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Resumo

Este estudo insere-se no campo da Andlise Discriminante Discreta (ADD) propondo uma combinacio de
modelos, uma vez que se tem verificado que, em geral, a sua aplicagdo conduz a métodos mais estaveis
e robustos. O trabalho que se apresenta é particularmente focado no caso em que se dispde de classes a
priori mal separadas e/ou amostras de pequena ou moderada dimensao, situagdes em que a tarefa de ADD
€ mais dificil.

Procura-se com esta contribuicdo, ultrapassar a dificuldade de estimagdo de um grande ndmero de
parametros em ADD e encontrar classificadores que melhor se ajustem aos dados em estudo, uma vez que
os erros de classificacdo obtidos por varios modelos ndo ocorrem sobre os mesmos objetos (Sousa Ferreira,
2000; Britol [2002| e [Brito et al., [2006)).

Com este objetivo, propusemos uma combinagdo de dois modelos com especificidades diferentes, o Modelo
de Independéncia Condicional (Goldstein and Dillon, [1978) e o Modelo Grafico Decomponivel (Celeux
and Nakache), [1994; [Pearl, |1988)).

Tendo-nos deparado, em diversas aplicagdes do modelo proposto, com um nimero demasiado elevado
de varidveis explicativas face a dimensdo da amostra considerada, direciondmos o trabalho na procura de
métodos de selecdo de varidveis de forma a reduzir a complexidade dos dados a analisar.

Houve, ainda, necessidade de avaliar o impacto de alguns fatores no desempenho dos classificadores
propostos, nomeadamente: relacdo entre as varidveis explicativas intra-classes; grau de separabilidade
entre as classes; classes balanceadas ou ndo balanceadas; nimero de estados omissos e dimensdo da amostra.

Palavras-Chave: Anadlise Discriminante Discreta; Combinacdo de modelos; Modelo de Independéncia
Condicional; Modelo Gréifico Decomponivel; Modelo de Emparelhamento Hierdrquico.

Classificacao: C100; C400
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Abstract

This study falls within the scope of Discrete Discriminant Analysis (DDA) and proposes a combination
of models since, overall, its application has been found to lead to more stable and robust methods. The
work focuses particularly on the case where there are poorly separated a priori classes and/or small or
moderate-sized samples which tend to present more difficulties for the DDA task. This contribution sets
out to overcome the difficulty of estimating a large amount of DDA parameters and to find classifiers which
are better suited to the data under study, given that the classification errors obtained by diverse models do
not occur on the same objects (Sousa Ferreiral, 2000; Brito, 2002/ and |Brito et al., [2006)).

To this end, we have proposed a combination of two models with different specificities, the First-order
Independence Model (Goldstein and Dillonl [1978) and the Dependence Tree Model (Celeux and Nakache)
1994; Pearl, |1988)).

In several applications of the proposed model, we were confronted with an excessive number of explanatory
variables in relation to the sample size under study. Therefore, our work has been geared towards seeking
variable selection methods, so as to reduce the complexity of the data to be analysed. It was also necessary
to evaluate the impact of certain factors on the performance of the proposed combined model, namely the
relationship among intra-class explanatory variables; the degree of separation between classes; balanced or
unbalanced classes; number of missing states and sample size.

Keyword: Discrete Discriminant Analysis; Combined models for classification; First-Order Independence
Model; Dependence Trees Model; Hierarchical Coupling Model.

Classification: C100; C400
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Sumario Executivo

Este estudo insere-se no campo da Andlise Discriminante Discreta (ADD), usando uma abordagem pela
combina¢do de modelos, com o objectivo de encontrar classificadores que melhor se ajustem aos dados em
estudo, uma vez que os erros de classificacdo obtidos por varios modelos ndo ocorrem sobre 0s mesmos
objetos (Sousa Ferreira, 2000; Brito, [2002| e Brito et al., 2006).

Em ADD, existe frequentemente um problema de dimensionalidade dado o grande nimero de pardmetros
a estimar que os modelos mais naturais em classificagdo discreta exigem, particularmente porque estes
métodos sdo frequentemente aplicados nas areas das Ciéncias Sociais e Humanas ou da Medicina onde
as amostras sdo geralmente de pequena dimensdo face ao nimero de varidveis explicativas a analisar.
A investigacdo desenvolvida visa, pois, contribuir para a resolucdo deste problema de dimensionalidade
procurando conduzir assim ao incremento da precisdo dos modelos.

O presente trabalho decorreu naturalmente do trabalho desenvolvido por|Sousa Ferreiral (2000), e propde um
modelo que se define como uma combinagdo linear convexa dos modelos First-order Independence Model
(FOIM) (Goldstein and Dillon, [1978) e Dependence Trees Model (DTM) (Celeux and Nakachel [1994;
Pearl, [1988), usando um tnico coeficiente /3, (0 < 5 < 1), supondo-se a independéncia entre as varidveis
explicativas dentro de cada classe no primeiro modelo e tendo em conta as interacdes entre as varidveis
explicativas no segundo. Para conhecer o campo privilegiado de aplicagdo da combinagdo FOIM-DTM o
desempenho do modelo foi avaliado quer sobre dados reais, quer sobre dados simulados.

No inicio deste estudo varios conjuntos de dados reais foram analisados. Foi determinada, no caso de
pequenas amostras, a vantagem das combinacdes FOIM-DTM face ao algoritmo CART.

No decorrer da investigagdo tornou-se pertinente considerar métodos de selecdo de varidveis de forma a
reduzir a complexidade dos dados a analisar. Concluiu-se que a selecdo de um pequeno subconjunto de
varidveis é capaz de produzir resultados com precisdo idéntica ao conjunto inicial de varidveis, reduzindo
drasticamente o custo computacional. Um primeiro estudo sobre dados simulados foi realizado sobre 8
conjuntos de dados (com 2 e 4 classes, pequena e moderada dimensdo das amostras e graus diversos
de interdependéncia entre as varidveis preditivas) e um conjunto de dados reais. Nele, comparou-se
o desempenho de diversas combinagdes FOIM-DTM com o de Random Forests. Concluiu-se que o
desempenho da combinacio FOIM-DTM excede consistentemente o desempenho das Random Forests
nas amostras de pequena dimensdo. Num estudo final, bastante exaustivo, sobre 540 conjuntos de
dados simulados, controlaram-se diversos fatores de complexidade associados 4 tarefa de classificagdo e o
desempenho da combinagdo FOIM-DTM foi analisado em comparacido com os modelos singulares (FOIM
e DTM). Verificou-se entao que a combinagdo FOIM-DTM revela efetivamente o seu interesse no caso de
amostras de muito pequena ou pequena dimensao e classes a priori mal separadas. Foi ainda possivel, no
mesmo estudo, ordenar os fatores de complexidade de acordo com o seu nivel de impacto no desempenho
do modelo: separacdo a priori entre classes, ricio entre o n2 de graus de liberdade e dimensdo da amostra,
proporc¢do de estados omissos na classe minoritaria.
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Glossary

AD - Analise Discriminante
ADD - Analise Discriminante Discreta

ADL - Anadlise Discriminante Linear

ADQ - Andlise Discriminante Quadratica
AFD - Andlise Factorial Discriminante
BON - -Bonferroni Correction

CART - Classification and Regression Trees
DA - Discriminant Analysis

DDA - Discrete Discriminant Analysis
DTM - Dependence Tree Model

DFA - Discriminant Factor Analysis

FDR - False Discovery Rate

FMM - Full Multinomial Model

FOIM - First-order Independence Model

HI - Huberty Index

I - Mutual Information Index

HIERM - Hierarchical Coupling Model
LDA - Linear Discriminant Analysis

LR - Logistic Regression

MGD - Modelo Grafico Decomponivel
MHIB - Hybrid Model

MHIER - Modelo de Emparelhamento Hierdquico
MIC - Modelo de Independéncia Condicional
MMC - Modelo Multinomial Completo
PCA - Principal Component Analysis

QDA - Quadratic Discriminant Analysis
SVM - Support Vector Machines
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CHAPTER 1

Introduction

1.1 Introduction to Discriminant Analysis

The human being has always been led to group or categorize objects according to the characteristics that
distinguish them, and has used methods of varying degrees of complexity to do so. In fact, classification
problems frequently occur in the activity of human life. The interest in this area of study is extended to the
most diverse areas of activity, and is particularly important in the field of social and human sciences and

medicine where, for example, it is possible:
e to classify an e-mail message as spam or not;
e to decide whether to attribute credit to a particular bank client or not;

e to classify a patient in one of a number of defined classes a priori corresponding to different
diagnoses, thus enabling the initiation of treatment for the disease in question, while awaiting the

final results of clinical tests, etc.

Many Classification or Discriminant Analysis methods have been put forward, with a view to resolving
classification problems such as those previously illustrated. When referring to classification, we can specify
if it is supervised or unsupervised depending on whether the class to which each observed object belongs is
known. In unsupervised classification, the class of each object is unknown and the algorithms have to find
a structure in the data in order to group them in classes. Within the context of this study, classification is
referred to in the sense of supervised classification. In other words, the class to which each of the observed
objects belongs is already known.

The first known studies on the problems of classification go back to the 1920s, having emerged in the
context of broader studies geared towards recognising human races by means of skull measurements
(see |Das Gupta, 1973). In 1936, Fisher introduced a definition of the discriminant function as being a
combination of P variables which maximises the gap between the average values of two populations, when
studying taxonomy-related problems. Hence, the first formulation for a discriminant analysis problem was
introduced and a methodology for its resolution was also presented. Later on, Welch| (1939) and Wald

(1953)) presented a Bayesian approach for the classification of two populations and showed that whenever

1



1. Introduction

there are underlying multivariate normal distributions with an equal covariance matrix, Fisher’s (Fisher,
1936} [Welchl [1939; Wald, [1955) linear function leads to an optimal rule, thus minimising a posteriori error
probability. Given the prevalence of this issue in daily life, and the huge development of data processing
during the second half of the twentieth century, a number of researchers, not necessarily from the area
of Statistics, have since taken an interest in the subject. Many publications have emerged over the last
few decades. particularly with regard to the continuous case, in an attempt to propose new techniques for
classifying objects, described by several characteristics, in two or more a priori defined classes, so as to

obtain classification rules that are better suited to the behaviour of the data.

The classification issue has increasingly been approached and developed by researchers from a diversity
of areas, namely Statistics and Machine Learning. Naturally, these approaches use very specific language
such as, for example, the term inputs is used in Machine Learning to designate predictors, explanatory or
independent variables, commonly used expressions in Statistical literature. Analogously, outputs is the

term used for dependent or response variables, etc.

Nevertheless, the classification methods proposed by such various approaches share the same aims.
They set out to define rules so that any new observation may be classified into one of the a priori defined
classes, with greater precision than random decisions and applicable to a broader scope of problems.
Therefore, any one of the designations referred to in the literature on classification is generally used by
authors from different research areas. The classic statistical approach to classification problems considers
discriminant analysis models based on Fisher’s linear function, encompassing rather restricting assumptions
on the distribution of explanatory variables. A more current approach considers more flexible models

without imposing restrictions on the data under study.

The Machine Learning approach uses non-parametric methodologies that automatically learn from a
series of examples. Generally, such methodologies call for prior parametrisation, which should be referred
to by the analyst as being a result of his/her former experience. Methods such as decision/classification trees,

where the classification of an object depends on the sequence of logical steps, are examples of this approach.

Within the context of Machine Learning, methodologies based on representations of artificial neural
networks have emerged in analogy with the functioning of the human brain. These methodologies are
based on a representation network of several inter-connected neurons. In this case, learning is characterised
by the estimation of weights associated with the connections. The first neuronal network was proposed by
McCulloch and Pitts| (1943) and reproduces the characteristics of a neuron. The back-propagation algorithm
is the most common training process of multilayer perceptron networks: the latter was the first learning
process in 1970 created by [Werbos| (1990), although it only became established after its re-discovery by

other researchers (Rumelhart et al., |1988]).

Some of the most common classification methods are presented below.
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1.2 Discriminant Analysis Methods

1.2.1 Introduction

The problems of the aforementioned supervised classification fall under the scope of Multivariate Statistics,
referred to as Discriminant Analysis (DA), which includes methods for classifying new objects into one of
the classes defined a priori, according to the knowledge of several explanatory variables. DA can, therefore,
be seen as a statistical decision-making method that induces the use of probabilistic models to classify new
objects (for which the class to which they belong is unknown). However, DA can also have a descriptive
objective, when geared towards identifying the variables that best differentiate the a priori defined classes.
In such cases, geometric models based on Principal Component Analysis or Correspondence Analysis may
be used. Usually, the proposed models in DA give priority to the core aim (classification of new objects),
despite the concern of a number of authors in finding procedures to simultaneously classify new objects
and identify the most discriminative variables.

In a general manner, a Discriminant Analysis problem may be defined in the following way: In an
n-dimensional sample, X = (z;,2,,...,x,) where x; represents the observation i'* (i € {1,...,n}),
described by P variables, x; = (i1, %2, ..., xip), knowing the class to which each observation belongs,

among the K a priori defined classes and mutually exclusive, (C1, Co, ..., Ck).

As already mentioned, in 1936 Fisher proposed the first discriminant function definition as a combination
of the P explanatory variables which maximizes the gap between the average values of the two classes
under study. This method set out to determine the line, in the case of 2 classes a priori, or the plane,
in the case of three classes, that maximised the gap between each class. In Figure [I.I} by means of the
well-known Iris dataset, the linear separability, observable between two of the three presented classes has

been illustrated (iris virginica, iris versicolor, iris setosa).

257 o @ Classes
o o Clris Setosa
0w 0Ooo o |Cis virginica

oo & Iris Versicolor
cooo 0 o
209 oo i
@ o
DO O
o
o
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O 000D O
o @
o

Figure 1.1: Iris Data

In DA we are able to distinguish several model types. For example, we may consider a geometric approach,
geared towards grouping the initial P variables into homogeneous K classes, with K<P analysing the
dispersion of data. Whenever we have a set of quantitative data, this method is referred to as Discriminant

Factor Analysis (DFA), defined by analogy with some multivariate dimensionality reduction methods such
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as the Principal Component Analysis (PCA), obtaining K-1 new variables as the linear combination of the
initial P variables, thus, reducing the dimensionality of the original data, but now in completely separate
classes. Whenever there are only two classes, the DFA determines a single factor that minimises variability
within classes and maximises variability outside them. This factor, the linear combination of the initial P
variables, coincides with Fisher’s linear function. Although these types of method are easy to use, they do
not enable calculation of the classification probabilities of new objects, nor do they provide necessarily

optimal solutions.

With a view to identifying the classification probabilities of a new object, new methods based on
Bayes’ theorem have emerged, and are referred to as probabilistic methods. These methods make it
possible to identify the a posteriori classification probability of a new object in one of the defined K classes

a priori. The a posteriori probability is given as:
e fr (2] X)

K
S mfiulat]X)
k=1

P(z* € Cy|X,7) = L k=1,....K (1.2.1)

where 7, represents the a priori probability of the class C and fi(x) represents the probability function
of z for each k class.
Therefore, a new object z*, will be classified into the k class of maximum a posteriori probability, thus,

minimising the classification error rate.

Naturally, in most classification problems, the a priori probabilities 7; of each class and the functions
fx(z) are unknown. The various probabilistic methods differ in the way of estimating the probabilities 7

and functions fx(z) .

The estimation of a priori probabilities, 7, generally varies according to the type of sampling carried out
in order to extract a population sample. In other words, if the sample is randomly collected, without taking
the class from which each object has come into consideration, the maximum likelihood estimators are used
T = “&, where ny, represents the dimension of class k. On the other hand, if the sample is the result of
joint independent k samples sized nj, and randomly selected within each population class, the maximum
likelihood estimators cannot be used and these probabilities a priori are regarded as equal for all classes,
namely 7 = %

There are several ways of estimating functions f;(z) depending also on the type of explanatory variables

under study (continuous or discrete).

Fisher’s (1936) linear function proposal made no assumption regarding either the distribution of
explanatory random variables nor the covariance matrix, despite using the pooled covariance matrix S
to estimate the covariance matrix ¥. According to the developments of |Welch| (1939) and Wald| (1955)),
usually, whenever we have a classification problem with a set of continuous explanatory P variables, the

most common classification rule is based on Normal distribution.

Therefore, when the probability density functions fx(x) follow a normal p-dimensional distribution,

we may have two distinct situations: homogeneous variance/covariance matrices in the K classes
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or different variance/covariance matrices for each class. In the former, Bayes rule leads to a linear
classification rule referred to as Linear Discriminant Analysis (LDA) . In the latter situation, however,
Bayes rule leads to a quadratic rule, referred to as Quadratic Discriminant Analysis (QDA).

LDA is easy to use but considers assumptions that are too distant from reality, while QDA, more adapted
to the reality of most of the phenomena under study, is difficult to apply, since it requires the estimation of

many parameters.

Despite the fact that Fisher’s linear classifier presents satisfactory results when applied to problems
with linearly separable classes, the same may not be said when the data do not present this characteristic.
Furthermore, the normality assumption may frequently be very restricting, or even unsuitable, which has
led to a search for non-parametric methods to enable the estimation of the probability functions fj(z) in

each class, thus, overcoming this problem.

Another frequently used method in classification is Logistic Regression (LR) (Lemeshow and Hosmer,
2000). LR follows an approach that may be described as semi-parametric, whereby the a posteriori
probabilities and not the probability density functions, are estimated for each class. In other words, on the
basis of a set of continuous and/or discrete variables, it produces a model that enables the classification of
objects in a categorical variable frequently binary {0,1}. For example, in a binary case, the classification
probability is estimated in one of two classes (Y = 0 or Y = 1), in the following manner:

exp(By + f'z)

P(Y=1)= R (1.2.2)

where the parameters (3 are estimated on the basis of a sample, by the maximum likelihood estimators. This

function is then linearised from the transformation Logit.

As already mentioned, in order to overcome the limitations presented by the models that impose
conditions on the distribution of the variables under study, a number of non-parametric methods have
recently been suggested. Some of these are Kernel Methods and Nearest-Neighbors Methods or even other
types of non-parametric density function estimators, such as those based on maximum likelihood. Since the

first two models are the most commonly referred to in the literature, they are described in more detail below.

The Kernel (Shawe-Taylor and Cristianinil, 2004) type methods are non-parametric methods to estimate the
probability density function fi(x), where each observation is considered according to the distance from
a central value, the nucleus. In other words, each x; observation is centred and a i parameter is defined,
which represents the nearest neighbour of x;, thus, taking all the neighbouring points into consideration for

estimation.

In general, the likelihood function estimators fi(x) may be represented in the following way:
(z | h) ZKh T — ;) (1.2.3)

where h represents the smoothing parameter that defines the proximity between these estimators and the

maximum likelihood estimator, whereby K (x) is the non-negative Kernel function which defines the
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contribution of each point x;.

Hence, this method will depend on the kernel function used. It is best to choose a function that will
facilitate the processing period, since these methods have been found to require a longer processing period

in comparison with the previously presented methods (Silverman, |[1986)).

The Nearest-Neighbors (Hill, [1967) type methods use the similarity principle, and set out to classify
unknown objects into the nearest class of similar objects. Therefore, the application of this method
requires a definition of the » number of the nearest neighbour and, consequently, the use of a distance
function between pairs of observations. The estimator of the r nearest neighbours (0 < r < p — 1), of the
probability function by class is given by:

for | x)= €Ol —tl<r} g (1.2.4)

Nk

This method is very lengthy in computer terms, since all the distances between a new object and each

element of the considered sample have to be calculated for construction of the model.

1.2.2 Other Approaches

As already mentioned, significant developments in the field of Computer Science as well as in the increased
volume and complexity of the data to be analysed have been observed, which raise new challenges regarding
the storage, organisation and analysis of data . This technological advance has led several researchers, from
a range of different areas, to search for methods enabling them to extract patterns, tendencies and important
information from the data.

So, new learning algorithms became available which are capable of predicting the class of a new
object, extracting knowledge from a data set . For example, classification rules may be implemented
through: Classification Trees ( e.g. using CART Breiman et al., [1984] or C4.5 |Quinlan, [1993), the
most frequently mentioned in the literature), Random Forests (Breiman, 2001), Neuronal Networks (e.g
using Retropropagation, (Rumelhart, 1986), the most commonly used algorithm for learning based on
multi-layered networks) or Support Vector Machines (SVM) (Cortes and Vapnik, [1995).

One of the important issues in the application of these methods is obtaining reliable estimates of the
classification errors based on the new data. Therefore, after learning has been completed on the training
data, the classification rules should be applied in new cases (test cases) to verify the accuracy of the
obtained results. It is important to prevent an overfit to training data so that the algorithms may perform
well on test samples. In fact, a good classifier should be capable of the same accuracy when confronted
with both training data and new data (test data). Throughout the learning process, the possibility of using
a validation set - data that guide learning - is an added bonus. Naturally, in all these methods, a sufficient
amount of available data to make up the training , validation and test samples is required. Cross-validation

18 a common alternative to be used to obtain reliable error estimates when available data is restricted.
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Classification Trees

Classification trees are non-parametric methods , since they do not require assumptions on the distribution
of the variables under study. Trees make it possible to handle a large number of explanatory variables
of any nature (qualitative or quantitative) and include techniques for dealing with missing data. The
construction of a tree involves recursive partitioning of a data set. This partitioning process begins at the
root node (set of learning data) and creates a hierarchical structure which is developed from the root to the
leaves. On each level of the tree, decisions are made with regard to the following level, and the tree nodes
- data sub-sets - branch out in order to reduce their diversity (in relation to the target variable (classes)).
The predictive variables are partitioning instruments which enable divisions in the nodes, for example, on
the basis of their possible categorisations. Different methods propose different diversity measures of the
target variable, using different branching criteria. Furthermore, stopping rules for ending the partitioning or

ramification process, as well as the pruning criteria of tree branches vary according to the methodologies.
Classification and Regression Trees - CART

The CART (Breiman et al) [1984) algorithm for the construction of classification trees performs
binary recursive partitioning on the data set as a means to finding the most homogeneous data sub-sets
regarding the target variable (classes). This process begins at the root node, which includes all the objects
of the learning sample. The CART algorithm examines all the explanatory variables (and analyses all the
possible values these variables may have) in order to perform the first ramification in two descending nodes.
It then selects the variable and the corresponding categorisation that provides the highest diversity decrease
of the target in the descending nodes. More specifically, the CART uses the Gini index as a diversity
measure. The algorithm continues the binary ramification process until a stopping rule is imposed upon it.
Finally, a class is attributed to each terminal node, namely the modal class in the sub-set of observations
assigned to this node.

