reduced,

while the precision of the SVM methods was maintained. Cesa-Bianchi et al. (2006) showed that the

combination of SVM models may be an important tool in Machine Learning, in classification problems in

the field of Taxonomy.

Amershi and Conati (2009) also used this approach, combining supervised and unsupervised classification

models in the field of education. Moreover, Janusz (2010) studied the combination of multiple classifiers

by using a genetic algorithm. Kotsiantis (2011) proposed a combination of the Random Subspace models,

using the method of Naïve Bayes (Domingos and Pazzani, 1997) and C4.5 (Quinlan, 1993) and assessed

the performance of the new model using 26 databases (with continuous explanatory variables). Kotsiantis

(2011) concluded that the results were apparently promising.

17



1. Introduction

Although many of the models put forward in the literature on model combination in classification may be

applied to problems with discrete explanatory variables, the studies disseminated in the literature focus on

data of a continuous nature, thus, clearly highlighting the pertinence of model combination proposals in

DDA.

Hence, this study falls within the scope of model combination in DDA, particularly in the case of

poorly a priori separated classes and/or small and moderate scale samples, in which a new classification

method is proposed, following an approach based on the combination of two well-known models in

Discrete Discriminant Analysis: The First-order Independence Model (FOIM) and the Dependence Trees

Model (DTM).

The research undertaken in this context tried to analyse the performance of different model combination

strategies in DDA, through the use of a single coefficient β, (0 ≤ β ≤ 1). The aim was to reduce the

dimensionality problem, and to find a better classification rule to adapt to the underlying structure of the

data, which would lead to good predictive ability and stable results. This option set out to overcome the

difficulty in estimating the occurrence probability of unobserved states, as found with the FMM model

in the combination proposed by Sousa Ferreira (2000), and, furthermore, to extend its application to

explanatory variables that are not necessarily binary.

The conditional probability function for the proposed combination is estimated as follows:

P̂ (x∗ ∈ Ck|β,X) = βP̂FOIM (x∗ ∈ Ck|X) + (1− β)P̂DTM (x∗ ∈ Ck|X) (1.3.9)

Assessment of the performance of this new classification method was carried out on both real and simulated

data, in an attempt to understand its preferential field of application. These studies are presented in the

articles by Marques et al. (2008, 2010, 2014a,b) in which some data and results presented in national and

international congresses are described, during the course of this research study and appendices.

When more than two a priori defined classes are available, the models become even more complex and

hamper estimation of the unknown parameters, thus, generally leading to high error rates. The Hierarchical

Coupling Model (HIERM), proposed by Sousa Ferreira (2000) is used in order to bridge this difficulty.

Hierarchical Coupling Model (HIERM)

The HIERM decomposes one multi-class problem into several bi-class problems using a binary tree

structure. At the beginning we have K classes we want to reorganize into several couples of classes.

In other words, the HIERM model transforms a classification problem of multiple classes into multiple

binary problems. Therefore, it is necessary to consider the 2K−1 − 1 forms of re-grouping the initial

k classes into several couples of classes. In the second stage, either the model combination is applied

to every new couple of classes and the best result is chosen, or a criterion is used to select one of these

decompositions and the performance of the FOIM-DTM model combination on that couple of classes is

assessed. For instance, on each level of the tree a coefficient of similarity may be applied between the two

new classes, and the most separate classes may be selected.
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1.3. Discrete Discriminant Analysis

The HIERM implies two decisions on each level of the tree:

1. Selection the of hierarchical coupling among the 2K−1 − 1 possible class couple;

2. Choice of the model that gives the best classification rule for the chosen couple.

For example, 3 defined a priori classes may be organized into 23−1 − 1 = 3 couples of classes in various

ways, giving each one a binary tree origin. See Figure 1.4.

C1 C2 C3 C1 C3 C2 C2 C3 C1

Figure 1.4: Binary trees for 3 a priori classes, in the HIERM model

In the case of 4 a priori classes, the number of available trees increases to 7. Two possible structure

examples are presented in Figure 1.5:

C3 C4 C2 C1 C1 C2 C3 C4

Figure 1.5: Example of two binary trees for 4 a priori classes, in the HIERM model

Of course, as the number of classes increases, the number of possible class couples to be analysed also

increases, thus making this detailed process far too lengthy. Alternatively, a measure to assess the degree of

separability between the several class couples may be used, by choosing the two new most separate classes.

The HIERM (Sousa Ferreira, 2000) was applied to the combination proposed in this study whenever

more than two defined a priori classes were available. In order to calculate the degree of separability

between the various class couples, the affinity coefficient (aff ) was used between the two discrete

probability distributions defined by Matusita (1955) and generalized by Bacelar-Nicolau (1985), where:

aff(Ck, Ck′) =

S∑

s=1

√
f̂(xs ∈ Ck|X)

√
f̂(xs ∈ Ck′ |X) (1.3.10)

Performance assessment of the HIERM model with the FOIM-DTM combination was applied to both real

and simulated data by Marques et al. (2008, 2010, 2014a,b) and appendices: Cases 1, 2, 4, 5, 6 e 10.

In the real data studies, the problem of having too many explanatory variables in relation to the

number of objects under study frequently emerged when the FOIM-DTM combination was applied. This

rendered the application of the classification models impracticable, or based on poor performance. It is a

dimensionality problem which is quite common in DDA, and often referred to by researchers as "the curse

of dimensionality" (Celeux and Nakache, 1994; Brito et al., 2006) which leads to poor performance of the

various models.
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1. Introduction

A number of factors contribute to this discrete classification problem:

• DDA methods are frequently applied to the data of Social and Human Sciences and Medicine, where

small scale samples are usually available;

• As already mentioned, a small number of discrete explanatory variables can easily bring about a very

high number of states, thus implying that many states go unobserved;

• Samples with a large number of explanatory variables in relation to the number of observed objects

are frequently found in DDA;

With a view to overcoming this problem and obtaining reliable estimates for the model parameters, variable

selection methodologies have been considered in this study. The use of such methodologies is somewhat

unusual in DDA, which is why this has also been examined in the research Marques et al. (2013) and

appendices: Cases 6, 7.

1.3.4 Validation methods in supervised classification

As already established, there are many possible approaches to defining a classification rule, and there is no

model that has a consistently higher performance than that of all the others. Therefore, it is fundamental

that their importance is assessed in different contexts, as a means to evaluate the quality of the classification

of new objects.

When discussing the evaluation of a discriminant analysis model or supervised classification, the main

focus is always the predictive value of the model and not other relevant classification factors, such as

the running time, the descriptive value of the model, etc. Nevertheless, in view of the importance of the

running time, the performance of the classification of the models with regard to this factor was compared,

as presented in the article "Selection of variables in Discrete Discriminant Analysis" (Marques et al., 2013).

Let δ(x′) be the term for the classification rule constructed by the application of a certain model to

a x′ learning sample. The most natural measure to assess the performance of δ(x′), involves calculating the

error rate (ERR) (Celeux, 1990), or conversely, the correct classification rate:

ERR =
∑

i

∑

j

Err(δ(x′)Ci|Cj
) , i 6= j (1.3.11)

where Err(δ(x′)Ci|Cj
) represents the missclassified error rate, and the incorrectly classified object is

considered to have come from Ci class and is classified by δ(x′) in the Cj class, with 1 ≤ i, j ≤ K and

i 6= j.

Obviously, the true predictive value of a model is unknown, as only data samples are available for

the assessment of its performance. However, several methods have been proposed in an attempt to obtain

reliable predictive value estimates. These methods stem from a number of performance measures, as

correctly as from alternative ways of testing the precision of a model in new observations.
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1.3. Discrete Discriminant Analysis

Usually, the results of a discriminant analysis or a supervised classification method are assessed on the

basis of counts of misclassified objects. These counts are generally represented in a table referred to as the

confusion matrix. The following table represents a confusion matrix for a multiple classification problem,

namely in which there are defined K a priori classes.

Table 1.6: Confusion matrix for a classification problem

Predicted classes
Original classes C1 C2 ... Cj ... CK

C1 n11 n12 ... n1j ... n1K
C2 n21 n22 ... n2j ... n2K
... ... ... ... ... ... ...
Ci ni1 ni2 ... nij ... niK
... ... ... ... ... ... ...
CK nK1 nK2 ... nKj ... nKK

The nij frequency, presented in each cell of table 6 represents the number of objects belonging to class i

which were classified by the model in classj. Therefore, the total number of correctly classified objects is

given as:
L∑

i=1

K∑

j=1

nij , i = j (1.3.12)

and the total number of missclassified objects is given as

L∑

i=1

K∑

j=1

nij , i 6= j (1.3.13)

therefore, the rate of correctly-classified objects is given as

L∑

i=1

K∑

j=1

nij

n
, i = j (1.3.14)

and the total amount of the sample’s objects, where:

n =

L∑

i=1

K∑

j=1

nij =

L∑

i=1

ni. =

K∑

j=1

n.j (1.3.15)

Some authors have designated this rate as the Accuracy of the model, while other measures may

also be defined, such as the Overall Error Rate, given as:

Overall Error Rate =

L∑

i=1

K∑

j=1

nij

n
, i 6= j (1.3.16)
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1. Introduction

or even taking into account the predictive value observed in each class, where the rate of correctly-classified

objects in class k is given as:

Correct Classification Rate in Ck =
nkk

K∑

j=1

nkj

(1.3.17)

Considering the particular case of two defined a priori classes, with:

• correctly-classified rate of Class 1 objects (sometimes referred to as sensitivity):

n11
n11 + n12

(1.3.18)

• correctly-classified rate of Class 2 objects (sometimes referred to as specificity):

n22
n21 + n22

(1.3.19)

In the same way, the error rate per class may be defined in a classification problem with K classes.

The precision calculation per class has the advantage of demonstrating whether the predictive value is the

same in both classes or if it is very high just because the observed precision is very high in only one of the

classes.

By assessing the classification rules of the sample in which the same rules were learned, a good fit to the

data will naturally be obtained. Therefore, different ways of assessing the predictive value of a model are

generally used on new data beyond those that support the learning or training of a model. The most common

forms of classification rules are presented below:

• Resubstitution error - The term resubstitution error refers to the error rate (or correct classification

rate) based on the same sample used in the learning process. Due to the fact that the same sample is

used in the validation process, this estimate is over optimistic and may misrepresent the real predictive

value of the model.

• Sample test validation - The term sample-test validation is employed when a sample is used for the

learning process and another sample is used for the estimation of the resulting model’s precision. In

this case, the initial sample is split into two independent sub-samples, not necessarily equally sized

(when small scale samples are available, it is recommended that the sample be split into two equal

parts), and the error rate calculated on the basis of the sample that was not used in the construction of

the classification rules .

• V-fold cross validation- The term V-fold cross validation is used when the initial sample is split into

equally-sized V parts and the V − 1 parts are used for the construction of classification rules and

then evaluated in the remaining sample. Hence, this process gives rise to V iterations. The error rate

estimate is obtained by taking an average of the error rates obtained in these V iterations. Typical

choices for V are V=2, V=5 or V=10.
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1.3. Discrete Discriminant Analysis

• Leave-one-out Cross- Validation - The term Leave-one-out Cross-Validation is used when there is a

particular case of the cross-validation method. In this case, V is equal to the number of objects of the

dataset. The subsequent sub-sets for validation are formed by a single object and the learning set is

made up of all the other objects.

• Bootstrap Validation - The term Bootstrap Validation is used when the validation is based on a

systematic re-sample with replacement. In other words, a random sample with replacement of equal

size is created from a data set of n objects. This sample is used as a learning set while the remaining

objects form the validation set. This operation is repeated a sufficiently large number of times.

Given that small scale samples were considered in this study, two-fold cross-validation was used. In

samples of a reasonable size, sample-testing was used (made up of half of the original observations).

All the previously described measures for evaluating the predictive value of a classification rule

have proven to be somewhat inefficient when the defined a priori classes are not balanced and, furthermore,

even when the classes are balanced, the predictive value of one class is very different to the others. In

this case, the evaluation of a rule, using the correct classification or error rates may lead to incorrect

conclusions. For example, if one of the classes has around 90% of the observed objects and all these

objects are correctly-classified, the idea is conveyed of a highly precise rule (90%), even though all the

class two objects may be misclassified. In such cases, it is of particular interest to take into account all the

frequencies registered in the confusion matrix and not only those that constitute the secondary or principal

diagonal.

Several authors have invested in the search for suitable methods to compare two or more classification

models - for example (Sousa Ferreira and Cardoso, 2013; Bostanci and Bostanci, 2013; Gomez and

Montero, 2011; Santos and Embrechts, 2009; Demšar, 2006; Dietterich, 1998; Carletta, 1996). Therefore,

in addition to the well-known Error Rate (or Correct Classification Rate) , such as in the case of

binary problems, the area in percentage under the Receiver Operating Characteristic (ROC) curve, the

determination of sensitivity and specificity and the statistics of McNemar’s test, used to analyse the

frequencies of related samples, have been proposed. In more general terms, in problems with multiple

classes, Cohen’s Kappa statistic may be referred to, which is an agreement measure between original and

predicted classes ( Carletta, 1996; Foody, 2004 or the Wilcoxon test that compares the distribution of

the observed results in two related populations. Recently, other performance measures used in external

clustering validation have been considered in the assessment of classification methodologies performance

(Sousa Ferreira and Cardoso, 2013; Santos and Embrechts, 2009). Nevertheless, it is still difficult to draw

clear conclusions on the measures to be used and on what specific contribution they offer to the validation

of classification results.

Within the scope of this study, the decision was made to use not only the traditional correct classification

rate (or error rate) as performance measures of the proposed model combination, but also the coefficient φ

(Marques et al., 2014a) and the Huberty Index (HI) (Marques et al., 2014a):

φ =

√
χ2

N
(1.3.20)
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1. Introduction

χ2 =
∑

i

∑

j

(nij − ni.n.j

n )2

ni.n.j

n

(1.3.21)

nij - number of observations in the ith row and in the jth column in the contingency table.

ni. - number of observations in the ith row in the contingency table.

n.j - number of observations in the jth column in the contingency table.

n - is the total number of observations.

n =
L∑

i=1

ni. =
K∑

j=1

n.j =
L∑

i=1

K∑

j=1

nij (1.3.22)

HI =
Pc − Pd

1− Pd
(1.3.23)

where Pc represents the percentage of correctly classified cases and Pd represents the percentage of majority

class cases.

1.3.5 Selection of variables in supervised classification

When a study is developed on a certain theme, a numerous set of explanatory variables is generally used

with a view to characterising the objects under study in a suitable manner. However, some of these variables

are frequently redundant bringing no additional information to the model.

In many Discriminant Analysis (DA) applications, only a small sub-set of explanatory variables contain

information regarding the class (McLachlan, 1992; Dash and Liu, 1997; Silva, 1999; Cook and Yin, 2001;

Rebouças, 2011; Murphy et al., 2010) . Therefore, to consider variables that do not contribute to knowledge

on class affectation increases the complexity of the analysis and may, consequently, reduce the performance

of the DA model. It is, therefore, natural to include variable selection methods in DA procedures.

In DA, variable selection may be accomplished with two different aims:

• to identify the variables that best differentiate the defined classesa priori;

• to identify the variables that lead to a classification rule with better predictive value than the rule

based on the set of all the explanatory variables.

Generally, when we discuss the selection of variables in DA, it is on the basis of the latter aim.

The objective of variable selection is three-fold (Guyon and Elisseeff, 2003): improving the prediction

performance of the predictors, providing faster and more cost-effective predictors, and providing a better

understanding of the underlying process that generated the data.

Variable selection in DA may be accomplished as a process preceding Discriminant Analysis (Filter

Method) or, on the contrary, this process can be accomplished by using step by step methods that enable

a selection of the variables that offer the best contribution to the precision of a specific classification

algorithm (Wraper Method) (Rebouças, 2011; Murphy et al., 2010).
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1.3. Discrete Discriminant Analysis

When the selection of variables is accomplished as a process that precedes Discriminant Analysis,

univariate methods are used, based on an analysis of the relations between the explanatory variables under

study and the dependent variable (classes). The mutual information or coefficient correlations are examples

of the type of method that can be used in this approach.

In this case, the P explanatory variables are individually analysed, and those displaying a strong

relation with the dependent variable (classes) are selected. Naturally, these methods do not take into

account the relations among the various explanatory variables and a sub-set of p variables (p<P) which

does not lead to a classification rule with good predictive value may be chosen. In fact, when considered

with the others, the variables that are not selected may be important for the construction of a classification

rule by a specific algorithm.

In other words, the methods that select the variables as part of the discriminant analysis process, generally

provide higher classification precision, but have a high running cost. On the other hand, hybrid methods

may be an alternative, since they initially reduce the space of the variables (using the Filter Method), and

then use the Wrapper method so that step by step, in combination with the emerging results of a given

algorithm, a set of predictive variables providing a good classification may be found.

The selection of variables in DA has been the target of many studies (McLachlan, 1992; Dash and

Liu, 1997; Rebouças, 2011; Murphy et al., 2010), in which a number of variable selection techniques are

described, namely the step by step methods, inherent to the actual classification models. In classification

problems with continuous variables, step by step methods are commonly selected, and which are

developed by applying criteria, for example, in the Mahalanobis distance (see McKay and Campbell, 1982;

Sousa Ferreira, 1987), unlike the classification problems with discrete variables.

The previously described classification methods: classification trees, Random Forests and SVM and the

combination strategy Bagging do not require a previous selection, since this analysis is already a part of

their procedure in which the most relevant variables are chosen during the course of the process.

In this study, the problem of dimensionality emerged mainly due to the fact that our work focused

on small to moderate samples, a field of DDA in which the dimensionality issue is more pressing.

Therefore, the application of a DDA model, such as the proposed combination FOIM-DTM, to real data,

small or moderate scale, described by a large number of explanatory variables inevitably leads to low

predictive values. This fact geared our research towards the field of variable selection methods, so as to

find a minimum number of explanatory variables that suitably characterise the phenomenon under study,

and which enable the construction of classification rules within an acceptable period of time. Very little has

been studied on variable selection in DDA literature with a view to finding those that will lead to a better

classification rule.

25
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Therefore, with a view to finding a sub-set p∗, p∗ << P of the initial explanatory P variables that produce

similar or better results than the initial set, four types of filter selection criteria were adopted in this study:

1. Descriptive: The Chi-Square statistic (Q2) and the Mutual Information Index (I) between the P

predictor variables and the target classes both provide one criterion for ranking the predictors;

2. Inferential: The p-values corresponding to the Chi-Square test provide alternative criteria for ranking

the same predictors. Using the Bonferroni Correction (BON) and the False Discovery Rate (FDR),

we obtained two additional predictor rankings (e.g. see (Benjamini and Hochberg, 1995)).

The first considered descriptive indicator is the Chi-Square statistic (Q2) defined as follows:

Q2(Xm, Xm′) =
L∑

i=1

K∑

j=1

(nij − ni.n.j

n )2

ni.n.j

n

(1.3.24)

where:

nij - number of observations in the i-th category of Xm and in the j-th category of

Xm′ .

ni. - number of observations in the i-th category of Xm.

n.j - number of observations in the j-th category of Xm′ .

K - number of classes.

L - number of predictor categories.

and

n =
L∑

i=1

ni. =
K∑

j=1

n.j =
L∑

i=1

K∑

j=1

nij (1.3.25)

The Mutual information index (I) is defined as follows:

I(Xm, Xm′) =
L∑

i=1

K∑

j=1

nijlog
nij
ni.n.j

(1.3.26)

Both Q2(Xm,Xm′) and I(Xm,Xm′) measure the strength of the association between Xm and Xm′.

When considering Xm a predictor and Xm′. When considering Xm a predictor and Xm′ the target

classes, these measures provide means for ranking the predictors according to their discriminant capacity.

The Chi-Square statistic Q2 makes it possible to test the association between each predictor and the

target classes, following a χ2 distribution with (L − 1)(K − 1) degrees of freedom under the null

hypothesis (referring to null association) between the predictor and the target class. The implementation of

M Chi-Square tests corresponding to the M predictors originates the p-values p1, ..., pm, ..., pM .
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1.3. Discrete Discriminant Analysis

The Bonferroni Correction (Benjamini and Hochberg, 1995) is a multiple-comparison correction used when

several statistical tests are being performed simultaneously. Then, the Bonferroni Correction, which sets the

α value for the entire set of M tests by taking the significance level for each test equal to α/M .

Thus, according to the Bonferroni Correction (Benjamini and Hochberg, 1995) we selected the predictors

which yielded

pm ≤
α

M
(1.3.27)

The Bonferroni Correction and other traditional multiple comparison procedures are generally too

conservative. In order to overcome this limitation, several alternative procedures have been proposed -

e.g. Holm’s procedure (Holm, 1979) offering a more flexible tradeoff between the test’s power and error.

The False Discovery Rate (FDR) approach (Benjamini and Hochberg, 1995;Silva, 2010) - also addresses

multiple hypothesis testing to correct for multiple comparisons.