Interpretation of the results obtained by the CART method is simple, which is why it is a very popular
method in the areas of social and human sciences and medicine. However, it should be noted that whenever
the amount of available observations is low and/or not representative of the patterns in the population, the

CART method classification accuracy in the training set may be difficult to replicate in a test sample.
Random Forests

The Random Forests algorithm was developed by Breiman| (2001)) and combines the idea of "bagging'
constructing a forest with various trees on the basis of several samples with replacement of the initial
sample - with a random selection of predictive variable sub-sets for ramification in each node. This idea
was independently introduced by Ho| (1995/ 1998)) and |Amit and Geman|(1997)). Classification on the basis
of the forest or tree committee is finally conducted by means of a voting process (weighted or otherwise)
from several trees. In this case, precision estimates are not necessarily based on test samples since the
so called "out of bag" estimates are available: in each sample with replacement, the excluded cases are
used for testing and the corresponding classification errors are determined. On completion of the forest

construction process, all the original sample cases will have been potentially included in an "out of bag"

M The "bagging" idea will be developed further on in point 1.3.3, page 15
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sample, and finally joined in the final confusion matrix.

The trees (and random forests) deal well with discrete data and accommodate the specificities of
their mensuration. As for the neural networks, the modelling of categorical variables generally involves
a neuron that corresponds to each category (with the inherent connections), which easily gives rise to
dimensionality problems in applications. Finally, it should be noted that the use of SVM in discrete data is

naturally hampered by the transformations the method proposes for the variables input.

1.3 Discrete Discriminant Analysis

1.3.1 Brief Introduction

As already observed, some of the presented classification techniques may be applied to classification
problems where the objects are described by quantitative or qualitative variables.

From the methods mentioned in point 1.2, the Kernel (Shawe-Taylor and Cristianini, 2004) type methods
and those that use the r Nearest neighbours (Hill, |1967), may be easily generalisable to the discrete case.
Logistic regression (Lemeshow and Hosmer, |2000)), in accordance with the definition, may also be applied
to explanatory qualitative variables.

With the development of technologies, other types of approaches have emerged to address classification
problems, namely those described in point 1.2, Classification Trees (CART) (Breiman et al.,|{1984); Support
Vector Machines (Cortes and Vapnikl [1995)) and Random Forest (Breiman, [2001). Among these, and due
to their nature, the CART algorithm and the Random Forest are models that can be applied to discrete
cases. Other models, such as the SVM (Cortes and Vapnik, 1995)), in accordance with its definition, implies
an increase in the number of variables under study, thus, further complicating the problem of parameter
estimation, one of the main problems confronted by researchers in discrete discriminant analysis. However,
the specific problems of discrete classification have not been considered in the definition of these models,
in other words, where all the explanatory variables are qualitative. It only happens that these models are

applicable to the continuous case and to the discrete case.

Our research study falls within the scope of Discrete Discriminant Analysis, which has been far less
explored by research than the continuous case. Hence, some models and specific characteristics of discrete
classification problems will be presented.

Let us then consider a generic discrete classification problem defined in the following way: In the case of
an n-dimensional sample, X = (z, s, ..., x,) Where x; represents the i*" observation (i € {1,...,n}),
described by P qualitative variables, z; = (241, %2, ..., x;p), where the class to which each observation

belongs is known, from the K a priori defined classes, mutually exclusive, (C1, Cy, ..., Ck).

In this case, when we have P discrete variables the vector z; = (x;1,x;2,...,z;p) represents the ith
observation (z € {1,...,n}) and corresponds to one of the observed states. In other words, in the discrete
field, we resume the information of a data set by presenting the state matrix and respective observed
frequencies.

To exemplify:

Let us assume a problem with two classes and two binary explanatory variables: 0,1. The values observed

in this problem can only take on the following values: 00, 01, 10 and 11, which are referred to as observed

8



1.3. Discrete Discriminant Analysis

states.

Therefore, in general terms, the data set under study is resumed in a state matrix whose dimension will
depend on the number of categories of each explanatory variable. In other words, for a sample composed
of P binary explanatory variables, the corresponding state matrix will have 27 states to analyse.

The distribution of observed frequencies is presented in Table[I.T] in a sample of 30 observations, described

by 4 binary variables for two defined a priori classes (n; = 10 e ng = 20).

Table 1.1: Distribution of the observed frequencies, by state and by class

State  (x1, 9,3, T4) C1 Co
Observ. Freq.Rel. Observ. Freq.Rel.

1 (0,0,0,0) 0 0.000 0 0.000
2 (0,0,0,1) 4 0.400 0 0.000
3 (0,0,1,0) 1 0.100 0 0.000
4 (0,0,1,1) 1 0.100 0 0.000
5 (0,1,0,0) 0 0.000 0 0.000
6 (0,1,0,1) 2 0.200 0 0.000
7 (0,1,1,0) 0 0.000 0 0.000
8 (0,1,1,1) 2 0.200 1 0.050
9 (1,0,0,0) 0 0.000 0 0.000
10 (1,0,0,1) 0 0.000 0 0.000
11 (1,0,1,0) 0 0.000 11 0.550
12 (1,0,1,1) 0 0.000 3 0.150
13 (1,1,0,0) 0 0.000 0 0.000
14 (1,1,0,1) 0 0.000 0 0.000
15 (1,1,1,0) 0 0.000 3 0.150
16 (1,1,1,1) 0 0.000 2 0.100

Total 10 1.000 20 1.000

1.3.2 DDA Methods

The classification methods differ according to the nature of the explanatory variables, due to the fact
that the latter reflect the underlying structure to the data under study. Therefore, methods that take such
characteristics into account when dealing with a set of qualitative variables are naturally sought.

The most natural model to represent a problem with qualitative explanatory variables, whether binary or
not, is the Full Multinomial Model (FMM )(Goldstein and Dillon, [1978)).

As with the continuous case, when handling qualitative variables, there are also reference models that play
similar roles to the known methods of Linear Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA). Despite being the most natural model, the FMM model requires samples of a considerable
size to enable estimation of their parameters, and has a similar role in DDA to that of QDA. Since it is
not possible in most real situations to satisfy this request, various models have been suggested that stem
from the most well-known model in the literature, namely the First-order Independence Model (FOIM),
(Goldstein and Dillon, [1978)). The FOIM assumes independence among the explanatory variables within
each class, which is too unrealistic in many situations. Therefore, the FOIM model represents a reference
in DDA similar to that of LDA.
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Full Multinomial Model (FMM )

The FMM, where the probability functions per class are multinomial probability functions on the set
of all possible states, requires however samples of a considerable size to make the estimation of the
parameters of the probability functions possible. In fact, the maximum likelihood estimator of the
probability of occurrence of each state 1, represented by x* observation, in each class k is the relative
frequency observed in each class:

fow | x) = P EC i =g (1.3.1)

ng

Considering the same afore-mentioned example, Table[I.2] presents the values obtained through application
of the FMM to the set of all possible states.

Table 1.2: Probability estimates of the occurrence of state 1 in class k through the FMM (I=1,...,16 e k=1,2)

State  (x1,22,x3,24) fi(z* | X) fo(z*| X) Decision
(Class chosen by the model)
1 (0,0,0,0) 0.000 0.000 Cy
2 (0,0,0,1) 0.400 0.000 Cy
3 (0,0,1,0) 0.100 0.000 Cy
4 (0,0,1,1) 0.100 0.000 Ch
5 (0,1,0,0) 0.000 0.000 Cq
6 (0,1,0,1) 0.200 0.000 Cy
7 (0,1,1,0) 0.000 0.000 Cy
8 0,1,1,1) 0.200 0.050 Cy
9 (1,0,0,0) 0.000 0.000 Ch
10 (1,0,0,1) 0.000 0.000 C
11 (1,0,1,0) 0.000 0.550 Co
12 (1,0,1,1) 0.000 0.150 Co
13 (1,1,0,0) 0.000 0.000 Ch
14 (1,1,0,1) 0.000 0.000 Ch
15 (1,1,1,0) 0.000 0.150 Co
16 1,1,1,1) 0.000 0.100 Co

Nevertheless, since large samples are necessary in order to estimate the parameters of the FMM model,
has become difficult to use it in many practical cases. For example, considering the case of P binary
explanatory variables, there will be 27 possible states for analysis, thus, leading to an estimation of 27" — 1
parameters. If P=10, then 1024 parameters will have to be estimated. In order to overcome this difficulty,
several variants of the FMM have been proposed (Goldstein and Dillon, |1978}; (Celeux and Nakache| |1994)),
among which the First-order Independence Model and some models based on the observed frequencies
smoothed for each state, according to the application of non-parametric techniques, namely the Kernel
Method and the Nearest-Neighbour Method.

10



1.3. Discrete Discriminant Analysis

First-order Independence Model (FOIM)

Application of the First-order Independence Model (FOIM) makes it possible to reduce the number
of parameters to be estimated from 27 — 1 to P , considering that within each class C}, the explanatory
variables are independent from each other. For this model, the conditional probabilities in each class Cl, is
estimated in the following way:

r #{gj ECk:xjp::U;}

fo (2" | X) = i=1,....n; k=1,...,K 1.3.2
fk(g| ) pl—Tl n P J ) y 15 ) ) ( )

where nj, represents the dimension of the class Cf.

In Table [I.3] the values of the conditional probabilities estimates through application of the FOIM

to the previously presented data are set out.

Table 1.3: Probability estimates of the occurrence of state 1 in class k through FOIM (1=1,...,16 e k=1,2)

State  (x1, w2, T3, T4) fl (z* | X) fg (z* | X) Decision
(Class chosen by the model)
1 (0,0,0,0) 0.036 0.000 Ch
2 (0,0,0,1) 0.324 0.000 Ch
3 (0,0,1,0) 0.024 0.025 Co
4 (0,0,1,1) 0.216 0.011 Cy
5 (0,1,0,0) 0.024 0.000 Cy
6 (0,1,0,1) 0.216 0.000 Ch
7 (0,1,1,0) 0.016 0.011 Cy
8 (0,1,1,1) 0.144 0.005 Ch
9 (1,0,0,0) 0.000 0.000 Ch
10 (1,0,0,1) 0.000 0.000 Ch
11 (1,0,1,0) 0.000 0.466 Cy
12 (1,0,1,1) 0.000 0.200 Cs
13 (1,1,0,0) 0.000 0.000 Ch
14 (1,1,0,1) 0.000 0.000 Ch
15 (1,1,1,0) 0.000 0.200 Cs
16 (1,1,1,1) 0.000 0.086 Co

When the independence assumption between the variables is too unrealistic, classification methods which
take into account interactions between explanatory variables can be used, namely the Dependence Trees
Model (DTM) (Celeux and Nakachel (1994} |Pearl, [1988)) and the Bahadur Model (Celeux and Nakache,
1994; Bahadur, [1961)).

11
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Dependence Trees Model (DTM)

The Dependence Trees Model (DTM), takes into account conditional dependence relationships between
the predictors. DTM provides for each class an estimate of the conditional probability function based on
the idea proposed by |Pearl| (1988). Pearl demonstrated that through the knowledge of a graph G, where
X1, ..., Xp represent its P vertices, the probability distribution f¢, associated with this graph, can be

calculated as the product of the conditional probabilities:

P—1
fG(xl, e xp) = f(Tr(p)) H f (ajp | xl(p)) (1.3.3)

l(p)=1

where z,(,) represents a variable that is linked to the variable x;, in this graph, arbitrarily choosing one
vertex as the root of the graph, x,.(,).

In order to construct the graph for each class, we rely on the algorithm of Chow and Liu (Celeux and
Nakache, 1994; Pearl, |1988), where the length of each edge refers to the pair of variables (z,,x,)
represents a measure of the association between the same variables, particularly mutual information. Mutual

information - I - is defined as follows:

I(Xp, Xp) ZZf Tp, Ty ) log f{(xs}?;:) (1.3.4)

where f(xp,x,) is estimated using the maximum-likelihood approach.

After calculation of the C{ mutual information values, graph G, with P — 1 edges, corresponding

to the highest total mutual information is selected.

For example, the following values are obtained for mutual information and presented in Table [I.4]

Table 1.4: Mutual Information

(Xp, Xpy) _ I(Xp, Xyp)

C Co
(1,2) 0.000 0.063
(1,3) 0.000 0.000
(1,4) 0.000 0.063
(2,3) 0.014  0.000
2,4) 0.055 0.039
3.4) 0.100 0.000

and the probability distribution of the first-order dependence tree is

FO(@X) = f(a3] X) f (w25, X) f (23|25, X) (1.3.5)

FO (271X) = f(@51X) f (25|27, X) f (]2, X) (1.3.6)

12



1.3. Discrete Discriminant Analysis

where the marginal and conditional probability functions are determined simply using the observed relative

frequencies in sample X.

Tq

€3 Tl

T2

2 T4
Class C; Class Co

Figure 1.2: Example of a dependence tree for the case of P=4 variables

In accordance with the probability distribution of the first-order dependence tree (10) e (11), the value for

the 8" state (0, 1,1, 1), is calculated in the following way:

e class C'y:
O (@(0,1,1,1)) = f(z2 = 1) f(za = Uzo = 1) f(zg = 125 = 1) =
(1.3.7)
4 3
:1—0><1><1:0.300
e class C'y:
£ (2(0,1,1,1)) = f(z1 = 0) f(zg = 1z = 0)f (x4 = 1|z, = 0) =
(1.3.8)

1
:2—0><1><1:0.050

According to these results, a future object, described according to this state, should be classified in class
Ch.

The values of the conditioned probability estimates through application of the DTM to the previously

presented data are as follows:

13
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Table 1.5: Probability estimates of occurrence of state 1 in class k by the DTM (1=1,...,16 e k=1,2)

State  (x1,z2,23,24) f1(z* | X) fo(z*| X) Decision
(Class chosen by the model)
1 (1,1,1,1) 0.300 0.066 Ch
2 (1,1,1,0) 0.000 0.184 Co
3 (1,1,0,1) 0.400 0.066 Ch
4 (1,1,0,0) 0.000 0.184 Co
5 (1,0,1,1) 0.375 0.184 Cy
6 (1,0,1,0) 0.025 0.516 Co
7 (1,0,0,1) 0.500 0.184 Ch
8 (1,0,0,0) 0.000 0.516 Co
9 0,1,1,1) 0.300 0.050 Ch
10 (0,1,1,0) 0.000 0.000 Cy
11 (0,1,0,1) 0.400 0.050 Ch
12 (0,1,0,0) 0.000 0.000 C
13 (0,0,1,1) 0.375 0.000 Ch
14 (0,0,1,0) 0.025 0.000 Ch
15 (0,0,0,1) 0.000 0.000 Cy
16 (0,0,0,0) 0.000 0.000 Ch

1.3.3 Model Combination

Usually, when presented with a classification problem, a number of models are applied in order to select
the one that proves to be the most precise. However, this procedure brings about a loss of considerable
information obtained by the competing models, which is particularly important when the classification
errors of some of these models are found to not occur in the same objects. The model combination
approach, instead of selecting a unique model, emerged in DDA as a means to finding a classification rule
that could be better adapted to the structure of the data under study. The combination of models tends to
frequently improve predictive value.

Over recent years, a large number of publications from various research areas have increasingly presented
proposals for combining classification methods in order to improve the models’ predictive value. The
results already obtained are apparently promising (for example, [Wolpert, 1992} Breiman), [1996| 1998
Freund et al.l [1996; |[Friedman et al., |1998;; [Sousa Ferreira et al.l 2000; Friedman, 2001 Milgram et al.,
2004; Sabourin, 2004; [Brito, 2002; |[Kotsiantis et al.l 2006} (Cesa-Bianchi et al., [2006; [Friedman and
Popescu, 2008; /Amershi and Conati, 2009; Janusz, [2010; [Kotsiantis, 2011; Re and Valentini, 2011)).

Over the years, the several model combination proposals have given rise to a broader range of terminology
to designate this type of approach: Blending by [Elder and Pregibon| (1995), Ensemble of Classifiers by
Dietterichl (1997), Committee of Experts by |Steinberg| (1997)), Perturb and Combine (P&C') by Breiman
(1996) and Combiners by Jain et al.| (2000).

Many model combination strategies have been proposed by different researchers, whether by applying
several methods to the same data set or by repeatedly using the same method on various data sets.
Generally, the final prediction is decided by vote. In this chapter, a number of works in the field of model
combination are referred to in chronological order.

In 1992, Wolpert proposed a classifier combination approach with stacking. This proposal consists of

applying several algorithms to a data set and then a combined model is applied to attain the final prediction
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1.3. Discrete Discriminant Analysis
on the basis of the predictions from the previous step. This type of combination is illustrated in Figure
[I.3] The use of this classifier combination strategy shows that by moving from one level to another, the

combined model seems to learn from the errors in the previous levels and, consequently, improves its

performance.

y

?
TN
N

Figure 1.3: Illustration of the Stacking Method

d ds

where d; with ¢ = 1,2, 3 represent the values of the predictions found in the application of three different
models to the x data set, and f() represents the model that will combine the results obtained in the previous
iteration.

This strategy presents certain aspects requiring further analysis, since there are no clear recommendations
regarding the number and specificity of the models for the first level nor for the model to be applied in the
last level.

Bootstrap Aggregating (bagging) was proposed by Breiman|(1996) to improve the stability and precision of
the algorithms used in classification, and was found to reduce variability and contribute towards preventing
an overfit of the models. This method has appeared in connection with classification tree methods, however,
it can be extended to any type of learning model. The bagging strategy builds a set of models based
on the creation of equally-sized random samples, with replacement, stemming from the training sample
(bootstrap samples). A classification algorithm is applied to each one of these samples and then a final
decision is obtained by vote. This method may increase the quality of unstable algorithms such as Decision
Trees and Neural Networks, but may also slightly unbalance methods considered to be stable such as the

Nearest-neighbours method (Breiman), [1996).

Freund et al.| (1996) proposed the boosting strategy, geared towards improving the performance of
the classification model. This approach is based on the iterative combination of "weak" classifiers, giving
more weight, in each iteration, to the incorrectly classified observations in the previous iteration, thus,
giving rise to a "strong" classifier. A classifier is regarded as "weak" if its predictive value is lower than
0.5 (in a binary classification problem and in a balanced case). In other words, it is lower than a random
classifier, while a "strong" classifier has a high predictive value, namely higher than random classification.
Let us consider a combination of three "weak" classifiers, where there is a learning sample in which three

learning sub-samples that randomly divide the original sample are defined. So, method d; is applied to
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sample X7 and method d; to sample X5. All the misclassified X; objects and all the well classified X2 are
now considered, and dy is applied to this sample. Sample X3 is now taken into consideration and methods
dy and dy are applied to this sample. The objects, for which the decision d; and dy differ, form the d3
learning sample.

In this final stage, the decision for each object is compared by d; and dy. If the methods agree, this is the
final decision, otherwise the decision by d3 is used (Schapire, |1990). demonstrated how this methodology
reduced the error rate. The disadvantage of this proposal is that a large sized original sample is necessary
so that the following sub-samples are of a non-negligible size. One of the most well-known boosting
algorithms is AdaBoost (Adaptative boosting) (Freund et al.l|{1996) which repeatedly uses the same learning
sample, overcoming the need to rely on a large sized sample. However, the classification algorithms used
should prevent overfit problems.

Several variants of the AdaBoost model have been proposed. Breiman| (1998)) regarded it as a variation of

the boosting model and referred to it as "arcing" (adaptively resampling and combining).

Within the scope of bagging and boosting methods, the researcher uses a single classification method,
making the learning samples vary, believing that the application of this classification method to different
sub-samples extracted from the original sample may increase the precision of the results. However, the
use of a single classification method may lead to a loss of relevant information for the classification of
future objects, since the application of different DA methods to the same observation set has been found
to produce different classification errors in the majority of cases. This is due to the fact that each method
presents different specificities and, therefore, the behaviour of the sample’s distribution should be taken
into account. (Sousa Ferreiral, [2000; Britol 2002} Brito et al., 2006).

Several researchers have taken an interest in this study area and have engaged in developing model
combination methods for both continuous and discrete cases, although there are still very few studies on
the latter.

Among the methods presented in point 1.2, the Random Forest stands out as being the closest method to
a model combination approach, given that it stems from a combination of several decision trees using the
bagging strategy.

Breiman| (1996, 1998)) demonstrated that the bagging and arcing strategies improve the performance of a
CART model in 11 machine learning databases. |[Dietterich/ (2000) proved that the bagging and boosting
methods systematically increased the performance of the decision tree algorithm C4.5.

Several researchers have pointed to the advantage of a neural combination network approach (Wolpert,
1992; [Opitz and Shavlik, |1996).

Friedman (Friedman et al. (1998 |[Friedman, 2001) also invested in model combination, using the
boosting strategy to withdraw subsequent sub-samples.

In 2000, Sousa Ferreira (Sousa Ferreira, [2000; Sousa Ferreira et al., (1999, [2000) addressed the problem
of dimensionality in Discrete Discriminant Analysis (DDA) for small scale samples by following a model
combination approach. Among the models proposed by Sousa Ferreira (2000) the Hybrid Model (MHIB)
is the most salient, due to its particular way of combining two models, in the case of two a priori defined

classes, since the objects of one class are classified according to the FOIM model, while those of the other
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are classified according to the DTM model. The MHIB model proved to be of particular interest in the fields
of medicine and social and human sciences, where the study of classification problems with two classes is
frequent. Usually, one of the classes consists of a control group and the other class an experimental group.
In such situations, independence between the explanatory variables of one class is sometimes, but not so
rarely observed, while in the other class relations among the explanatory variables may be found.

In the work developed by |Sousa Ferreira (2000), a linear combination between the FOIM model and the
FMM model was also proposed, using a single coefficient 3, (0 < 8 < 1), thus producing an intermediate
classification rule between these two models. Later on, the proposed approach was extended to the case
where more than two a priori defined classes are available.

The performance of this approach was assessed in terms of both real and simulated data, described by
qualitative binary variables, and made it possible to ascertain the preferential field of application of the
various proposed models, in accordance with the strategy used for estimation of the coefficient 5. The
results obtained with this approach proved to be promising in terms of increasing the predictive value of
the models.

A performance analysis of the proposed approach made it possible to verify that, despite the promising
results, the suggested combination tended strongly towards the FOIM model, reducing the contribution of
the FMM model. This finding is what led to the model combination proposal presented in this dissertation.
Brito (Brito, [2002; Brito et al., 2006) proposed a model combination approach in a Gaussian context.
Taking into account a number of assumptions regarding the parameters of the Gaussian model (covariance
matrix, volume, orientation and form), Brito (Brito, [2002; Brito et al., [2006) considered fourteen models
in its combination: eight elliptic, 4 diagonal and two spherical models. Performance assessment of the
various proposed combinations was carried out on a number of renowned real databases, such as four at the
Machine Learning Repository of California University (MLR), one at the Oxford University Repository
(OR) and another at|Habema and Van Den Broek| (1974).

Milgram et al.| (2004) proposed a combination of models with support vectors machines (SVM) and,
using recognition data for digital manuscripts (the learning sample consisted of 60.000 cases, 10.000 of
which were used as test-samples), showed that the necessary computation time was drastically reduced,
while the precision of the SVM methods was maintained. Cesa-Bianchi et al.| (2006) showed that the
combination of SVM models may be an important tool in Machine Learning, in classification problems in
the field of Taxonomy.

Amershi and Conati| (2009) also used this approach, combining supervised and unsupervised classification
models in the field of education. Moreover, [Janusz| (2010) studied the combination of multiple classifiers
by using a genetic algorithm. [Kotsiantis| (2011)) proposed a combination of the Random Subspace models,
using the method of Naive Bayes (Domingos and Pazzani, [1997)) and C4.5 (Quinlan, [1993)) and assessed
the performance of the new model using 26 databases (with continuous explanatory variables). [Kotsiantis

(2011) concluded that the results were apparently promising.
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Although many of the models put forward in the literature on model combination in classification may be
applied to problems with discrete explanatory variables, the studies disseminated in the literature focus on
data of a continuous nature, thus, clearly highlighting the pertinence of model combination proposals in
DDA.

Hence, this study falls within the scope of model combination in DDA, particularly in the case of
poorly a priori separated classes and/or small and moderate scale samples, in which a new classification
method is proposed, following an approach based on the combination of two well-known models in
Discrete Discriminant Analysis: The First-order Independence Model (FOIM) and the Dependence Trees
Model (DTM).

The research undertaken in this context tried to analyse the performance of different model combination
strategies in DDA, through the use of a single coefficient 3, (0 < § < 1). The aim was to reduce the
dimensionality problem, and to find a better classification rule to adapt to the underlying structure of the
data, which would lead to good predictive ability and stable results. This option set out to overcome the
difficulty in estimating the occurrence probability of unobserved states, as found with the FMM model
in the combination proposed by |Sousa Ferreiral (2000), and, furthermore, to extend its application to
explanatory variables that are not necessarily binary.

The conditional probability function for the proposed combination is estimated as follows:

P (z* € Ci|B, X) = BProru(z* € Cx|X) + (1 — B)Poru(z* € Ci|X) (1.3.9)

Assessment of the performance of this new classification method was carried out on both real and simulated
data, in an attempt to understand its preferential field of application. These studies are presented in the
articles by Marques et al.| (2008} 2010, 2014alb)) in which some data and results presented in national and
international congresses are described, during the course of this research study and appendices.

When more than two a priori defined classes are available, the models become even more complex and
hamper estimation of the unknown parameters, thus, generally leading to high error rates. The Hierarchical
Coupling Model (HIERM), proposed by |Sousa Ferreira (2000) is used in order to bridge this difficulty.

Hierarchical Coupling Model (HIERM)

The HIERM decomposes one multi-class problem into several bi-class problems using a binary tree

structure. At the beginning we have K classes we want to reorganize into several couples of classes.

In other words, the HIERM model transforms a classification problem of multiple classes into multiple

binary problems. Therefore, it is necessary to consider the 251

— 1 forms of re-grouping the initial
k classes into several couples of classes. In the second stage, either the model combination is applied
to every new couple of classes and the best result is chosen, or a criterion is used to select one of these
decompositions and the performance of the FOIM-DTM model combination on that couple of classes is
assessed. For instance, on each level of the tree a coefficient of similarity may be applied between the two

new classes, and the most separate classes may be selected.
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1.3. Discrete Discriminant Analysis

The HIERM implies two decisions on each level of the tree:

1. Selection the of hierarchical coupling among the 2!

— 1 possible class couple;
2. Choice of the model that gives the best classification rule for the chosen couple.

For example, 3 defined a priori classes may be organized into 23! — 1 = 3 couples of classes in various

ways, giving each one a binary tree origin. See Figure[I.4]

(1L 0L L)

1 CQ Cg 3 3

Figure 1.4: Binary trees for 3 a priori classes, in the HIERM model

In the case of 4 a priori classes, the number of available trees increases to 7. Two possible structure

examples are presented in Figure [I.5}

C3 Cy Cy O Ci Oy C3 Oy

Figure 1.5: Example of two binary trees for 4 a priori classes, in the HIERM model

Of course, as the number of classes increases, the number of possible class couples to be analysed also
increases, thus making this detailed process far too lengthy. Alternatively, a measure to assess the degree of

separability between the several class couples may be used, by choosing the two new most separate classes.

The HIERM (Sousa Ferreira, 2000) was applied to the combination proposed in this study whenever
more than two defined a priori classes were available. In order to calculate the degree of separability
between the various class couples, the affinity coefficient (aff) was used between the two discrete

probability distributions defined by |[Matusita (1955)) and generalized by |Bacelar-Nicolau| (1985)), where:

af f(Ck,Cyr) Z \/f x5 € CklX) \/f z5 € Cp|X) (1.3.10)

Performance assessment of the HIERM model with the FOIM-DTM combination was applied to both real
and simulated data by Marques et al.| (2008, 2010, |2014a,b) and appendices: Cases 1, 2, 4, 5, 6 e 10.

In the real data studies, the problem of having too many explanatory variables in relation to the
number of objects under study frequently emerged when the FOIM-DTM combination was applied. This
rendered the application of the classification models impracticable, or based on poor performance. It is a
dimensionality problem which is quite common in DDA, and often referred to by researchers as "the curse
of dimensionality" (Celeux and Nakachel [1994; Brito et al., [2006) which leads to poor performance of the

various models.
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A number of factors contribute to this discrete classification problem:

e DDA methods are frequently applied to the data of Social and Human Sciences and Medicine, where

small scale samples are usually available;

e As already mentioned, a small number of discrete explanatory variables can easily bring about a very

high number of states, thus implying that many states go unobserved;

e Samples with a large number of explanatory variables in relation to the number of observed objects

are frequently found in DDA;

With a view to overcoming this problem and obtaining reliable estimates for the model parameters, variable
selection methodologies have been considered in this study. The use of such methodologies is somewhat
unusual in DDA, which is why this has also been examined in the research |Marques et al.| (2013) and

appendices: Cases 6, 7.

1.3.4 Validation methods in supervised classification

As already established, there are many possible approaches to defining a classification rule, and there is no
model that has a consistently higher performance than that of all the others. Therefore, it is fundamental
that their importance is assessed in different contexts, as a means to evaluate the quality of the classification
of new objects.

When discussing the evaluation of a discriminant analysis model or supervised classification, the main
focus is always the predictive value of the model and not other relevant classification factors, such as
the running time, the descriptive value of the model, etc. Nevertheless, in view of the importance of the
running time, the performance of the classification of the models with regard to this factor was compared,

as presented in the article "Selection of variables in Discrete Discriminant Analysis" (Marques et al., 2013).

Let §(z’) be the term for the classification rule constructed by the application of a certain model to
a 2’ learning sample. The most natural measure to assess the performance of §(z’), involves calculating the

error rate (ERR) (Celeux,|1990), or conversely, the correct classification rate:

ERR=Y "> Err(5(z)cc,), i#J (13.11)
T

where Err(§(z’ )Ci\cj) represents the missclassified error rate, and the incorrectly classified object is

considered to have come from C; class and is classified by 6(z’) in the Cj class, with 1 < 7,5 < K and

i 7.

Obviously, the true predictive value of a model is unknown, as only data samples are available for
the assessment of its performance. However, several methods have been proposed in an attempt to obtain
reliable predictive value estimates. These methods stem from a number of performance measures, as

correctly as from alternative ways of testing the precision of a model in new observations.
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1.3. Discrete Discriminant Analysis

Usually, the results of a discriminant analysis or a supervised classification method are assessed on the
basis of counts of misclassified objects. These counts are generally represented in a table referred to as the
confusion matrix. The following table represents a confusion matrix for a multiple classification problem,

namely in which there are defined K a priori classes.

Table 1.6: Confusion matrix for a classification problem

Predicted classes

Original classes (' Cy .. C; .. Cg
Cl nii nio nlj g
CQ na1 n92 ngj NoK
Ci g1 P N5 n,K
Ck NK1 NK2 - NKj . NKK

The n;; frequency, presented in each cell of table 6 represents the number of objects belonging to class i
which were classified by the model in classj. Therefore, the total number of correctly classified objects is

given as:
L K
DY iy, i=j (1.3.12)
i=1 j=1

and the total number of missclassified objects is given as

L K
SN nig, i A (1.3.13)

i=1 j=1
therefore, the rate of correctly-classified objects is given as
L K
22 i
i=1 j=1

L= (1.3.14)
n

and the total amount of the sample’s objects, where:

L K L K
n=> > ng=» ni=Y» n; (1.3.15)
i=1 j=1 i=1 j=1

Some authors have designated this rate as the Accuracy of the model, while other measures may

also be defined, such as the Overall Error Rate, given as:

L K

2D i
Overall Error Rate = —*7=1 , 1#E g (1.3.16)
n
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or even taking into account the predictive value observed in each class, where the rate of correctly-classified

objects in class k is given as:

Nkk

Correct Classification Rate in Cy, = e (1.3.17)
> g
j=1
Considering the particular case of two defined a priori classes, with:
e correctly-classified rate of Class 1 objects (sometimes referred to as sensitivity):
o (1.3.18)
ni1 + ni2
e correctly-classified rate of Class 2 objects (sometimes referred to as specificity):
_ 2 (1.3.19)
na1 + N22

In the same way, the error rate per class may be defined in a classification problem with K classes.

The precision calculation per class has the advantage of demonstrating whether the predictive value is the

same in both classes or if it is very high just because the observed precision is very high in only one of the

classes.

By assessing the classification rules of the sample in which the same rules were learned, a good fit to the

data will naturally be obtained. Therefore, different ways of assessing the predictive value of a model are

generally used on new data beyond those that support the learning or training of a model. The most common

forms of classification rules are presented below:

22

e Resubstitution error - The term resubstitution error refers to the error rate (or correct classification

rate) based on the same sample used in the learning process. Due to the fact that the same sample is
used in the validation process, this estimate is over optimistic and may misrepresent the real predictive

value of the model.

Sample test validation - The term sample-test validation is employed when a sample is used for the
learning process and another sample is used for the estimation of the resulting model’s precision. In
this case, the initial sample is split into two independent sub-samples, not necessarily equally sized
(when small scale samples are available, it is recommended that the sample be split into two equal
parts), and the error rate calculated on the basis of the sample that was not used in the construction of

the classification rules .

V-fold cross validation- The term V-fold cross validation is used when the initial sample is split into
equally-sized V' parts and the V' — 1 parts are used for the construction of classification rules and
then evaluated in the remaining sample. Hence, this process gives rise to V iterations. The error rate
estimate is obtained by taking an average of the error rates obtained in these V iterations. Typical
choices for V are V=2, V=5 or V=10.



1.3. Discrete Discriminant Analysis

e Leave-one-out Cross- Validation - The term Leave-one-out Cross-Validation is used when there is a
particular case of the cross-validation method. In this case, V' is equal to the number of objects of the
dataset. The subsequent sub-sets for validation are formed by a single object and the learning set is

made up of all the other objects.

e Bootstrap Validation - The term Bootstrap Validation is used when the validation is based on a
systematic re-sample with replacement. In other words, a random sample with replacement of equal
size is created from a data set of n objects. This sample is used as a learning set while the remaining

objects form the validation set. This operation is repeated a sufficiently large number of times.

Given that small scale samples were considered in this study, two-fold cross-validation was used. In

samples of a reasonable size, sample-testing was used (made up of half of the original observations).

All the previously described measures for evaluating the predictive value of a classification rule
have proven to be somewhat inefficient when the defined a priori classes are not balanced and, furthermore,
even when the classes are balanced, the predictive value of one class is very different to the others. In
this case, the evaluation of a rule, using the correct classification or error rates may lead to incorrect
conclusions. For example, if one of the classes has around 90% of the observed objects and all these
objects are correctly-classified, the idea is conveyed of a highly precise rule (90%), even though all the
class two objects may be misclassified. In such cases, it is of particular interest to take into account all the
frequencies registered in the confusion matrix and not only those that constitute the secondary or principal

diagonal.

Several authors have invested in the search for suitable methods to compare two or more classification
models - for example (Sousa Ferreira and Cardosol 2013} Bostanci and Bostanci, [2013; |Gomez and
Montero, [2011}; Santos and Embrechts, |2009; [Demsar, 2006}, [Dietterich, [1998}; |Carlettal, |1996). Therefore,
in addition to the well-known Error Rate (or Correct Classification Rate) , such as in the case of
binary problems, the area in percentage under the Receiver Operating Characteristic (ROC) curve, the
determination of sensitivity and specificity and the statistics of McNemar’s test, used to analyse the
frequencies of related samples, have been proposed. In more general terms, in problems with multiple
classes, Cohen’s Kappa statistic may be referred to, which is an agreement measure between original and
predicted classes ( |Carletta, [1996; Foodyl 2004, or the Wilcoxon test that compares the distribution of
the observed results in two related populations. Recently, other performance measures used in external
clustering validation have been considered in the assessment of classification methodologies performance
(Sousa Ferreira and Cardosol, 2013} [Santos and Embrechts| 2009). Nevertheless, it is still difficult to draw
clear conclusions on the measures to be used and on what specific contribution they offer to the validation
of classification results.

Within the scope of this study, the decision was made to use not only the traditional correct classification
rate (or error rate) as performance measures of the proposed model combination, but also the coefficient ¢
(Marques et al.,|[2014a) and the Huberty Index (HI) (Marques et al.,[2014a):

2
¢ = ‘/XN (1.3.20)
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1. Introduction

(nij _ o ning )2

2

=y ) ot (1.3.21)
i g n

n;; - number of observations in the it" row and in the j** column in the contingency table.

n;. - number of observations in the i row in the contingency table.

n.j - number of observations in the j th column in the contingency table.

n - is the total number of observations.

L K L K
n = an = Zn,j = Z Znij (1.3.22)
=1 j=1

i=1 j=1

P.— P,
1-Py

(1.3.23)

where P, represents the percentage of correctly classified cases and P, represents the percentage of majority

class cases.

1.3.5 Selection of variables in supervised classification

When a study is developed on a certain theme, a numerous set of explanatory variables is generally used
with a view to characterising the objects under study in a suitable manner. However, some of these variables
are frequently redundant bringing no additional information to the model.

In many Discriminant Analysis (DA) applications, only a small sub-set of explanatory variables contain
information regarding the class (McLachlan, |1992; |Dash and Liu, (1997} |Silval [1999} (Cook and Yin, 2001}
Reboucas|, 201 1; Murphy et al.,2010) . Therefore, to consider variables that do not contribute to knowledge
on class affectation increases the complexity of the analysis and may, consequently, reduce the performance
of the DA model. It is, therefore, natural to include variable selection methods in DA procedures.

In DA, variable selection may be accomplished with two different aims:
o to identify the variables that best differentiate the defined classesa priori;

e to identify the variables that lead to a classification rule with better predictive value than the rule

based on the set of all the explanatory variables.

Generally, when we discuss the selection of variables in DA, it is on the basis of the latter aim.
The objective of variable selection is three-fold (Guyon and Elisseetf, 2003): improving the prediction
performance of the predictors, providing faster and more cost-effective predictors, and providing a better

understanding of the underlying process that generated the data.

Variable selection in DA may be accomplished as a process preceding Discriminant Analysis (Filter
Method) or, on the contrary, this process can be accomplished by using step by step methods that enable
a selection of the variables that offer the best contribution to the precision of a specific classification
algorithm (Wraper Method) (Reboucas, |2011; Murphy et al.,|[2010).
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1.3. Discrete Discriminant Analysis

When the selection of variables is accomplished as a process that precedes Discriminant Analysis,
univariate methods are used, based on an analysis of the relations between the explanatory variables under
study and the dependent variable (classes). The mutual information or coefficient correlations are examples
of the type of method that can be used in this approach.

In this case, the P explanatory variables are individually analysed, and those displaying a strong
relation with the dependent variable (classes) are selected. Naturally, these methods do not take into
account the relations among the various explanatory variables and a sub-set of p variables (p<P) which
does not lead to a classification rule with good predictive value may be chosen. In fact, when considered
with the others, the variables that are not selected may be important for the construction of a classification
rule by a specific algorithm.

In other words, the methods that select the variables as part of the discriminant analysis process, generally
provide higher classification precision, but have a high running cost. On the other hand, hybrid methods
may be an alternative, since they initially reduce the space of the variables (using the Filter Method), and
then use the Wrapper method so that step by step, in combination with the emerging results of a given

algorithm, a set of predictive variables providing a good classification may be found.

The selection of variables in DA has been the target of many studies (McLachlan, [1992; Dash and
Liu, [1997; Reboucas, 2011} [Murphy et al., 2010), in which a number of variable selection techniques are
described, namely the step by step methods, inherent to the actual classification models. In classification
problems with continuous variables, step by step methods are commonly selected, and which are
developed by applying criteria, for example, in the Mahalanobis distance (see McKay and Campbell,, [1982;

Sousa Ferreira, |1987)), unlike the classification problems with discrete variables.

The previously described classification methods: classification trees, Random Forests and SVM and the
combination strategy Bagging do not require a previous selection, since this analysis is already a part of

their procedure in which the most relevant variables are chosen during the course of the process.

In this study, the problem of dimensionality emerged mainly due to the fact that our work focused
on small to moderate samples, a field of DDA in which the dimensionality issue is more pressing.
Therefore, the application of a DDA model, such as the proposed combination FOIM-DTM, to real data,
small or moderate scale, described by a large number of explanatory variables inevitably leads to low
predictive values. This fact geared our research towards the field of variable selection methods, so as to
find a minimum number of explanatory variables that suitably characterise the phenomenon under study,
and which enable the construction of classification rules within an acceptable period of time. Very little has
been studied on variable selection in DDA literature with a view to finding those that will lead to a better

classification rule.
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Therefore, with a view to finding a sub-set p*, p* << P of the initial explanatory P variables that produce
similar or better results than the initial set, four types of filter selection criteria were adopted in this study:

1. Descriptive: The Chi-Square statistic (Q%) and the Mutual Information Index (I) between the P

predictor variables and the target classes both provide one criterion for ranking the predictors;

2. Inferential: The p-values corresponding to the Chi-Square test provide alternative criteria for ranking
the same predictors. Using the Bonferroni Correction (BON) and the False Discovery Rate (FDR),
we obtained two additional predictor rankings (e.g. see (Benjamini and Hochberg| [1995)).

The first considered descriptive indicator is the Chi-Square statistic (Q?) defined as follows:
ni.n. j )2

L K
nz
Q* (X, X)) =D JWL]" (1.3.24)

i=1 j=1

where:

n;; - number of observations in the i-th category of X, and in the j-th category of
X

n;. - number of observations in the i-th category of X,,.

n_j - number of observations in the j-th category of X,/

K - number of classes.

L - number of predictor categories.
and

L K L K
n=>mni=Y n;j=3_ Y nj (1.3.25)
i=1 j=1

i=1 j=1

The Mutual information index (/) is defined as follows:

L K
I( X, X ZZ Z]logn ; (1.3.26)
=1 j=1 i.1bj

Both Q%(Xm, Xm/) and I(Xm, Xm') measure the strength of the association between Xm and Xm/.
When considering Xm a predictor and Xm’. When considering Xm a predictor and Xm’ the target

classes, these measures provide means for ranking the predictors according to their discriminant capacity.

The Chi-Square statistic () makes it possible to test the association between each predictor and the
target classes, following a x? distribution with (L — 1)(K — 1) degrees of freedom under the null
hypothesis (referring to null association) between the predictor and the target class. The implementation of

M Chi-Square tests corresponding to the M predictors originates the p-values p1, ..., Pm, ..., PM-
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1.3. Discrete Discriminant Analysis

The Bonferroni Correction (Benjamini and Hochberg| |1995) is a multiple-comparison correction used when
several statistical tests are being performed simultaneously. Then, the Bonferroni Correction, which sets the
« value for the entire set of M tests by taking the significance level for each test equal to /M.

Thus, according to the Bonferroni Correction (Benjamini and Hochberg| [1995) we selected the predictors
which yielded N
Vi (1.3.27)

The Bonferroni Correction and other traditional multiple comparison procedures are generally too

Pm <

conservative. In order to overcome this limitation, several alternative procedures have been proposed -
e.g. Holm’s procedure (Holm) |1979)) offering a more flexible tradeoff between the test’s power and error.
The False Discovery Rate (FDR) approach (Benjamini and Hochberg| [1995;Silva, 2010) - also addresses
multiple hypothesis testing to correct for multiple comparisons.

In a list of statistically significant studies (e.g. studies where the null-hypothesis could be rejected), the
FDR procedure is designed to control the expected proportion of incorrectly rejected null hypotheses ("false
discoveries") in a less conservative way compared to the Bonferroni Correction. This method relies on the

ranked p values (increasing values) - p1.as, .., Pm:M s ---, PM:M - and selects the predictors obeying:

Pyt < 720 (1.3.28)
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1.4 Thesis Outline

As a result of this research, five articles were written. They will be presented in the next chapter. The first
manuscript (Marques et al., [2008)), the second (Marques et al., 2010) and the third (Marques et al., [2013)
have already been published; the fourth manuscripts (Marques et al., 2014a) is accepted but still finalizing

review and the fifth (Marques et al.,|2014b) have been submitted and are still under review.

Marques et al.| (2008) presented the new combination model in DDA using the HIERM for multiple
classes. The proposed model was illustrated on one set of real data and evaluated by resubstitution.

Marques et al| (2010) presented the new DDA approach based on a linear combination of FOIM
and DTM. This was applied to classify one set of real data and another with simulated data. This paper has
focused on the performance of the new approach in comparison with CART and HIERM, as the data had

more than two defined classes a priori.

Since this study focuses on small or moderate scale samples, dimensionality problems emerged on a
number of occasions, dealing with too many explanatory variables vs. the number of objects under
study. This situation motivated the study for the article [Marques et al.| (2013). In this paper, diverse
variable selection techniques were considered to address the issue of dimensionality and their impact on
the performance of the new combined classification approach. We concluded that variable selection was
particularly pertinent in this setting, enabling the handling of degrees of freedom and significantly reducing

the running cost.

In order to understand the preferential field of application of the proposed model, an additional study
was conducted - [Marques et al.[| (2014a). It resorted to simulated data sets with two and four classes and
controlled the level of correlation between variables within each class. The combined model performance
- and also the performance of a Hierarchical Coupling Model when addressing multi-class classification
problems - were compared with Random Forests’ performance. The obtained results highlighted the
pertinence of the proposed model, especially when small samples were considered. A real dataset was used

to complete the comparative analysis.