In a list of statistically significant studies (e.g. studies where the null-hypothesis could be rejected), the

FDR procedure is designed to control the expected proportion of incorrectly rejected null hypotheses ("false

discoveries") in a less conservative way compared to the Bonferroni Correction. This method relies on the

ranked p values (increasing values) - p1:M , ..., pm:M , ..., pM :M - and selects the predictors obeying:

pm:M ≤
m

M
α (1.3.28)

27



1. Introduction

1.4 Thesis Outline

As a result of this research, five articles were written. They will be presented in the next chapter. The first

manuscript (Marques et al., 2008), the second (Marques et al., 2010) and the third (Marques et al., 2013)

have already been published; the fourth manuscripts (Marques et al., 2014a) is accepted but still finalizing

review and the fifth (Marques et al., 2014b) have been submitted and are still under review.

Marques et al. (2008) presented the new combination model in DDA using the HIERM for multiple

classes. The proposed model was illustrated on one set of real data and evaluated by resubstitution.

Marques et al. (2010) presented the new DDA approach based on a linear combination of FOIM

and DTM. This was applied to classify one set of real data and another with simulated data. This paper has

focused on the performance of the new approach in comparison with CART and HIERM, as the data had

more than two defined classes a priori.

Since this study focuses on small or moderate scale samples, dimensionality problems emerged on a

number of occasions, dealing with too many explanatory variables vs. the number of objects under

study. This situation motivated the study for the article Marques et al. (2013). In this paper, diverse

variable selection techniques were considered to address the issue of dimensionality and their impact on

the performance of the new combined classification approach. We concluded that variable selection was

particularly pertinent in this setting, enabling the handling of degrees of freedom and significantly reducing

the running cost.

In order to understand the preferential field of application of the proposed model, an additional study

was conducted - Marques et al. (2014a). It resorted to simulated data sets with two and four classes and

controlled the level of correlation between variables within each class. The combined model performance

- and also the performance of a Hierarchical Coupling Model when addressing multi-class classification

problems - were compared with Random Forests’ performance. The obtained results highlighted the

pertinence of the proposed model, especially when small samples were considered. A real dataset was used

to complete the comparative analysis.

Marques et al. (2014b) evaluated the performance of the proposed FOIM-DTM combination by

using simulated datasets. The experimental scenarios considered different factors - class separation,

balance, the number of missing states and sample size - and 30 runs were conducted in each scenario.

The obtained results enabled further understanding of the performance of the proposed combination, when

compared with the single FOIM or DTM methods. In addition, the results were used to build a linear

regression model considering performance measures as dependent variables. The obtained model showed a

good fit to the data and made it possible to anticipate the performance of the proposed algorithm in a real

dataset (based on the corresponding measures of separation, balance, missing states and sample dimension).

In the last part of this thesis, final conclusions and future research issues are presented.
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CHAPTER 2

Uma proposta de combinação de modelos em Análise Discriminante
Discreta

This paper has the following reference:

Marques, A.; Sousa Ferreira, A. and Margarida G. M. S. Cardoso (2008) ’Uma proposta de combinação de

modelos em Análise Discriminante Discreta’. Estatística - Arte de Explicar o Acaso, in Oliveira, I. et al.

Editores, Ciência Estatística, Edições S.P.E, 393-403.
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2. Uma proposta de combinação de modelos em Análise Discriminante Discreta

Erratum

In pag. 9, where is "MHIERM2" should be "MHIER2".
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 +# 1&/$# 8.--.9-#

:.+?)*!+,%,) ,) ;+!7#%1 B48 1 ;%7#*%3C*+# ,)  !3%3D!3+"% ) 9.E$+!) ,) =%,#! )

8 9:;1 4*#<)"3# ,) 9.%$+!) ,) =%,#! >'$3+?%*+%,#! ) >#,)$%@A#   *0#''#-' +0/1#%)$%/,

6#-,#-9%# *#-%&$&

=)(%*3%F).3# ,) >53#,#! G'%.3+3%3+?#!1 :H2= I  !"#$% ,) J)!3A# ,# 2&8-  

& '2 '-3 %1 '3.*.+-*1,#%/,

 !"#$%&   !"#$%& '$%()$*$!+!,& - '. /$%()&,+ 01 %02)& 3+)$"3&$% 41+#$,+,$3+% 5 1,$6

#$7+/+ 8)$!($8+#*&!,& &* &%,1/0% !+% ")&+% /+% ($9!($+% %0($+$% & :1*+!+% & /+ %+;/&<

0!/& %& /$%8=& >)&41&!,&*&!,& /& ?)180% % (*+#*+ *+# %&8+)+/0% &@01 /& +*0%,)+% /&

8&41&!+ /$*&!%A0B C&%,+% (0!/$D=&%< 0 02E&(,$30 /&($%$0!+# /& +>&(,+DA0 /0% $!/$3F6

/10%@02E&(,0% +0% ?)180% &%," (#+)+*&!,& /$G(1#,+/0B H 8)&%&!,& ,)+2+#:0 $!%&)&6%&

!0 (+*80 /+  ' %02)& 3+)$"3&$% 41+#$,+,$3+%< !A0 !&(&%%+)$+*&!,& 2$!")$+%< 1,$#$7+!/0

1*+ +20)/+?&* /& (0*2$!+DA0 /& *0/&#0%< 8+)+ 0 (+%0 &* 41& %& /$%8=& /& *+$%

/& /0$% ?)180% % (*+#*+B H 02E&(,$30 /+ 8)080%,+ +41$ +8)&%&!,+/+ 5 1#,)+8+%%+) +%

/$G(1#/+/&% /& +>&(,+DA0@(#+%%$G(+DA0 8)&%&!,&% &* *1$,+% %$,1+D=&% 8)",$(+%B H I06

/&#0 /& J*8+)&#:+*&!,0 K$&)")41$(0 -KLJMI. >0$ 8)080%,0 80) N01%+ O&))&$)+ -N01%+

O&))&$)+ -PQQQ.< N01%+ O&))&$)+ &, +#B -PQQQ.. !0 (0!,&R,0 /& 1*+ +!"#$%& /$%()$*$!+!,&

%02)& 3+)$"3&$% 41+#$,+,$3+% !0 (+%0 /& *+$% /& /0$% ?)180% % (*+#*+ & +#$+ + *+$0) %$*6

8#$($/+/& /+ &%,$*+DA0 /0 8)02#&*+ /& /0$% ?)180%< S &%,+2$#$/+/& /& 1*+ (0*2$!+DA0

/& *0/&#0%B

H *0/&#0 KLJMIT

• /&(0*8=& 1* 8)02#&*+ /& *+$% /& /0$% ?)180% % (*+#*+ &* /$3&)%0% 8)02#&*+%

/& /0$% ?)180%< 1,$#$7+!/0 1*+ &%,)1,1)+ /& ")30)& 2$!")$+U

• &* (+/+ !F3&# /+ ")30)&< + )&?)+ /& /&($%A0< 2+%&$+6%& !1*+ (0*2$!+DA0 /&

*0/&#0% 8+)+ 0 (+%0 /& /0$% ?)180% % (*+#*+B

C+ +20)/+?&* +8)&%&!,+/+ !&%,& ,)+2+#:0< + )&?)+ /& /&($%A0< &* (+/+ !F3&# /+ ")30)&<

2+%&$+6%& !+ (0*2$!+DA0 /0% %&?1$!,&% *0/&#0%T 0 I0/&#0 /& L!/&8&!/9!($+ V0!/$6

($0!+# /& 0)/&* 1* -ILV. 41& %18=& + :$8W,&%& /& $!/&8&!/9!($+ &!,)& +% 3+)$"3&$%

/&!,)0 /0% ?)180% & 0 I0/&#0 X)"G(0 '&(0*80!F3&# -IX'. -Y&+)# -Z[\\.. 41& ,&*

&* (0!,+ + &R$%,9!($+ /& $!,&)+(D=&% &!,)& +% 3+)$"3&$%B

Y+)+ 0 &%,1/0 /0 /&%&*8&!:0 /&%,+ !03+ +20)/+?&* &%,A0 + %&) $*8#&*&!,+/0% !06

30% 8)0?)+*+% &%,+,F%,$(0% !0 %0>,]+)& I ^_ ` 41& 80%,&)$0)*&!,& %&)A0 +8#$(+/0%

+ /+/0% )&+$%< (0*1**&!,& 1,$#$7+/0% !+ #$,&)+,1)+ /&  '< %&!/0 +$!/+ (0*8+)+/0%

(0* *&,0/0#0?$+% E" (0!:&($/+%B
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2. Uma proposta de combinação de modelos em Análise Discriminante Discreta

 !"#$%&'  ! "#$()*+,-."/0* 1& !*1&2*'

 !"!#$!%&'(!#)*  !"#$%& '$%()$*$!+!,&- (.*/$!+01. '& *.'&#.%- *.'&#. '& $!'&2&!3

'4!($+ (.!'$($.!+#- *.'&#. 5)"6(. '&(.*2.!78&#- *.'&#. '& &*2+)&#9+*&!,. 9$&)")3

:;$(.<

+,%-$!'-* =$%()&,& =$%()$*$!+!,  !+#>%$% ?== @ $% .A,&! ;%&' $! %.($+# %($&!(&%- +$3

*$!5 ,. +##.(+,& $!'$8$';+#%B./C&(,% ,.  !"#$"# (.!%,$,;,&' 5).;2%- /+%&' .! %.*&

:;+#$,+,$8& +,,)$/;,&% )&A&))$!5 ,. ,9& %+*& $!'$8$';+#%B./C&(,%< D9& 2)&%&!, E.)F )&3

5+)'% ,9& ;%& .A == )&A&))&' ,. :;+#$,+,$8& +,,)$/;,&% E9$(9 +)& !., !&(&%%+)$#> /$!+)><

D9& 2).2.%&' +22).+(9 (.!%$'&)% '$%()$*$!+,$.! /&,E&&! *.)& ,9+! ,E. 5).;2% +!'

+$*% ,. .8&)(.*& %.*& '$G(;#,$&% .A,&! .((;))$!5 $! 2)+(,$(+# +22#$(+,$.!%- !+*&#> ,9&

.((;))&!(& .A 9$##3%&2+)+,&' 5).;2% +!'B.) %*+## %$H& %+*2#&%< I! %;(9 %$,;+,$.!%- ,9&

+##.(+,$.! '&($%$.!% ?.A $!'$8$';+#%B./C&(,%@ ,. 5).;2% $% (#&+)#> + '$G(;#, ,+%F< D9&

J$&)+)(9$(+# K.'&# ?JILMK@ E+% 2).2.%&' /> N.;%+ O&))&$)+ ??PQQQ@- ?N.;%+ O&))&$)+

%&  '( ?PQQQ@ ,. '&+# E$,9 == E9&! *.)& ,9+, ,E.  !"#$"# 5).;2% +)& (.!%$'&)&'< I,

$% /.,9 &+%> ,. &%,$*+,& +!' (+2$,+#$H&% .! ,9& %,+/$#$,> >$&#'&' /> (.*/$!&' *.'&#%<

JILMKR

• M&#$&% .! + /$!+)> ,)&& %,);(,;)& '&(.*2.%$!5 + *;#,$2#& 5).;2 '$%()$*$!+!,
2)./#&* $!,. %&8&)+# /$!+)> 2)./#&*%S

• I! &+(9 #&8&# .A ,9& ,)&& ,9& '&($%$.! );#& ?A.) + /$!+)> 2)./#&*@ )&%;#,% A).* +

(.*/$!$!5 *.'&#

I! ,9& 2)&%&!, E.)F ,9& '&($%$.! );#&- $! &+(9 ,)&& #&8&#- $% /+%&' .! O$)%,3T)'&) I!'&3

2&!'&!(& K.'&# ?OTIK@?U&#&;V +!' W+F+(9& ?XYYZ@@ E9$(9 +%%;*&% ,9+, ,9& [ 8+3

)$+/#&% +)& $!'&2&!'&!, $! &+(9 5).;2- +!' =&2&!'&!(& D)&&% K.'&# ?=DK@ ?U&#&;V

+!' W+F+(9& ?XYYZ@- [&+)# ?XY\\@@ E9$(9 ,+F&% $!,. +((.;!, ,9& $!,&)+(,$.!% /&,E&&!

,9& 2)&'$(,.)%- /$8+)$+,& )&#+,$.!%9$2% $! 2+),$(;#+)< D9& 2).2.%&' +#5.)$,9* $% $*2#&3

*&!,&' $! K D] ^ +!' $% $##;%,)+,&' E$,9 + )&+# +22#$(+,$.!< I! A;,;)& )&%&+)(9 $,

%9.;#' /& +22#$&' ,. )&+# '+,+ (.**.!#> ;%&' $! ,9&  = #$,&)+,;)& +!' (.*2+)&' E$,9

E&## F!.E!  == *&,9.'.#.5$&%<

.)/01$2%* =$%()&,& =$%()$*$!+!,  !+#>%$%- == *.'&#%_ (.*/$!+,$.!- O$)%, T)'&)

I!'&2&!'&!(& K.'&#- =&2&!'&!(& D)&&% K.'&#- J$&)+)(9$(+# *.'&#<

 !"#$%&'()%

  !"#$%& '$%()$*$!+!,& - .*+ ,-(!$(+ /&  !"#$%& /& '+/0% 1.#,$2+)$+/0% 3.&

40/& %&) .,$#$5+/+ 3.+!/0 &%,+*0% 4&)+!,& .* (0!6.!,0 /& ! 076&(,0%8 /&%()$9

,0% 40) : 2+)$"2&$%8 4)02&!$&!,&% /& ; <).40% /&=!$/0%  !"#$"#8 *.,.+*&!,&

&>(#.%$20%8 (0* 0 076&(,$20 /&?

@A (0!B&(&) 3.+$% +% 2+)$"2&$%8 /& &!,)& +% : 2+)$"2&$% 3.& 0% /&%()&2&*8 3.&

*&#B0) /$C&)&!($+* 0% ; <).40%D

EA 4)&/$5&) + 4&),&!F+ /& .* !020 076&(,0 +!G!$*0 + .* & .* %G /0% ;

<).40% /&=!$/0%  !"#$"#8 *&/$+!,& + +4#$(+FH0 /& .*+ )&<)+ /& /&($%H0

3.& *$!$*$5& 0% &))0% /& +C&(,+FH0A
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 !"#$ %& '() *&+,-.$$&  +/#0 %# 123 4

 ! " #$%&'! ()*+,('!  !"#$"# &'()- )!./$ ()*+,('! ()!() ' ,+01,'2 /3%/+('

(/ $)1'45/ ('! (/('! '% &'()- .)$ !,(' '6.,('! /&7! / /&4,1/89' () '%.$/! .:1;

+,1/! )!./.0!.,1/! 1'-' &'$ )<)-&4'2 &'$ /&4,1/89' () .:1+,1/! )!./.0!.,1/! 1'-'

/ =+>4,!) () =#$%&/-)+.'!?

@- =+>4,!) A,!1$,-,+/+.) )<,!.)- -:.'('! 3%) &$,B,4)#,/- -/,! ' '6C)1.,B'

DEF? G' )+./+.'2 / -/,'$ &/$.) ('! -:.'('! ,+!)$)-;!) -/,! +' 1/-&' ()1,;

!,'+/42 '% !)C/2 +/ !,.%/89' DHF? I/,! $/$/-)+.)2 /4#%+! -:.'('! 1'+!)#%)-

$)!&'+()$ /'! (',! '6C)1.,B'! DEF ) DHF? A) )+.$) '! -:.'('! 3%) 1'$$)!&'+()-

J !,.%/89' DEF &'()-'! (,K)$ 3%) )!.)! L'$/- ,+!&,$/('! +/ =+>4,!) )- M'-;

&'+)+.)! N$,+1,&/,! '% +/ =+>4,!) () M'$$)!&'+(O+1,/!2 )+3%/+.' )- DHF +'!

$)L)$,-'! / -:.'('! &$'6/6,40!.,1'! DM)4)%< DEPPEFF?

= $)#$/ () ()1,!9' -/,! %!%/4 6/!),/;!) +/ L7$-%4/ () Q/R)!2 !%$#,+(' +/.%;

$/4-)+.) / L'$-/ () )!.,-/$ / &$'6/6,4,(/()  !$%&'"#$"# () /L)1./89' () %-

'6C)1.' x2 +%- ('! " #$%&'! ()*+,('!  !"#$"#2 DM)4)%< DEPPEFFS

P (Gk | x) =
pkPk(x)

K∑

k=1

pkPk(x)

DEF

'+() pk $)&$)!)+./- /! &$'6/6,4,(/()!  !"#$"# (' #$%&' k2 ) Pk(x) /! L%+8T)!
() &$'6/6,4,(/() &/$/ 1/(/ #$%&' "? I)(,/+.) / /&4,1/89' ()!./ $)#$/ /L)1./;

-'! %- +'B' '6C)1.' x2 /' #$%&' GK 3%) /&$)!)+./ / &$'6/6,4,(/()  !$%&'"#$"#

-><,-/2 -,+,-,K/+(' /!!,- ' )$$' () /L)1./89'?

@!.) .$/6/45'2 ,+!)$);!) +' 1/-&' ()1,!,'+/42 '+() ' 1'+C%+.' () + '6C)1.'!

)- )!.%(' : ()!1$,.' &'$ N B/$,>B),! 3%/4,./.,B/!2 +9' +)1)!!/$,/-)+.) 6,+>$,/!2

) &$'B)+,)+.)! () " #$%&'! ()*+,('!  !"#$"# 1'- "UH?

 !"#$%&' (%&)*%+%","-' (%&)*'-, .!((/

N)$/+.) %- 1'+C%+.' () (/('! (,!1$).'! / $)#$/ () ()1,!9' -/,! %!%/4 6/!),/;

!) +' I'()4' I%4.,+'-,/4 M'-&4).' DIIMF DM)4)%< ) G/V/15) DEPPWFF? G'

)+./+.'2 / !%/ %.,4,K/89' )+B'4B) / )!.,-/89' () %- +X-)$' -%,.' )4)B/('

() &/$Y-).$'!? N'$ )<)-&4'2 &/$/ ' 1/!' )- 3%) (,!&'-'! () N B/$,>B),!

6,+>$,/!2 .)$)-'! () )!.,-/$ 2P − 1 &/$Y-).$'!? = )!.,-/89' ()!.) +X-)$'

() &/$Y-).$'! !7 !) .'$+/ B,>B)4 $)1'$$)+(' / /-'!.$/! () )4)B/(/ (,-)+!9'2 '

3%) +/ &$>.,1/2 )- /4#%-/! >$)/!2 1'-' &'$ )<)-&4' +/! 1,O+1,/! (/ !/X() )

)- &!,1'4'#,/2 !) .)- -'!.$/(' (,L01,4 () '6.)$? N/$/ %4.$/&/!!/$ )!.) &$'64)-/

(/ (,-)+!,'+/4,(/() L'$/- &$'&'!./! (,B)$!/! B/$,/+.)! ()!.) -'()4' DIIMF

)+.$) /! 3%/,! !) ()!./1/ ' I'()4' () Z+()&)+(O+1,/ M'+(,1,'+/4 DIZMF DM)4)%<

) G/V/15) DEPPWFF 3%) /!!%-) 3%) ()+.$' () 1/(/ %- ('! #$%&'! ()*+,('!

 !"#$"#2 Gk2 /! N B/$,>B),! !9' ,+()&)+()+.)!? G)!.) -'()4'2 / L%+89' ()

&$'6/6,4,(/() 1'+(,1,'+/4 (' #$%&' Gk : )!.,-/(/ (/ !)#%,+.) L'$-/S
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2. Uma proposta de combinação de modelos em Análise Discriminante Discreta

 !"#$%&'  ! "#$()*+,-."/0* 1& !*1&2*'

P̂ (Gk | x) =
P∏

p=1

#
{
y ∈ Gk : yp = xp

}

nk
,  !"! p = 1, . . . , P #$%

&'() nk ") ")*)'+! ! (,-)'*.& (! !-&*+"!  !"! & /"0 & Gk1 2*+) -&()3&4 !35-

() ")(06," & '7-)"& ()  !"8-)+"&* ! )*+,-!"  )"-,+) !,'(! )'9&'+"!" 0-! *&:

30;.&  !"! ! *)3)9;.& () <!",=<),* !>0!'(& (! 9&'*+"0;.& (! ")/"! () ()9,*.&4

)*9&3?)'(&:!* ,'() )'()'+)-)'+) 0-!* (!* &0+"!*4 !+"!<5* (& ")90"*& !& @)*+)

(& A0,:>0!("!(& () ,'() )'(B'9,! )'+") ! <!",=<)3 )- 9!0*! ) ! <!",=<)3 >0)

()C') &* /"0 &*  !"#$"#1 D!(& >0) ! ?, E+)*) () ,'() )'(B'9,! )'+") !* F

<!",=<),* ')- *)- ") 5 <=3,(!4 +B- *0"/,(& (,<)"*&* -&()3&* '! 3,+)"!+0"!4 )-

!3+)"'!+,<! !& -&()3& GGH4 )'+") &* >0!,* & G&()3& I"=C9& D)9&- &'J<)3

#GID% #H)3)0K ) L!M!9?) #NOOP%4 F)!"3 #NOQQ%%1 2*+) -&()3& 9&'*,()"! !* ,':

+)"!;R)* )'+") !* <!",=<),* () 0-! S&"-! S=9,3 () ,'+)" ")+!"4 (!(& >0) *) T!*),!

'& !3/&",+-&  "& &*+&  &" H?&U ) V,0 #NOWQ% >0) 0+,3,6! 0-! )*+"0+0"! )- =":

<&")4 ()*,/'!(!  &" ="<&") () () )'(B'9,!4 T!*)!'(&:*) '! ,'S&"-!;.& -0+0!31

X**,-4 ! S0';.& ()  "&T!T,3,(!() 9&'(,9,&'!3  !"! & /"0 & Gk 5 )*+,-!(!  )3&

 "&(0+& (!* )*+,-!+,<!* (!*  "&T!T,3,(!()* 9&'(,9,&'!,*4 9&"")* &'()'+)* !&*

"!-&* (! ="<&") *)3)99,&'!(&*4 >0) ") ")*)'+!- !* ,'+)"!;R)* -!,* ,- &"+!'+)*

)'+") !* <!",=<),*1 F&" )K)- 3&4 '& 9!*& () +)"-&* 9,'9& <!",=<),* )K 3,9!+,:

<!* ) ()+)"-,'!(! ! ,'S&"-!;.& -0+0!34 *) ! 9&'930*.& S&**) >0) !* ,'+)"!;R)*

-!,* ,- &"+!'+)* )"!- (x2, x1), (x3, x2), (x4, x2)e(x5, x2) +)"J!-&* )'+.&4 9&-&

)*+,-!+,<!  !"! !  "&T!T,3,(!() 9&'(,9,&'!(! (& 9&'Y0'+& (!* 9,'9& <!",=<),* &

*)/0,'+)  "&(0+&Z

P̂ (x1, x2, x3, x4, x5) = P (x1)P (x2|x1)P (x3|x2)P (x4|x2)P (x5|x2) #[%

 !"#$%&'()" *+ ,"*+-". +# /00

L! (59!(! () O\ S&"!- <=",&* &* ,'<)*+,/!(&")* >0) 9&-);!"!-  &" 9&-T,'!"

-&()3&* 9&- & ,'+0,+& () )'9&'+"!" -5+&(&* >0) *) !(! +!**)- -)3?&" !& 9&-:

 &"+!-)'+& (&* (!(&* )- )*+0(& ) >0)  0()**)- () !3/0-! S&"-! -,',-,6!" &

'7-)"& ()  !"8-)+"&* ! )*+,-!"4 '!* -!,* (,<)"*!* =")!* (! 2*+!+J*+,9! #]&3:

 )"+ #NOO$%4 ^!S+)"_ #NOOW%4 H?, -!' %&  '(#NOOQ%4 `-,+? ) ]&3 )"+ #NOOO%%1 2-

XD4  )'*&0:*) >0) )- <)6 ()  "& &" '&<&* -&()3&*  !"! ")(06," &  "&T3)-! (!

(,-)'*,&'!3,(!()4 ! !T&"(!/)-  )3! 9&-T,'!;.& () -&()3&* 9&'(06,",! ! -&:

()3&* -!,* )C9,)'+)* ) )*+=<),*4 +!'+& -!,* >0) S")>0)'+)-)'+) *) &T*)"<! >0) &*

)""&* () !S)9+!;.& &T+,(&*  &" <=",&* -&()3&* '.& &9&"")- *&T") &* -)*-&* &T:

Y)9+&* #`&0*! a)""),"! #$\\\%4 #`&0*! a)""),"! %&  '( #$\\\%4 b",+& #$\\$%4 b",+&

%&  '( #$\\W%%1 `&0*! a)""),"! ##$\\\%4 `&0*! a)""),"! %&  '( #$\\\%%  "& c*4

0- -&()3& () 9&-T,'!;.& '!+0"!3  !"! & 9!*& () (&,* /"0 &*  !"#$"# >0) 9&':

*,*+) )- 0+,3,6!" 0- 7',9& 9&)C9,)'+)  "&(06,'(& 0- -&()3& ,'+)"-5(,& )'+")

& -&()3& -03+,'&-,!3 9&- 3)+& #GGH% ) & -&()3& () ,'() )'(B'9,! 9&'(,9,:

&'!3 #GdH%4 +)'(& ()*)'<&3<,(& <=",!* )*+"!+5/,!*  !"! )*+,-!" )**) 9&)C9,)'+)1
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 !"#$ %& '() *&+,-.$$&  +/#0 %# 123 4

 !""! !"#$%&' &("!)*&$+"! ,$! !- %.*!)"/" !"#)/#01./" $#.2.3/%/"' & 4&!54.!6#!

%/ 4&-(.6/78& #!6%! / 9&6%!)/) :&)#!-!6#! & -&%!2& ;<= ! / )!%$3.) -$.#&

/ 4&6#).($.78& %& -&%!2& ;;=' -!"-& ,$/6%& /" "$/" :)!,$>64./" "8& /2."/+

%/"? =&- (/"! 6/" 4&642$"@!" %!"#/ .6*!"#.1/78&' ;/),$!"  ! "#$ ABCCDE 9)&9F"

"$("#.#$.)' 6/ )!:!).%/ 4&-(.6/78&' & -&%!2& ;;= 9!2& -&%!2& ;GH' & ,$/2

#!- !- 4&6#/ / .6#!)/478& !6#)! /" */).I*!." !- !"#$%&' "$)1.6%& /"".- $- 6&*&

-&%!2& .6#!)-0%.& !6#)! & -&%!2& ;<= ! & -&%!2& ;GH' "!6%& / :$678& %!

9)&(/(.2.%/%! 4&6%.4.&6/%/ !"#.-/%/ %/ "!1$.6#! :&)-/J

P̂ (x | β) = βP̂MIC(x) + (1 − β)P̂MGD(x) AKE

H/ /92.4/78& %!"#! 6&*& -&%!2&' ;/),$!"  ! "#$ ABCCDE' &(#!*! $-/ -!2L&)./

6/ #/M/ %! /:!4#/78& %&" 6 &(N!4#&" /&" O 1)$9&" %!56.%&" " %&'(&'?  & !6+

#/6#&' !"#/6%& !"#! !"#$%& /.6%/ 6$-/ :/"! .6.4./2' /.6%/ 68& 0 9&"".*!2 /9&6#/)

4&642$"@!" %!56.#.*/"?

 !"# $#%&#'() *+ ,+*)-+ *) ."/#%)-0#")'(+ 1&)%2%3

45&6+

P$/6%& & 4&6#!M#& %/ /6I2."! %."4).-.6/6#! "&()! */).I*!." ,$/2.#/#.*/" "! ".#$/

6& 4/"& %! -/." %! %&." 1)$9&" / %&'(&'' 9&%! "!) */6#/N&"&' 4&-& Q).!%-/6

ARSSTE NI #.6L/ &("!)*/%&' #)/6":&)-/) !"#! 4/"& !- %.*!)"&" 9)&(2!-/" %! %."+

4).-.6/78& !6#)! %&." 1)$9&"' 4&6%$3.6%& / -&%!2&" -/." :I4!." %! !"#.-/) ! %!

.6#!)9)!#/)? Q).!%-/6 #.6L/ 9)&9&"#& / %!4&-9&".78& %&" O 1)$9&" !- #&%/"

/" 4&-(.6/7@!" 9&""U*!." %! 9/)!" %! 1)$9&"? V/)/ 4/%/ 9/) !"#.-/*/ / )!1)/ %!

%!4."8& !' 6& 56/2' 4/%/ &(N!4#& "!)./ /:!4#/%& / 9/)#.) %/ %!4."8& -/.&).#/)./

!- #&%&" &" 9/)!" %! 1)$9&"?

W&$"/ Q!))!.)/ 9)&9F" AABCCCE' W&$"/ Q!))!.)/  ! "#$ ABCCCE' X).#&  ! "#$

ABCCTEE $-/ /(&)%/1!- %.:!)!6#!? Y -&%!2& .6#!)-0%.& 9)&9&"#& :&. 1!6!+

)/2.3/%& 9/)/ & 4/"& %! -/." %! %&." 1)$9&" " %&'(&' /#)/*0" %& ;&%!2& %!

Z-9/)!2L/-!6#& [.!)I),$.4& A;[<Z\E' & ,$/2 %!4&-9@! & 9)&(2!-/ .6.4./2 %!

K > 2 1)$9&"' " %&'(&' ' !- %.*!)"&" 9)&(2!-/" %! %&." 1)$9&"' $#.2.3/6%& $-/

!"#)$#$)/ %! I)*&)! (.6I)./' "!6%& 4/%/ &(N!4#& /:!4#/%& /& 1)$9& /""&4./%& /&

]2#.-& )/-& %/ I)*&)! &6%! :&. 42/"".54/%&?

Y -&%!2& ;[<Z\ !M.1! /"".-' %$/" %!4."@!" !- 4/%/ 6U*!2 %/ I)*&)!J

• ^ "!2!478& %! $- 9/) L.!)I),$.4& !6#)! /" 2K−1 − 1 9&"".(.2.%/%!" %!
!-9/)!2L/-!6#& A9/) %! 1)$9&" 4&-9&"#&" )!"$2#/6#! %/ 9/)#.78& %! O

1)$9&"E_

• Z- 4/%/ 6U*!2 %/ I)*&)!' / "!2!478& %& -&%!2& ,$! 4&6%$3 ` -!2L&) )!1)/

%! %!4."8&?

 & 9).-!.)& 6U*!2 %/ I)*&)!' %."9&-&" %!) 1)$9&" ! 9)!#!6%!-&" )!&)1/6.3I+

2&" 6$- 9/) %! 1)$9&"? ^"".-' W&$"/ Q!))!.)/ 9)&9F" !"4&2L!) & 6&*& 9/) %!
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2. Uma proposta de combinação de modelos em Análise Discriminante Discreta

 !"#$%&'  ! "#$()*+,-."/0* 1& !*1&2*'

 !"#$% &$'#$%($% )"* +$%%*' ',-% %*#,!,.$%/ 0#1% , %*2*&34$ .$ 5

 

678*2 .,

9!8$!*: $;(<'=%* , !* !, .* .*&-%4$ #,!, *%(* #,! .*  !"#$%/ >*#*(*=%*: *6=

(4$: , *%&$2?, #,!, $ %* "6.$ 678*2 ., 9!8$!* *6(!* ($.$% $%  !"#$% &$'#$%($%

@+$!',.$% #$! .$-% $" ',-%  !"#$% -6-&-,-%A/ B #!$&*%%$ (*!'-6, )",6.$ , .*=

&$'#$%-34$ .$%  !"#$% &$6."C ,  !"#$% %-6 "2,!*%/

DE*'#2-F&,6.$: &$6%-.*!*'$% "' &,%$ .* (!G%  !"#$%  !"#$"#: G1: G2 * G3:

(*!*'$% *6(4$ )"* &$6%-.*!,! ,% %* "-6(*% &$';-6,3H*% .* #,!*% .*  !"#$%I G1

8*!%"% G2 ∪ G3: G2 8*!%"% G1 ∪ G3: G3 8*!%"% G1 ∪ G2/ J*(*!'-6,., "',

'*.-., .* #!$E-'-.,.* *6(!* *%(*% (!G% #,!*% .*  !"#$% %*!9 %*2*&&-$6,.$ #,!,

$ 5

 

678*2 ., 9!8$!* ;-69!-, $ #,! &$' 8,2$! ., '*.-., .* #!$E-'-.,.* '76-'$/

K* "-.,'*6(* $;(<'=%* , !* !, .* .*&-%4$ #,!, *%(* #,! .*  !"#$% * !*#*(*=%*

$ #!$&*%%$ #,!, $ L

 

678*2 ., 9!8$!* @+$!',.$ *E&2"%-8,'*6(* #$!  !"#$% %-6=

 "2,!*%A/ M*%(* &,%$: *' )"* $ 6N'*!$ .*  !"#$% < #*)"*6$: #$.*'$% (,';<'

$#(,! #$! &$6%(!"-! ,% (!G% 9!8$!*% ;-69!-,% &$!!*%#$6.*6(*% O% &$';-6,3H*% .*

#,!*% .*  !"#$% ,&-', !*+*!-.,%: *%&$2?*6.$ 6$ F6,2 , )"* &$6."C O '*2?$! (,E,

.* ,+*&(,34$/

0 !* !, .* .*&-%4$ $;(-., ,(!,8<% .$ '$.*2$ .* *'#,!*2?,'*6($ ?-*!9!)"-&$

#$.* %*! !*#!*%*6(,.$ 6"', 9!8$!* ;-69!-, &$'$ *%(9 *E*'#2-F&,.$ 6, P- "!,

5/

B '$.*2$ QRSD> #!$#$%($ #$! K$"%, P*!!*-!, @LTTTA !*8*2$" 64$ %1 %*! "',

P- "!, 5I U!8$!* ;-69!-, &$!!*%#$6.*6(* O L

!

&$';-6,34$ 6$ &,%$ .* (!G%  !"#$%/

'*($.$2$ -, #!$'-%%$!, #,!, '*2?$!,! $% *!!$% .* '9 &2,%%-F&,34$ &$'$ ,-6.,

, %", *%(!"("!, *' 9!8$!* ;-69!-, &$6."C-!:  *!,2'*6(*: , -6(*!#!*(,3H*% #,!(-=

&"2,!'*6(* -6(*!*%%,6(*% #,!, $% .,.$% *' *%(".$/

J*8-.$ , *%(* +,&($: Q,!)"*% %&  '(@LTTVAA "(-2-C$" (,';<' , ,;$!., *' .$

'$.*2$ .* *'#,!*2?,'*6($ ?-*!9!)"-&$ &$' , &$';-6,34$ .* '$.*2$% *6(!* $

'$.*2$ QSW * $ '$.*2$ QXJ: 6$ &,%$ .* YZL  !"#$%  !"#$"#( 0% #!-'*-!,%

,8,2-,3H*% .$ .*%*'#*6?$ .*%(* 6$8$ '$.*2$ ?-*!9!)"-&$: $;(-.$% &$' .,.$%

!*,-%: !*+$!3,' $% !*%"2(,.$% [9 $;(-.$% #$! K$"%, P*!!*-!, @@LTTTA: K$"%, P*!=

!*-!, %&  '( @LTTTA: \!-($ %&  '( @LTT]AA/ 0(*6.*6.$ , )"* 6, ',-$! #,!(* .$%

&,%$% .-%#$'$% .* "' &$6["6($ .* 6 $;[*&($%: .*%&!-($% #$! ^ 8,!-98*-% -6.*#*6=
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 !"#$ %& '() *&+,-.$$&  +/#0 %# 123 4

 !"#!$% "&' "!(!$$)*+),!"#! -+".*+)$% /*'0!"+!"#!$  ! 123 4*5/'$  !6"+ '$  

!"#$"#% ' /*!$!"#! #*)-)78' #!0! (',' '-9!(#+0' *!:'*,57)* ) /*'/'$#) )#; )4'*)

 !$!"0'70+ ) /'* <)*=5!$ %&  '( >3??@A /)*) 0)*+.0!+$ -+".*+)$% /)*) !$#! ()$'

,)+$ 4!*)7B

C$$+,% )/*!$!"#),'$  ! $!45+ )% ' /$!5 'D(E +4'  ! 5,) "'0) 0)*+)"#!  ' )7D

4'*+#,' <FGHI% +,/7!,!"#) ' (', ' '-9!(#+0'  ! )7+)* ) $+,/7+(+ ) !  ! 5,)

 +$(*+,+")J&' !"#*!  '+$ 4*5/'$ (', 5,) "'0) /*'/'$#)  ! (',-+")J&'  ! ,'D

 !7'$ =5! /' !*. ,!78'*)* ) $5) ()/)(+ ) ! /*! +#+0)B

K) ('"(!/J&'  !$#! )74'*+#,' ;  ! !L#*!,) +,/'*#M"(+) ) ")#5*!N)  '$  )D

 '$ !, )".7+$! $!* =5)7+#)#+0)B C$$+, $!" '% #'*")D$! *!7!0)"#! '-$!*0)* =5! )

:'*,) ,)+$ 5$5)7  ! (',/)*)* )  +$#*+-5+J&'  ! 0.*+)$ /'/57)JO!$  !$(*+#)$ /'*

0)*+.0!+$ =5)7+#)#+0)$ ('"$+$#! !, '*4)"+N)* ) +":'*,)J&' !, #!*,'$  ' !$/)J'

 ' *!$57#) '$ )$$'(+) ' ) !$$)$ 0)*+.0!+$ >+$#' ;% #' '$ '$ 0!(#'*!$ =5! $&' /'$$PD

0!+$ $!* '-$!*0) '$ (', ' "Q,!*'  ! 0)*+.0!+$  !$(*+#'*)$ !, )".7+$!A ' =5! "'$

/!*,+#! ) (',/)*)J&'  )$ /'/57)JO!$ )#*)0;$  )$ :*!=5R"(+)$ *!7)#+0)$ (', =5!

() ) 5,  !$$!$ !$#) '$ :'+ '-$!*0) 'B HL!,/7+6()" '% "' ()$' ,)+$ $+,/7!$  !

 5)$ 0)*+.0!+$ -+".*+)$ ! $5/'" ' =5! () ) 5,)  !7)$ /' ! )$$5,+* ' 0)7'* ?

'5 S% #!*!,'$% !"#&'% =5)#*' !$#) '$ /'$$P0!+$ T

??% ?S% S?% SSB

U)*) (',/)*)* )$  +$#*+-5+JO!$  ! 0.*+)$ /'/57)JO!$ -)$#)*+) (',/)*)* ) :*!=5R"D

(+) *!7)#+0) '-$!*0) )  ! () ) !$#) 'B V',' ; $)-+ ' !, 4!*)7 !$#) +":'*,)J&'

;  !$('"8!(+ ) ! '$  +0!*$'$ ,' !7'$  ! CWW  +:!*!"(+),D$! /'* /*'/'*!, #;(D

"+()$  ! !$#+,)J&'  +$#+"#)$ /)*) !$#)$  +$#*+-5+JO!$  !$('"8!(+ )$B

!)%*+$,-.+#/$ +$  '/$"#&0$ 123456

7$8)#+%"%,)%  0 &"#9 +% + +$) X = [xnp] :;8 <=(((>? 8@0%"$ +% $AB%-&$)C

!<=(((D? 8@0%"$ +% E "#FE%#);G(

D " - + /"*!$ H :;H<=(((I? 8@0%"$ +% /"*!$);G - '-*' "J

$ E%-&$" +% %)& +$) Ek = [ml] :;'<=((('0 K? )%8+$ lmax ≤ N ?

 0 &"#9 +% L"%M*N8-# ) +% %)& +$) F k = [fk
l ]C

:; 7$8)&"*#"  F"E$"% A#8F"# OA? A )% +% #0!'%0%8& PQ$ +$ 0$+%'$ R#%"F"M*#-$?

123456 ;G

O1 = {x : X ∈ G1 ∪ G2 ∪ ... ∪ Gk}:;8. " #9 +% OA;G

D " B<=(((I,= :; B "%L%"%,)%  8SE%' + F"E$"% OA; G

D " )<=(((T:BG :;) 8@0%"$ +% ! "&#PU%) !$))SE%#) +$) /"*!$) %0 Oj M*%

V 2K−1 − 1 M* 8+$ "%L%"#+$  $ 8. " #9;G

-$8)&#&*#" *0 ! "&#PQ$ Πs
+$) /"*!$)  'E$ %0 Oj %0 6

/"*!$) -$0!$)&$)X

W%&%"0#8 " 1D:)G :;0%+#+ +% !"$K#0#+ +%;G%8&"% $) 6

/"*!$) -$0!$)&$) $* %L%-&* " A*)- %K *)&#E C

3+%8&#X- " $) 0%'R$"%) /"*!$) -$0!$)&$)? Πj
-$""%)!$8+%8&%  $ Mins{MP (s)}?