Marques et al| (2014b) evaluated the performance of the proposed FOIM-DTM combination by
using simulated datasets. The experimental scenarios considered different factors - class separation,
balance, the number of missing states and sample size - and 30 runs were conducted in each scenario.
The obtained results enabled further understanding of the performance of the proposed combination, when
compared with the single FOIM or DTM methods. In addition, the results were used to build a linear
regression model considering performance measures as dependent variables. The obtained model showed a
good fit to the data and made it possible to anticipate the performance of the proposed algorithm in a real

dataset (based on the corresponding measures of separation, balance, missing states and sample dimension).

In the last part of this thesis, final conclusions and future research issues are presented.
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CHAPTER 2

Uma proposta de combinacdo de modelos em Anélise Discriminante
Discreta

This paper has the following reference:

Marques, A.; Sousa Ferreira, A. and Margarida G. M. S. Cardoso (2008) *Uma proposta de combina¢do de
modelos em Andlise Discriminante Discreta’. Estatistica - Arte de Explicar o Acaso, in Oliveira, 1. et al.
Editores, Ciéncia Estatistica, Edi¢bes S.P.E, 393-403.
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Erratum

In pag. 9, where is "MHIERM?2" should be "MHIER2".
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Resumo: A Analise Discriminante (AD) discreta ou sobre variaveis qualitativas é uti-
lizada principalmente em estudos nas areas das ciéncias sociais e humanas e da satide,
onde se dispoe frequentemente de grupos a priori mal separados e/ou de amostras de
pequena dimensdo. Nestas condi¢bes, o objectivo decisional de afectacao dos indivi-
duos/objectos aos grupos esta claramente dificultado. O presente trabalho insere-se
no campo da AD sobre variaveis qualitativas, ndo necessariamente binarias, utilizando
uma abordagem de combinacao de modelos, para o caso em que se dispoe de mais
de dois grupos a priori. O objectivo da proposta aqui apresentada é ultrapassar as
dificuldades de afectagao/classificacio presentes em muitas situagoes praticas. O Mo-
delo de Emparelhamento Hierdrquico (HIERM) foi proposto por Sousa Ferreira (Sousa
Ferreira (2000), Sousa Ferreira et al. (2000)) no contexto de uma anélise discriminante
sobre variaveis qualitativas no caso de mais de dois grupos a prior: e alia a maior sim-
plicidade da estimacao do problema de dois grupos, a estabilidade de uma combinacao
de modelos.

O modelo HIERM:

e decompde um problema de mais de dois grupos a prior: em diversos problemas
de dois grupos, utilizando uma estrutura de arvore binaria;

e em cada nivel da arvore, a regra de decisdao, baseia-se numa combinacao de
modelos para o caso de dois grupos a priori.

Na abordagem apresentada neste trabalho, a regra de decisao, em cada nivel da arvore,
baseia-se na combinacao dos seguintes modelos: o Modelo de Independéncia Condi-
cional de ordem um (MIC) que supde a hipotese de independéncia entre as variaveis
dentro dos grupos e o Modelo Grafico Decomponivel (MGD) (Pearl (1988)) que tem
em conta a existéncia de interaccoes entre as variaveis.

Para o estudo do desempenho desta nova abordagem estao a ser implementados no-
vos programas estatisticos no software MATLAB que posteriormente serdao aplicados
a dados reais, comummente utilizados na literatura de AD, sendo ainda comparados
com metodologias ja conhecidas.
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2 Marques et al./Combinagao de Modelos

Palavras—chave: Andlise discriminante, combinacao de modelos, modelo de indepen-
déncia condicional, modelo grafico decomponivel, modelo de emparelhamento hierar-
quico.

Abstract: Discrete Discriminant Analysis (DDA) is often used in social sciences, ai-
ming to allocate individuals/objects to a priori constituted groups, based on some
qualitative attributes referring to the same individuals/objects. The present work re-
gards the use of DDA referred to qualitative attributes which are not necessarily binary.
The proposed approach considers discrimination between more than two groups and
aims to overcome some difficulties often occurring in practical applications, namely the
occurrence of hill-separated groups and/or small size samples. In such situations, the
allocation decisions (of individuals/objects) to groups is clearly a difficult task. The
Hierarchical Model (HIERM) was proposed by Sousa Ferreira ((2000), (Sousa Ferreira
et al. (2000) to deal with DDA when more that two a priori groups are considered. It
is both easy to estimate and capitalizes on the stability yielded by combined models.
HIERM:

e Relies on a binary tree structure decomposing a multiple group discriminant
problem into several binary problems;

e In each level of the tree the decision rule (for a binary problem) results from a
combining model

In the present work the decision rule, in each tree level, is based on First-Order Inde-
pendence Model (FOIM)(Celeux and Nakache (1994)) which assumes that the P va-
riables are independent in each group, and Dependence Trees Model (DTM) (Celeux
and Nakache (1994), Pearl (1988)) which takes into account the interactions between
the predictors, bivariate relationships in particular. The proposed algorithm is imple-
mented in MATLAB and is illustrated with a real application. In future research it
should be applied to real data commonly used in the AD literature and compared with
well known ADD methodologies.

Keywords: Discrete Discriminant Analysis, DDA models’ combination, First Order
Independence Model, Dependence Trees Model, Hierarchical model.

1 Introducao

A Analise Discriminante &€ uma técnica de Anélise de Dados Multivariados que
pode ser utilizada quando estamos perante um conjunto de n objectos, descri-
tos por P variaveis, provenientes de K grupos definidos a priori, mutuamente
exclusivos, com o objectivo de:

1. conhecer quais as variaveis, de entre as P varidveis que os descrevem, que
melhor diferenciam os K grupos;

2. predizer a pertenca de um novo objecto anénimo a um e um s6 dos K
grupos definidos a priori, mediante a aplicacao de uma regra de decisao
que minimize os erros de afectacao.
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Os K grupos definidos a priori podem estar definidos desde o inicio, aquando
da recolha dos dados ou podem ter sido obtidos apds a aplicacao de outras téc-
nicas estatisticas como por exemplo, por aplicagao de técnicas estatisticas como
a Analise de Agrupamentos.

Em Anélise Discriminante existem métodos que privilegiam mais o objectivo
(1). No entanto, a maior parte dos métodos inserem-se mais no campo deci-
sional, ou seja, na situagdo (2). Mais raramente, alguns métodos conseguem
responder aos dois objectivos (1) e (2). De entre os métodos que correspondem
a situagao (1) podemos dizer que estes foram inspirados na Analise em Com-
ponentes Principais ou na Analise de Correspondéncias, enquanto em (2) nos
referimos a métodos probabilisticos (Celeux (1991)).

A regra de decisdao mais usual baseia-se na formula de Bayes, surgindo natu-
ralmente a forma de estimar a probabilidade a posteriori de afectacao de um
objecto z, num dos K grupos definidos a priori, (Celeux (1991)):

P(Gr |x) = DL )
> piPi()
k=1

onde pj, representam as probabilidades a priori do grupo k, e Py(z) as funcoes
de probabilidade para cada grupo K. Mediante a aplicacao desta regra afecta-
mos um novo objecto z, ao grupo G i que apresenta a probabilidade a posteriori
maxima, minimizando assim o erro de afectacao.

Este trabalho, insere-se no campo decisional, onde o conjunto de n objectos
em estudo é descrito por P varidveis qualitativas, nao necessariamente binarias,
e provenientes de K grupos definidos a priori com K>2.

2 Analise Discriminante Discreta (ADD)

Perante um conjunto de dados discretos a regra de decisao mais usual baseia-
se no Modelo Multinomial Completo (MMC) (Celeux e Nakache (1994)). No
entanto, a sua utilizacdo envolve a estimacao de um nimero muito elevado
de parametros. Por exemplo, para o caso em que dispomos de P variaveis
binarias, teremos de estimar 2 — 1 parametros. A estimacdo deste nimero
de parametros s6 se torna viavel recorrendo a amostras de elevada dimensao, o
que na pratica, em algumas areas, como por exemplo nas ciéncias da satude e
em psicologia, se tem mostrado dificil de obter. Para ultrapassar este problema
da dimensionalidade foram propostas diversas variantes deste modelo (MMC)
entre as quais se destaca o Modelo de Independéncia Condicional (MIC) (Celeux
e Nakache (1994)) que assume que dentro de cada um dos grupos definidos
a priori, Gy, as P varidveis sao independentes. Neste modelo, a funcao de
probabilidade condicional do grupo Gy é estimada da seguinte forma:
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P

. #FWEGL yp =1

P(GHQ)ZH i ” L p}, para p=1,...,P (2)
p=1

onde ny representa a dimensao da amostra para o grupo Gi. Este modelo, além
de reduzir o nimero de parametros a estimar permite ainda encontrar uma so-
lucao para a seleccao de varidveis aquando da construcao da regra de decisao,
escolhendo-as independentemente umas das outras, através do recurso ao Teste
do Qui-quadrado de independéncia entre a varidvel em causa e a variavel que
define os grupos a priori. Dado que a hipétese de independéncia entre as P
varidveis nem sempre é valida, tém surgido diversos modelos na literatura, em
alternativa ao modelo MMC, entre os quais o Modelo Grafico Decomponivel
(MGD) (Celeux e Nakache (1994), Pearl (1988)). Este modelo considera as in-
teracoes entre as varidveis de uma forma facil de interpretar, dado que se baseia
no algoritmo proposto por Chow e Liu (1968) que utiliza uma estrutura em Aar-
vore, designada por arvore de dependéncia, baseando-se na informacao mutual.
Assim, a funcao de probabilidade condicional para o grupo G}, é estimada pelo
produto das estimativas das probabilidades condicionais, correspondentes aos
ramos da arvore seleccionados, que representam as interacoes mais importantes
entre as variaveis. Por exemplo, no caso de termos cinco variaveis explicati-
vas e determinada a informacao mutual, se a conclusao fosse que as interacoes
mais importantes eram (2, 1), (r3,22), (24, 2)e(rs, r2) teriamos entao, como
estimativa para a probabilidade condicionada do conjunto das cinco varidveis o
seguinte produto:

ﬁ(.’l?l, T2, X3,T4, :L‘5) = P(.’L’1>P(x2|:L‘1)P(:133|£132)P<.%’4‘.’L’2)P(:L‘5|:L‘2) (3)

3 Combinacao de Modelos em ADD

Na década de 90 foram véarios os investigadores que comegaram por combinar
modelos com o intuito de encontrar métodos que se adaptassem melhor ao com-
portamento dos dados em estudo e que pudessem de alguma forma minimizar o
nimero de parametros a estimar, nas mais diversas areas da Estatistica (Wol-
pert (1992), Raftery (1996), Chipman et al.(1998), Smith e Wolpert (1999)). Em
AD, pensou-se que em vez de propor novos modelos para reduzir o problema da
dimensionalidade, a abordagem pela combinacao de modelos conduziria a mo-
delos mais eficientes e estaveis, tanto mais que frequentemente se observa que os
erros de afectacao obtidos por varios modelos nao ocorrem sobre 0os mesmos ob-
jectos (Sousa Ferreira (2000), (Sousa Ferreira et al. (2000), Brito (2002), Brito
et al. (2006)). Sousa Ferreira ((2000), Sousa Ferreira et al. (2000)) propos,
um modelo de combinagao natural para o caso de dois grupos a priori que con-
siste em utilizar um unico coeficiente produzindo um modelo intermédio entre
o modelo multinomial completo (MMC) e o modelo de independéncia condici-
onal (MIC), tendo desenvolvido varias estratégias para estimar esse coeficiente.
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Nesse estudo, observou-se que em diversas estratégias utilizadas, o coeficiente
da combinac¢ao tende a ponderar fortemente o modelo MIC e a reduzir muito
a contribuicdo do modelo MMC, mesmo quando as suas frequéncias sao alisa-
das. Com base nas conclusoes desta investigacao, Marques et al. (2008) propos
substituir, na referida combinacao, o modelo MMC pelo modelo MGD, o qual
tem em conta a interacgao entre as varidveis em estudo, surgindo assim um novo
modelo intermédio entre o modelo MIC e o modelo MGD, sendo a funcao de
probabilidade condicionada estimada da seguinte forma:

P(z|B) = BPurc(z)+ (1 — B)Puap(z) (4)

Da aplicacao deste novo modelo, Marques et al. (2008), obteve uma melhoria
na taxa de afectacao dos n objectos aos K grupos definidos a priori. No en-
tanto, estando este estudo ainda numa fase inicial, ainda nao é possivel apontar
conclusoes definitivas.

4 Uma variante do Modelo de Emparelhamento Hierar-
quico

Quando o contexto da analise discriminante sobre varidveis qualitativas se situa
no caso de mais de dois grupos a priori, pode ser vantajoso, como Friedman
(1996) ja tinha observado, transformar este caso em diversos problemas de dis-
criminagao entre dois grupos, conduzindo a modelos mais faceis de estimar e de
interpretar. Friedman tinha proposto a decomposicao dos K grupos em todas
as combinagoes possiveis de pares de grupos. Para cada par estimava a regra de
decisao e, no final, cada objecto seria afectado a partir da decisdo maioritaria
em todos os pares de grupos.

Sousa Ferreira propds ((2000), Sousa Ferreira et al. (2000), Brito et al.
(2006)) uma abordagem diferente. O modelo intermédio proposto foi gene-
ralizado para o caso de mais de dois grupos a priori através do Modelo de
Emparelhamento Hierarquico (MHIER), o qual decompde o problema inicial de
K > 2 grupos, a priori , em diversos problemas de dois grupos, utilizando uma
estrutura de arvore binaria, sendo cada objecto afectado ao grupo associado ao
altimo ramo da arvore onde foi classificado.

O modelo MHIER exige assim, duas decisoes em cada nivel da arvore:

e A seleccdo de um par hierarquico entre as 25X~! — 1 possibilidades de
emparelhamento (par de grupos compostos resultante da particdo de K

grupos);

e Em cada nivel da arvore, a seleccao do modelo que conduz & melhor regra
de decisao.

No primeiro nivel da arvore, dispomos de K grupos e pretendemos reorganiza-
los num par de grupos. Assim, Sousa Ferreira propos escolher o novo par de
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grupos compostos que fossem mais separados. Apos a seleccao do 1° nivel da
arvore, obtém-se a regra de decisao para este par de grupos. Repete-se, en-
tao, a escolha para o segundo nivel da arvore entre todos os grupos compostos
(formados por dois ou mais grupos iniciais). O processo termina quando a de-
composicao dos grupos conduz a grupos singulares.

Exemplificando, consideremos um caso de trés grupos a priori, G1, G2 e G3,
teremos entao que considerar as seguintes combinacgoes de pares de grupos: G
versus Go U G3, Go versus G U G3, G3 versus G U GG3. Determinada uma
medida de proximidade entre estes trés pares de grupos serd seleccionado para
o 1° nivel da arvore binaria o par com valor da medida de proximidade minimo.
Seguidamente obtém-se a regra de decisao para este par de grupos e repete-se
o processo para o 2° nivel da arvore (formado exclusivamente por grupos sin-
gulares). Neste caso, em que o numero de grupos é pequeno, podemos também
optar por construir as trés arvores binarias correspondentes as combinacoes de
pares de grupos acima referidas, escolhendo no final a que conduz & melhor taxa
de afectacao.
A regra de decisao obtida através do modelo de emparelhamento hierdrquico
pode ser representado numa arvore binaria como esta exemplificado na Figura
1.

O modelo MHIER proposto por Sousa Ferreira (2000) revelou nao sé ser uma

Figura 1: Arvore binéria correspondente & 2% combinacao no caso de trés grupos.

metodologia promissora para melhorar os erros de méa classificacdo como ainda
a sua estrutura em arvore binaria conduzir, geralmente, a interpretacoes parti-
cularmente interessantes para os dados em estudo.

Devido a este facto, Marques et al.(2008)) utilizou também a abordagem do
modelo de emparelhamento hierdrquico com a combinacao de modelos entre o
modelo MIC e o modelo MGD, no caso de K>2 grupos a priori. As primeiras
avaliagoes do desempenho deste novo modelo hierarquico, obtidos com dados
reais, reforcam os resultados ja obtidos por Sousa Ferreira ((2000), Sousa Fer-
reira et al. (2000), Brito et al. (2006)). Atendendo a que na maior parte dos
casos dispomos de um conjunto de n objectos, descritos por P varidveis indepen-
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dentes, nao necessariamente binarias, provenientes de K>2 grupos definidos a
priori, o presente trabalho teve como objectivo reformular a proposta até agora
desenvolvida por Marques et al. (2008) para variaveis binérias, para este caso
mais geral.

Assim, apresentamos de seguida, o pseudo-cédigo de uma nova variante do al-
goritmo MHIER, implementado com o objectivo de aliar a simplicidade de uma
discriminacao entre dois grupos com uma nova proposta de combinacao de mo-
delos que poderd melhorar a sua capacidade preditiva.

Na concepcao deste algoritmo é de extrema importancia a natureza dos da-
dos em andlise ser qualitativa. Assim sendo, torna-se relevante observar que a
forma mais usual de comparar a distribuicao de vérias populacoes descritas por
varidveis qualitativas consiste em organizar a informacao em termos do espaco
do resultados associado a essas variaveis (isto €, todos os vectores que sao possi-
veis ser observados com o nimero de variaveis descritoras em andlise) o que nos
permite a comparacao das populacoes através das frequéncias relativas com que
cada um desses estados foi observado. Exemplificando, no caso mais simples de
duas variaveis binarias e supondo que cada uma delas pode assumir o valor 0
ou 1, teremos, entao, quatro estados possiveis :

00, 01, 10, 11.
Para comparar as distribui¢oes de varias populagoes bastaria comparar a frequén-
cia relativa observada de cada estado. Como é sabido em geral esta informacao
¢ desconhecida e os diversos modelos de ADD diferenciam-se por proporem téc-
nicas de estimacao distintas para estas distribui¢oes desconhecidas.

pseudo-codigo do algoritmo MHIER2
Considere-se a matriz de dados X = [znp] (*n =1...N, nimero de objectos;
p=1...P, nimero de varidveis*).
Para cada grupo k (*k—1...K, numero de grupos*) calcular:
o vector de estados E* = [m;] (*1=1...Imaz, sendo Imax < N,

a matriz de frequéncias de estados F* = [fF];

(* Construir a drvore bindria Ab, base de implementa¢io do modelo hierdrquico,
MHIER2 *)
O1={z: X € GiUGyU...UGg}(*n6 raiz de Ab*)
Para j=1...K-1 (* j refere-se a nivel da drvore Ab* )
Para s=1...5(j) (*s nimero de particdes possiveis dos grupos em O; que
¢ 2K=1 — 1 quando referido ao né raiz*)
constituir uma particao I1° dos grupos alvo em O; em 2
grupos compostos;
Determinar MP(s) (*medida de prozimidade®)entre os 2

grupos compostos ou efectuar busca exaustiva;

Identificar os melhores grupos compostos, 117 correspondente ao Miny{ M P(s)},

s=j...5(j) ou usar todos os encontrados na busca exaustiva;
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Construir ramificacao de Ab considerando 117 ou construir as vdrias

drvores Ab resultantes da busca exaustiva.

(*Proceder a classifica¢ao/discriminagao de dados a partir de Ab*)
Para j—1...K-1 (*em cada nivel j de Ab vao considerar-se os dois grupos com-
postos - Gs1,j e Ggaj - nele constituidos*) calcular:

as novas matrizes de frequéncias de estados dos grupos compostos

Fsl — [fl81] e F52 — [ lsQ] ;
utilizar os critérios MIC, MGD e (B)MIC+(1—B)MGD (*com B = 0.25;
B =0.50; B =0.75 *) para afectacao dos dados e construir matrizes de

classificag¢io correspondentes Anrrcy, Aaviap) € Ay mic+1—p)MGD;
Determinar a proporgao de casos bem classificados P. correspondentes a A(nrc),
Amap) € AB)MIC+(1-B)MGD;
Afectar cada objecto seqgundo o tiltimo ramo em que ele é afectado/classificado.
Seleccionar o melhor modelo de classificagao, correspondendo a Max{P:.(An1cy)},
éPc(gl(?]\g}GD))} e Po(Agymrc+(—-gymap), considerando 3 = 0.25; f = 0.50;

Para o estudo do desempenho desta nova abordagem forem implementados no-
vos programas estatisticos no software MATLAB, tendo sido aplicados posterior-
mente a dados reais. Sobre estas anélises apresentam-se, a seguir, as conclusoes.

5 Aplicacao

Os dados que se seguem fizeram parte de um trabalho sobre a averiguacao das
caracteristicas do stress parental em grupos de pais de criancas que se diferen-
ciam da seguinte forma:

e Grupo (G; - Pais de criancas com doenca crénica - Fibrose Quistica, n=14;
e Grupo G5 - Pais de criancas com doenca cronica - Doenga Celiaca, n=13;

e Grupo Gjs - Pais de criancas sem problemas fisicos ou psicolégicos - Grupo
de Controle, n—=15.

Foram analisadas 42 criancas com as caracteristicas referidas e registadas as
suas respostas no questionario de Indice de Stress Parental (ISP). Este instru-
mento foi concebido para avaliar a intensidade do stress que ocorre no sistema
pais-criancas, quando este é submetido a diversas pressoes, e € composto por
108 itens, organizados em dois dominios (Dominio da Crianca e Dominio dos
Pais), cada um subdividido em vérias subescalas. Cada item é medido numa
escala de tipo Likert de 5 pontos.

Neste trabalho consideramos apenas, os oito itens correspondentes a subescala
Autonomia do Dominio da Crianca, cuja nota global revelou, em estudos ante-
riores, um forte poder discriminativo. Para ilustrar a aplicacao do modelo de
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emparelhamento hierarquico & combinacao intermédia entre o modelo MIC e o
modelo MGD (MHIERMZ2) proposto por Marques et al. (2008), e atendendo
a que apenas temos 3 grupos em estudo, realizimos a anélise de forma exaus-
tiva, ou seja, aplicamos o modelo MHIERM2 para os grupos: G1vs.(Gs + G3),
Govs.(G1+G3) e Gavs.(G1+G2), tendo obtido os resultados que se apresentam
nas Tabelas 1 e 2.

Tabela 1: Taxas de bem afectados para os diversos modelos combinados.
8 MIC +(1 — ) MGD
G 1 0.25 0.50 0.75 0
Perc. bem af. 76.2% 92.9% 95.2% 90.5% 92.9%

Tabela 2: Taxas de bem afectados para os diversos modelos MHIERM2.
B MIC +(1 — 3) MGD
I5; 1 0.25 0.50 0.75 0
Givs.Go +Gs  76.2% 95.2% 97.6% 83.3% 95.2%
Govs.G1+ Gs  78.5% 90.5% 95.2% 88.0% 90.5%
Gsvs.G1+ Gy 76.2% 95.2% 97.6% 83.3% 95.2%

Da analise destes resultados podemos concluir que a combinacao intermédia
entre o modelo MIC e o modelo MGD fornece 6ptimos resultados. No entanto,
se utilizarmos o Modelo de Emparelhamento Hierdrquico para esta combinacao
intermédia (MHIERM2) ainda conseguimos melhorar os resultados de afectacgao.