)<B(((T:BG $* *) " &$+$) $) %8-$8&" +$) 8 A*)- %K *)&#E C
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2. Uma proposta de combinação de modelos em Análise Discriminante Discreta

 !"#$%&'  ! "#$()*+,-."/0* 1& !*1&2*'

 !"#$%&'% %()'*+(,-! ./ 01 +!"#'./%(".! Πj
!& +!"#$%&'% (# 23%'(#

3%2!%/# 01 %/#&4$("$/# .( 1&#+( /5(&#$'2(6

789%!+/./% : +4(##'*+(,-!;.'#+%')'"(,-! ./ .(.!# ( <(%$'% ./ 018=

9(%( >?@666AB@ 78/) +(.( "C2/4 > ./ 01 2-! +!"#'./%(%B#/ !# .!'# D%&<!# +!)B

<!#$!# B Gs1,j / Gs2,j B "/4/ +!"#$'$&C.!#8= +(4+&4(%E

(# "!2(# )($%'F/# ./ G%/H&I"+'(# ./ /#$(.!# .!# D%&<!# +!)<!#$!#

F s1 = [fs1
l ] / F s2 = [fs2

l ] J

&$'4'F(% !# +%'$K%'!# LM N LOP / (β)MIC+(1−β)MGD78+!) β = 0.25J

β = 0.50J β = 0.75 8= <(%( (G/+$(,-! .!# .(.!# / +!"#$%&'% )($%'F/# ./

+4(##'*+(,-! +!%%/#<!"./"$/# A(MIC)N A(MGD) / A(β)MIC+(1−β)MGDJ

P/$/%)'"(% ( <%!<!%,-! ./ +(#!# 1/) +4(##'*+(.!# Pc +!%%/#<!"./"$/# ( A(MIC)N

A(MGD) / A(β)MIC+(1−β)MGDJ

0G/+$(% +(.( !1>/+$! #/D&".! ! Q4$')! %()! /) H&/ /4/ K (G/+$(.!;+4(##'*+(.!6

R/4/++'!"(% ! )/4S!% )!./4! ./ +4(##'*+(,-!N +!%%/#<!"./".! (Max{Pc(A(MIC))},
{Pc(A(MGD))} / Pc(A(β)MIC+(1−β)MGD)N +!"#'./%(".! β = 0.25J β = 0.50J
β = 0.75 

!"#" $ %&'()$ )$ )%&%*+%,-$ )%&'" ,$." "/$#)"0%* 1$#%* 2*+3%*%,'")$& ,$4

.$& +#$0#"*"& %&'"'5&'26$& ,$ &$1'7"#% 89:;9<= '%,)$ &2)$ "+326")$& +$&'%#2$#4

*%,'% " )")$& #%"2&> ?$/#% %&'"& ",@32&%& "+#%&%,'"*4&%= " &%0(2#= "& 6$,63(&A%&>

 !"#$%&'()

B& )")$& C(% &% &%0(%* DE%#"* +"#'% )% (* '#"/"3-$ &$/#% " ".%#20("FG$ )"&

6"#"6'%#5&'26"& )$ &'#%&& +"#%,'"3 %* 0#(+$& )% +"2& )% 6#2",F"& C(% &% )21%#%,4

62"* )" &%0(2,'% 1$#*"H

• I#(+$ G1 4 !"2& )% 6#2",F"& 6$* )$%,F" 6#J,26" 4 K2/#$&% L(5&'26"= ,MNOP

• I#(+$ G2 4 !"2& )% 6#2",F"& 6$* )$%,F" 6#J,26" 4 Q$%,F" R%35"6"= ,MNSP

• I#(+$ G3 4 !"2& )% 6#2",F"& &%* +#$/3%*"& 15&26$& $( +&26$3J026$& 4 I#(+$

)% R$,'#$3%= ,MNT>

K$#"* ","32&")"& OU 6#2",F"& 6$* "& 6"#"6'%#5&'26"& #%1%#2)"& % #%02&'")"& "&

&("& #%&+$&'"& ,$ C(%&'2$,@#2$ )% V,)26% )% ?'#%&& !"#%,'"3 WX?!Y> Z&'% 2,&'#(4

*%,'$ 1$2 6$,6%/2)$ +"#" "."32"# " 2,'%,&2)")% )$ &'#%&& C(% $6$##% ,$ &2&'%*"

+"2&46#2",F"&= C(",)$ %&'% [ &(/*%'2)$ " )2.%#&"& +#%&&A%&= % [ 6$*+$&'$ +$#

N\] 2'%,&= $#0",2E")$& %* )$2& )$*5,2$& WQ$*5,2$ )" R#2",F" % Q$*5,2$ )$&

!"2&Y= 6")" (* &(/)2.2)2)$ %* .@#2"& &(/%&6"3"&> R")" 2'%* [ *%)2)$ ,(*"

%&6"3" )% '2+$ ;2^%#' )% T +$,'$&>

_%&'% '#"/"3-$ 6$,&2)%#"*$& "+%,"&= $& $2'$ 2'%,& 6$##%&+$,)%,'%& ` &(/%&6"3"

9('$,$*2" )$ Q$*5,2$ )" R#2",F"= 6(a" ,$'" 03$/"3 #%.%3$(= %* %&'()$& ",'%4

#2$#%&= (* 1$#'% +$)%# )2&6#2*2,"'2.$> !"#" 23(&'#"# " "+326"FG$ )$ *$)%3$ )%
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 !"#$ %& '() *&+,-.$$&  +/#0 %# 123 4

 !"#$ %&#! '() &* $+$,-*.) / .)!0*'#12) *'( $!34*#  '($ ) !)4 %) 567  )

!)4 %) 589 :5;6<=5>? "$)")@() ")$ 5#$,- @  ! "#$ :>AAB?C  #( '4 '4)

# ,- #" '#@ ( !)@ D E$-")@  !  @(-4)C $ #%*F+!)@ # #'+%*@ 4 G)$!#  H#-@I

(*J#C )- @ K#C #"%*.#!)@ ) !)4 %) 5;6<=5> "#$# )@ E$-")@L G1vs.(G2 + G3)C
G2vs.(G1+G3)  G3vs.(G1+G2)C ( '4) )0(*4) )@ $ @-%(#4)@ ,- @ #"$ @ '(#!

'#@ M#0 %#@ N  >O

M#0 %# NL M#H#@ 4 0 ! #G .(#4)@ "#$# )@ 4*J $@)@ !)4 %)@ .)!0*'#4)@O

β 567 P(1 − β) 589

β N AO>Q AOQA AORQ A

S $.O 0 ! #GO RTO>U V>OVU VQO>U VAOQU V>OVU

M#0 %# >L M#H#@ 4 0 ! #G .(#4)@ "#$# )@ 4*J $@)@ !)4 %)@ 5;6<=5>O

β 567 P(1 − β) 589

β N AO>Q AOQA AORQ A

G1vs.G2 + G3 RTO>U VQO>U VROTU BDODU VQO>U

G2vs.G1 + G3 RBOQU VAOQU VQO>U BBOAU VAOQU

G3vs.G1 + G2 RTO>U VQO>U VROTU BDODU VQO>U

9# #'+%*@ 4 @( @ $ @-%(#4)@ ")4 !)@ .)'.%-*$ ,- # .)!0*'#12) *'( $!34*#

 '($ ) !)4 %) 567  ) !)4 %) 589 G)$' . W"(*!)@ $ @-%(#4)@O X)  '(#'()C

@ -(*%*F#$!)@ ) 5)4 %) 4 <!"#$ %&#! '() ;* $+$,-*.) "#$#  @(# .)!0*'#12)

*'( $!34*# :5;6<=5>? #*'4# .)'@ E-*!)@ ! %&)$#$ )@ $ @-%(#4)@ 4 #G .(#12)O

 !"#$%&'()' ) *)+'*)$,-./'

7)!) G)* $ G $*4) '#@ @ .1Y @ #'( $*)$ @C  @( ($#0#%&) ( ! J*'4) # 4 @ 'J)%J $

) @ - .#!") 4 #"%*.#12) ( '4) .)! 1#4) ")$ #"%*.#$ # #0)$4#E ! 4 .)!0*'#I

12) 4 !)4 %)@ "$)")@(#C ) !)4 %) *'( $!34*)  '($ ) !)4 %) 567  ) !)4 %)

589C ') .#@) 4 4)*@ E$-")@ " %&'(&'  J#$*+J *@ 0*'+$*#@O S)@( $*)$! '( C

E ' $#%*F)-I@ #) .#@) 4 !#*@ 4 4)*@ E$-")@ " %&'(&' #($#J3@ 4# -(*%*F#12) 4#

*4 *# 4) !)4 %) 4  !"#$ %&#! '() &* $+$,-*.)C '-!# "$*! *$# G#@ .)! J#I

$*+J *@ 0*'+$*#@  ' @( ($#0#%&) .)! J#$*+J *@ ,-#%*(#(*J#@ '2) ' . @@#$*#! '( 

0*'+$*#@O ;+ ,- $ G $*$ .)!) %*!*(#12) 4 @( ($#0#%&) # #'+%*@ 4) 4 @ !" '&)

4# ! ()4)%)E*# "$)")@(# K+ ,- #" '#@ G)* #J#%*#4#  ! 4#4)@ $ #*@  @ ! $ .-$@)

# ,-#%,- $ #!)@($# &)%4)-(O 9 @( !)4)C # .)'(*'-#12) 4) ($#0#%&) 4 *'J @I

(*E#12)  ! ()$') 4 @(# ( !+(*.# *$+ .)'@*4 $#$ # *!"% ! '(#12) 4 (3.'*.#@ 4 

J#%*4#12) 4#@ (#H#@ 4  $$)C #4 ,-#4#@ "#$# #@ " ,- '#@ 4*! '@Y @ 4 #!)@($#@

,- (Z! J*'4) # @ $ .)'@*4 $#4#@C .)!) J#%*4#12) .$-F#4#C # ") *(+ *(,! )- )*

-(#.O [ #'+%*@ 4) 4 @ !" '&) 4)@ ')J)@ !)4 %)@ "$)")@()@ .)'(*'-#$+ # @ $
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2. Uma proposta de combinação de modelos em Análise Discriminante Discreta

 ! "#$%&'(  ! "#$)*+,-./#01+ 2' "+2'3+(

 !"#$%&'& % ($%% )'$ & &)*#+, , ($-"&%&.+/&, ($- $0.%$, -$' #$, 10 % ,$2% 

'&'$, % &+, 10 % ,$2% '&'$, ,+-0#&'$,3

 !"!#$%&'()

 !" #$%&'( )* +,--,.*  !"#$%&$'!% () "!(*+)' )% &%&+,') ($'-.$"$%&%/) (&%' 0% -!%1

/)2/) 3&0''$)%4 /0123 43 5'6&'$7&( 89%:3$2%&; <'23=0 >'?$%3$( @$39'AB3*

 ," #$%&'( )*( C3B3?D( @* 3 E'?27 >3$$3%$7( F* +,--G.*  !"#$%$%3 ")/5!(' $% 607).8$')(

 +&''$9-&/$!%: & -!"7&.&/$8) '/0(, !% ($'-.)/) &%( -!%/$%!0' 7.!#+)"'4 ;<=61

>?> 1 6/&/$'/$-&+ @!0.%&+( H'B* I+J.( ,-!K,,L*

 J" C0%=M79( N*( @3'$O3( P* 3 Q6C?BB760( R* +!SST.* A&,)'$&%  ?;> "!()+ ')&.-5

BC$/5 ($'-0''$!%D4 @!0.%&+ !E /5) ?").$-&% 6/&/$'/$-&+ ?''!-$&/$!%( SJ( SJLKSG-*
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CHAPTER 3

Classification and Combining Models
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Erratum

In pag. 2, where is "and DTM - Dependence Trees Model (DTM), Celeux (1994)" should be "and

Dependence Trees Model (DTM), Celeux (1994)".
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Abstract: In the context of Discrete Discriminant Analysis (DDA) the idea of combining 

models is present in a growing number of papers aiming to obtain more robust and more 

stable models. This seems to be a promising approach since it is known that different DDA 

models perform differently on different subjects. Furthermore, the idea of combining models 

is particularly relevant when the groups are not well separated, which often occurs in 

practice. Recently, we proposed a new DDA approach which is based on a linear combination 

of the First-order Independence Model (FOIM) and the Dependence Trees Model (DTM). In 

the present work we apply this new approach to classify consumers of a Portuguese cultural 

institution. We specifically focus on the performance of alternative models’ combinations 

assessing the error rate and the Huberty index in a test sample. 

We use the R software for the algorithms’ implementation and evaluation.  

Keywords: Combining models, Dependence Trees model, Discrete Discriminant Analysis, 

First Order Independence model. 

 

1.  Introduction 

Discrete Discriminant Analysis (DDA) is a multivariate data analysis technique that aims to 

classify and discriminate multivariate observations of discrete variables into a priori defined 

groups (a known data structure or Clustering Analysis results). Considering  K exclusive 

groups G1, G2, …, GK and a n-dimensional sample of multivariate observations  - X = (x1, x2, 

…, xn) described by P discrete variables - DDA has two main goals: 

1. To identify the variables that best differentiate the K groups; 

2. To assign objects whose group membership is unknown to one of the K groups, by 

means of a classification rule. 

43



3. Classification and Combining Models

2 

 

 

In this work, we focus in the second goal and we consider objects characterized by qualitative 

variables (not necessarily binary) belonging to K ≥ 2 a priori defined groups. We propose to 

use the combination of two DDA models: FOIM - First-Order Independence Model and 

DTM - Dependence Trees Model (DTM), Celeux (1994) - to address classification problem. 

 

In addition, we evaluate HIERM - Hierarchical Coupling Model performance when 

addressing the multiclass classification problems (Sousa Ferreira et al. (2000)) 

In order to evaluate the performance of the proposed approaches, we consider both simulated 

data and real data referred to consumers of a Portuguese cultural institution (Centro Cultural 

de Belém). Furthermore, we compare the obtained results with CART - Classification and 

Regression Trees (Breiman et al. (1984)) algorithm results. 

 

2.  Discrete Discriminant Analysis 

The most commonly used classification rule is based on the Bayes’s Theorem. It enables to 

determine the a posteriori probability of a new object being assigned to one of the a priori 

known groups. The Bayes’s rule can be written as follows: if 

 

for l =1, …, K and  l≠k,  (1) 

 

then assign x to Gk.  represents the a priori probability of group l (Gl), and P(x|Gl) denotes 

the conditional probability function for the l-th group. Usually, the conditional probability 

functions are unknown and estimated based on the training sample. 

For discrete data, the most natural model is to assume that P(x|Gl) are multinomial 

probabilities estimated by the observed frequencies in the training sample, the well known 

Full Multinomial Model (FMM) (Celeux (1994)). However, since this model involves the 

estimation of many parameters, there are often related identifiability issues, even for 

moderate P. One way to deal with this high-dimensionality problem consists of reducing the 

number of parameters to be estimated recurring to alternative models proposals. One of the 

most important DDA models is the First-Order Independence Model (FOIM) (Celeux 

(1994)). It assumes that the P discrete variables are independent within each group Gk, the 

corresponding conditional probability being estimated by: 
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                      (2) 

 

where nk represents the Gk’s group sample dimension. This method is simple but is not 

realistic in some situations. Thus, some alternative models have been proposed. The 

Dependence Trees Model (DTM), Celeux (1994) and Pearl (1988), for example, takes the 

predictors’ relations into account. In this model, one can estimate the conditional probability 

function, using a dependence tree that represents the most important predictors’ relations. In 

this research, we use the Chow and Liu algorithm (Celeux (1994) and Pearl (1988)) to 

implement the dependence tree and approximate the conditional probability function.  

In this algorithm, the mutual information I(Xi, Xj) between two variables  

  

          (3) 

is used to measure the closeness between two probability distributions. For example, take P = 

4 variables and consider the data listed in Table 2. For each pair of variables we obtain the 

mutual information (see Table 1). Since I(x2, x3), I(x1, x2) and I(x2, x4) correspond to the three 

largest values the branches of the best dependence tree are (x2, x3), (x1, x2) and (x2, x4) and  

                          

                  (4) 

 

Table 2 illustrate the differences between the estimates of  the 3 referred DDA models 

corresponding to the data considered. Note that the DTM model estimates are closer to the 

FMM estimates but there are no null frequencies. 

(xi, xj) I (xi, xj) 

(x1, x2) 0,079434 

(x1, x3) 0,000051 

(x1, x4) 0,005059 

(x2, x3) 0,188994 

(x2, x4) 0,005059 

(x3, x4) -0,024 

Table 1. Mutual information values 
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(x1,x2,x3,x4) 

values 

num. 

observ./ 

Gk 

 

 (x1,x2,x3,x4)  for 

group Gk 

FMM FOIM DTM 

0000 10 0,10 0,05 0,10 

0001 10 0,10 0,05 0,13 

0010 5 0,05 0,06 0,03 

0011 5 0,05 0,06 0,04 

0100 0 0,00 0,06 0,02 

0101 0 0,00 0,06 0,02 

0110 10 0,10 0,07 0,08 

0111 5 0,05 0,07 0,07 

1000 5 0,05 0,06 0,04 

1001 10 0,10 0,06 0,05 

1010 0 0,00 0,07 0,01 

1011 0 0,00 0,07 0,02 

1100 5 0,05 0,07 0,04 

1101 5 0,05 0,07 0,03 

1110 15 0,15 0,08 0,18 

1111 15 0,15 0,08 0,15 

Table 2. Conditional probability estimates for group Gk 

 

 

3. Combining Models in Discrete Discriminant Analysis 

The idea of combining models currently appears in an increasing number of papers. The aim 

of this strategy is to obtain more robust and stable models. Sousa Ferreira (2000) proposes 

combining FMM and FOIM to address classification problems with binary predictors, using a 

single coefficient β (0 ≤ β ≤ 1) to weight these models. In spite of yielding good results, the 

referred approach shows that the resulting FMM weights tend to be frequently negligible, 

even when the observed frequencies are smoothed (Brito et al. (2006)).  
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In view of these conclusions, Marques et al. (2008) propose a new model which has an 

intermediate position between the FOIM and DTM models: 

 

                     (5) 

 

In the present work the combining models’ parameter is assigned different values ranging 

from 0 to 1. 

 

4.  The Hierarchical Coupling Model 

In the multiclass case (K≥2) we can recur to the Hierarchical Coupling Model (HIERM) 

(Sousa Ferreira et al. (2000)) that decomposes the multiclass problem into several biclass 

problems using a binary tree structure. It implements two decisions at each level: 

1. Binary branching criterion for selecting among the possible 2
K-1

-1groups combinations; 

2. Choice of the model or combining model that gives the best classification rule for the 

chosen couple. 

In the present work we implement branching using the affinity coefficient, Matusita (1955) 

and Bacelar-Nicolau (1985). Supposing F1={pl} and F2={ql}, l=1,…,L are two discrete 

distributions defined on the same space, the correspondent affinity coefficient is computed as 

follows: 

                                     (6) 

 

The process stops when a decomposition of groups leads to single groups. 

For each biclass problem we consider FOIM, DTM or an intermediate position between 

them.  

 

5.  Numerical Experiments 

We conduct numerical experiments for simulated data and real data using moderate and large 

samples, respectively. We use test samples to evaluate the alternative models precision. 

Indicators of precision are the percentage of correctly classified observations (Pc) and  the 

Huberty index: 

 

where Pd represents the percentage of correctly classified cases using the majority class rule. 
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5.1 Simulated data 

The simulated data set considered has 250 observations, 4 groups and 3 binary predictors (see 

Table 3). To evaluate the proposed models’ performance we use precision corresponding to a 

test (sub)sample: 50% of the original sample. The modal class in the test sample has 32% of 

the observations which yields the same 32% for percentage of correctly classified 

observations, according to the majority rule.  

  Total data set Training sample Test sample 

  nk % nk % nk % 

G1 80 32% 40 32% 40 32% 

G2 70 28% 35 28% 35 28% 

G3 30 12% 15 12% 15 12% 

G4 70 28% 35 28% 35 28% 

Table 3. Characterization of simulated data set 

 

The results obatined are presented in Table 4. For this data set the HIERM model and FOIM-

DTM combination yeld the best results. 

 

Classification Method 
% of correctly 

classified 

Huberty 

index 

 

CART 45,6% 20,00%  

β*FOIM+ 

(1-β)*DTM 

β = 0 (DTM) 52,8% 30,59%  

β = 0,25 47,2% 22,35%  

β = 0,50 48,8% 24,71%  

β = 0,75 48,8% 24,71%  

β = 1 (FOIM) 48,8% 24,71%  

MHIERM: 

G2+G1 vs G3+G4 

 

β*FOIM+ 

(1-β)*DTM 

β = 0 (DTM) 45,6% 20,00%  

β = 0,25 59,2% 40,00%  

β = 0,50 60,8% 42,35%  

β = 0,75 60,8% 42,35%  

β = 1 (FOIM) 59,2% 40,00%  

Table 4.  Simulated data set results 
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5.2 Real data 

We consider a data set referred to 988 observations originated from 

questionnaires directed to consumers of Centro Cultural de Belém, a 

Portuguese cultural institution (Duarte (2009)). Data includes three questions 

related to the quality of services provided by CCB that this study tries to 

relate with consumers’ education: we specifically use 4 education levels as 

the target variable. Predictors are: X1-Considering your expectations how do 

you evaluate CCB products and services?(1=much worse than expected  

…5=much better than expected); X2- How do you evaluate CCB global 

quality? (1=very bad quality,…, 5=very good quality); X3: How do you 

evaluate the price/quality relationship in CCB?(1=very bad…5=very good). 

The groups distribution is illustrated in Table 5. 

 

              

  Total data set Training sample Test sample 

  nk % nk % nk % 

G1 177 18% 115 18% 62 18% 

G2 136 14% 88 14% 48 14% 

G3 462 47% 300 47% 162 47% 

G4 213 22% 138 22% 75 22% 

Table 5. Characterization of CCB data set 
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The results obtained are presented in Table 6. For CCB problem the best 

solution is achieved by HIERM model and combined FOIM-DTM model. 

Classification Method 

% of 

correctly Huberty 

classified index 

CART 46,10% -1,70% 

β*FOIM+ 

β = 0 

(DTM) 45,00% -3,77% 

(1-β)*DTM β = 0,20 45,80% -2,26% 

 

β = 0,40 46,40% -1,13% 

 

β = 0,50 47,60% 1,13% 

 

β = 0,60 47,30% 0,57% 

 

β = 0,80 47,80% 1,51% 

 

β = 1 

(FOIM) 47,00% 0,00% 

MHIERM: 

β = 0 

(DTM) 47,80% 1,51% 

G2 vs G1+G3+G4 β = 0,20 48,10% 2,08% 

 

β = 0,40 49,30% 4,34% 

β*FOIM+ β = 0,50 49,30% 4,34% 

(1-β)*DTM β = 0,60 49,30% 4,34% 

 

β = 0,80 48,40% 2,64% 

 

β = 1 

(FOIM) 49,90% 5,47% 

Table 6. CCB data set results (test sample) 

 

6. Conclusions and perspectives  

In the present work we propose using the combination of two DDA models (FOIM and 

DTM) and use the HIERM algorithm to address classification problems. We compare results 

obtained with CART results into two data sets: simulated data (250 observations) and real 

data (988 observations). We use indicators of classification precision obtained in the test set 

(we consider 50% and 35% of observations for the smaller and larger data set, respectively). 
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According to the obtained results, the proposed approach performs slightly better than CART, 

on both simulated and real data. However, the classification precision attained barely attains 

the precision corresponding to the majority class rule in the real data set. In fact, in this case 

we are dealing with very sparse data (46% of the multinomial cells have no observed data in 

any of the groups considered) which turns the classification task very difficult. 

In future research, the number of numerical experiments should be increased, both using real 

and simulated data sets and considering several sample dimensions. The number of variables 

considered (binary and non-binary) should not originate an excessive number of states 

(around a thousand) due to the number of parameters that need to be estimated. Alternative 

strategies to estimate the β parameter, such as least squares regression, likelihood ratio or 

committee of methods, should also be considered. 
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Erratum

In pag. 9, where is "There are two target classes: retail channel (C1) and Horeca (Hotel, Restaurant

and Caf channel) (C1)" should be "There are two target classes: retail channel (C1) and Horeca (Hotel,

Restaurant and Caf channel) (C2)".

In pag.5, where is "2M − 1" should be "2M − 1".
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Summary

In Discrete Discriminant Analysis one often has to deal with dimensionality
problems. In fact, even a moderate number of explanatory variables leads
to an enormous number of possible states (outcomes) when compared to
the number of objects under study, as occurs particularly in the social
sciences, humanities and health-related fields. As a consequence, classifica-
tion or discriminant models may exhibit poor performance due to the large
number of parameters to be estimated. In the present paper, we discuss
variable selection techniques which aim to address the issue of dimen-
sionality. We specifically perform classification using a combined model
approach. In this setting, variable selection is particularly pertinent, en-
abling the handling of degrees of freedom and reducing computational cost.

Key words: combining models, Discrete Discriminant Analysis, variable
selection

1. Introduction

Discrete Discriminant Analysis (DDA) is a multivariate data analysis tech-
nique that aims to classify multivariate observations of discrete variables
into one of K a priori defined classes.

In DDA, an n-dimensional sample of multivariate observations is con-
sidered X = (x1,x2, ...,xn), where xi represents the ith observed state
(i ∈ {1, ..., n}), described by M discrete variables, xi = (xi1, xi2, ..., xiM )
(observed state). The class of each observation - one of K exclusive classes
(C1, C2, ..., CK) - is assumed to be known.
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In general, when dealing with DDA applications, different DDA tech-
niques may yield different classification errors for the same set of observa-
tions. In the social sciences, classification problems often exhibit a high
number of variables, small or moderate size samples, and also many miss-
ing states. In this setting, the use of combined models provides a means
to improve the overall performance of classification and also its stability
(Ferreira, 2000; Brito, 2002; Brito et al., 2006). However the related di-
mensionality problems have to be addressed, since there are often a large
number of parameters to be estimated and a comparatively small sample
available. In this work, four feature selection methods for DDA are dis-
cussed, having the aim of identifying the variables that most discriminate
between the a priori defined classes. Two statistics are considered for this
purpose: Chi-Square and Mutual Information. The simple statistics’ values
rankings provide two criteria. Two alternative selection criteria are based
on the Chi-Square’s p-values using the Bonferroni Correction and the False
Discovery Rate methods (Benjamini and Hochberg, 1995). The reduction
in the number of variables is expected to improve the DDA algorithm’s
efficiency and reduce computational cost.

The DDA approach considered is based on a linear combination of the
First-order Independence Model (FOIM) and the Dependence Trees Model
(DTM) (Marques et al., 2008).

Classification performance is analyzed using the percentage of correctly
classified observations. In addition, the runtime of the DDA algorithm
(implemented in R software) is reported.

2. Variable Selection

Although feature selection is a very common theme in the literature on
Discriminant Analysis with continuous predictor variables, methods pro-
posed for Discriminant Analysis with discrete predictor variables are quite
rare. However, in order to obtain good performances in DDA tasks, dimen-
sionality issues have to be addressed. The selection of the best discriminant
variables in a DDA problem is the focus of the present study. Hence we
try to find M∗ variables, M∗ << M , leading to better decision rules, using
the following methods:

1. Descriptive: the Chi-Square statistic (Q2) and the Mutual Infor-
mation index (I) between the M predictor variables and the target
classes provide a means to rank the predictors;
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2. Inferential: the p-values corresponding to the Chi-Square statistic
provide alternative means to rank the same predictors - using the
Bonferroni Correction (BON) and the False Discovery Rate (FDR)
we obtain two additional rankings of predictors (see e.g. Benjamini
and Hochberg, 1995).

When the descriptive indicators are used we report:

1. The minimal feasible solution i.e. the one having the smallest number
of predictors which can be treated by the DDA model (note that when
we have null mutual information, it is not possible to apply DTM)

2. The solution corresponding to the best DDA performance, i.e. that
having the maximum percentage of correctly allocated cases using
two-fold cross-validation.

The first descriptive indicator considered is the Chi-Square statistics (Q2)
defined as follows:

Q2(Xm, Xm′) =
L∑

i=1

K∑

j=1

(nij − ni.n.j

n )2

ni.n.j

n

(1)

where:
ni. - is the number of observations in the i-th category of Xm.
n.j - is the number of observations in the j-th category of Xm′ .
K - is the number of classes.
L - is the number of categories of the predictor.

and

n =

L∑

i=1

ni. =

K∑

j=1

n.j =

L∑

i=1

K∑

j=1

nij (2)

The mutual information index (I) is defined as follows:

I(Xm, Xm′) =

L∑

i=1

K∑

j=1

nijlog
nij

ni.n.j
(3)

Both Q2(Xm, Xm′) and I(Xm, Xm′) measure the strength of association
between Xm and Xm′ . When considering Xm as the predictor and Xm′

the target classes, these measures provide a means to rank the predictors
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according to their discriminant power. In addition, when referring to the
use of DTM, an I(Xm, Xm′) may also be used to measure the association
between predictors.

The Chi-Square statistic Q2 makes it possible to test the association
between each predictor and the target classes, following a χ2 distribution
with (L − 1)(K − 1) degrees of freedom under the null hypothesis (refer-
ring to null association) between the predictor and the target class. The
implementation of M Chi-Square tests corresponding to the M predictors
originates the p-values p1, ..., pm, ..., pM .

The Bonferroni Correction (Benjamini and Hochberg, 1995) is a multi-
ple-comparison correction used when several statistical tests are being per-
formed simultaneously. The Bonferroni Correction sets the α value for the
entire set of M tests equal to α by taking the α value for each test equal
to α/M .

Thus, according to Bonferroni Correction (Benjamini and Hochberg,
1995) we select the predictors which yield

Pm ≤
α

M
(4)

The Bonferroni Correction and other traditional multiple comparison pro-
cedures are generally too conservative. In order to overcome this limita-
tion, several alternative procedures have been proposed, such as Holm’s
procedure (Holm, 1979) offering a more flexible trade-off between the test’s
power and error. The False Discovery Rate (FDR) approach - (Benjamini
and Hochberg, 1995) and (Silva, 2010) - also addresses multiple hypothesis
testing to correct for multiple comparisons. In a list of statistically sig-
nificant studies (e.g. studies where the null-hypothesis could be rejected),
the FDR procedure is designed to control the expected proportion of incor-
rectly rejected null hypotheses (”false discoveries”) in a less conservative
way compared with the Bonferroni Correction. This method relies on the
ranked p-values (increasing values) - p1:M , ..., pm:M , ..., pM :M - and selects
the predictors satisfying:

Pm:M ≤ m

M
α (5)

3. Combining Models in DDA

In Discrete Discriminant Analysis the most usual classification rule is based
on the Full Multinomial Model (FMM) (Celeux and Mkhadri, 1994) where

Unauthenticated | 193.137.45.101

Download Date | 12/27/13 5:09 PM

58



Selection of variables in Discrete Discriminant Analysis 5

the within-class state probability functions are multinomial. When using
M binary variables, this model involves the estimation of 2M − 1 param-
eters in each class, and so is cumbersome. The First-order Independence
Model (FOIM) (Goldstein and Dillon, 1978; Celeux and Mkhadri, 1994)
assumes the independence of variables within each class, therefore reducing
the number of parameters to be estimated. Using FOIM, the conditional
probability of assigning x∗ to class Ck is estimated by:

f̂k (x∗ | X) =
M∏

m=1

# {xj ∈ Ck : xjm = x∗m}
nk

, j = 1, . . . , n; k = 1, . . . , K (6)

where nk represents the Ck class sample dimension.
FOIM, however, can be unrealistic in some situations. One of the al-

ternative models that take into account the interactions between variables
is the Dependence Trees Model (DTM), (Celeux and Nakache, 1994; Pearl,
1988).

DTM provides, for each class, an estimate of the conditional probability
functions based on the idea proposed by Pearl, 1988. Pearl demonstrated
that through knowledge of a graph G, where X1, ..., XM represent its M
vertices, the probability distribution fG, associated with the graph can be
calculated as the product of the conditional probabilities:

fG(x1, ..., xM ) = f(xr(m))
M−1∏

l(m)=1

f
(
xm | xl(m)

)
(7)

where xl(m) represents a variable that is linked to the variable xm in this
graph, arbitrarily choosing one vertex as the root of the graph, xr(p).

The Chow and Liu (Celeux and Nakache, 1994; Pearl, 1988) algorithm
is used to construct the graph for each class the length of each graph’s edge
(referred to the pair of variables (xm, xm′)) represents a measure of the
association between the same variables, mutual information in particular.
After the calculation of the CM

2 mutual information values (see formula
(3)), the graph G, with (M − 1) edges, corresponding to the highest total
mutual information is selected. For example, take M = 5 variables and
if the most important predictor relations are (X2, X1), (X3, X2), (X4, X2)
and (X5, X2), then Figure 1. represents an example of a dependence tree
and the probability distribution of the first-order dependence tree is

f̂k (x∗|X) = fCk (x∗|X) =

= f̂(x∗1|X)f̂(x∗2|x∗1, X)f̂(x∗3|x∗2, X)f̂(x∗4|x∗2, X)f̂(x∗5|x∗2, X)
(8)
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Figure 1. Example of a dependence tree for the case of M=5 variables

where the marginal and conditional probability functions are determined
simply using the observed relative frequencies in sample X.

FOIM is commonly used when independent predictors are considered,
while DTM takes into account the relationship between predictors. A com-
bined model using FOIM and DTM may offer some advantages.

Combining models generally aims to obtain more robust and stable
results and provide a better data fit (Bishop, 1995; Brito et al. 2006).
Previous research by Sousa Ferreira (1999, 2000, 2010) revealed good per-
formance for a linear combination of FMM and FOIM in the small case
setting, particularly when within-class independent structures or equal cor-
relation structures were considered. These studies also revealed that the
(single) coefficient (ranging from 0 to 1) derived for the combination, often
tended to heavily weight FOIM while substantially reducing the contri-
bution of FMM, even when considering smoothed frequencies. Based on
this empirical conclusion, the replacement of FMM by DTM is considered
in the present work. This approach follows on from an earlier proposal,
which seems to be promising (Marques et al., 2008). The corresponding
conditional probability function is estimated as follows:

P̂ (x∗ ∈ Ck|β, X) = βP̂FOIM (x∗ ∈ Ck|X) + (1− β)P̂DTM (x∗ ∈ Ck|X) (9)

In order to derive classification rules, the Bayes formula (the posterior
probability of an observation - x∗ - being assigned to one of the a priori
known classes) is used:

P (x∗ ∈ Ck|X, π) =
πkfk(x

∗|X)
K∑

k=1

πkfk(x
∗|X)

, k = 1, . . . , K (10)
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where πk represents the prior probability of class Ck and fk(x) represents
the probability function of x in the same class. By applying this rule,
an observation x∗ is classified in the class with the maximum posterior
probability, thus minimizing the assignment error.

The prior probabilities πk, often have to be estimated using the sam-
ple at hand. When this sample is randomly selected from the population
without taking into account the observations class membership, maximum
likelihood estimators are used: πk = nk

n , where nk is the sample size of the
class Ck. Otherwise, if the sample considered is the union of K independent
samples of size nk, k = 1, ..., K, previously selected within each class Ck,
equal prior probabilities are considered for all classes, πk = 1

K .

4. Data Analysis and Results

This work aims to evaluate the impact of variable selection techniques on
DDA results, specifically when using the FOIM and DTM combination
(see(9)). The data analysis refers to three real data sets: Alexithymics,
Parents and Retail. In these data sets, small and moderate sized samples
are considered.

1. Alexithymics data: 11 variables and 34 individuals
This data set consists of 34 dermatology’s patients evaluated by a
psychological test set (Prazeres, 1996). The whole sample is divided
into three classes: Nonalexithymics (C1), Alexithymics (C2), Interme-
diate (C3) according to the value obtained in a psychological test - the
TAS-20 (Twenty Item Toronto Alexithymia Scale). For each patient
the value of eleven binary variables of the Rorchach test were avail-
able. The Rorschach test is a psychological projective test in which
subjects perceptions of inkblots are recorded and analyzed. The pre-
dictors are:

V1. CF + C > 0
V2. CF + C − FC > 0
V3. V > 0
V4. C ′ > 0
V5. T = 1
V6. SumSH − SumC > 0
V7. CombC + SH > 0−No
V8. Popular > 8−No
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V9. AnalCDI −No
V10. Mor > 2−No
V11. ”L > 1, 1”−No

According to the responses given by each subject concerning each
inkblot, coders are used to represent the type of answer. For example:

• C - represents chromatic color responses;

• C ′ - represents achromatic color responses;

• F - is the format element of responses;

• V - represents pure vista responses where shading is interpreted
as dimensionality;

• T - represents texture responses;

• SH - represents shading responses;

• Mor - represents morbid contents in responses;

• L - is a ratio that compares the frequency of form responses and
will all other answers;

• Popular - represents very frequent responses.

The type of each subject’s responses leads to an evaluation of person-
ality characteristics, for example CF + C > 0 indicates less affective
modulation or CDI represents a difficulty of coping. Results con-
cerning this example are presented in Table 2.

2. Parents data: 11 variables and 240 individuals
This data refers to a study which aims to analyze the relationship be-
tween marital satisfaction and coparenting in different stages of the
family life cycle (Saraiva, 2010). Coparenting refers to the way in
which partners relate to one another as parents and includes coop-
eration, triangulation and conflict. Cooperation reflects the extent
to which couples support and respect each other as parents, triangu-
lation the extent to which parents form an unhealthy alliance with
the child and conflict the extent to which parents disagree about the
child. The target classes are related to essential stages of family life
life - families with children in preschool or primary school (C1) and
families with children in middle school or the 3rdcycle (C2).
This data set refers to 240 individuals and considers eleven binary
variables.
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V1. Gender
V2. Marital Satisfaction global score for mothers
V3. Marital Satisfaction global score for fathers
V4. Coparenting global score for mothers
V5. Coparenting global score for fathers
V6. Cooperation global score for mothers
V7. Triangulation global score for mothers
V8. Conflict global score for mothers
V9. Cooperation global score for fathers
V10.Triangulation global score for fathers
V11.Conflict global score for fathers

Results concerning this example are presented in Table 3.

3. Retail data: 11 variables and 440 individuals
The Retail Actions data set refers to 440 clients of a wholesale busi-
ness. There are two target classes: retail channel (C1) and Horeca
(Hotel, Restaurant and Caf channel) (C1). Predictors refer to eleven
managerial actions that may have an impact on the clients’ purchases.

V1. offering free samples or tastings
V2. offering discount tickets
V3. improving the quality of products
V4. improving packaging
V5. improving the store layout
V6. preventing shortages
V7. offering more competitive prices
V8. offering a better selection of products and brands
V9. offering more diversity of products and brands
V10. presenting more in-store highlights and leaflets
V11. extending the products assortment

Answers refer to a binary scale: 1 - probably no; 2 - probably yes (this
action will have an impact on my purchases). Results concerning this
example are presented in Table 4.

The results of variable selection are presented in Table 1. According to
these results the descriptive methods always provide a means to perform
feature selection, while the inferential methods evidence limitations. In
fact, increasing alpha values does not provide any solutions when using
the Bonferroni Correction, while the FDR procedure provides solutions for
Parents and Retail using α = 29% and α = 38%, respectively.
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Table 1. Selected variables for each data set and selection methods

Variable Selection Data Sets
Alexithymics Parents Retail

Q2 - minimal selection V1,V3,V5,V6,V9 (M*=5) V1,V6 (M*=2) V4,V9 (M*=2)

Q2 - best selection V1,V3,V4,V5, V1,V2,V4,V6, V2,V4,V8,V9,
V6,V7,V9,V11 (M*=8) V9 (M*=5) V11 (M*=5)

I - minimal selection V1,V3,V6,V9 (M*=4) V1,V6 (M*=2) V4,V9 (M*=2)

I - best selection V1,V2,V3,V6, V1,V2,V4,V6, V2,V4,V8,V9,
V7,V9,V10,V11 (M*=8) V9 (M*=5) V11 (M*=5)

BON no selection1 no selection1 no selection1

FDR no selection1 V1,V6 (M*=2) V2,V5 M*=2
1Using inferential methods (BON and FDR) it was not possible to select any set
of variables allowing the classification of subjects, even on increasing the α values

to 100%.

In Table 1 we represent the minimal selection, i.e. the smallest set of
variables that allowed the classification of subjects using the FOIM-DTM
combination. We also present the best selection, i.e. the set of variables
leading to the best percentage of correctly classified observations.

Classification results based on the selected variables are presented in
Tables 2, 3 and 4.

The FOIM-DTM combination coefficients values (β values) appear in
the first column of the tables. The next columns concern the percentage
of correctly classified observations, using classical two-fold cross-validation:
two subsamples split at random are used as ”Test” (sequentially) and the
average of the corresponding performance measures is presented.

Runtime calculations were obtained using the same computer and the
same DDA algorithm implemented in the R software.

The results of the experiments lead us to the following conclusions:

• Computational costs (time of execution) can decrease significantly
(e.g. in the ALEXITHYMICS results with 11 predictors and 5 pre-
dictorsthe time decreases from 20 hours to 46 seconds) while classifi-
cation accuracy stays approximately the same (e.g. 55.9% to 55.8%
in the same ALEXITHYMICS experiments).

• The descriptive methods always provide a means to implement the
predictor selection, while the inferential methods require specific con-
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Table 2. Alexithymics Classification Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β All Variables Q2 I
(11 Var.) M*=5 M*=8 M*=4 M*=8

0 (DTM) 53.0% 50.0% 47.1% 47.1% 53.0%
0.20 44.1% 50.0% 53.0% 53.0% 58.8%
0.40 41.2% 50.0% 53.0% 47.1% 61.7%
0.50 53.0% 38.2% 64.7% 47.1% 67.6%
0.60 53.0% 47.1% 58.8% 47.1% 61.7%
0.80 55.9% 52.9% 50.0% 47.1% 55.8%

1 (FOIM) 47.0% 55.8% 47.1% 47.1% 47.0%
Runtime 1225.2 min. 0.77 min. 21.47 min. 0.38 min. 21.11 min.

Table 3. Parents Classification Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β All Variables (11 Var.) M*=2 (Q2, I and FDR) M*=5 (Q2 and I)
0 (DTM) 50.8% 57.1% 50.8%

0.20 50.8% 57.1% 50.8%
0.40 52.5% 57.1% 53.4%
0.60 52.0% 57.1% 53.8%
0.80 53.3% 57.1% 55.8%

1 (FOIM) 53.8% 57.1% 58.4%
Runtime 1713.5 min. 0.24 min. 4.26 min.

Table 4. Retail Classification Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β All Variables M*=2 M*=2 M*=5
(11 Var.) (Q2 and I) (FDR) (Q2 and I)

0 (DTM) 45.1% 60.2% 44.4% 58.6%
0.20 45.9% 60.2% 44.4% 58.6%
0.40 46.6% 60.2% 44.4% 60.2%
0.60 48.1% 60.2% 44.4% 58.6%
0.80 45.9% 60.2% 44.4% 61.7%

1 (FOIM) 50.4% 60.2% 63.9% 54.1%
Runtime 1483.2 min. 0.44 min. 0.44 min. 7.56 min.
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ditions which may not be verified (particularly when the samples are
small, as in the ALEXITHYMICS case).