6 Conclusoes e perspectivas

Como foi referido nas secgoes anteriores, este trabalho tem vindo a desenvolver
o seu campo de aplicagao tendo comecado por aplicar a abordagem de combina-
¢ao de modelos proposta, o modelo intermédio entre o modelo MIC e o modelo
MGD, no caso de dois grupos a priori e varidveis binarias. Posteriormente,
generalizou-se ao caso de mais de dois grupos a priori através da utilizacao da
ideia do modelo de emparelhamento hierdrquico, numa primeira fase com va-
riaveis binarias e neste trabalho com varidveis qualitativas ndo necessariamente
binarias. H& que referir como limitacao deste trabalho a anéalise do desempenho
da metodologia proposta ja que apenas foi avaliada em dados reais e sem recurso
a qualquer amostra holdout. Deste modo, a continuacao do trabalho de inves-
tigacao em torno desta tematica ird considerar a implementacao de técnicas de
validacao das taxas de erro, adequadas para as pequenas dimensoes de amostras
que tém vindo a ser consideradas, como validacao cruzada, leave-one-out ou v-
fold. A analise do desempenho dos novos modelos propostos continuard a ser
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explorada recorrendo a analises comparativas com outros modelos quer sobre
dados reais quer sobre dados simulados.
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CHAPTER 3

Classification and Combining Models

This paper has the following reference:

Marques, A.; Sousa Ferreira, A. and Margarida G. M. S. Cardoso (2010) ’Classification and Combining
Models’. In Proceedings of Stochastic Modeling Techniques and Data Analysis International Conference
(SMTDA2010)’. (Published in CD-rom).
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Erratum

In pag. 2, where is "and DTM - Dependence Trees Model (DTM), Celeux (1994)" should be "and
Dependence Trees Model (DTM), Celeux (1994)".
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Abstract: In the context of Discrete Discriminant Analysis (DDA) the idea of combining
models is present in a growing number of papers aiming to obtain more robust and more
stable models. This seems to be a promising approach since it is known that different DDA
models perform differently on different subjects. Furthermore, the idea of combining models
is particularly relevant when the groups are not well separated, which often occurs in
practice. Recently, we proposed a new DDA approach which is based on a linear combination
of the First-order Independence Model (FOIM) and the Dependence Trees Model (DTM). In
the present work we apply this new approach to classify consumers of a Portuguese cultural
institution. We specifically focus on the performance of alternative models’ combinations
assessing the error rate and the Huberty index in a test sample.

We use the R software for the algorithms’ implementation and evaluation.

Keywords: Combining models, Dependence Trees model, Discrete Discriminant Analysis,

First Order Independence model.

1. Introduction
Discrete Discriminant Analysis (DDA) is a multivariate data analysis technique that aims to
classify and discriminate multivariate observations of discrete variables into a priori defined
groups (a known data structure or Clustering Analysis results). Considering K exclusive
groups Gy, Gy, ..., Gk and a n-dimensional sample of multivariate observations - X = (xy, X,
..., Xp) described by P discrete variables - DDA has two main goals:

1. To identify the variables that best differentiate the K groups;

2. To assign objects whose group membership is unknown to one of the K groups, by

means of a classification rule.
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In this work, we focus in the second goal and we consider objects characterized by qualitative
variables (not necessarily binary) belonging to K > 2 a priori defined groups. We propose to
use the combination of two DDA models: FOIM - First-Order Independence Model and
DTM - Dependence Trees Model (DTM), Celeux (1994) - to address classification problem.

In addition, we evaluate HIERM - Hierarchical Coupling Model performance when
addressing the multiclass classification problems (Sousa Ferreira et al. (2000))

In order to evaluate the performance of the proposed approaches, we consider both simulated
data and real data referred to consumers of a Portuguese cultural institution (Centro Cultural
de Belém). Furthermore, we compare the obtained results with CART - Classification and

Regression Trees (Breiman et al. (1984)) algorithm results.

2. Discrete Discriminant Analysis
The most commonly used classification rule is based on the Bayes’s Theorem. It enables to
determine the a posteriori probability of a new object being assigned to one of the a priori

known groups. The Bayes’s rule can be written as follows: if
TP (x|Gy) = mP(x|Gy) for 1=1, ..., K and 1k, (1)

then assign x to Gy. m; represents the a priori probability of group 1 (G;), and P(x|G) denotes
the conditional probability function for the /-th group. Usually, the conditional probability
functions are unknown and estimated based on the training sample.

For discrete data, the most natural model is to assume that P(x|G;) are multinomial
probabilities estimated by the observed frequencies in the training sample, the well known
Full Multinomial Model (FMM) (Celeux (1994)). However, since this model involves the
estimation of many parameters, there are often related identifiability issues, even for
moderate P. One way to deal with this high-dimensionality problem consists of reducing the
number of parameters to be estimated recurring to alternative models proposals. One of the
most important DDA models is the First-Order Independence Model (FOIM) (Celeux
(1994)). It assumes that the P discrete variables are independent within each group Gy, the

corresponding conditional probability being estimated by:
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where ny represents the Gi’s group sample dimension. This method is simple but is not
realistic in some situations. Thus, some alternative models have been proposed. The
Dependence Trees Model (DTM), Celeux (1994) and Pearl (1988), for example, takes the
predictors’ relations into account. In this model, one can estimate the conditional probability
function, using a dependence tree that represents the most important predictors’ relations. In
this research, we use the Chow and Liu algorithm (Celeux (1994) and Pearl (1988)) to
implement the dependence tree and approximate the conditional probability function.

In this algorithm, the mutual information I(X, X;) between two variables

P(XyX)

1(X,X;) = Xx, ZX]'P(X"'XJ') log P(Xy)P(X;)

3)

is used to measure the closeness between two probability distributions. For example, take P =
4 variables and consider the data listed in Table 2. For each pair of variables we obtain the
mutual information (see Table 1). Since I(x2, X3), (X1, X2) and I(x,, X4) correspond to the three

largest values the branches of the best dependence tree are (x», X3), (X1, X2) and (X3, X4) and

13(£|Gk) = P(x3)P(x3| x2)P(xz| x1)P(x4] x7) 4)

Table 2 illustrate the differences between the estimates of the 3 referred DDA models
corresponding to the data considered. Note that the DTM model estimates are closer to the

FMM estimates but there are no null frequencies.

(X3, X;) I (xi, X))
(X1, X2) 0,079434
(x1, X3) 0,000051
(X1, X4) 0,005059
(X2, X3) 0,188994
(X2, X4) 0,005059
(X3, X4) -0,024

Table 1. Mutual information values
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num. P (x1,x2,x3,x4) for

(x1,x2,x3,x4) |observ./ | group Gy

values Gy

FMM | FOIM | DTM

0000 10 0,10 0,05 10,10
0001 10 0,10 0,05 10,13
0010 5 0,05 10,06 0,03
0011 5 0,05 ]0,06 0,04
0100 0 0,00 0,06 0,02
0101 0 0,00 0,06 0,02
0110 10 0,10 10,07 (0,08
0111 5 0,05 10,07 10,07
1000 5 0,05 ]0,06 [0,04
1001 10 0,10 0,06 0,05
1010 0 0,00 |0,07 0,01
1011 0 0,00 0,07 10,02
1100 5 0,05 10,07 10,04
1101 5 0,05 10,07 10,03
1110 15 0,15 0,08 0,18
1111 15 0,15 10,08 0,15

3. Classification and Combining Models

Table 2. Conditional probability estimates for group Gy

3. Combining Models in Discrete Discriminant Analysis

The idea of combining models currently appears in an increasing number of papers. The aim

of this strategy is to obtain more robust and stable models. Sousa Ferreira (2000) proposes

combining FMM and FOIM to address classification problems with binary predictors, using a

single coefficient B (0 < 8 < 1) to weight these models. In spite of yielding good results, the

referred approach shows that the resulting FMM weights tend to be frequently negligible,

even when the observed frequencies are smoothed (Brito et al. (2006)).



In view of these conclusions, Marques et al. (2008) propose a new model which has an

intermediate position between the FOIM and DTM models:

p(ﬂﬁ) = ,BpFOIM(E) +(1- .B)pDTM(E) ®)

In the present work the combining models’ parameter is assigned different values ranging

from O to 1.

4. The Hierarchical Coupling Model

In the multiclass case (K>2) we can recur to the Hierarchical Coupling Model (HIERM)
(Sousa Ferreira et al. (2000)) that decomposes the multiclass problem into several biclass
problems using a binary tree structure. It implements two decisions at each level:

1. Binary branching criterion for selecting among the possible 2'-1groups combinations;

2. Choice of the model or combining model that gives the best classification rule for the
chosen couple.

In the present work we implement branching using the affinity coefficient, Matusita (1955)
and Bacelar-Nicolau (1985). Supposing Fi={p;} and F,={q;}, /=1,...,L are two discrete
distributions defined on the same space, the correspondent affinity coefficient is computed as

follows:

p(Fy, ) =Y o4 (6)

The process stops when a decomposition of groups leads to single groups.
For each biclass problem we consider FOIM, DTM or an intermediate position between

them.

5. Numerical Experiments
We conduct numerical experiments for simulated data and real data using moderate and large
samples, respectively. We use test samples to evaluate the alternative models precision.
Indicators of precision are the percentage of correctly classified observations (P.) and the
Huberty index:

P._Py

1-P

where Pg4 represents the percentage of correctly classified cases using the majority class rule.
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5.1 Simulated data

3. Classification and Combining Models

The simulated data set considered has 250 observations, 4 groups and 3 binary predictors (see

Table 3). To evaluate the proposed models’ performance we use precision corresponding to a

test (sub)sample: 50% of the original sample. The modal class in the test sample has 32% of

the observations which yields the same 32% for percentage of correctly classified

observations, according to the majority rule.

Total data set

Training sample Test sample

ng % Ny % ng %
G 80 32% 40 32% 40 32%
Gy 70 28% 35 28% 35 28%
G; 30 12% 15 12% 15 12%
Gy 70 28% 35 28% 35 28%

Table 3. Characterization of simulated data set

The results obatined are presented in Table 4. For this data set the HIERM model and FOIM-

DTM combination yeld the best results.

Classification Method

% of correctly Huberty

classified index
CART 45,6% 20,00%
B=0(DTM) 52,8% 30,59%
BRFOIM+ B=0,25 47,2% 22,35%
(1-8)*DTM B=0,50 48,8% 24,71%
B=0,75 48,8% 24,71%
B =1 (FOIM) 48,8% 24,71%
MHIERM: B=0(DTM) 45,6% 20,00%
Gy+Givs G3+Gy B=0,25 59,2% 40,00%
B=0,50 60,8% 42,35%
B*FOIM+ B=0,75 60,8% 42,35%
(1-p)*DTM  B=1 (FOIM) 59,2% 40,00%

Table 4. Simulated data set results



5.2 Real data

We consider a data set referred to 988 observations originated from
questionnaires directed to consumers of Centro Cultural de Belém, a
Portuguese cultural institution (Duarte (2009)). Data includes three questions
related to the quality of services provided by CCB that this study tries to
relate with consumers’ education: we specifically use 4 education levels as
the target variable. Predictors are: X;-Considering your expectations how do
you evaluate CCB products and services?(1=much worse than expected
...5=much better than expected); X,- How do you evaluate CCB global
quality? (I=very bad quality,...,
evaluate the price/quality relationship in CCB?(1=very bad...5=very good).

S=very good quality); X3: How do you

The groups distribution is illustrated in Table 5.

Total data set

Training sample

Test sample

Ny % ng % Nk %
G 177 18% 115 18% 62 18%
Gy 136 14% 88 14% 48 14%
G; 462 47% 300 47% 162 47%
Gy 213 22% 138 22% 75 22%

Table 5. Characterization of CCB data set
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3. Classification and Combining Models

The results obtained are presented in Table 6. For CCB problem the best
solution is achieved by HIERM model and combined FOIM-DTM model.

% of
correctly Huberty
Classification Method classified index
CART 46,10% -1,70%
B = 0
B*FOIM+ (DTM) 45,00% -3,77%
(1-p)*DTM B=0,20 45,80% -2,26%
B=0,40 46,40% -1,13%
B=0,50 47,60% 1,13%
B=0,60 47,30% 0,57%
B=0,80 47,80% 1,51%
B = 1
(FOIM) 47,00% 0,00%
B = 0
MHIERM: (DTM) 47,80% 1,51%
Gy vs G1+G3+Gy f=0,20 48,10% 2,08%
B=0,40 49,30% 4,34%
B*FOIM+ B=0,50 49,30% 4,34%
(1-p)*DTM B=0,60 49,30% 4,34%
B=0,80 48,40% 2,64%
B = 1
(FOIM) 49,90% 5,47%

Table 6. CCB data set results (test sample)

6. Conclusions and perspectives

In the present work we propose using the combination of two DDA models (FOIM and

DTM) and use the HIERM algorithm to address classification problems. We compare results

obtained with CART results into two data sets: simulated data (250 observations) and real

data (988 observations). We use indicators of classification precision obtained in the test set

(we consider 50% and 35% of observations for the smaller and larger data set, respectively).
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According to the obtained results, the proposed approach performs slightly better than CART,
on both simulated and real data. However, the classification precision attained barely attains
the precision corresponding to the majority class rule in the real data set. In fact, in this case
we are dealing with very sparse data (46% of the multinomial cells have no observed data in
any of the groups considered) which turns the classification task very difficult.

In future research, the number of numerical experiments should be increased, both using real
and simulated data sets and considering several sample dimensions. The number of variables
considered (binary and non-binary) should not originate an excessive number of states
(around a thousand) due to the number of parameters that need to be estimated. Alternative
strategies to estimate the [ parameter, such as least squares regression, likelihood ratio or

committee of methods, should also be considered.
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Selection of variables in Discrete Discriminant Analysis
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4. Selection of variables in Discrete Discriminant Analysis
Erratum
In pag. 9, where is "There are two target classes: retail channel (C7) and Horeca (Hotel, Restaurant
and Caf channel) (C)" should be "There are two target classes: retail channel (C7) and Horeca (Hotel,

Restaurant and Caf channel) (C5)".

In pag.5, where is "2M — 1" should be "2M — 1",
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SUMMARY

In Discrete Discriminant Analysis one often has to deal with dimensionality
problems. In fact, even a moderate number of explanatory variables leads
to an enormous number of possible states (outcomes) when compared to
the number of objects under study, as occurs particularly in the social
sciences, humanities and health-related fields. As a consequence, classifica-
tion or discriminant models may exhibit poor performance due to the large
number of parameters to be estimated. In the present paper, we discuss
variable selection techniques which aim to address the issue of dimen-
sionality. We specifically perform classification using a combined model
approach. In this setting, variable selection is particularly pertinent, en-
abling the handling of degrees of freedom and reducing computational cost.

Key words: combining models, Discrete Discriminant Analysis, variable
selection

1. Introduction

Discrete Discriminant Analysis (DDA) is a multivariate data analysis tech-
nique that aims to classify multivariate observations of discrete variables
into one of K a priori defined classes.

In DDA, an n-dimensional sample of multivariate observations is con-
sidered X = (x1,x2,...,Xp), where x; represents the ith observed state
(i € {1,...,n}), described by M discrete variables, x; = (xi1, Zi2, ..., Tins)
(observed state). The class of each observation - one of K exclusive classes
(C1,Cs, ..., Ck) - is assumed to be known.
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In general, when dealing with DDA applications, different DDA tech-
niques may yield different classification errors for the same set of observa-
tions. In the social sciences, classification problems often exhibit a high
number of variables, small or moderate size samples, and also many miss-
ing states. In this setting, the use of combined models provides a means
to improve the overall performance of classification and also its stability
(Ferreira, 2000; Brito, 2002; Brito et al., 2006). However the related di-
mensionality problems have to be addressed, since there are often a large
number of parameters to be estimated and a comparatively small sample
available. In this work, four feature selection methods for DDA are dis-
cussed, having the aim of identifying the variables that most discriminate
between the a priori defined classes. Two statistics are considered for this
purpose: Chi-Square and Mutual Information. The simple statistics’ values
rankings provide two criteria. Two alternative selection criteria are based
on the Chi-Square’s p-values using the Bonferroni Correction and the False
Discovery Rate methods (Benjamini and Hochberg, 1995). The reduction
in the number of variables is expected to improve the DDA algorithm’s
efficiency and reduce computational cost.

The DDA approach considered is based on a linear combination of the
First-order Independence Model (FOIM) and the Dependence Trees Model
(DTM) (Marques et al., 2008).

Classification performance is analyzed using the percentage of correctly
classified observations. In addition, the runtime of the DDA algorithm
(implemented in R software) is reported.

2. Variable Selection

Although feature selection is a very common theme in the literature on
Discriminant Analysis with continuous predictor variables, methods pro-
posed for Discriminant Analysis with discrete predictor variables are quite
rare. However, in order to obtain good performances in DDA tasks, dimen-
sionality issues have to be addressed. The selection of the best discriminant
variables in a DDA problem is the focus of the present study. Hence we
try to find M* variables, M* << M, leading to better decision rules, using
the following methods:

1. Descriptive: the Chi-Square statistic (Q?) and the Mutual Infor-
mation index (/) between the M predictor variables and the target
classes provide a means to rank the predictors;
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2. Inferential: the p-values corresponding to the Chi-Square statistic
provide alternative means to rank the same predictors - using the
Bonferroni Correction (BON) and the False Discovery Rate (FDR)
we obtain two additional rankings of predictors (see e.g. Benjamini

and Hochberg, 1995).

When the descriptive indicators are used we report:

1. The minimal feasible solution i.e. the one having the smallest number
of predictors which can be treated by the DDA model (note that when
we have null mutual information, it is not possible to apply DTM)

2. The solution corresponding to the best DDA performance, i.e. that
having the maximum percentage of correctly allocated cases using

two-fold cross-validation.

The first descriptive indicator considered is the Chi-Square statistics (Q?)

defined as follows:

nlnj)g

L K TL
Q XmaXm/ ZZ e T nzn]

i=1 j=1

where:

n;. - is the number of observations in the i-th category of X,,.
nj - is the number of observations in the j-th category of X,

K - is the number of classes.
L - is the number of categories of the predictor.

and
S Z =Y,
i=1 i=1 j=1
The mutual information index (I) is defined as follows:

I( X, X Zanlogn
Z

=1 j=1

(1)

(3)

Both Q*(Xn, X,) and I(X,,, X,/) measure the strength of association
between X,, and X,,,. When considering X,, as the predictor and X,
the target classes, these measures provide a means to rank the predictors
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according to their discriminant power. In addition, when referring to the
use of DTM, an I(X,,, X,,/) may also be used to measure the association
between predictors.

The Chi-Square statistic Q% makes it possible to test the association
between each predictor and the target classes, following a x? distribution
with (L — 1)(K — 1) degrees of freedom under the null hypothesis (refer-
ring to null association) between the predictor and the target class. The
implementation of M Chi-Square tests corresponding to the M predictors
originates the p-values pi, ..., Pm, .-y PM -

The Bonferroni Correction (Benjamini and Hochberg, 1995) is a multi-
ple-comparison correction used when several statistical tests are being per-
formed simultaneously. The Bonferroni Correction sets the o value for the
entire set of M tests equal to a by taking the a value for each test equal
to a/M.

Thus, according to Bonferroni Correction (Benjamini and Hochberg,
1995) we select the predictors which yield

Q@
The Bonferroni Correction and other traditional multiple comparison pro-
cedures are generally too conservative. In order to overcome this limita-
tion, several alternative procedures have been proposed, such as Holm’s
procedure (Holm, 1979) offering a more flexible trade-off between the test’s
power and error. The False Discovery Rate (FDR) approach - (Benjamini
and Hochberg, 1995) and (Silva, 2010) - also addresses multiple hypothesis
testing to correct for multiple comparisons. In a list of statistically sig-
nificant studies (e.g. studies where the null-hypothesis could be rejected),
the FDR procedure is designed to control the expected proportion of incor-
rectly rejected null hypotheses (”false discoveries”) in a less conservative
way compared with the Bonferroni Correction. This method relies on the
ranked p-values (increasing values) - p1.as, ..., P -, Par:ar - and selects
the predictors satisfying:

Pourt < 200 (5)
3. Combining Models in DDA

In Discrete Discriminant Analysis the most usual classification rule is based
on the Full Multinomial Model (FMM) (Celeux and Mkhadri, 1994) where
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the within-class state probability functions are multinomial. When using
M binary variables, this model involves the estimation of 2M — 1 param-
eters in each class, and so is cumbersome. The First-order Independence
Model (FOIM) (Goldstein and Dillon, 1978; Celeux and Mkhadri, 1994)
assumes the independence of variables within each class, therefore reducing
the number of parameters to be estimated. Using FOIM, the conditional
probability of assigning x* to class C} is estimated by:
M #4{x; € C : jm = x},}
=11

fo(x* | X) = o L j=1,...,n; k=1,....,K (6)

m=1
where ny represents the Cj, class sample dimension.

FOIM, however, can be unrealistic in some situations. One of the al-
ternative models that take into account the interactions between variables
is the Dependence Trees Model (DTM), (Celeux and Nakache, 1994; Pearl,
1988).

DTM provides, for each class, an estimate of the conditional probability
functions based on the idea proposed by Pearl, 1988. Pearl demonstrated
that through knowledge of a graph G, where X7, ..., X represent its M
vertices, the probability distribution f&, associated with the graph can be
calculated as the product of the conditional probabilities:

M—-1

I(m)=1

where z;(,,) represents a variable that is linked to the variable z,, in this
graph, arbitrarily choosing one vertex as the root of the graph, x,,).

The Chow and Liu (Celeux and Nakache, 1994; Pearl, 1988) algorithm
is used to construct the graph for each class the length of each graph’s edge
(referred to the pair of variables (x,,Z,)) represents a measure of the
association between the same variables, mutual information in particular.
After the calculation of the C3 mutual information values (see formula
(3)), the graph G, with (M — 1) edges, corresponding to the highest total
mutual information is selected. For example, take M = 5 variables and
if the most important predictor relations are (X, X1), (X3, X2), (X4, X2)
and (X5, X3), then Figure 1. represents an example of a dependence tree
and the probability distribution of the first-order dependence tree is

fi (x1X) = O (x7]X) =

A - A~ X A 8
— F@i1X) f (a3l X) Fasleg, X) Failas, X) fatlag, X))
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X
X, X,
Xs

Figure 1. Example of a dependence tree for the case of M=5 variables

where the marginal and conditional probability functions are determined
simply using the observed relative frequencies in sample X.

FOIM is commonly used when independent predictors are considered,
while DTM takes into account the relationship between predictors. A com-
bined model using FOIM and DTM may offer some advantages.