• The inferential methods, when applied, yield very high significance
levels (38% for RETAIL and 29% for PARENTS ). However, the FDR
inferential method yields the best results (best two variable selections
attaining the maximum accuracy) for the RETAIL data set. For the
PARENTS data set, the FDR results are similar to the Chi-Square
and Mutual Information statistics (the same two predictors being
selected).

5. Conclusions and Perspectives

In the present work, we compare the performance of four methods of feature
selection for Discrete Discriminant Analysis (DDA) - the aim is to identify
the predictors that most discriminate between the a priori defined classes.
We specifically use a recent DDA methodological approach, based on a
linear combination of the First Order Independence Model (FOIM) and
the Dependence Trees Model (DTM), (Marques et al., 2008).

According to the results obtained, we were always able to obtain an ad-
missible selection of variables using the descriptive methods - Chi-Square
and Mutual Information between predictors and the target classes provid-
ing the features’ ranking. As for the inferential methods, the predictors’
ranking provided by the Bonferroni correction (BON) and the False Dis-
covery Rate (FDR) procedures, applied to Chi-Square p-values, did not
always lead to a selection of acceptable predictors, even when the signifi-
cance level was increased up to the maximum. However, when BON and
FDR provided such a selection, the best classification rates for the FOIM
and DTM combined model were attained.

Experimental results also clearly illustrate the impact of variables selec-
tion in the DDA model computation time the reduction of computational
cost attained is remarkable.

The limitations regarding the inferential methods’ performance may be
due to the dimensions of the data sets (small and moderate)- this hypothesis
should be considered in future work. Future research could also include
additional methods for variable selection in DDA.
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Performance of combined models on binary discrete

classification

Anabela Marques1 Ana Sousa Ferreira2 Margarida G. M. S. Cardoso3

Abstract: Diverse Discrete Discriminant Analysis (DDA) models perform differently on different sam-

ples. This fact has encouraged research in combined models which seems specially promising when the

a priori classes are not well separated or when small or moderate sized samples are considered, which

often occurs in practice. In this work, we evaluate the performance of a convex combination of two DDA

models: the First-Order Independence Model (FOIM) and the Dependence Trees Model (DTM). We use

simulated data sets with two classes and consider diverse data complexity factors which may influence the

combined model’s performance - the classes’ separation, balance and number of missing states, as well

as sample size and also the number of parameters to be estimated in DDA. We resort to cross-validation

to evaluate the precision of classification.

The results obtained illustrate the advantage of the proposed combination when compared to FOIM and

DTM: it yields the best results, specially when very small samples are considered. The experimental

study conducted also provided the ranking of the data complexity factors, according to their relative

impact on classification performance, resorting to a regression model. It lead to the conclusion that

classes’ separation is the most influent factor on classification performance. The ratio between the num-

ber of degrees of freedom and sample size, along with the proportion of missing states in the majority

class, also have significant impacts on classification performance. An additional attainment of this study,

also deriving from the estimated regression model, is the ability to successfully predict the precision of

classification on real data set based on the data complexity factors.

Keywords. Discrete Discriminant Analysis, Separability, Classification performance, Combined mo-

dels for classification.

1 Introduction

Some researchers have tried to understand the relationship between the data characteristics and the

performance of classifiers. For example, Ho and Basu (2002), studied the case of two class problems

and described the nature of classification difficulty. They enumerated diverse measures of a classification

problem complexity and adopted a typology considering: 1) overlap of individual features, 2) measures

of separability of classes and 3) measures of geometry. Sotoca, Sanchez, and Mollineda (2005) used those

measures and add 4) statistical measures (e.g number of binary attributes, number of classes, entropy of
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classes, mean absolute correlation coefficients between two features etc) when conducting a meta analysis

of classifiers. Finch and Schneider (2007), considered the weight of classes, and three factors related to

continuous predictors. Macia, Bernadó-Mansilla, and Orriols-Puig (2008), also used measures of geome-

try to characterize the complexity of data sets and studied binary classification. These authors considered

several scenarios for synthetic continuous data, controlling the numbers of instances and the number of

attributes and focused on the length of the class boundary to assess complexity of the data set.

Studies referring to the performance of classification based on nominal predictors are very rare in the

literature. In this work we conduct numerical experiments to evaluate the performance of binary classi-

fiers in Discrete Discriminant Analysis (DDA), aspiring to contribute to filling this gap in the literature.

For this end, we set different scenarios using simulated data sets considering diverse data complexity

factors. The generated data sets are meant to provide means to compare the performance of single and

combined DDA models and to provide new insights concerning the impact of data complexity factors on

discrete classification performance. In particular, we focus on DDA in very small, small and moderate

sized samples, which turn classification tasks harder - Ho and Basu (2002) - and, we believe, discrete

classification tasks even harder.

2 Methodology

2.1 A combined model for classification

In the present work we address Discrete Discriminant Analysis (DDA) tasks - to classify and discrimi-

nate multivariate observations of discrete variables into a priori defined classes - using a combined model

proposed by Marques et al. (2013).

Generally, in supervised classification, several models are estimated and a unique classifier is selected

based on some validation criterion. However, the discarded classifiers usually contain important infor-

mation about the classification problem which is lost by selecting a single classifier (Brito et al., 2006).

In addition, often it is observed that misclassified objects are different for different models. This fact

has recently encouraged a large number of publications, from several areas of research, focused on the

combination of classification models (e.g. Wolpert, 1992; Breiman, 1996, 1998; Freund and Shapire, 1996;

Friedman et al., 1998; Sousa Ferreira et al., 2000; Friedman, 2001; Milgram, Sabourin and Cheriet, 2004;

Brito, 2002; Kotsiantis et al., 2006; Cesa-Bianchi et al., 2006; Friedman and Popescu, 2008; Amershi and

Conati, 2009; Janusz, 2010; Kotsiantis, 2011; Re and Valentini, 2011).

In the scientific literature the combining approach appears designated by several terms as, for instance,

Blending by Elder and Pregibon (1995), Ensemble of Classifiers by Dietterich (1997), Committee of

Experts by Steinberg (1997), Perturb and Combine (P&C) by Breiman (1996) and Combiners by Jain,

Duin and Mao (2000). Nevertheless, all authors focused in a quite simple idea: train one model in

several samples from the same data set or train several models from the same data and combine their

output predictions usually using a voting process. Examples of the first strategy are Bagging (Breiman,

1996) using bootstrap samples of the training data set, Boosting (Freund & Schapire, 1996) weighting

more heavily cases misclassified by decision tree models or Arcing (Breiman, 1998) weighting random

subsamples of the training data set. On the other hand, training diverse types of models, can achieve

uncorrelated output predictions and thus reduce the misclassification error rate (Abbot, 1999; Amershi

and Conati, 2009Brito, 2002; Brito et al., 2006; Cesa-Bianchi et al., 2006; Janusz, 2010; Kotsiantis, 2011;

Sousa Ferreira, 2000, 2004). Although many of the combined models for classification proposed in the

literature can be applied to problems with discrete explanatory variables, studies in the literature heavily

focus on continuous data. Therefore, we dedicate our research to combining models in DDA, a natural
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approach which usually increases classification performance (Sousa Ferreira, 2000, 2004, and 2010).

The model proposed is a linear convex combination of the First-Order Independence Model (FOIM)

and the Dependence Trees Model (DTM):

• The First-Order Independence Model (FOIM) (Goldstein and Dillon, 1978) assumes that the P

discrete variables are independent in each class Ck, k = 1, ..., K.

• The Dependence Trees Model (DTM) (Pearl, 1988; Celeux & Nakache, 1994) is an alternative

model that takes the predictors relationships into account.

The corresponding conditional probability function is estimated as follows:

P̂ (x∗ ∈ Ck|β, X) = βP̂FOIM (x∗ ∈ Ck|X) + (1− β)P̂DTM (x∗ ∈ Ck|X) (1)

with (0 ≤ β ≤ 1) .

Where X = (x1, x2, ..., xn), xi represents the ith object (i ∈ {1, ..., n}), described by P discrete variables,

xi = (xi1, xi2, ..., xiP ) (observed state), K exclusive classes (C1, C2, ..., CK) and a n-dimensional sample.

For modelling purposes prior probabilities are considered equal.

The R software is used for the algorithm’s implementation.

2.2 Data complexity and the performance of classifiers

The performance of classifiers can be influenced by several factors: classes separation, balance (Prati,

Batista, & Monard, 2004; Macia, Bernadó-Mansilla, & Orriols-Puig, 2008; Ho & Basu, 2002), sample

size (Raudys & Jain, 1991) and also (in the specific DDA domain), the number of missing states - e.g.

(Sousa Ferreira, 2004, 2010). Some studies have addressed the relationships between more than one

factor, namely when continuous predictors are considered - e.g. (Prati, Batista, & Monard, 2004) refer

to overlapping and balance and conclude that the lack of separation between classes tends to surpass the

importance of unbalanced classes in what regards the difficulty of binary classification tasks. Pinches

(1980), points out the relevance of sample size and comments on the impact of unequal sample sizes per

class. Raudys and Jain (1991) consider the relationship between sample size and the number of missing

states and also underline the intrinsic relationship between the sample size and the number of predictors

as a determinant of classification complexity. Macia, Bernadó-Mansilla, and Orriols-Puig (2008) resort to

the generation of synthetic data sets to evaluate data complexity and find that the length of the classes’

boundary is a dominant factor in assessing the complexity of the data set.

In the present work several scenarios are set for generating data to evaluate the impact of data charac-

teristics in the performance of a discrete binary classifier. First, for a fixed number of predictors (four),

we consider very small, small and moderate sized samples. The second experimental factor is the degree

of classes’ separation which is measured by the affinity coefficient (A) (Matusita, 1955; Bacelar-Nicolau,

1985). This coefficient is computed as follows:

A(f, f ′) =

L∑

l=1

√
fl

√
f ′

l (2)

where f = (f1, ..., fL) and f ′ = (f ′
1, ..., f

′
L), are two discrete distributions defined on the same states’

space (fl stands for the relative frequency of the lth state, l = 1, ..., L).

The third experimental factor considered is balance - the weight of the majority class is used as its

measure. The number of missing states is included as an additional complexity factor. This factor is not

pre-specified but is determined for the simulated data sets generated under the experimental scenarios
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(defined by the previously referred factors).

To evaluate the DDA results obtained with the combined model we report the percentage of correctly

classified observations (Pc) and the Huberty Index (HI)

HI =
Pc − Pd

1 − Pd
(3)

where Pd represents the percentage of observations corresponding to the majority class and Pc is the per-

centage of correctly classified cases. The Huberty index is intended to provide a fair comparison between

the performance of both balanced and unbalanced cases since it quantifies the percentage of improvement

in classification performance taking into account the majority class rule as a default classification rule.

Two-fold results are reported for both measures of performance.

Finally, we attempt to model the relationship between the combined classifier performance and the

complexity data factors considered in this work. For this end, we resort to simulated data and use regres-

sion on the combined model’s performance. The percentage of correctly classified observations (two-fold

result) is the response variable considered (note that since the weight of the majority class is included as

a predictor, the Huberty Index can be discarded at this stage). The estimated linear regression model

will be judged according to its fit to data and its predictive efficacy tested in one real data set.

3 Data analysis and results

3.1 Simulated Data

The performance of the FOIM, DTM and combined FOIM-DTM discrete classifiers is evaluated based on

simulated data within diverse experimental scenarios. First, we focus on binary classification. Then we

consider 4 binary predictors, a reasonable number taking into account we want to address classification

on small sized samples. Having set this general scenario, we specify the following complexity factors:

1) separability - thresholds for the affinity coefficient values are above 0.7 for poorly separated classes,

between 0.2 and 0.7 for moderately separated classes and under 0.2 for well separated classes; 2) sample

size - n = 60, n = 120 and n = 400 samples sizes are considered; 3) balance - unbalanced classes refer to

different sample proportions - (1 : 2), (1 : 3) and (1 : 3) for n = 60, n = 120 and n = 400, respectively.

The average of missing states (the fourth experimental factor) is finally quantified for each simulated

data set.

The multinomial distribution parameters, along with the complexity factors’ characteristics regarding

the data sets considered are presented in Table 1 and Table 2.

For each of the eighteen resulting scenarios we generate 30 data sets. Based on the 540 generated data

sets we aim at understanding the comparative advantage of the combined DDA model. In addition, we

will be able to use a regression model in order to evaluate the relative impact of each factor - separability,

balance, sample size, number of estimated parameters and number of missing states - on the performance

of binary discrete classification.
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Table 1: Synthetic datasets parameters: the 4 binary predictors’ probabilities
Separability C1 C2

poor (0.5, 0.5; 0.5, 0.5; 0.5, 0.5; 0.5, 0.5) (0.5, 0.5; 0.5, 0.5); 0.5, 0.5; 0.5, 0.5)
moderate (0.4, 0.6; 0.6, 0.4; 0.4, 0.6; 0.6, 0.4) (0.7, 0.3; 0.3, 0.7; 0.7, 0.3; 0.3, 0.7)

good (0.1, 0.9; 0.7, 0.3; 0.2, 0.8; 0.6, 0.4) (0.9, 0.1; 0.3, 0.7; 0.8, 0.2; 0.1, 0.9)

Table 2: Average numbers of missing states (30 runs in each scenario)
Separation n = 60 n = 120 n = 400

C1 C2 Total C1 C2 Total C1 C2 Total
balanced

poor 2.30 2.30 4.63 0.23 0.37 0.60 0.00 0.00 0.00
moderate 3.00 4.57 7.57 0.70 2.37 3.07 0.00 0.47 0.47
good 7.23 8.83 16.07 4.73 6.97 11.70 1.93 3.40 5.33

unbalanced
poor 4.67 1.40 6.07 2.40 0.07 2.47 0.03 0.00 0.03
moderate 5.37 3.43 8.80 3.40 1.53 4.93 0.20 0.17 0.37
good 7.80 6.60 14.40 6.97 3.83 10.80 3.70 1.30 5.00

3.2 Real Data

A real data set is considered to compare the effective FOIM-DTM performance with the estimated

performance based on the complexity factors considered, using an estimated regression model. It is based

on the Congressional Voting Records Data Set in the UCI Machine Learning Repository - see Bache and

Lichman (2013) - which includes votes for each of the U.S. House of Representatives Congressmen on 16

key votes identified by the Congressional Quaterly Almanac (CQA), 1984. In this data set classification

is meant to discriminate between democrats (DEM) and republicans (REP). The 16 predictors (key

votes) are binary variables indicating: 1- yes; 2- no. In this work we only consider individuals providing

complete answers and finally select the four most discriminant predictors - we use the Cramer’s V statistic

measuring the association between each predictor and the classes to identify the most promising variables.

In table 3, the final data set considered is described.

Table 3: Congressional voting records (reduced) data set
Predictors’ category DEM (C1) REP(C2)

V4. adoption-of-the-budget-resolution 1-yes 85.5% 15.7%
2-no 14.5% 84.3%

V5. physician-fee-freeze 1-yes 4.8% 99.1%
2-no 95.2% 0.9%

V6. el-salvador-aid 1-yes 20.2% 95.4%
2-no 79.8% 4.6%

V13. education-spending 1-yes 12.9% 85.2%
2-no 87.1% 14.8%

Total 232 124 108
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3.3 Results

3.3.1 Descriptive results

The descriptive results referring to the performance of the combined FOIM-DTM classifier are presented

in this section. They refer to 30 classifications runs in each scenario.

The performance of the combined classifier FOIM-DTM in the 540 synthetic data sets is summarized on

Table 4. Detailed results are provided in Table 5 and Table 6. When very small samples are considered

the proposed combined classification algorithm is a clear winner - it outperforms FOIM and DTM in

the 180 corresponding data sets. When n = 120 (small sized sample) FOIM and DTM are also able to

deliver the best classification results for the balanced data sets. For n = 400 (moderate sized sample)

the general winner classifier is FOIM, although the proposed combination may outperform FOIM in an

unbalanced setting with poorly and moderately separated classes.

In general, unbalanced data sets correspond to harder classification tasks - see Huberty index values in

Table 5 and Table 6. Also, there is a clear increase in classification performance associated with an in-

crease in separation. Specifically, for the unbalanced data sets with poorly separated classes, the default

classification precision overcomes the precision of the proposed algorithm. The performance results ob-

tained are generally consistent (over the 30 runs in each scenario)- see the coefficient of variation values.

However, the Huberty index may exhibit high variability when confronted with difficult classification

tasks i.e. generally when poorly separated classes are considered and also when unbalanced and mode-

rately separated classes are considered.

Table 4: Average β coefficient referring to the best classifier (30 runs)
Separation n = 60 n = 120 n = 400

balanced
poor 0.7 0 (DTM) 1 (FOIM)
moderate 0.8 0.9 1 (FOIM)
good 0.9 1 (FOIM) 1 (FOIM)

unbalanced
poor 0.6 0.9 0.5 and 0.9
moderate 0.6 0.8 0.6 and 0.7
good 0.9 0.9 1 (FOIM)
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Table 5: Average classifier’s performance for balanced datasets (30 runs)
n = 60 n = 120 n = 400

Separation mean var. coef. mean var. coef. mean var. coef.
poor Pc 56.6% 0.12 53.8% 0.07 51.7% 0.06

HI 13.1% 1.06 7.6% 1.00 3.4% 1.80
moderate Pc 72.7% 0.11 72.7% 0.07 74.3% 0.03

HI 45.3% 0.34 45.4% 0.22 48.5% 0.09
good Pc 92.7% 0.04 92.7% 0.28 92.8% 0.02

HI 85.4% 0.09 85.4% 0.06 85.7% 0.04

Table 6: Average classifier’s performance for unbalanced datasets (30 runs)
n = 60 (1 : 2) n = 120 (1 : 3) n = 400 (1 : 3)

Separation mean var. coef. mean var. coef. mean var. coef.
poor Pc 57.2% 0.13 54.9% 0.09 54.9% 0.06

HI -28.5% -0.79 -80.3% -0.25 -80.5% -0.16
moderate Pc 74.1% 0.10 77.1% 0.06 74.6% 0.03

HI 22.2% 1.04 8.2% 2.21 -1.7% -5.94
good Pc 90.8% 0.04 92.1% 0.03 91.9% 0.01

HI 72.4% 0.16 68.4% 0.18 67.4% 0.07

3.3.2 Regression on performance

The performance results obtained in the numerical experiments conducted enable us to estimate a re-

gression model in order to:

1. predict the Pc measure of performance based on the data characteristics (/complexity factors);

2. understand the relative impact of each experimental complexity factor on performance.

To implement the regression we specifically consider the following measures of the experimental comple-

xity factors: the a�nity coe�cient value - Aff - is used to measure the classes’ separation; the weight

of the majority class - Wmc - is used to measure balance; dimensionality is measured by the ratio - Pdf -

between the ”number of degrees of freedom”and sample size, i.e. Pdf = (n � (P ⇥ 2 + 1))/n (note that

P = 4 is the number of predictors and we have to estimate parameters referred to two classes); finally,

the proportions of missing states in each class - Pmsc1 and Pmsc2 - are considered.

A generalization of the Tobit regression model is used and the MLE estimated coe�cients are obtained

using the censReg package (Henningsen, 2010). The estimated regression model is presented in table 7.

Additional columns in the right refer to standardized variables - these results are meant to help better

evaluating the relative importance of predictors.

According to the non standardized as well as the standardized models, the three complexity factors ha-

ving the larger impact on classification precision (by decreasing order) are: separation, ratio between the

degrees of freedom and sample size and proportion of missing states in the minority class. The weight

of majority class, the proportion of missing states in the majority class have a weaker impact on perfor-

mance. In fact, according to the standardized coe�cients ranking (an alternative modelling approach),

the impact of the last factor is non-significant.

As expected, the larger the proportion of degrees of freedom the easiest the classification task is. The

remaining factors have a negative impact on performance. The squared correlation between observed

and estimated Pc values is 0.95 evidencing a good fit to data.
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Table 7: ML Estimated regression coe�cients
Coef. p-value Coef. (Std.) p-value (Std.)

constant 0.923 0.000 0.240 0.000
Aff -0.692 0.000 -1.017 0.000
Pdf 0.258 0.001 0.207 0.000

Pmsc1
-0.599 0.000 -0.161 0.000

Wmc 0.099 0.000 0.039 0.039
Pmsc2

-0.196 0.001 -0.039 0.358

When applying the estimated regression model to the real data set (reduced Congressional Voting Re-

cords) we may anticipate the percentage of correctly classified observations based on its characteristics:

a�nity coe�cient 0.195; proportion of missing states on the majority class 0.125; proportion of missing

states on the minority class 0.281; ratio between degrees of freedom and sample size 0.961; and balance

0.534. In fact, before performing classification we could foresee cPc = 95.9% based on the estimated re-

gression model (see coe�cients in Table 7) and, according to the classification results obtained with the

combined model FOIM-DTM on this data set, the actual percentage of correctly classified observations

is PC = 95.7%.

4 Conclusions and Perspectives

In the present work, we evaluate the performance of a combined model - a convex combination of FOIM

and DTM - for binary discrete classification. We set 18 scenarios for generating simulated data sets with

4 binary predictors controlling for factors considered relevant for classification precision. These factors

include three degrees of classes’ separability, classes’ weights (balanced or not) and sample dimension

(n = 60, n = 120, n = 400). In addition, the number of missing states is quantified in each scenario.

The di↵erentiated scenarios provided very di↵erent classification performances. According to the obtai-

ned results, the combined method achieves the best results for small sample cases (whether balanced or

unbalanced) and performance improves with the increase of classes’ separability, as expected. The worst

performances are registered for unbalanced and poorly separated classes - the combined model is unable

to surpass default classification precision (the lowest Huberty Index value is -80.5%). Within the balan-

ced scenario, when moderately separated classes are considered, the increase of the sample dimension

increases the classification ability of the single FOIM model. For unbalanced data sets, the proposed

combination generally achieves the best results obtained.

Based on experimental data - 30 classification runs in each scenario - a regression model is estimated

which provides new insights regarding the relative impact of experimental factors on binary discrete

classification precision. Separability turns out to be the most important experimental factor - the more

weakly separated the classes are (the higher the a�nity coe�cient) the weaker the classification per-

formance is. The proportion of the number of degrees of freedom vs. sample size is the second most

important factor, with a positive impact on performance. The third one is the proportion of missing

states in the minority class and it has a negative impact on performance, as expected.

The estimated regression model exhibited a good fit to synthetic data and also enabled to anticipate

the performance of the proposed FOIM-DTM algorithm on a real data set - a data set extracted from

the Congressional Voting Records Data Set in the UCI Machine Learning Repository. In this data set,

the di↵erence between the estimated and the actual measure of performance (percentage of correctly

classified observations) is 0.002.

To our knowledge, this type of study is the first conducted for evaluating DDA performance. In future
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research, additional measures of complexity of discrete classification problems may be considered - e.g an

alternative measure of the degree of classes’ separability (other than the affinity coefficient). Also, some

of the experimental factors that were taken into account may vary their categories, and their interaction

may be further analyzed.
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Brito, I. (2002). Combinaison de modèles en analyse discriminante dans un contexte gaussien (Doc-

toral dissertation, Grenoble 1).

Brito, I., Celeux, G., & Sousa Ferreira, A. (2006). Combining methods in supervised classification:

A comparative study on discrete and continuous problems. REVSTAT - Statistical Journal, 4(3), 201-

225.

Celeux, G., & Nakache, J. P. (1994). Analyse discriminante sur variables qualitatives. Politechnica.

Cesa-Bianchi, N., Claudio G., & Luca Z.(2006). Hierarchical classification: combining Bayes with SVM.

Proceedings of the 23rd international conference on Machine learning. ACM.

Dietterich, T. G. (1997). Machine-learning research. AI magazine, 18(4), 97.

Elder, J.F., & Pregibon, D. (1995). A Statistical Perspective on Knowledge Discovery in Databases.

Advances in Knowledge Discovery and Data Mining. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and

R. Uthurusamy, Editors. AAAI/MIT Press.

Finch, H., & Schneider, M. K. (2007). Classification accuracy of neural networks vs. discriminant

analysis, logistic regression, and classification and regression trees. Methodology: European Journal of

Research Methods for the Behavioral and Social Sciences, 3(2), 47-57.

98



10

Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting algorithm. In ICML

(Vol. 96, pp. 148-156).

Friedman, J. H., Hastie, T. & Tibsharani, R. (1998). Additive Logistic Regression: A Statistical View

of Boosting. Technical Report, Stanford University.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statis-

tics, 1189-1232.

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of

Applied Statistics, 916-954.

Goldstein, M., & Dillon, W. R. (1978). Discrete discriminant analysis. New York: Wiley.

Henningsen, A. (2010). Estimating Censored Regression Models in R using the censReg Package. R

package vignettes.

Ho, T. K., & Basu, M. (2002). Complexity measures of supervised classification problems. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,24(3), 289-300.

Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 22(1), 4-37.

Janusz, A. (2010). Combining multiple classification or regression models using genetic algorithms.

Rough Sets and Current Trends in Computing. Springer Berlin Heidelberg.

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: a review of classifi-

cation and combining techniques. Artificial Intelligence Review, 26(3), 159-190.

Kotsiantis, S. (2011). Combining bagging, boosting, rotation forest and random subspace methods.

Artificial Intelligence Review, 35(3), 223-240.
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CHAPTER 7

Conclusions and Perspectives

In DA, instead of proposing new models to find a classification rule to minimize the misclassification error,

a number of researchers have opted to combine models, taking advantage of the specificities of each, with a

view to finding classifiers that adjust better to the data under study, thus, leading to more precise, stable and

robust models.

As already observed, the dimensionality problem, often referred to by researchers as "the curse of

dimensionality" (Celeux and Nakache, 1994) frequently emerges in DDA and leads to the weak performance

of various models. This problem stems from the large amount of parameters that need to be estimated in

the most natural models in DDA, such as the Full Multinomial Model (FMM). Furthermore, in the fields of

Social or Human Sciences and Medicine, the available samples are small to moderate in size.

On the other hand, although there is an abundance of research in the area of model combination for

continuous classification problems, which has subsequently led to an explosion of publications over recent

years, there is still very little on discrete classification problems.

Therefore, and drawing from a study conducted by Sousa Ferreira (2000), a model combination in DDA

has been proposed in this study for small or moderate sized samples. The proposed model is defined as

a convex linear combination of the First-order Independence Model (FOIM) and the Dependence Trees

Model (DTM), assuming independence among the explanatory variables within each class in the former,

and taking into account the interactions among the explanatory variables in the latter.

The DTM model was chosen to integrate this model combination due to an understanding that while being

capable of leading to predictions that are not correlated with those of the FOIM model, it can reduce the

misclassification rate. In fact, the combination of different classifiers is currently a very popular field of

research (Abbott, 1999; Amershi and Conati, 2009; Brito, 2002; Brito et al., 2006; Cesa-Bianchi et al.,

2006; Janusz, 2010; Kotsiantis, 2011; Sousa Ferreira, 2000, 2004, 2010).

On the other hand, despite not having explored this advantage within the scope of the current study, this

model defines a conditional probability function for each defined a priori class, providing information, per

class, on the most important interactions among the explanatory variables. In the near future, an evaluation

of this advantage is anticipated for an analysis of the results, in the specific case of real data.
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7. Conclusions and Perspectives

The combination of the FOIM-DTM models, using a single coefficient β, (0 ≤ β ≤ 1), leads to an

intermediary model, in the case of K a priori classes defined between the FOIM and DTM models in

discrete and not necessarily binary data. When there are more than two classes, the Hierarchical Coupling

Model (Sousa Ferreira, 2000 can also be used, by transforming a problem of K classes into several problems

of two classes, and by applying the FOIM-DTM combination at each level of the tree. Use of the HIERM

model has enabled considerable improvement of the combined model’s performance. The performance

study of the proposed FOIM-DTM model was tested on a number of real datasets and later, in an attempt to

ascertain its main field of application, it was also tested on simulated data. Some of the studies conducted

on real and simulated data are briefly presented in the Appendix, in which the main data characteristics and

the performance of the proposed model are described. With regard to the studies conducted with sets of real

data, the following information may be highlighted:

• In the comparative studies conducted with the decision tree model implemented by the CART

(Appendix: Cases 3, 4 and 5) algorithm, the FOIM-DTM combination systematically presents a

better correct classification rate.

• In the comparative study with the combination FOIM-FMM (Appendix: Case 4), the FOIM-DTM

combination presents results closer to those obtained with the FOIM-FMM combination, but are not

necessarily better. The accomplishment of further comparative studies between the two FOIM-DTM

and FOIM-FMM combinations is anticipated .

• In the case of problems with more than two defined a priori classes, when the HIERM model is

applied to the FOIM-DTM combination (Appendix: Cases 2, 3, 4, 5 and 6), in addition to increasing

the value of the correct classification rate, it also highlights the contribution of the combination itself.

• In the studies that were carried out (Appendix: Cases 1, 2, 3, 4, 5, 6 and 7), when compared with

the single models, the FOIM-DTM combination often presents a higher performance rate, although it

displays a certain degree of instability.

The first studies carried out with real datasets did not lead to a clear conclusion as to the contribution of

the FOIM-DTM combination for DDA, since the results were not consistently higher than those obtained

with the single models or with the previously proposed FOIM-FMM combination. This issue triggered

the research conducted within the scope of the present dissertation, and led the study to assess both the

importance of variable selection in DDA and the importance of understanding the relations between the data

complexity factors and the models’ performance. Moreover, it shed light upon the need to use simulated

data in order to ascertain the main field of application of the FOIM-DTM combination.

Indeed, by constructing a model combination, the complexity of the model is increased, as even by using

a simple convex linear combination, the number of parameters to be estimated is augmented. Moreover,

the dimensionality problem frequently emerges, mainly due to the fact that the proposed model sets out

to contribute to classification problems for small and moderate-sized samples. This knowledge served as

the basis for the research conducted on the study of the variable selection methods that would enable the

choice of a set of variables leading to similar or better results than the initial explanatory variable set. It

was possible to verify through this study (see: Marques et al., 2013; Appendix: Cases 6 and 7), how the

descriptive variable selection methods lead to an interesting choice in the run-time/correct classification rate

relation.

102



It was also found that the use of inferential methods for selecting variables is not always possible, since

the significance level α tends to assume rather high values. Nevertheless, whenever it is possible to apply

inferential variable selection methods, they prove to be effective (Cases 6 and 7), showing that they can lead

to a better performance level than with a set of all the explanatory variables or equivalent. The BON proved

to be more efficient than the FDR method in terms of managing to maintain good performance of the model,

by reducing the number of explanatory variables under study. Nevertheless, the FDR method displayed the

ability to drastically reduce running time.

As already mentioned, concern was also shown towards ascertaining the main field of application of the

FOIM-DTM combination. Therefore, more recently, assessment of the performance of this combined

model was geared towards comparing datasets with different structures and comparing the performance

of the model in these various structures.

At an initial stage, the study focused on sample dimension control and the intensity of the relations among

variables within each class (Marques et al., 2014a; Appendix: Case 8). Secondly, an attempt was made

to study other complexity factors that might influence the performance of the afore-mentioned model such

as: separation between classes; balanced or unbalanced classes ; number of unobserved (missing) states;

number of parameters to be estimated and sample size.

At an initial stage (Appendix: Case 8), in the case of a moderate-sized independent structure, the

FOIM model is the dominant model that leads to better performance. For moderate-sized samples with

a correlation structure, the DTM model displays its contribution in the combined model, whereby the

FOIM-DTM combination proves to lead to better performance. For small-sized samples, of both an

independent and correlation structure, the FOIM-DTM presents the best results. When the structures

are independent, the FOIM model tends to obtain the best results, however for small-sized samples the

FOIM-DTM combination surpasses this model. When the structure assumes some degree of correlation,

the DTM model emerges naturally, however, the FOIM-DTM combination appears as an alternative to

DTM for moderate-sized samples.

In Marques et al. (2014a) the study was broadened to the case of 4 classes and the results of the FOIM-DTM

combination were compared with the results obtained by application of the Random Forests to the same

dataset. In this study, the FOIM-DTM combination approach is shown to almost systematically surpass the

performance of Random Forests.

In the second stage, the binary case was explored for two and three a priori defined classes. It is the

non-binary case that will be analysed in greater depth in future studies.

In Marques et al. (2014b) and Appendix: Case 9, the influence of four factors in the performance of the

FOIM-DTM was observed: the separation between classes measured by the affinity coefficient that varies

between [0-1], the closer this coefficient is to zero, the stronger the separation; samples of balanced and

unbalanced classes were assessed with both equal and different-sized samples; the amount of missing data

was assessed by observation of the number of non-observed states in each class.

In relation to the accomplished work (Appendix: Case 9), the interest of the proposed method seems to

stand out whenever there are just a few factors reversely influencing the performance of the model. In other

words, if the classification problem has a very high level of difficulty (poorly separated classes, small-sized

sample and a large number of unobserved states), owing to its simplicity, the FOIM model displays the

best performance. However, if the level of difficulty is not quite so high (moderately or correctly separated

classes, very small-sized sample and large amount of unobserved states) or (moderately separated classes,

small-sized sample and some unobserved states) or (badly or moderately separated classes, moderate-sized
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7. Conclusions and Perspectives

sample and entirely observed states) the FOIM-DTM combination leads to the best result.

It was also possible to conclude that (Marques et al., 2014b) the advantage of the combined model when

compared to single models tends to become noticeable in the case of small or very small-sized samples. It

also provided an order of the complexity factors in accordance with their level of impact on the model’s

performance: separation between classes, ratio between the number of degrees of freedom and sample size,

proportion of missing states in the minority class.

It should be noted that, in this study, other measures were sometimes used to assess the performance

of the models in addition to the traditional correct classification rate. The Huberty Index, particularly

important in unbalanced cases, and the φ statistic are examples of such measures, although the interest of

these alternatives and their relation with the correct classification rate remain unclear, requiring continued

evaluation in the near future.

To sum up, the research developed in this study enabled us to verify that the interest of the FOIM-DTM

combination is effectively revealed in small or very small-sized samples and poorly separated a priori

classes.

When the performance of the combination is analysed on the basis of existing relations among the

explanatory variables within each class, the FOIM model proves to be the most suitable for independence

structures and small or moderate-sized samples. For samples with related explanatory variables, the

combination emerges as an alternative to the single models, especially when the available samples are

small.

On the other hand, this study has also given an important contribution to DDA with two issues that have

yet to be studied in greater depth in discrete data classification: variable selection and the study of model

performance using non-traditional methods, such as the φ statistic and Huberty Index.

In the future, continued assessment will be conducted on the performance of the combined model in

non-binary discrete data, and this assessment will be further studied in the case of K 6= 2 and in DDA

variable selection methods.
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CASE 1a

Data description:

Data collected from Goldstein and Dillon (1978) concerning purchasing prefe-
rences for types of stores that sell audio equipment:

• N = 412 subjects;

• K = 2;

• C1 - Customers for Great Department Stores with 154 subjects;

• C2 - Clients Specialty Shops these devices with 258 subjects;

• P = 4.

The explanatory variables are four dichotomous variables (1 = yes; 0 = no):

• Variable 1: Did you search information with your relatives?

• Variable 2: Did you ask for products information?

• Variable 3: Had you previous experiences in purchasing audio equipment?

• Variable 4: Did you receive information about products from catalogs?

In this study, several combinations FOIM-DTM were trained, using values for the
� coefficient ranging from 0.05 to 0.95 with successive increments of 0.05.

Results:

Table 1: Percentage of correctly classified cases

� ⇤ P̂FOIM + (1 � �) ⇤ P̂DTM

� � = 0 � = 0.5 0.10  �  0.35 � = 0.4 0.45  �  0.95 � = 1
% of correctly

classified cases (% CC) 69.4% 69.4% 68.7% 68.2% 69.9% 69.9%
% CC in C1 70.8% 70.8% 72.7% 67.5% 64.9% 64.9%
% CC in C2 68.6% 68.6% 66.3% 68.6% 72.9% 72.9%

aComunication presented at: XV Jornadas de Classificação e Análise de Dados (JOCLAD
2008), in ESCE/IPS, 27-29 March 2008.
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CASE 2b

Data description:

Data collected from Prazeres (1996) concerning the evaluation of alexithymia
("alexithymia"means no words to express emotions). Experiments with the propo-
sed approach regard a data set which consists of 34 dermatology’s patients evalu-
ated by the psychological test TAS-20 (Twenty Item Toronto Alexithymia Scale)-
conceived to evaluate the presence of alexithymia.
For each subject, the values of six binary variables of another psychological test
Rorschach test - are available.

• N = 34 subjects;

• K = 3;

• C1 - Nonalexithymics Class with 7 subjects;

• C2 - Alexithymics Class with 14 subjects;

• C3 - Intermediate Class with 13 subjects;

• P = 6.

In this study, several combinations FOIM-DTM were trained, using some values
for the � coefficient.

Results:

Table 2: Percentage of correctly classified cases
HIERM:(1 � �) ⇤ P̂FOIM + (�) ⇤ P̂DTM

FOIM DTM � = 0 � = 1 � = 0.25; 0.50; 0.75
64.7% 64.7% 82.5% 76.5% 85.3%

bPoster presented at: 18th International conference on Computational Statistics (COMPSTAT
2008), in FEUP, 24-29 August 2008.
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8. Appendices

CASE 3c

Data description:

Table 3:

Sample N Classes Number variables
Real Data* Monk 432 C1 = 216 e C2 = 216 6 variables, with 2 binary

Balance 623 C1 = 48; C2 = 288 e C3 = 287 4 non-binary variables
Simulated 2 Classes 200 C1 = 130 e C2 = 70 4 variables, with 2 binary

Data 4 Classes 250 C1 = 80 e C2 = 70 3 binary variables
C3 = 30 e C4 = 70

- A. Asuncion and D.J. Newman, UCI Machine Learning Repository [http://www.ics.uci.edu/ mle-
arn/MLRepository.html]. Irvine, CA:, Technical Report University of California,
School of Information and Computer Science., 2007.

In this study, several combinations FOIM-DTM were trained, using some values
for the � coefficient.

cComunication presented at: 11th Conference of the International Federation of classification
Societes (IFCS 2009), in Techinische Universitat Dresden - Germany, 13-18 March 2009.

108



R
es

ul
ts

:

Ta
bl

e
4:

Pe
rc

en
ta

ge
of

co
rr

ec
tly

cl
as

si
fie

d
ca

se
s:

(�
)
⇤P̂

F
O

I
M

+
(1

�
�
)
⇤P̂

D
T

M

D
at

a
M

aj
or

ity
C

la
ss

ifi
ca

tio
n

R
es

ub
st

.
Tr

ai
ni

ng
Te

st
2-

Fo
ld

B
as

e
ru

le
M

et
ho

d
sa

m
pl

e
(5

0%
)

sa
m

pl
e

(5
0%

)

M
on

ks
50

.0
%

C
A

R
T

C
om

p.
75

.0
%

80
.6

%
65

.3
%

82
.2

%
Pr

un
.

75
.0

%
80

.1
%

71
.3

%
-

FO
IM

-D
T

M

�
=

0
83

.3
%

10
0.

0%
10

0.
0%

10
0.

0%
�

=
0.

25
83

.3
%

10
0.

0%
10

0.
0%

10
0.

0%
�

=
0.

50
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
�

=
0.

75
10

0.
0%

89
.4

%
81

.5
%

83
.6

%
�

=
1

75
.0

%
76

.9
%

72
.7

%
74

.1
%

B
al

an
ce

46
.2

%

C
A

R
T

C
om

p.
84

.9
%

85
.6

%
74

.9
%

74
.6

%
Pr

un
.

83
.8

%
84

.0
%

74
.6

%
-

FO
IM

-D
T

M

�
=

0
82

.0
%

84
.0

%
76

.9
%

74
.8

%
�

=
0.

25
84

.0
%

86
.2

%
79

.1
%

77
.3

%
�

=
0.

50
87

.3
%

88
.8

%
83

.0
%

80
.7

%
�

=
0.

75
90

.4
%

91
.3

%
86

.5
%

86
.5

%
�

=
1

92
.3

%
91

.3
%

89
.7

%
89

.8
%

109



8. Appendices

Ta
bl

e
5:

Pe
rc

en
ta

ge
of

co
rr

ec
tly

cl
as

si
fie

d
ca

se
s:

(�
)
⇤P̂

F
O

I
M

+
(1

�
�
)
⇤P̂

D
T

M

D
at

a
M

aj
or

ity
C

la
ss

ifi
ca

tio
n

R
es

ub
st

.
Tr

ai
ni

ng
Te

st
2-

Fo
ld

B
as

e
ru

le
M

et
ho

d
sa

m
pl

e
(5

0%
)

sa
m

pl
e

(5
0%

)

2
Si

m
ul

at
ed

65
.0

%

C
A

R
T

C
om

p.
70

.0
%

71
.0

%
63

.0
%

60
.0

%
Pr

un
.

69
.5

%
70

.0
%

64
.0

%
-

FO
IM

-D
T

M

�
=

0
67

.0
%

67
.0

%
57

.0
%

54
.0

%
�

=
0.

25
66

.0
%

68
.0

%
58

.0
%

54
.0

%
�

=
0.

50
66

.0
%

70
.0

%
60

.0
%

57
.0

%
�

=
0.

75
66

.5
%

68
.0

%
67

.0
%

64
.0

%
�

=
1

66
.0

%
70

.0
%

64
.0

%
62

.0
%

4
Si

m
ul

at
ed

32
.0

%

C
A

R
T

C
om

p.
56

.4
%

61
.6

%
45

.6
%

54
.8

%
Pr

un
.

56
.0

%
59

.2
%

52
.8

%
-

FO
IM

-D
T

M

�
=

0
53

.6
%

71
.2

%
47

.2
%

49
.2

%
�

=
0.

25
53

.6
%

72
.0

%
52

.8
%

52
.8

%
�

=
0.

50
53

.6
%

74
.4

%
51

.2
%

52
.0

%
�

=
0.