Combining models generally aims to obtain more robust and stable
results and provide a better data fit (Bishop, 1995; Brito et al. 2006).
Previous research by Sousa Ferreira (1999, 2000, 2010) revealed good per-
formance for a linear combination of FMM and FOIM in the small case
setting, particularly when within-class independent structures or equal cor-
relation structures were considered. These studies also revealed that the
(single) coefficient (ranging from 0 to 1) derived for the combination, often
tended to heavily weight FOIM while substantially reducing the contri-
bution of FMM, even when considering smoothed frequencies. Based on
this empirical conclusion, the replacement of FMM by DTM is considered
in the present work. This approach follows on from an earlier proposal,
which seems to be promising (Marques et al., 2008). The corresponding
conditional probability function is estimated as follows:

P(X* S Ck‘B,X) = ,BPFO[M(X* S Ck|X> +(1- /B)PDTM(X* S Ck|X> (9)

In order to derive classification rules, the Bayes formula (the posterior
probability of an observation - x* - being assigned to one of the a prior:
known classes) is used:

| X
P(x* € OWlX,7) = TS TX) K (10)

K
S mfi(x1X)
k=1
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where 7, represents the prior probability of class Cy and fi(x) represents
the probability function of x in the same class. By applying this rule,
an observation x* is classified in the class with the maximum posterior
probability, thus minimizing the assignment error.

The prior probabilities 7, often have to be estimated using the sam-
ple at hand. When this sample is randomly selected from the population
without taking into account the observations class membership, maximum
likelihood estimators are used: 7w, = %, where ny, is the sample size of the
class C. Otherwise, if the sample considered is the union of K independent
samples of size ng, k = 1,..., K, previously selected within each class Cy,

equal prior probabilities are considered for all classes, mp = %

4. Data Analysis and Results

This work aims to evaluate the impact of variable selection techniques on
DDA results, specifically when using the FOIM and DTM combination
(see(9)). The data analysis refers to three real data sets: Alexithymics,
Parents and Retail. In these data sets, small and moderate sized samples
are considered.

1. Alexithymics data: 11 variables and 34 individuals

This data set consists of 34 dermatology’s patients evaluated by a
psychological test set (Prazeres, 1996). The whole sample is divided
into three classes: Nonalexithymics (C1), Alexithymics (C2), Interme-
diate (C3) according to the value obtained in a psychological test - the
TAS-20 (Twenty Item Toronto Alexithymia Scale). For each patient
the value of eleven binary variables of the Rorchach test were avail-
able. The Rorschach test is a psychological projective test in which
subjects perceptions of inkblots are recorded and analyzed. The pre-
dictors are:

VI. CF+C >0

V2. CF+C—-FC >0

V3. V>0

V4. C' >0

V5. T=1

V6. SumSH — SumC > 0

V7. CombC + SH >0 — No

V8. Popular > 8 — No
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V9. AnalCDI — No
V10. Mor > 2 — No
V11. 7L > 1,1” — No
According to the responses given by each subject concerning each
inkblot, coders are used to represent the type of answer. For example:
e (' - represents chromatic color responses;
e (' - represents achromatic color responses;

e F' - is the format element of responses;

e V - represents pure vista responses where shading is interpreted
as dimensionality;

e T’ - represents texture responses;
e SH - represents shading responses;
e Mor - represents morbid contents in responses;

e [ -is aratio that compares the frequency of form responses and
will all other answers;

e Popular - represents very frequent responses.

The type of each subject’s responses leads to an evaluation of person-
ality characteristics, for example C'F' + C' > 0 indicates less affective
modulation or C'DI represents a difficulty of coping. Results con-
cerning this example are presented in Table 2.

. Parents data: 11 variables and 240 individuals

This data refers to a study which aims to analyze the relationship be-
tween marital satisfaction and coparenting in different stages of the
family life cycle (Saraiva, 2010). Coparenting refers to the way in
which partners relate to one another as parents and includes coop-
eration, triangulation and conflict. Cooperation reflects the extent
to which couples support and respect each other as parents, triangu-
lation the extent to which parents form an unhealthy alliance with
the child and conflict the extent to which parents disagree about the
child. The target classes are related to essential stages of family life
life - families with children in preschool or primary school (C;) and
families with children in middle school or the 3rdcycle (Cs).

This data set refers to 240 individuals and considers eleven binary
variables.
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V4.
V5.
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V8.
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Gender

Marital Satisfaction global score for mothers
Marital Satisfaction global score for fathers
Coparenting global score for mothers
Coparenting global score for fathers
Cooperation global score for mothers
Triangulation global score for mothers
Conflict global score for mothers
Cooperation global score for fathers

V10.Triangulation global score for fathers
V11.Conflict global score for fathers

Results

concerning this example are presented in Table 3.

3. Retail data: 11 variables and 440 individuals
The Retail Actions data set refers to 440 clients of a wholesale busi-
ness. There are two target classes: retail channel (C7) and Horeca

(Hotel,

Restaurant and Caf channel) (C7). Predictors refer to eleven

managerial actions that may have an impact on the clients’ purchases.

V1.
V2.
V3.
V4.
V5.
V6.
V7.
V8.
V9.

offering free samples or tastings

offering discount tickets

improving the quality of products

improving packaging

improving the store layout

preventing shortages

offering more competitive prices

offering a better selection of products and brands
offering more diversity of products and brands

V10. presenting more in-store highlights and leaflets

V11. extending the products assortment
Answers refer to a binary scale: 1 - probably no; 2 - probably yes (this
action will have an impact on my purchases). Results concerning this

example are presented in Table 4.

The results of variable selection are presented in Table 1. According to

these results

the descriptive methods always provide a means to perform

feature selection, while the inferential methods evidence limitations. In
fact, increasing alpha values does not provide any solutions when using
the Bonferroni Correction, while the FDR procedure provides solutions for
Parents and Retail using o = 29% and a = 38%, respectively.
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Table 1. Selected variables for each data set and selection methods

Variable Selection Data Sets
Alexithymics Parents Retail
Q? - minimal selection V1,V3,V5,V6,V9 (M*=5) V1,V6 (M*=2) V4,V9 (M*=2)

Q? - best selection V1,V3,V4,V5, V1,V2,V4 V6, V2,V4 V8 V9,
V6,VT,VO,VIL (M¥=8) VO (M*¥=5) V11 (M*=5)
I - minimal selection  V1,V3,V6,V9 (M*=4) V1,V6 (M*=2) V4,V9 (M*=2)

I - best selection V1,V2,V3,V6, V1,V2,V4,V6, V2,V4,V8 V9,
V7,V9,V10,V11l (M*=8) V9 (M*=5) V11 (M*=5)

BON no selection’ no selection’  no selection!
FDR no selection? V1,V6 (M*=2) V2,V5 M*=2

1Using inferential methods (BON and FDR) it was not possible to select any set
of variables allowing the classification of subjects, even on increasing the a values
to 100%.

In Table 1 we represent the minimal selection, i.e. the smallest set of
variables that allowed the classification of subjects using the FOIM-DTM
combination. We also present the best selection, i.e. the set of variables
leading to the best percentage of correctly classified observations.

Classification results based on the selected variables are presented in
Tables 2, 3 and 4.

The FOIM-DTM combination coefficients values (5 values) appear in
the first column of the tables. The next columns concern the percentage
of correctly classified observations, using classical two-fold cross-validation:
two subsamples split at random are used as ”Test” (sequentially) and the
average of the corresponding performance measures is presented.

Runtime calculations were obtained using the same computer and the
same DDA algorithm implemented in the R software.

The results of the experiments lead us to the following conclusions:

e Computational costs (time of execution) can decrease significantly
(e.g. in the ALEXITHYMICS results with 11 predictors and 5 pre-
dictorsthe time decreases from 20 hours to 46 seconds) while classifi-
cation accuracy stays approximately the same (e.g. 55.9% to 55.8%
in the same ALEXITHYMICS experiments).

e The descriptive methods always provide a means to implement the
predictor selection, while the inferential methods require specific con-
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Table 2. Alexithymics Classification Results

8% Prora + (1 — B) * Ppras

11

I All Variables Q? I

(11 Var.) — MF=5  MF=8  MF=1  M*=8

0 (DTM) 53.0% 50.0% 471% 171% 53.0%
0.20 44.1% 50.0% 53.0% 53.0% 58.8%
0.40 41.2% 50.0% 53.0% 47.1% 61.7%
0.50 53.0% 38.2% 64.7% 47.1% 67.6%
0.60 53.0% 47.1% 58.8% 47.1% 61.7%
0.80 55.9% 52.9% 50.0% 47.1% 55.8%

1 (FOIM) 47.0% 55.8% 47.1% 47.1% 47.0%

Runtime 1225.2 min. 0.77 min. 21.47 min. 0.38 min. 21.11 min.

Table 3. Parents Classification Results

B* Prora + (1= B) x Pora

B All Variables (11 Var.) M*=2 (Q?, I and FDR) M*=5 (Q? and I)

0 (DTM) 50.8% 57.1% 50.8%
0.20 50.8% 57.1% 50.8%
0.40 52.5% 57.1% 53.4%
0.60 52.0% 57.1% 53.8%
0.80 53.3% 57.1% 55.8%

1 (FOIM) 53.8% 57.1% 58.4%

Runtime 1713.5 min. 0.24 min. 4.26 min.

Table 4. Retail Classification Results

B* Prorm + (1 — B) * Porum

I6] All Variables M*=2 M*=2 M*=5
(11 Var.) (Q?% and 1) (FDR) (Q?% and 1)

0 (DTM) 45.1% 60.2% 44.4% 58.6%
0.20 45.9% 60.2% 44.4% 58.6%
0.40 46.6% 60.2% 44.4% 60.2%
0.60 48.1% 60.2% 44.4% 58.6%
0.80 45.9% 60.2% 44.4% 61.7%

1 (FOIM) 50.4% 60.2% 63.9% 54.1%

Runtime 1483.2 min. 0.44 min. 0.44 min. 7.56 min.
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ditions which may not be verified (particularly when the samples are
small, as in the ALEXITHYMICS case).

e The inferential methods, when applied, yield very high significance
levels (38% for RETAIL and 29% for PARENTS). However, the FDR
inferential method yields the best results (best two variable selections
attaining the maximum accuracy) for the RETAIL data set. For the
PARENTS data set, the FDR results are similar to the Chi-Square
and Mutual Information statistics (the same two predictors being
selected).

5. Conclusions and Perspectives

In the present work, we compare the performance of four methods of feature
selection for Discrete Discriminant Analysis (DDA) - the aim is to identify
the predictors that most discriminate between the a priori defined classes.
We specifically use a recent DDA methodological approach, based on a
linear combination of the First Order Independence Model (FOIM) and
the Dependence Trees Model (DTM), (Marques et al., 2008).

According to the results obtained, we were always able to obtain an ad-
missible selection of variables using the descriptive methods - Chi-Square
and Mutual Information between predictors and the target classes provid-
ing the features’ ranking. As for the inferential methods, the predictors’
ranking provided by the Bonferroni correction (BON) and the False Dis-
covery Rate (FDR) procedures, applied to Chi-Square p-values, did not
always lead to a selection of acceptable predictors, even when the signifi-
cance level was increased up to the maximum. However, when BON and
FDR provided such a selection, the best classification rates for the FOIM
and DTM combined model were attained.

Experimental results also clearly illustrate the impact of variables selec-
tion in the DDA model computation time the reduction of computational
cost attained is remarkable.

The limitations regarding the inferential methods’ performance may be
due to the dimensions of the data sets (small and moderate)- this hypothesis
should be considered in future work. Future research could also include
additional methods for variable selection in DDA.
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1 Introduction

Discrete Discriminant Analysis (DDA) is a multivariate data analysis technique that aims
to classify multivariate observations of discrete variables into one of K a priori defined
classes.

In DDA a n-dimensional sample of multivariate observations is considered X =
(z1, 2y, ...,2,), where z; represents the ' observation (i € {1,...,n}), described by
P discrete variables, x; = (zi1, %i2,...,ip). The class of each observation - one of K
exclusive classes (C, Cs, ..., Ck) - is assumed to be known and the corresponding prior
probabilities are g, k = 1,..., K, "K 7 =1

DDA has two main goals:

1. To identify the variables that best differentiate the K classes;

2. To assign objects whose class membership is unknown to one of the K classes, by
means of a classification rule.

This work is focused on the second goal and we consider objects characterized by binary
variables, in the bi-class and in the multi-class case. Note that for P binary variables there
are S = 2F possible states (i.e. S = 27 possible observable vectors).

To derive the classification rule, based on the referred data, one should determine
the posterior probability of an observation. Based on the Bayes formula the posterior
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probability of an observation - 2* - being assigned to one of the a priori known ¢lasses can
be written as follows:

e fr (x| X)

K ’

D mefila’[X)

k=1

P(z® € Cy|X,x)

where 7. represents the prior probability of class Cy and [j. () represents the probability
function of z in the same class. By applying this rule, an observation z* is classified in the
class with the maximum posterior probability, thus minimizing the assignment error.

The prior probabilities ., often have to be estimated using the sample at hand. When
this sample is randomly selected from the population without taking into account the
observations class membership, maximum likelihood estimators are used: 7y, M where
ny is the dimension of class Cj. Otherwise, if the sample considered is the union of
K independent samples of size ny, k = 1,..., I, previously selected within each class
C'k, equal prior probabilities are considered for all classes, ,'\ Usually, the states
probability function in each class C'y. is unknown and must be estimated using the sample
observations X.

In DDA, the multinomial model is considered the most natural model where the states
probability functions are estimated by the corresponding sample relative frequencies. This
is the so called Full Multinomial Model (FMM) that demands a large number of parameters
to be estimated (Goldstein and Dillon, 1978).

To overcome this dimensionality problem, several variants of the FMM model have
been proposed. In this study, we work with two specific FMM variants - the First-order
Independence Model (FOIM) (Goldstein and Dillon, 1978), which assumes that the P
discrete variables are independent within each class C); - and an alternative model that takes
into account the dependence between variables - the Dependence Trees Model (DTM)
(Celeux and Nakache, 1994).

In real classification problems, the classification errors resulting from different models
differ and are often associated with different subjects. Therefore, researchers derive and
compare several classification rules resorting to multiple models, enhancing the results
accuracy. These models may originate from diverse subsamples drawn from an original
dataset: e.g. Breiman (1996) uses the bagging strategy and Friedman (2001) uses the
boosting strategy for drawing the successive subsamples. As an alternative approach, when
considering a fixed dataset, multiple models may result from different parameterizations of
a specific model type (e.g. a tree model with different numbers of levels) or diverse types
of models may be considered.

In this context the analyst often selects the classification rule that provides the best
classification accuracy. However, the selection of a single classification rule means a high
loss of information of the previously estimated models which could be very relevant for
classification. In fact, the classification results may be provided by a combination of models
overcoming the referred loss of information and enhancing classification results stability
and accuracy, e.g. Friedman and Popescu (2008).

Several combined methods can be found in the literature. Recently, (Kotsiantis, 2011),
for example, proposed a combined model for classification - Random Subspace using
Naive Bayes (Domingos and Pazzani, 1997) and C4.5 (Quinlan, 1993). Based on 26 well
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known data sets (with continuous predictors), the author found the results of the proposed
method encouraging, However, most studies - (Kotsiantis, 2011) reviews several - refer to
Discriminant Analysis in general and DDA studies are rare,

In the present work, we address DDA problems considering a simple linear combination of
FOIM and DTM (Marques etal., 2013) and assess its performance in numerical experiments
based on real and simulated data sets. In order to deal with multi-class problems, the
Hierarchical Coupling Model that decomposes the original multi-class problem in several
bi-class problems, using a binary tree structure, is also considered, (Sousa Ferreira et al,,
2000).

We compare the performance of the proposed combined model - a non-generative ensemble
according to (Re and Valentini, 2011) - with the performance of Random Forests (Breiman,
2001) - a generative ensemble (according to the same authors), that generates sets of base
learners acting on the structure of the data set to try to actively improve diversity and
accuracy of the base learners. According to (Kotsiantis, 2013, p.278): "Random forests
(Breiman, 2001) are one of the best performing methods for constructing Ensembles", In
addition, Random Forests tend to perform better when dealing with discrete categorical
features (Kotsiantis et al., 2006).

The new DDA approach is presented in the second chapter after introducing the models
FOIM and DTM. In the third chapter, the performance of the new model is analyzed, based
both on simulated and real data sets, with small and moderate sizes. Finally, conclusions
are drawn and perspectives of future work are indicated.

2 Methodological approach

2.1 Discrete Discriminant Analysis

In Discrete Discriminant Analysis the most usual classification rule is based on the Full
Multinomial Model (FMM) (Goldstein and Dillon, 1978; Celeux and Nakache, 1994) where
the within-classes states probability functions are multinomial. However, for the case where
we have P binary variables, this model involves the estimation of 2”1 parameters in each
class. Therefore this approach needs to rely on large samples which can be very difficult to
obtain in some application domains, such as health sciences and psychology.

As previously referred, the FOIM model assumes the independence of variables within
each class therefore reducing the number of parameters to estimate. However, this model
may be unrealistic in some situations. Among alternative models that take into account
the interactions between variables the Dependence Trees Model (DTM) can be considered,
(Celeux and Nakache, 1994). These models, FOIM and DTM, are described next.

2.2 The First-order Independence Model

The First-order Independence Model - FOIM - (Goldstein and Dillon, 1978; Celeux and
Nakache, 1994) is one of the most commonly used DDA models. It assumes that the
P discrete variables are independent within each class Cj, reducing to P the number of
parameters needed to be estimated for each class Cy.

The condicional probability of assigning z* to class C}, is estimated by:

P
= Az €0 t g =2
fk(ﬁ IX):H { J ;k ap P},

=1

i=l,...n;k=1,... K (2
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where 7. represents the €, class sample dimension,

2.3 The Dependence Trees Model

The Dependence Trees Model - DTM - (Celeux and Nakache, 1994; Pearl, 1988), takes into
account conditional dependence relationships between the predictors, D'TM provides for
each class an estimate of the conditional probability functions based on the idea proposed by
Pearl (1988). Pearl demonstrated that through the knowledge of a graph G, where Xy, ..., X p»
represent its P vertices, the probability distribution [, associated with this graph, can be
calculated as the product of the conditional probabilities:

P-1
fG(wl ey .’l,'[’) = ./.(""-r(;l)) II f (-’I"TJ | "”‘l(p)) (3)

H(p)=1

where () represents a variable that is linked to the variable u,, in this graph, arbitrarily
choosing one vertex as the root of the graph, Tp(p)-

To construct the graph for each class, we rely on the algorithm of Chow and Liu (Celeux
and Nakache, 1994; Pearl, 1988), where the length of each edge referred to the pair of
variables (x,, x,/) represents a measure of the association between the same variables,
mutual information in particular. Mutual information - I - is defined as follows:

I(Xp, ,p’) = Z Z f(.’I?]H "1"‘1:’) 1()g % @

where f(2,,2;) is estimated using the maximum-likelihood approach.

After the calculation of the C'}" mutual information values, the graph G, with P — 1 edges,
corresponding to the highest total mutual information is selected. For example, take I = 5
variables and if the most important predictor relations are (X2, X 1), (X3, X2), (X4, X2)
and (X5, X3), then Figure 1 represents an example of a dependence tree

Figure 1 Example of a dependence tree for the case of P=5 variables

and the probability distribution of the {irst-order dependence tree is

i (@1X) = f(2}1X) [(z3]27, X) f(23]a3, X) f (5|23, X) (23|23, X) (5)

74



6 A. Marques et al.

where the marginal and conditional probability functions are determined simply using the
observed relative frequencies in sample X'

2.4 Combining Models

The idea of combining different models currently appears in a increasing number of papers,
aiming to obtain more robust and stable models - ¢.g. Leblane and Tibshirani (1996);
Opitz and Maclin (1999); Wang et al. (2000); Sousa Ferreira (2004); Brito et al. (2006);
Chrysostomou et al. (2008); Kotsiantis (2011); Marques et al, (2013).

The present study develops from the contribution of Sousa Ferreira (2004) that combines
FMM and FOIM, using a single coefficient 4, (0 < £ < 1) to define a linear combination
and explores several strategies to estimate this coefficient, including a regression approach
using least squares minimization and likelihood maximization. This approach reveals
good performance, with intermediate results between FOIM and FMM, in the small
case setting - particularly when data have independent structures in each class, or equal
correlation structures. Using an integrated likelihood ratio approach, interesting results
are also observed, particularly in the moderate or large case settings and when data have
different correlation structures in each class. However, in this FOIM-FMM combination,
the coefficient derived often tends to heavily weight FOIM, while reducing substantially
the contribution of FMM, even when considering smoothed frequencies. Based on this
empirical conclusion, we consider the replacement of FMM, in the combination, by DTM.,
The corresponding conditional probability function is thus estimated as follows:

P(z* € Cx|B, X) = BProim(z* € Ce|X) + (1 — B)Poram(z’ € Cx|X)  (6)

The performance of the FOIM-DTM linear convex combination is the focus of the present
paper. In addition, we consider the performance of the Hierarchical Coupling Model (Sousa
Ferreira et al., 2000) integrating this specific combination.

2.5 The Hierarchical Coupling Model

In the multi-class case, the Hierarchical Coupling Model - HIERM - (Sousa Ferreira et al.,
2000) may be considered as an alternative to the simple FOIM-DTM convex combination.
HIERM decomposes one multi-class problem into several bi-class problems using a binary
tree structure and implements two decisions at each level of the tree:

1. Selection of the hierarchical coupling among the 2% ~1 — 1 possible class couples;

2. Choice of the model or combining model that gives the best classification rule for the
chosen couple.

In the beginning we have K classes corresponding to the samples that we want to reorganize
into two classes. So, we propose either to explore all the hierarchical coupling solutions
or to select the two new classes that are the most separable. These classes can be selected
using the affinity coefficient (Bacelar-Nicolau, 1985; Matusita, 1955).

S ~ ~
af F(Ci, Cw) = 3/ Flas € Culx)/f (@ € CulX) )
g=1 :
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For each bi-class problem an intermediate position between FOIM and DTM models may
be considered. The process stops when a decomposition of classes leads to a single ¢luss, For
example, when having three classes a priori, C'y, Cy and C'y, the following combinations of
pairs of classes can be considered: €' vs, Cy U Cly, Cy vs, O UCy and Cly v, O LICY,
Therefore, we can derive the classification rules in these three cases and select the one that
yields the smallest misclassification error. Note that in this case (A = 3) we only have 3
tree configurations to consider and so it is possible to explore all the hierarchical coupling
solutions (see Figure 2). E.g. in Tree (a), one observation will be first classified into
vs. Cp U C'3 and if it proceeds for the 2nd level it will be finally classified into C2 or €3,
according to a minimum classification error criterion. However, when the number of classes
is large (greater than three) the number of admissible tree configurations becomes larger
and more difficult to handle. Then, a criterion to select trees to consider is needed. In the
present work we adopt a similarity coefficient based approach and select the best tree using
the affinity coefficient (Sousa Ferreira, 2010).