75
53

.6
%

72
.8

%
51

.2
%

52
.0

%
�

=
1

56
.0

%
72

.8
%

51
.2

%
55

.2
%

H
IE

R
M

�
=

0
61

.6
%

71
.2

%
59

.2
%

60
.8

%
�

=
0.

25
61

.6
%

72
.0

%
60

.8
%

61
.6

%
FO

IM
-D

T
M

�
=

0.
50

61
.6

%
74

.4
%

60
.8

%
62

.4
%

�
=

0.
75

64
.0

%
72

.8
%

59
.2

%
61

.6
%

�
=

1
64

.8
%

72
.8

%
57

.6
%

64
.8

%

110



CASE 4d

Data description:

The GSS1 - Gudjonsson Suggestibility Scale (Gudjonsson, 1997) was developed
to assess the tendency that some people have to distort facts when interviewed.
The experiment consists of:

• It’s orally presented a story about a robbery, followed by one task of imme-
diate recall and one delayed recall task (with a range of about 50 minutes;

• At the end of the deferred memory tasks, each subject answers to 20 ques-
tions, 15 of which are constructed so as to induce the subject in error. At
the end of the 20 questions, subject is told that he had made some mistakes
(even if he didn’t committed any one) and therefore, he answers again to the
20 questions, trying to be this time be more precise;

• Answers to the 20 questions are listed as amendment or transfer depending
if the answer changes from 1st to 2nd time or if he is influenced by the
issues created for misleading.

In this work is considered a general hypothesis that exist individual differences
on vulnerability to suggestion. In particular, were analyzed the demographic cha-
racteristics and its association with vulnerability to suggestion. Classification task
considered, in particular, the classes offered by demographic variables like gender,
age group and educational level of individuals and suggestibility measured using
binary variables (Pires, 2010). In this study, several combinations FOIM-DTM
were trained, using some values for the � coefficient.

dComunication presented at: XVI Jornadas de Classificação e Análise de Dados (JOCLAD
2009), in Universidade do Algarve, 2-4 April 2009.
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Table 6: Data Characteristics
Class N

Gender C1 = 30
C2 = 68

Age group C1 = 72
C2 = 7
C3 = 19

Schooling level C1 = 17
C2 = 46
C3 = 22
C4 = 13

Results:

Table 7: Percentage of correctly classified cases for gender classes

Majority Classification Resubst. Training Test
rule Method sample (50%) sample (50%)

69.4%

CART
Comp. 79.6% 87.8% 65.3%
Prun. 77.6% 85.7% 67.7%

FOIM-DTM

� = 0 (DTM) 71.4% 73.5% 63.3%
� = 0.25 71.4% 73.5% 65.3%
� = 0.50 73.5% 79.6% 65.3%
� = 0.75 75.5% 77.6% 73.5%

� = 1 (FOIM) 75.5% 81.6% 69.4%

FOIM-FMM*
� = 0 (FOIM) 83.7% 89.8% 46.9%
�1 = 0.301 71.4%
�2 = 0.126 72.7%
�3 = 0.147 89.8%

� = 1 (FMM) 75.5% 81.6% 69.4%

* (Sousa Ferreira, 2000)
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Table 8: Percentage of correctly classified cases for age group classes

Majority Classification Resubst. Training Test
rule Method sample (50%) sample (50%)

73.5%

CART
Comp. 85.7% 85.7% 73.5%
Prun. 85.7% 85.7% 69.4%

FOIM-DTM

� = 0 (DTM) 77.5% 69.4% 67.3%
� = 0.25 79.6% 69.4% 67.3%
� = 0.50 78.6% 75.5% 67.3%
� = 0.75 77.5% 85.7% 75.5%

� = 1 (FOIM) 75.5% 81.6% 77.5%

HIERM
� = 0 (DTM) 77.6% 79.6% 77.6%
� = 0.25 79.6% 79.6% 75.5%

FOIM-DTM � = 0.50 78.6% 79.6% 71.4%
� = 0.75 77.6% 83.7% 77.6%

� = 1 (FOIM) 76.5% 85.7% 77.6%

FOIM-FMM*
� = 0 92.9% 93.9% 65.3%

�1 = 0.301 77.6%
�2 = 0.126 77.6%
�3 = 0.147 75.5%

� = 1 76.5% 83.7% 75.5%

* (Sousa Ferreira, 2000)
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CASE 5e

Data description:
This work refers to the study of data on clients of Belém Cultural Centre (CCB)
and their evaluation of the quality of products/services in CCB (Inquiry realized
in 2007, by. Ana Duarte (2009) to whom we thanks the availability of the data set.

Table 10: Data Characteristics
Class Schooling n %

1 Secondary grade 177 17.9
2 University frequency 136 13.8
3 Graduation 462 46.8
4 Master or Phd 213 21.6

Total 988

In this study, several combinations FOIM-DTM were trained, using some va-
lues for the � coefficient.

Results:

Table 11: Percentage of correctly classified cases
Classification Test sample

Method (35%)
CART 46.1%

FOIM-DTM

� = 0 (DTM) 45.0%
� = 0.10 44.4%
� = 0.20 45.8%
� = 0.30 46.4%
� = 0.40 46.4%
� = 0.50 47.6%
� = 0.60 47.3%
� = 0.70 47.8%
� = 0.80 47.8%
� = 0.90 47.0%

� = 1 (FOIM) 47.0%

eComunication presented at: XVII Jornadas de Classificação e Análise de Dados (JOCLAD
2010), in ISCTE, 25-27 March 2010.
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Table 12: Percentage of correctly classified cases by HIERM model
Classification Test sample

Method (35%)
CART 46.1%

� = 0 (DTM) 47.8%
� = 0.10 47.7%
� = 0.20 48.1%
� = 0.30 48.1%

HIERM � = 0.40 49.3%
FOIM-DTM � = 0.50 49.3%

� = 0.60 49.3%
� = 0.70 48.7%
� = 0.80 48.4%
� = 0.90 49.9%

� = 1 (FOIM) 49.9%
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CASE 6f

These work was focused in feature selection, comparing some criterias as: Chi-
Square statistic (Q2), Mutual Information (I), Bonferroni Correction (BON) and
the False Discovery Rate (FDR).

Data description:
GSS1 - The Gudjonsson Suggestibility Scale (GSS1) (Gudjonsson, 1997) was de-
veloped to evaluate the trend in forensics, that some people have to distorting facts
when interviewed (Pires, 2010).

MVS - The psychological test My Vocational Situation (MVS) (Lima, 1998) is
organized into two scales: Occupational Information and Barriers (Difficulties).
In this case, the aim is to study the relationships between features personality and
career concerns.

Table 13: Data Characteristics
Sample Class No of variables

GSS1 (n=98) Gender
C1 = 30 (M)

10
C2 = 68 (F)

MVS (n=1203)
Course

C1 = 480 (Biol+Psic.)
8C2 = 297 (Letras)

C3 = 426 (Eng.)

Gender
C1 = 560 (M.)

8
C2 = 643 (F)

In this study, several combinations FOIM-DTM were trained, using some va-
lues for the � coefficient.

fPoster presented at: XVIII Congresso Anual da Sociedade Portuguesa de Estatística (SPE
2010), in S. Pedro do Sul, 29 September - 2 October 2010.
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8. Appendices

CASE 7g

Data description:
NINA - This data set which consists of 34 dermatology’s patients evaluated by
a psychological test set. The whole sample is divided into two classes - Unhe-
althy (C1) and Healthy (C2). In this data set we considered eleven binary varia-
bles.(Prazeres, 1996)

GSS1 - This data set refers to measurements of susceptibility to changes the tes-
timony of 98 individuals. The target classes are related to gender - Men (C1) and
Women (C2). In this data set we considered eight binary variables.(Pires, 2010)

Table 18: Data Characteristics
Sample Class No of variables

NINA (n=34) Healthy
C1 = 14

11
C2 = 20

GSS1 (n=98) Gender
C1 = 30

8
C2 = 68

In this study, several combinations FOIM-DTM were trained, using some va-
lues for the � coefficient.

gPoster presented at: 14th Applied Stochastic Models and Data Analysis Conference (ASMDA
2011) in Roma, 7-10 June 2011.
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CASE 8h

Data description:
To evaluate the performance of the proposed model, were considered two defined
classes a priori and resort to simulation of binary data based on the model Bahadur
proposed by Goldstein and Dillon (1978) and Celeux and Mkhadri (1992). Based
on this model 10 simulations were performed considering two types of structures
with P = 6 binary variables. The parameters ✓k considered in the simulation of the
Bernoulli variables were:

✓1 = (0.6, 0.4, 0.6, 0.5, 0.5, 0.6) and ✓2 = (0.5, 0.3, 0.5, 0.4, 0.4, 0.5).

The first structure, denoted IND (Independent), is generated according to FOIM,
(⇢k(p, p) = 1 and ⇢k(p, g) = 0 , if p 6= g, k = 1, ..., K; p, g = 1, ..., 6) for all
classes.

The second one, called DIF (Different), is implemented considering the existence
of different relations among the variables, for different classes, in the bi-class case
⇢1(p, p) = 1 and ⇢1(p, g) = 0.2, if p 6= g, p, g = 1, ..., 6; ⇢2(p, p) = 1 and
⇢2(p, g) = 0.4, if p 6= g, p, g = 1, ..., 6;.For each of the structures are considered
very small samples (30 observations in each class) and samples of small size (60
observations in each class). The a priori probabilities were considered equal.

In this study, several combinations FOIM-DTM were trained, using values for
the � coefficient.

hPoster presented at: XIX Jornadas de Classificação e Análise de Dados (JOCLAD 2012) in
Instituto Politécnico de Tomar, 28-31 March 2012.
and
Poster presented at: International Conference on Trends and Perspectives in Linear Statistical
Inference (LINSTAT 2010), in Tomar, 27-31 July 2010.
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8. Appendices

CASE 9i

Data description:
In this numerical experiments for simulated data using the R function rmultinom
(n, size, prob) that generates vectors according to multinomial distribution, where:

• n - number of random vectors to draw;

• size - integer, say N, specifying the total number of objects that are put into
K boxes in the typical multinomial experiment;

• prob - numeric non-negative vector of length K, specifying the probability
for the K classes; is internally normalized to sum 1.

In this work, we consider the bi-class case and four types of population structures,
using very small (n = 60), small (n = 120) and moderate (n = 400) samples
sizes, with P = 4 binary variables:

A Structure:
C1 - prob = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
C2 - prob = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

B Structure:
C1 - prob = (0.4, 0.6, 0.6, 0.4, 0.4, 0.6, 0.6, 0.4)
C2 - prob = (0.70.3, 0.3, 0.7, 0.7, 0.3, 0.3, 0.7)

C Structure:
C1 - prob = (0.4, 0.6, 0.6, 0.4, 0.4, 0.6, 0.6, 0.4)
C2 - prob = (0.9, 0.1, 0.1, 0.9, 0.9, 0.1, 0.1, 0.9)

D Structure:
C1 - prob = (0.1, 0.9, 0.7, 0.3, 0.2, 0.80.6, 0.4)
C2 - prob = (0.9, 0.1, 0.3, 0.7, 0.8, 0.2, 0.1, 0.9)

Twenty random samples are generated for each structure. Prior probabilities are
considered equal.

iPoster presented at: 7th Workshop on Statistics, Mathematics and Computation, in Instituto
Politécnico de Tomar, 28-29 May 2013.
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Results:

Table 23: Percentage of correctly classified cases for A structure: (�) ⇤ P̂FOIM +
(1 � �) ⇤ P̂DTM

�
very small sized small sized moderate samples sized
n1 = n2 = 30 n1 = n2 = 60 n1 = n2 = 200
mean s.d. mean s.d. mean s.d.

� = 0 48.70% 0.088 52.10% 0.034 50.10% 0.030
� = 0.10 49.00% 0.094 52.00% 0.035 50.20% 0.030
� = 0.20 49.60% 0.095 51.70% 0.038 50.00% 0.029
� = 0.30 49.90% 0.083 51.40% 0.039 50.20% 0.032
� = 0.40 49.70% 0.086 51.10% 0.041 50.20% 0.030
� = 0.50 50.40% 0.092 51.50% 0.043 50.40% 0.030
� = 0.60 51.70% 0.090 51.40% 0.045 50.50% 0.030
� = 0.70 52.40% 0.083 51.60% 0.051 50.30% 0.032
� = 0.80 52.30% 0.080 50.70% 0.055 50.30% 0.030
� = 0.90 52.80% 0.077 50.10% 0.052 50.30% 0.029
� = 1 53.60% 0.078 49.80% 0.052 50.00% 0.028
aff 0.791 0.047 0.921 0.030 0.981 0.007
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8. Appendices

Table 24: Percentage of correctly classified cases for B structure: (�) ⇤ P̂FOIM +
(1 � �) ⇤ P̂DTM

�
very small sized small sized moderate samples sized
n1 = n2 = 30 n1 = n2 = 60 n1 = n2 = 200
mean s.d. mean s.d. mean s.d.

� = 0 65.60% 0.069 68.10% 0.059 70.70% 0.025
� = 0.10 65.70% 0.077 69.10% 0.055 71.40% 0.028
� = 0.20 66.20% 0.078 69.30% 0.054 72.00% 0.025
� = 0.30 66.10% 0.076 69.50% 0.052 72.30% 0.025
� = 0.40 66.80% 0.080 70.30% 0.053 72.80% 0.026
� = 0.50 66.40% 0.081 70.40% 0.054 73.20% 0.026
� = 0.60 67.10% 0.088 70.30% 0.051 73.30% 0.026
� = 0.70 68.80% 0.086 70.70% 0.050 73.20% 0.026
� = 0.80 69.50% 0.083 70.80% 0.049 73.30% 0.027
� = 0.90 69.30% 0.090 71.10% 0.051 73.60% 0.025
� = 1 69.80% 0.087 71.00% 0.048 73.60% 0.024
aff 0.571 0.136 0.716 0.060 0.786 0.031

Table 25: Percentage of correctly classified cases for C structure: (�) ⇤ P̂FOIM +
(1 � �) ⇤ P̂DTM

�
very small sized small sized moderate samples sized
n1 = n2 = 30 n1 = n2 = 60 n1 = n2 = 200
mean s.d. mean s.d. mean s.d.

� = 0 80.00% 0.068 84.00% 0.043 84.90% 0.028
� = 0.10 80.60% 0.067 84.30% 0.045 85.20% 0.028
� = 0.20 81.20% 0.068 84.50% 0.045 85.80% 0.029
� = 0.30 82.30% 0.060 85.20% 0.042 86.20% 0.031
� = 0.40 83.60% 0.058 86.10% 0.039 87.10% 0.027
� = 0.50 83.40% 0.056 86.10% 0.034 87.40% 0.025
� = 0.60 85.00% 0.056 86.20% 0.037 87.90% 0.023
� = 0.70 85.30% 0.053 86.70% 0.034 88.30% 0.021
� = 0.80 85.60% 0.043 86.80% 0.032 88.40% 0.021
� = 0.90 85.20% 0.038 86.90% 0.032 88.50% 0.021
� = 1 85.20% 0.039 86.90% 0.030 88.40% 0.020
aff 0.321 0.112 0.383 0.082 0.451 0.044
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Table 26: Percentage of correctly classified cases for D structure: (�) ⇤ P̂FOIM +
(1 � �) ⇤ P̂DTM

�
very small sized small sized moderate samples sized
n1 = n2 = 30 n1 = n2 = 60 n1 = n2 = 200
mean s.d. mean s.d. mean s.d.

� = 0 85.20% 0.043 88.10% 0.050 90.50% 0.024
� = 0.10 87.10% 0.051 88.60% 0.046 90.80% 0.024
� = 0.20 88.10% 0.054 89.40% 0.041 91.20% 0.024
� = 0.30 89.00% 0.049 89.40% 0.042 91.40% 0.023
� = 0.40 90.40% 0.046 90.60% 0.034 91.80% 0.015
� = 0.50 90.40% 0.042 91.10% 0.033 92.00% 0.016
� = 0.60 90.50% 0.033 91.40% 0.033 92.30% 0.015
� = 0.70 90.70% 0.034 91.80% 0.031 92.40% 0.015
� = 0.80 90.50% 0.041 92.00% 0.030 92.50% 0.016
� = 0.90 90.70% 0.042 92.30% 0.030 92.50% 0.014
� = 1 90.50% 0.038 92.40% 0.025 92.60% 0.014
aff 0.114 0.076 0.208 0.087 0.297 0.046
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CASE 10j

Data description:
In order to evaluate the impact of separability on the performance of ADD we
consider simulated data - multinomial distributed (R function rmultinom (n, size,
prob) ) - with poorly and well separated classes (affinity coefficient >0,7 for poorly
separated and < 0,4 for well separated classes). We control for three additional
factors on the experiments considering: the number of classes (C=2 and C=3), the
sample dimension (e.g n=60 and n=120 for C=2 ) and balance - unbalance (1:2,
for C=2, for example). Thirty random samples are generated for each structure
with equal prior probabilities. Finally, we report the Pearson correlation coeffici-
ents between separability and performance measures (r averaged for 30 samples
in each scenario).

Table 28: Best classifier model and frequency of unobserved states by level of
separability and sample size

Structure 4 binary predictors vector: P (Xi = 1) e P (Xi = 0), i=1,...,4

2 Classes
poor separated

C1 (0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5)
C2 (0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5)

well separated
C1 (0.1; 0.9; 0.7; 0.3; 0.2; 0.8; 0.6; 0.4)
C2 (0.9; 0.1; 0.3; 0.7; 0.8; 0.2; 0.1; 0.9)

3 Classes

poor separated
C1 (0.45; 0.55; 0.55; 0.45; 0.45; 0.55; 0.55; 0.45)
C2 (0.6; 0.4; 0.4; 0.6; 0.6; 0.4; 0.4; 0.6)
C3 (0.4; 0.6; 0.6; 0.4; 0.4; 0.6; 0.6; 0.4)

well separated
C1 (0.1; 0.9; 0.7; 0.3; 0.2; 0.8; 0.6; 0.4)
C2 (0.9; 0.1; 0.3; 0.7; 0.8; 0.2; 0.1; 0.9)
C2 (0.5; 0.5; 0.1; 0.9; 0.5; 0.5; 0.8; 0.2)

jPoster presented at: The Twelfth International Symposium on Intelligent Data Analysis (IDA
2013), in Royal Statistical Society - London, 17-19 October 2013.
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Results:

Table 29: Percentage of correctly classified: (�) ⇤ P̂FOIM + (1 � �) ⇤ P̂DTM

Structure size (balanced) Best PC s.d Huberty Index r(HI,aff)

poor

60(30,30) 53.7% (� = 0.7) 0.078 13.10% -0.20
60(20,40) 54.2% (� = 0.6) 0.079 -28.50% -0.32

120(60,60) 51.6% (DTM) 0.034 7.60% -0.23
120(30,90) 52.4% (� = 0.9) 0.052 -80.30% -0.53

well

60(30,30) 90.7% (� = 0.9) 0.042 85.4% -0.76
60(20,40) 54.2% (� = 0.9) 0.042 72.40% -0.73

120(60,60) 92.1% (FOIM) 0.026 85.40% -0.75
120(30,90) 91.0% (� = 0.9) 0.035 68.40% -0.72

Table 30: Percentage of correctly classified: (�) ⇤ P̂FOIM + (1 � �) ⇤ P̂DTM

Structure size (balanced) Best PC s.d Huberty Index r(HI,aff)

poor

90(30,30,30) 39.0% (FOIM) 0.073 -16.50% -0.52
90(20,20,50) 42.0% (� = 0.8) 0.054 -24.60% -0.28

180(60,60,60) 41.9% (� = 0.7) 0.048 -12.40% -0.64
180(30,50,90) 44.8% (� = 0.8) 0.055 -6.70% -0.28

well

90(30,30,30) 74.7% (� = 0.7) 0.050 52.6% -0.57
90(20,20,50) 75.3% (� = 0.9) 0.059 47.00% -0.35

180(60,60,60) 76.8% (FOIM) 0.032 54.90% -0.74
180(30,50,90) 75.5% (FOIM) 0.038 52.70% -0.50
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Table 31: Percentage of correctly classified: (HIERM) - (�) ⇤ P̂FOIM + (1� �) ⇤
P̂DTM

Structure size (balanced) Best PC s.d Huberty Index r(HI,aff)

poor

90(30,30,30) 52.6% (� = 0.3) 0.059 11.30% -0.38
90(20,20,50) 56.4% (� = 0.8) 0.055 8.40% -0.25

180(60,60,60) 54.8% (� = 0.4) 0.061 13.20% -0.27
180(30,50,90) 58.7% (� = 0.7) 0.040 21.40% -0.02

well

90(30,30,30) 80.9% (� = 0.7) 0.050 65.90% -0.37
90(20,20,50) 81.8% (FOIM) 0.064 61.90% -0.25

180(60,60,60) 83.3% (FOIM) 0.027 67.80% -0.66
180(30,50,90) 83.6% (FOIM) 0.032 69.10% -0.10
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Prazeres (1996) Gudjonsson (1997) Duarte (2009) Lima (1998)
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