Figure 2 Binaries trees in the HIERM model for the K=3 case setting.

2.6 Performance Measures

To evaluate the performance of a classification rule, according to a particular model, one
relies on performance measures which derive from classification results as depicted in a
confusion matrix - a contingency table that associates actual and predicted classes.
In the binary case - a priori classes labeled () and 1 - the contingency table is as follows:
ab| Number of 0’s classified as0’s  Number of 0’s missclassified as 1’s
[c cl} [Number of I's missclassified as()’s  Number of 1’s classified as 1's
where Nyp = a+band Ny = ¢ + d.
In order to find the most appropriate measure of performance several studies have been
carried out (Goodman and Kruskal, 1954, 1959; Marzban, 1998; Murphy and Daan, 1985).
In Discriminant Analysis the Total Success Rate - TSR measure - is commonly used. It
is the average of the group specific success rates estimates weighted by the classes prior

probabilities (McLachlan, 1992). And, when the group prior probabilities are estimated by
the relative group sizes this measure is called Efficiency (EFF):

a—+d @)

EFF =
N

The EFF measure is simply the proportion of observations correctly classificd (based on the
diagonal of the confusion matrix) and misses the use of the remaining available information
on the confusion matrix. Since this information can benefit the evaluation of performance
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of the proposed combined model, we should consider an additional evaluation measure, In
fact, according to (Paik, 1998), the EFF measure may, sometimes, over-estimate the "true”
success rate, particularly when classes’ sizes are disproportionate or the success rates within
the classes are very different. Therefore we use an additional measure of performance in
the present study - the Phi Statistic (¢b) or index of mean square contingency, based on all
the data in the confusion matrix (Goodman and Kruskal, 1954),

= % (9)
where:

(1",’ g, n, )2

=g 2 n—— (10)
i n

n4j - 18 the number of observations (n.o.) in the contingency table (c. tab)
" row in the c. tab,
column in the c. tab.

n;, - 1s the n.o. in the ¢
n.; - is the n.o. in the jth

n - is the total n. o.

3 Data Analysis and results

In the present work, we use the FOIM-DTM combination to solve DDA problems. In
addition, when multiple classes are considered, we suggest using HIERM and also recurring
to the FOIM-DTM combination to obtain intermediate classification results in each tree
node. Regarding the combination coefficient /3, we propose to use a grid of values of
B € [0, 1] with increments of 0.1, to weight the contribution of each model.

The Random Forest (RF) algorithm (Breiman, 2001) is used for providing comparative
performance evaluation of the proposed DDA approach. The implementation used is in the
R package randomForest, (Liaw and Wiener, 2013). For each RF we consider 500 trees,
based on 500 bootstrap samples. Additionally, for each sample with replacement, we build
P Random Forests derived from subsets of features with dimension ranging from 1 to P,
for branching. Finally, we combine all the RF and consider the votes of 500 # P trees for
classification.

In order to evaluate the performance of the proposed models, we consider both real and
simulated data sets.

3.1 Simulated data

We conduct numerical experiments for simulated data using small and moderate sample
sizes. The data is simulated using the Bahadur model, as proposed in Goldstein and Dillon
(1978) and in Celeux and Mkhadri (1992). The data sets considered derive from previous
studies (Sousa Ferreira, 2010; Sousa Ferreira et al., 2000). In order to simulate the predictive
binary variables’ values, this model defines class conditional probabilities for Cy, (K =
1,....K) as

P(z|Cx) =[] 0in (1 = 0kp) =" 1+ > pi(ps 9)ZiepZig) (11)
P g#p

77



Combining Models in Discrete Discriminant Analysis 4

where Xy, is a Bernoulli variable with parameter Oy, — (X, ), p o 1, P such that

-

/’\ - -\’-I\'p - ()I:')J
P [Okp(1 = )] 112

and — pe(pyg) = 1(ZkpZay ), (12)

considering two types of population structures, with /7 = 6 variables for the case of i -~ 2
and /X' = 4 classes. For each structure, data sets generated have 60 observations for each
class (small samples) or 200 observations for each class (moderate sample).

The firststructure, denoted IND (Independent), is generated according to FOIM, (pr(p, p)

1 and pp(p,g9)=0,if p#g, k=1,...K; p,g =1,...,6) forall classes.

The second one, called DIF (Different), is implemented considering the existence of different
relations among the variables, for different classes:

* in the bi-class case py(p,p) =1 and py(p,g) = 0.2, if p£g, p,g=1,..06
p2(p,p) =1 and pya(p,g) = 04, if p# g, p,g=1,...,6;

* in the multiclass case pi.(p,p) = 1 and pr(p,g) = 0.1, if p#£ g k= 1,2, 3:p,9
1,....,6; and pa(p,p) =1 and pa(p,g) = 0.3, if p#g, p,g=1,..,0.

Table 1 Parameters for simulated Bernoulli variables

K=2 K=4

4,0.6,0.5,0.5,0.6) (), = (0.6,0.4,0.6,0.5,0.5,0.6)

3,05,()40400) = (0.5,0.3,0.5,0.4,0.4,0.5)
----- = (0.6,0.3,0.6,0.4,0.5,0.5)

()4 = (0.6,0.4,0.6,0.5,0.5,0.6)

The prior probabilities are considered equal.

3.2 Real data

We conduct numerical experiments in a very small real data set that refers to 34
dermatological patients with a diagnosis of psoriasis, with chronic evolution, (Prazeres,
1996). The relationship between three classes of patients with different degrees of
Alexithymia (referring to difficulty in expressing emotions) and Rorschach test indicators
(personality projective test indicators) is explored.

Nowadays, alexithymia is considered a risk factor for the process of somatic and
psychological illness. Since it is difficult to identify, due to the absence of obvious mental
symptoms, contributions that help to support its identification are relevant.

One of the most commonly used measures of alexithymia is the Toronto Alexithymia Scale
(TAS-20). This test is a 20-items (5-point Likert) instrument. Its final score is the sum
of the values assigned to the 20 items (Prazeres, 1996). According to the test scores, the
whole sample is divided into three small classes: Nonalexithymics Class (C',nq = 14),
Alexithymics Class (C2, ng = 13), Intermediate Class (C3,n3 = 7).

In this study, the goal is to explore the differences between the classes based on the fact
that the alexithymia manifestations often occur after the appearances of an organic disease
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which, given its emotional significance and seriousness, often reflects in the Rorschach
psychological test. This is a psychological test in which subjects’ perceptions of inkblots
are recorded and analyzed, It consists of a large number of variables measured in different
scales, allowing us to know person’s personality characteristics and emotional functioning,
In the present study, the characterization of each patient is based on six binary indicators
of the Rorschach test (predictor variables)(Exner, 2001);

* CF'+C >0 - Dichotomization of the variable C'/' 4 ' based on empirically
established value. The value 1 was assigned when the condition is checked and 0 if
not checked. C'F' + €' is the sum of chromatic color responses in which the formal
element is secondary or absent. It indicates less affective modulation;

CF+C — FC > 0-Dichotomization of the variable (C'/' + ') — I°C', The value |
was assigned when the condition is checked and 0 if not checked,

(CF+C)~ F'C offers information concerning the modulation of emotional
discharges. The I”C' responses relate to well controlled emotional experiences whereas
the C'F" and the €' responses relate to less restrained forms of emotional discharge.
Adults without psychological problems are expected to yield higher #'C' than C'F' 4 ¢

* V >0 - In pure vista responses the shading features are interpreted as depth or
dimensionality. No form is involved. The value 1 was assigned when the condition is
checked and 0 if not checked;

* €' > 2 - In pure achromatic color response the response is based on the grey, black or
white features of the blot, when they are used as color. No form is involved. The value
I was assigned when the condition is checked and 0 if not checked;

*T'=1 - In pure texture response the shading components of the blot are used to
represent a tactual phenomenon, with no consideration to the form features. The value
1 was assigned when 7" = 1 and the value 0 was assigned when 7" # 1;

e SumSH — SumC > () - Dichotomization of the variable SumSH — Sum(, that
compares the sum of shading responses plus the achromatic responses with the sum of
chromatic color responses. The value 1 was assigned when the condition is checked
and 0 if not checked.

The variables involving the chromatic color, achromatic color and shading determinants
(C,C", T, V) characterize the emotional functioning. An increase in 7" relates to emotional
loss (e.g., marital separation). An increase in V' relates to feelings of guilt or remorse. Y is
related to situational stress. An increase in C” signifies the presence of disturbing negative
feelings that result from an inhibition of emotional expression.

Chromatic color responses (/'C, C'F, C') are related to the release or discharge of emotion
and to the extend to which the release is controlled or modulated. Chromatic color responses
are expected to be higher than achromatic responses (F'C’, C'F, C").

Since the data were not collected in a mixture model, we could not estimate prior

probabilities using relative frequencies, so the prior probabilities are taken to be equal,
e 1 1= .

=1 =35k=123.
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3.3 Classification Results

The classification results concerning simulated data sets are presented in tables 2 o 7. The
FOIM-DTM combination coefficients values (beta values) appear in the tables” first column,
along with the Random Forests combination results, The 211" and ¢ measures reported
refer to the training and test samples (for moderate sized samples) or to the training sample
and two-fold cross-validation results (for small sized samples),

* Simulated Data Results

Results referred to bi-class problems are presented in Tables 2 and 3. For the large samples
(DIF and IND data included) the performance measures agree on the choice of the best
model. For the DIF dataset the best results are attained with /4 = 0.5 to 0.7 and for the IND
dataset the FOIM model yields the best results. For the small samples and the DIF dataset
the DTM model attains the best result, while for the IND dataset the best combination
regards 4 = 0.9.

When four classes are considered (moderate sample) the performance measures underline
the advantage of the proposed combined models: for the DIF dataset the best beta values
range from 3 = 0.2 to 0.5; for the IND dataset the best result is attained for (4 = 0.30
(though there is a tie for the FOIM EFF result).

Generally, in the multi-class case, the models performance tends to be very poor when the
HIERM approach is not considered. HIERM causes a sharp rise in the classification rates:
see Tables 6 and 7 as opposed to Tables 4 and 5.

In general, in the numerical experiments conducted, the proposed approach outperforms
Random Forests - it provides consistently better results when referring to small samples
and, in conjugation with the HIERM approach for multi-class problems, it is clearly the
winner classifier (see Table 9.).

Table 2 Classification performance: sample DIF, 2 Classes.

B Ppoiy + (1 — B) * Ppra

I} n = 400 n= 120
EFFT?'MH EFFTCS!, (;bTuui, EF Fpyain EjF‘F’J* Fold (/)2 IFold
0.00 0.765 0.680 0.363 0.767 0.792 0.607
0.10 0.765 0.680 0.363 0.767 0.750 0.535
0.20 0.770 0.685 0.383 0.767 0.750 0.535
0.30 0.770 0.685 0.383 0.767 0.758 0.549
0.40 0.770 0.685 0.383 0.767 0.758 0.549
0.50 0.755 0.685 0.390 0.767 0.758 0.549
0.60 0.755 0.685 0.390 0.700 0.650 0.300
0.70 0.760 0.685 0.390 0.683 0.617 0.236
0.80 0.620 0.580 0.160 0.650 0.617 0.232
0.90 0.595 0.575 0.149 0.617 0.584 0.161
1.00 0.560 0.520 0.039 0.583 0.567 0.128
R. Forest 0.780 0.685 0.385 0.767 0.775 0.574
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Table 3 Classification performance: sample IND, 2 Classes,

B4 Proin + (1 = 8) + Ppry

Ié] n o= 400 noe 120
EEFrrain 18 Frew drest | B Frvain 1911 pod o rota

0.0 0.590 0.600 0.199 0.783 0.533 0.061
0.10 0.590 0.600 0.199 0.783 0.525 0,045
0.20 0.590 0.600 0.199 0.783 0.550 0,094
0.30 0.590 0.600 0.199 0.750 0.533 0,064
0.40 0.590 0.600 0.199 0.750 0.533 0.061
0.50 0.590 0.595 0.189 0.750 0.533 0.061
0.60 0.590 (0.595 0.189 0.750 0.558 0.106
0.70 0.580 0.590 0.179 QT 0.550 0.085
0.80 0.575 0.595 0.189 0.700 0.575 0.130
0.90 0.570 0.605 0.210 0.683 0.583 0.145
1.0 0.570 0.610 0.220 0.667 0.567 0.108
R. Forest 0.730 0.560 0.121 0.833 0.542 0.083

Table 4 Classification performance: sample DIF, 4 Classes

B * Proim + (1 — B) * Pppag

I} n = 800 n = 24()
EFFrrgin = EFFress  ¢rest | EF Frrain - EFFy_poa ha— Fold
0.00 0.338 0.278 0.189 0.308 0.242 0.318
0.10 0.358 0.323 0.239 0.308 0.238 0.311
0.20 0.355 0.325 0.245 0.308 0.238 0.311
0.30 0.353 0.325 0.245 0.308 0.238 0.311
0.40 0.353 0.325 0.245 0.308 0.233 0.367
0.50 0.353 0.325 0.245 0.308 0.233 0.340
0.60 0.335 0.320 0.218 0.308 0.233 0.345
0.70 0.335 0.320 0.218 0.308 0.238 0.334
0.80 0.320 0.293 0.147 0.317 0.238 0.334
0.90 0.318 0.288 0.136 0.317 0.246 0.259
1.00 0.310 0.290 0.155 0.300 0.258 0.254
R. Forest 0.388 0.332 0.264 0.383 0.204 0.165
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Table 5 Classification performance: sample IND, 4 Classes

A% Prora + (1

B) « P

Jé] n = 800 n o= 240
EEFprain  FF Fpey Prest | LI Vppain L P potd P2 1rold
0.00 0.395 0.293 0.236 0,500 0.267 0.246
0.10 (0.395 0.293 0.236 0.500 0,267 0.240
0.20 0.400 0.298 0.224 0.492 0.263 0.222
0.30 0.408 0.328 0.260 0.492 0,258 0,219
0.40 0.405 0.323 0.257 0,492 0.271 0.225
0.50 0.405 0.315 0.124 0.500 0.263 0.211
0.60 0.393 0.318 0.210 0.492 0.271 0.248
0.70 0.370 0.308 0.190 0.483 0.267 0.241
0.80 0.368 0.320 0.214 0.475 0.250 0.255
0.90 0.340 0.315 0.197 0.442 0.250 0.291
1.00 0.310 0.328 0.219 0.408 0.250 0.296
R. Forest 0.512 0.380 0.353 0.625 0.267 0.172

Table 6 Classification performance: sample DIF, 4 Classes

HIERM : % Prory + (l

-

B3) + Ppoas

B n = 800 n = 240
Cavs.CiUCUC3e Cius.CaUCy Caus.CiUC, UCs e Cavs.Cy Uy
EF'I':I‘r'n.i.n EIFF‘T(BSL (,II)T(:S! ljl"i'l'l'ruiu ]'J']“j':z—-l"old ‘p2~l"uhi

0.00 0.710 0.633 1.168 0.558 0.458 0.918
0.10 0.648 0.563 1.043 0.567 0.437 0.926
0.20 0.648 0.563 1.043 0.567 0.437 0.926
0.30 0.633 0.560 1.037 0.567 0.437 0.926
0.40 0.633 0.560 1.037 0.500 0412 0.861
0.50 0.628 0.555 1.025 0.508 0.412 0.861
0.60 0.625 0.560 1.037 0.517 0.413 0.869
0.70 0.615 0.550 1.016 0.517 0.392 0.847
0.80 0.615 0.583 1.053 0.517 0.396 0.856
0.90 0.605 0.560 1.048 0.500 0.387 0.833
1.00 0.615 0.570 1.073 0.492 0.400 0.857
R. Forest 0.388 0.332 0.264 0.383 0.204 0.165
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Table 7 Classification performance: sample IND, 4 Classes

HIERM : B+ Pro + (1

B) ¥ Ppras

P2 Fold
0.554
().862
0.891
().88Y
0.879
(0.924
0913
0.896
0.901
0.955
1.000

0172

A n = 800 n o 240
CQ’HS.C'] U (;‘3 LJ (f',] e ({]'H.'i.(«’] lJ(/’_-; (a’;;’”h‘.(;’[ | ,(-"‘! UCye Civa( ',', L( -',|
EFFreain EFFpres  ¢rest | BF Frrain BFFy_potd

0.00 0.595 0.500 0.909 0.717 0467
0.10 0.595 0.500 0.909 0.708 0.471
0.20 0.595 0.500 0.911 0.717 0.483
0.30 0.615 0.528 0.946 0.717 0.483
0.40 0.630 0.528 0.946 0.708 0,487
0.50 0.643 0.530 0.957 0.708 0.500
0.60 0.645 0.535 0.966 0.700 0.500
0.70 0.618 0.510 0.908 0.700 0.492
0.80 0.600 0.493 0.860 0.675 0.471
0.90 0.593 0.505 0.906 0.658 0.488
1.00 0.553 0.488 0.884 0.617 0.488
R. Forest 0.512 0.380 0.353 0.625 0267

e Real Data Results

As in the simulated data results, the HIERM approach clearly improves classification
results. The best result in the real data set is attained for 8 = 0.2 to 0.4 according to the Phi
measure, illustrating the potential of the proposed combination approach to outperform the
individual models-components performances. Note that the best binary tree corresponding
to the most separable classes (see Figure 3) corresponds to the smallest affinity coefficient
(af f(C1,(CaUC3)) = 0.435). The first decomposition chosen by the HIERM model,
suggests that the union of the extremes classes forms a well-separated class from the class
composed by the intermediate patients, since these subjects obtained balanced scores. Since
the data set is very sparse (2% = 64 states and only 17 observations) the HIERM model
provides the lowest estimated misclassification risk.
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Figure 3 Binary Tree for the Alexithymia data

Cy - Cy
Alexithymics ( Intermediate )
- S ~

Table 8 Classification performance: real data

e

( Nonalexithymics )

B+ Proim + (1= )« Ppra

2 l
[3 * ]?"p()”\.] | (l - ﬁ) * ]h’])']'M HIFRM : ("1 V8. (1';5 U (‘,';;
EFF;_ pold ha— Frold EF Iy pold P2 Fold
0.00 0.471 0.562 0.412 0.546
0.10 0.412 0.532 0.500 0.716
0.20 0.382 0.698 0.470 0.812
0.30 0.382 0.698 0.470 0.812
0.40 0.353 0.707 0.470 0.812
0.50 0.382 0.703 0.442 0.630
0.60 0.324 0.570 0.442 0.630
0.70 0.353 0.623 0.442 0.630
0.80 0.353 0.623 0.442 0.630
0.90 0.353 0.623 0.442 0.630
1.00 0.294 0.547 0.500 0.527
R. Forest 0.441 0.151 0.441 0.151
Table 9 The winner classifiers according to EFF and ¢ measures
2 Classes n EFF ¢ 4 Classes n EFF ¢
DIF 400 RF and FOIM-DTM DIF 800 H DTM H DTM
FOIM-DTM
120 DTM DTM 240 H DTM H FOIM-DTM
IND 400 FOIM FOIM IND 800 H FOIM-DTM H FOIM-DTM
120 FOIM-DTM FOIM-DTM 240 H FOIM-DTM H FOIM

4 Conclusions and Perspectives

In the present work we propose using a combination of two classification models - FOIM -
First-order Independence Model and DTM - Dependence Trees Model - to overcome the
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limitations of the individual models, namely in small and moderate sized samples settings,
In addition, we propose using the HIERM -Hierarchical Coupling Model approach to
address multi-class problems, recurring to a binary tree decomposition scheme,

We conduct a experimental study based on 8 simulated data sets and 1 real data set, We
focus on small and moderately sized samples which tend to increase the difficulty of
classification problems. Since all features are categorical we perform comparisons with a
well known ensemble algorithm recognized (o perform well in this setting (Kotsiantis et
al., 2006) - the Random Forests ensemble approach (Breiman, 2001),

The results obtained are very encouraging - the performance of the proposed FOIM-DTM
combined approach consistently exceeds the Random Forests performance when regarding
small data sets. When conjugated with the HIERM approach for multi-class problems, the
proposed model outperforms Random Forests in 7 out of the 8 simulated data sets,

In the real data set a very small sample is considered and, in this setting, the HIERM
approach outperforms the FOIM-DTM simple combination and Random Forests as well,
We conclude that the FOIM-DTM combination is very flexible, being able to deal with
different data correlations structures. In the conditional independent case - IND structure
for simulated data - the FOIM naturally tends to yield the best results but the combination
FOIM-DTM sometimes emerges as a better than the FOIM alternative, especially in the
small sized sample cases. In the conditional non-independent case - DIF structure for
simulated data - the DTM naturally tends to emerge although the combination FOIM-DTM
sometimes emerges as a better than the DTM alternative, namely in the moderate sized
sample cases. For the two-classes problems, the performance measures used generally agree
as to the selection of the best solution. For multi-class problems with small sample sizes
considered, the performance indicators may disagree. Understanding the disagreement
between performance indicators should thus be the subject of future research.

The benefits of the proposed approach should be further investigated using simulated data
sets with diverse correlations structures and considering unbalanced data sets too. Also, the
use of more real data sets should further evidence the advantage of the proposed combined
approach.
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Abstract: Diverse Discrete Discriminant Analysis (DDA) models perform differently on different sam-
ples. This fact has encouraged research in combined models which seems specially promising when the
a priori classes are not well separated or when small or moderate sized samples are considered, which
often occurs in practice. In this work, we evaluate the performance of a convex combination of two DDA
models: the First-Order Independence Model (FOIM) and the Dependence Trees Model (DTM). We use
simulated data sets with two classes and consider diverse data complexity factors which may influence the
combined model’s performance - the classes’ separation, balance and number of missing states, as well
as sample size and also the number of parameters to be estimated in DDA. We resort to cross-validation
to evaluate the precision of classification.

The results obtained illustrate the advantage of the proposed combination when compared to FOIM and
DTM: it yields the best results, specially when very small samples are considered. The experimental
study conducted also provided the ranking of the data complexity factors, according to their relative
impact on classification performance, resorting to a regression model. It lead to the conclusion that
classes’ separation is the most influent factor on classification performance. The ratio between the num-
ber of degrees of freedom and sample size, along with the proportion of missing states in the majority
class, also have significant impacts on classification performance. An additional attainment of this study,
also deriving from the estimated regression model, is the ability to successfully predict the precision of

classification on real data set based on the data complexity factors.

Keywords. Discrete Discriminant Analysis, Separability, Classification performance, Combined mo-

dels for classification.

1 Introduction

Some researchers have tried to understand the relationship between the data characteristics and the
performance of classifiers. For example, Ho and Basu (2002), studied the case of two class problems
and described the nature of classification difficulty. They enumerated diverse measures of a classification
problem complexity and adopted a typology considering: 1) overlap of individual features, 2) measures
of separability of classes and 3) measures of geometry. Sotoca, Sanchez, and Mollineda (2005) used those

measures and add 4) statistical measures (e.g number of binary attributes, number of classes, entropy of
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classes, mean absolute correlation coefficients between two features etc) when conducting a meta analysis
of classifiers. Finch and Schneider (2007), considered the weight of classes, and three factors related to
continuous predictors. Macia, Bernadé-Mansilla, and Orriols-Puig (2008), also used measures of geome-
try to characterize the complexity of data sets and studied binary classification. These authors considered
several scenarios for synthetic continuous data, controlling the numbers of instances and the number of
attributes and focused on the length of the class boundary to assess complexity of the data set.

Studies referring to the performance of classification based on nominal predictors are very rare in the
literature. In this work we conduct numerical experiments to evaluate the performance of binary classi-
fiers in Discrete Discriminant Analysis (DDA), aspiring to contribute to filling this gap in the literature.
For this end, we set different scenarios using simulated data sets considering diverse data complexity
factors. The generated data sets are meant to provide means to compare the performance of single and
combined DDA models and to provide new insights concerning the impact of data complexity factors on
discrete classification performance. In particular, we focus on DDA in very small, small and moderate
sized samples, which turn classification tasks harder - Ho and Basu (2002) - and, we believe, discrete

classification tasks even harder.

2 Methodology

2.1 A combined model for classification

In the present work we address Discrete Discriminant Analysis (DDA) tasks - to classify and discrimi-
nate multivariate observations of discrete variables into a priori defined classes - using a combined model
proposed by Marques et al. (2013).

Generally, in supervised classification, several models are estimated and a unique classifier is selected
based on some validation criterion. However, the discarded classifiers usually contain important infor-
mation about the classification problem which is lost by selecting a single classifier (Brito et al., 2006).
In addition, often it is observed that misclassified objects are different for different models. This fact
has recently encouraged a large number of publications, from several areas of research, focused on the
combination of classification models (e.g. Wolpert, 1992; Breiman, 1996, 1998; Freund and Shapire, 1996;
Friedman et al., 1998; Sousa Ferreira et al., 2000; Friedman, 2001; Milgram, Sabourin and Cheriet, 2004;
Brito, 2002; Kotsiantis et al., 2006; Cesa-Bianchi et al., 2006; Friedman and Popescu, 2008; Amershi and
Conati, 2009; Janusz, 2010; Kotsiantis, 2011; Re and Valentini, 2011).

In the scientific literature the combining approach appears designated by several terms as, for instance,
Blending by Elder and Pregibon (1995), Ensemble of Classifiers by Dietterich (1997), Committee of
Experts by Steinberg (1997), Perturb and Combine (P&C) by Breiman (1996) and Combiners by Jain,
Duin and Mao (2000). Nevertheless, all authors focused in a quite simple idea: train one model in
several samples from the same data set or train several models from the same data and combine their
output predictions usually using a voting process. Examples of the first strategy are Bagging (Breiman,
1996) using bootstrap samples of the training data set, Boosting (Freund & Schapire, 1996) weighting
more heavily cases misclassified by decision tree models or Arcing (Breiman, 1998) weighting random
subsamples of the training data set. On the other hand, training diverse types of models, can achieve
uncorrelated output predictions and thus reduce the misclassification error rate (Abbot, 1999; Amershi
and Conati, 2009Brito, 2002; Brito et al., 2006; Cesa-Bianchi et al., 2006; Janusz, 2010; Kotsiantis, 2011;
Sousa Ferreira, 2000, 2004). Although many of the combined models for classification proposed in the
literature can be applied to problems with discrete explanatory variables, studies in the literature heavily

focus on continuous data. Therefore, we dedicate our research to combining models in DDA, a natural
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approach which usually increases classification performance (Sousa Ferreira, 2000, 2004, and 2010).

The model proposed is a linear convex combination of the First-Order Independence Model (FOIM)
and the Dependence Trees Model (DTM):

e The First-Order Independence Model (FOIM) (Goldstein and Dillon, 1978) assumes that the P

discrete variables are independent in each class Cy, k=1, ..., K.

e The Dependence Trees Model (DTM) (Pearl, 1988; Celeux & Nakache, 1994) is an alternative

model that takes the predictors relationships into account.

The corresponding conditional probability function is estimated as follows:
P (x* € C4|B,X) = BProrm(x* € C|X) + (1 — B)Pprar(x* € Ci|X) (1)

with (0< 5 <1).

Where X = (21,2, ...,1,,), 2; represents the i'" object (i € {1,...,n}), described by P discrete variables,
z; = (w1, T2, ..., x;p) (observed state), K exclusive classes (C1,Ca, ..., Ck) and a n-dimensional sample.
For modelling purposes prior probabilities are considered equal.

The R software is used for the algorithm’s implementation.

2.2 Data complexity and the performance of classifiers

The performance of classifiers can be influenced by several factors: classes separation, balance (Prati,
Batista, & Monard, 2004; Macia, Bernadé-Mansilla, & Orriols-Puig, 2008; Ho & Basu, 2002), sample
size (Raudys & Jain, 1991) and also (in the specific DDA domain), the number of missing states - e.g.
(Sousa Ferreira, 2004, 2010). Some studies have addressed the relationships between more than one
factor, namely when continuous predictors are considered - e.g. (Prati, Batista, & Monard, 2004) refer
to overlapping and balance and conclude that the lack of separation between classes tends to surpass the
importance of unbalanced classes in what regards the difficulty of binary classification tasks. Pinches
(1980), points out the relevance of sample size and comments on the impact of unequal sample sizes per
class. Raudys and Jain (1991) consider the relationship between sample size and the number of missing
states and also underline the intrinsic relationship between the sample size and the number of predictors
as a determinant of classification complexity. Macia, Bernadé-Mansilla, and Orriols-Puig (2008) resort to
the generation of synthetic data sets to evaluate data complexity and find that the length of the classes’
boundary is a dominant factor in assessing the complexity of the data set.

In the present work several scenarios are set for generating data to evaluate the impact of data charac-
teristics in the performance of a discrete binary classifier. First, for a fixed number of predictors (four),
we consider very small, small and moderate sized samples. The second experimental factor is the degree
of classes’ separation which is measured by the affinity coefficient (A) (Matusita, 1955; Bacelar-Nicolau,

1985). This coefficient is computed as follows:

L
AL 1Y =3V B (2)
=1

where f = (f1,..., fr) and i’ = (f{, ..., [1), are two discrete distributions defined on the same states’
space (f; stands for the relative frequency of the I*" state, | = 1,..., L).

The third experimental factor considered is balance - the weight of the majority class is used as its
measure. The number of missing states is included as an additional complexity factor. This factor is not

pre-specified but is determined for the simulated data sets generated under the experimental scenarios
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(defined by the previously referred factors).
To evaluate the DDA results obtained with the combined model we report the percentage of correctly
classified observations (P.) and the Huberty Index (HT)

P.— Py
Hl = ———
1-Py

3)
where P, represents the percentage of observations corresponding to the majority class and P, is the per-
centage of correctly classified cases. The Huberty index is intended to provide a fair comparison between
the performance of both balanced and unbalanced cases since it quantifies the percentage of improvement
in classification performance taking into account the majority class rule as a default classification rule.

Two-fold results are reported for both measures of performance.

Finally, we attempt to model the relationship between the combined classifier performance and the
complexity data factors considered in this work. For this end, we resort to simulated data and use regres-
sion on the combined model’s performance. The percentage of correctly classified observations (two-fold
result) is the response variable considered (note that since the weight of the majority class is included as
a predictor, the Huberty Index can be discarded at this stage). The estimated linear regression model

will be judged according to its fit to data and its predictive efficacy tested in one real data set.

3 Data analysis and results

3.1 Simulated Data

The performance of the FOIM, DTM and combined FOIM-DTM discrete classifiers is evaluated based on
simulated data within diverse experimental scenarios. First, we focus on binary classification. Then we
consider 4 binary predictors, a reasonable number taking into account we want to address classification
on small sized samples. Having set this general scenario, we specify the following complexity factors:
1) separability - thresholds for the affinity coefficient values are above 0.7 for poorly separated classes,
between 0.2 and 0.7 for moderately separated classes and under 0.2 for well separated classes; 2) sample
size - n = 60, n = 120 and n = 400 samples sizes are considered; 3) balance - unbalanced classes refer to
different sample proportions - (1 : 2), (1 :3) and (1 : 3) for n = 60, n = 120 and n = 400, respectively.
The average of missing states (the fourth experimental factor) is finally quantified for each simulated
data set.

The multinomial distribution parameters, along with the complexity factors’ characteristics regarding
the data sets considered are presented in Table 1 and Table 2.

For each of the eighteen resulting scenarios we generate 30 data sets. Based on the 540 generated data
sets we aim at understanding the comparative advantage of the combined DDA model. In addition, we
will be able to use a regression model in order to evaluate the relative impact of each factor - separability,
balance, sample size, number of estimated parameters and number of missing states - on the performance

of binary discrete classification.

93



6. Performance of combined models on binary discrete classification

5

Table 1: Synthetic datasets parameters: the 4 binary predictors’ probabilities

Separability Ch Co
poor (0.5,0.5;0.5,0.5;0.5,0.5;0.5,0.5)  (0.5,0.5;0.5,0.5);0.5,0.5;0.5,0.5)
moderate  (0.4,0.6;0.6,0.4;0.4,0.6;0.6,0.4)  (0.7,0.3;0.3,0.7;0.7,0.3;0.3,0.7)
good (0.1,0.9;0.7,0.3;0.2,0.8;0.6,0.4)  (0.9,0.1;0.3,0.7;0.8,0.2;0.1,0.9)

Table 2: Average numbers of missing states (30 runs in each scenario)

Separation n = 60 n =120 n = 400
01 CQ Total Cl CQ Total Cl 02 Total
balanced
poor 2.30 2.30 4.63 0.23 0.37 0.60 0.00 0.00 0.00
moderate 3.00 4.57 7.57 0.70 2.37 3.07 0.00 0.47 0.47
good 7.23 8.83 16.07 4.73 6.97 11.70 1.93 3.40 5.33
unbalanced
poor 4.67 1.40 6.07 2.40 0.07 2.47 0.03 0.00 0.03
moderate 5.37 3.43 8.80 3.40 1.53 4.93 0.20 0.17 0.37
good 7.80 6.60 14.40 6.97 3.83 10.80 3.70 1.30 5.00

3.2 Real Data

A real data set is considered to compare the effective FOIM-DTM performance with the estimated
performance based on the complexity factors considered, using an estimated regression model. It is based
on the Congressional Voting Records Data Set in the UCI Machine Learning Repository - see Bache and
Lichman (2013) - which includes votes for each of the U.S. House of Representatives Congressmen on 16
key votes identified by the Congressional Quaterly Almanac (CQA), 1984. In this data set classification
is meant to discriminate between democrats (DEM) and republicans (REP). The 16 predictors (key
votes) are binary variables indicating: 1- yes; 2- no. In this work we only consider individuals providing
complete answers and finally select the four most discriminant predictors - we use the Cramer’s V statistic
measuring the association between each predictor and the classes to identify the most promising variables.
In table 3, the final data set considered is described.

Table 3: Congressional voting records (reduced) data set

Predictors’ category DEM (C;) REP(C»)

V4. adoption-of-the-budget-resolution 1-yes 85.5% 15.7%
2-no 14.5% 84.3%

V5. physician-fee-freeze 1-yes 4.8% 99.1%
2-no 95.2% 0.9%

V6. el-salvador-aid 1-yes 20.2% 95.4%
2-no 79.8% 4.6%

V13. education-spending 1-yes 12.9% 85.2%
2-no 87.1% 14.8%

Total 232 124 108
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3.3 Results
3.3.1 Descriptive results

The descriptive results referring to the performance of the combined FOIM-DTM classifier are presented
in this section. They refer to 30 classifications runs in each scenario.

The performance of the combined classifier FOIM-DTM in the 540 synthetic data sets is summarized on
Table 4. Detailed results are provided in Table 5 and Table 6. When very small samples are considered
the proposed combined classification algorithm is a clear winner - it outperforms FOIM and DTM in
the 180 corresponding data sets. When n = 120 (small sized sample) FOIM and DTM are also able to
deliver the best classification results for the balanced data sets. For n = 400 (moderate sized sample)
the general winner classifier is FOIM, although the proposed combination may outperform FOIM in an
unbalanced setting with poorly and moderately separated classes.

In general, unbalanced data sets correspond to harder classification tasks - see Huberty index values in
Table 5 and Table 6. Also, there is a clear increase in classification performance associated with an in-
crease in separation. Specifically, for the unbalanced data sets with poorly separated classes, the default
classification precision overcomes the precision of the proposed algorithm. The performance results ob-
tained are generally consistent (over the 30 runs in each scenario)- see the coefficient of variation values.
However, the Huberty index may exhibit high variability when confronted with difficult classification
tasks i.e. generally when poorly separated classes are considered and also when unbalanced and mode-

rately separated classes are considered.

Table 4: Average 8 coefficient referring to the best classifier (30 runs)
Separation n=60 n=120 n =400

balanced
poor 0.7 0 (DTM) 1 (FOIM)
moderate 0.8 0.9 1 (FOIM)
good 0.9 1 (FOIM) 1 (FOIM)
unbalanced
poor 0.6 0.9 0.5 and 0.9
moderate 0.6 0.8 0.6 and 0.7
good 0.9 0.9 1 (FOIM)
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Table 5: Average classifier’s performance for balanced datasets (30 runs)

n = 60 n =120 n = 400

Separation mean var. coef. mean var. coef. mean var. coef.
poor P. 56.6% 0.12 53.8% 0.07 51.7% 0.06
HI 13.1% 1.06 7.6% 1.00 3.4% 1.80
moderate P. 72.7% 0.11 72.7% 0.07 74.3% 0.03
HI 453% 0.34 45.4% 0.22 48.5% 0.09
good P. 9277% 0.04 92.7% 0.28 92.8% 0.02
HI 85.4% 0.09 85.4% 0.06 85.7% 0.04

Table 6: Average classifier’s performance for unbalanced datasets (30 runs)
n=60 (1:2) n=120 (1:3) n=400 (1:3)

Separation mean var. coef. mean var. coef. mean var. coef.
poor P, 57.2% 0.13 54.9% 0.09 54.9% 0.06
HI -28.5% -0.79 -80.3% -0.25 -80.5% -0.16
moderate P, 74.1% 0.10 77.1% 0.06 74.6% 0.03
HI 22.2% 1.04 8.2% 2.21 -1.7%  -5.94
good P, 90.8% 0.04 92.1% 0.03 91.9% 0.01
HI 72.4% 0.16 68.4% 0.18 67.4% 0.07

3.3.2 Regression on performance

The performance results obtained in the numerical experiments conducted enable us to estimate a re-

gression model in order to:

1. predict the P, measure of performance based on the data characteristics (/complexity factors);

2. understand the relative impact of each experimental complexity factor on performance.

To implement the regression we specifically consider the following measures of the experimental comple-
xity factors: the affinity coeflicient value - Ay - is used to measure the classes’ separation; the weight
of the majority class - Wi, - is used to measure balance; dimensionality is measured by the ratio - Py -
between the "number of degrees of freedom”and sample size, i.e. Py = (n — (P x 2+ 1))/n (note that
P = 4 is the number of predictors and we have to estimate parameters referred to two classes); finally,
the proportions of missing states in each class - P, and Ppsc, - are considered.

A generalization of the Tobit regression model is used and the MLE estimated coefficients are obtained
using the censReg package (Henningsen, 2010). The estimated regression model is presented in table 7.
Additional columns in the right refer to standardized variables - these results are meant to help better
evaluating the relative importance of predictors.

According to the non standardized as well as the standardized models, the three complexity factors ha-
ving the larger impact on classification precision (by decreasing order) are: separation, ratio between the
degrees of freedom and sample size and proportion of missing states in the minority class. The weight
of majority class, the proportion of missing states in the majority class have a weaker impact on perfor-
mance. In fact, according to the standardized coefficients ranking (an alternative modelling approach),
the impact of the last factor is non-significant.

As expected, the larger the proportion of degrees of freedom the easiest the classification task is. The
remaining factors have a negative impact on performance. The squared correlation between observed

and estimated P. values is 0.95 evidencing a good fit to data.
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Table 7: ML Estimated regression coefficients
Coef. p-value Coef. (Std.) p-value (Std.)

constant  0.923 0.000 0.240 0.000
Asgs -0.692  0.000 -1.017 0.000
Py 0.258 0.001 0.207 0.000

Pryse, -0.599  0.000 -0.161 0.000
Wine 0.099 0.000 0.039 0.039
Prse, -0.196  0.001 -0.039 0.358

When applying the estimated regression model to the real data set (reduced Congressional Voting Re-
cords) we may anticipate the percentage of correctly classified observations based on its characteristics:
affinity coefficient 0.195; proportion of missing states on the majority class 0.125; proportion of missing
states on the minority class 0.281; ratio between degrees of freedom and sample size 0.961; and balance
0.534. In fact, before performing classification we could foresee 732 = 95.9% based on the estimated re-
gression model (see coefficients in Table 7) and, according to the classification results obtained with the
combined model FOIM-DTM on this data set, the actual percentage of correctly classified observations
is Po = 95.7%.

4 Conclusions and Perspectives

In the present work, we evaluate the performance of a combined model - a convex combination of FOIM
and DTM - for binary discrete classification. We set 18 scenarios for generating simulated data sets with
4 binary predictors controlling for factors considered relevant for classification precision. These factors
include three degrees of classes’ separability, classes’ weights (balanced or not) and sample dimension
(n =60, n = 120, n = 400). In addition, the number of missing states is quantified in each scenario.
The differentiated scenarios provided very different classification performances. According to the obtai-
ned results, the combined method achieves the best results for small sample cases (whether balanced or
unbalanced) and performance improves with the increase of classes’ separability, as expected. The worst
performances are registered for unbalanced and poorly separated classes - the combined model is unable
to surpass default classification precision (the lowest Huberty Index value is -80.5%). Within the balan-
ced scenario, when moderately separated classes are considered, the increase of the sample dimension
increases the classification ability of the single FOIM model. For unbalanced data sets, the proposed
combination generally achieves the best results obtained.

Based on experimental data - 30 classification runs in each scenario - a regression model is estimated
which provides new insights regarding the relative impact of experimental factors on binary discrete
classification precision. Separability turns out to be the most important experimental factor - the more
weakly separated the classes are (the higher the affinity coefficient) the weaker the classification per-
formance is. The proportion of the number of degrees of freedom vs. sample size is the second most
important factor, with a positive impact on performance. The third one is the proportion of missing
states in the minority class and it has a negative impact on performance, as expected.

The estimated regression model exhibited a good fit to synthetic data and also enabled to anticipate
the performance of the proposed FOIM-DTM algorithm on a real data set - a data set extracted from
the Congressional Voting Records Data Set in the UCI Machine Learning Repository. In this data set,
the difference between the estimated and the actual measure of performance (percentage of correctly
classified observations) is 0.002.

To our knowledge, this type of study is the first conducted for evaluating DDA performance. In future
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research, additional measures of complexity of discrete classification problems may be considered - e.g an
alternative measure of the degree of classes’ separability (other than the affinity coefficient). Also, some
of the experimental factors that were taken into account may vary their categories, and their interaction

may be further analyzed.
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CHAPTER /

Conclusions and Perspectives

In DA, instead of proposing new models to find a classification rule to minimize the misclassification error,
a number of researchers have opted to combine models, taking advantage of the specificities of each, with a
view to finding classifiers that adjust better to the data under study, thus, leading to more precise, stable and
robust models.

As already observed, the dimensionality problem, often referred to by researchers as "the curse of
dimensionality" (Celeux and Nakachel [1994) frequently emerges in DDA and leads to the weak performance
of various models. This problem stems from the large amount of parameters that need to be estimated in
the most natural models in DDA, such as the Full Multinomial Model (FMM). Furthermore, in the fields of
Social or Human Sciences and Medicine, the available samples are small to moderate in size.

On the other hand, although there is an abundance of research in the area of model combination for
continuous classification problems, which has subsequently led to an explosion of publications over recent
years, there is still very little on discrete classification problems.

Therefore, and drawing from a study conducted by |Sousa Ferreiral (2000), a model combination in DDA
has been proposed in this study for small or moderate sized samples. The proposed model is defined as
a convex linear combination of the First-order Independence Model (FOIM) and the Dependence Trees
Model (DTM), assuming independence among the explanatory variables within each class in the former,
and taking into account the interactions among the explanatory variables in the latter.

The DTM model was chosen to integrate this model combination due to an understanding that while being
capable of leading to predictions that are not correlated with those of the FOIM model, it can reduce the
misclassification rate. In fact, the combination of different classifiers is currently a very popular field of
research (Abbott, [1999; |Amershi and Conatil 2009} Brito), [2002; [Brito et al.| 2006} |Cesa-Bianchi et al.|
20065 Janusz, 2010; [Kotsiantis, [2011; |Sousa Ferreiral 2000, 2004, 2010).

On the other hand, despite not having explored this advantage within the scope of the current study, this
model defines a conditional probability function for each defined a priori class, providing information, per
class, on the most important interactions among the explanatory variables. In the near future, an evaluation

of this advantage is anticipated for an analysis of the results, in the specific case of real data.
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7. Conclusions and Perspectives

The combination of the FOIM-DTM models, using a single coefficient 5, (0 < § < 1), leads to an
intermediary model, in the case of K a priori classes defined between the FOIM and DTM models in
discrete and not necessarily binary data. When there are more than two classes, the Hierarchical Coupling
Model (Sousa Ferreiral, 2000 can also be used, by transforming a problem of K classes into several problems
of two classes, and by applying the FOIM-DTM combination at each level of the tree. Use of the HIERM
model has enabled considerable improvement of the combined model’s performance. The performance
study of the proposed FOIM-DTM model was tested on a number of real datasets and later, in an attempt to
ascertain its main field of application, it was also tested on simulated data. Some of the studies conducted
on real and simulated data are briefly presented in the Appendix, in which the main data characteristics and
the performance of the proposed model are described. With regard to the studies conducted with sets of real

data, the following information may be highlighted:

e In the comparative studies conducted with the decision tree model implemented by the CART
(Appendix: Cases 3, 4 and 5) algorithm, the FOIM-DTM combination systematically presents a
better correct classification rate.

e In the comparative study with the combination FOIM-FMM (Appendix: Case 4), the FOIM-DTM
combination presents results closer to those obtained with the FOIM-FMM combination, but are not
necessarily better. The accomplishment of further comparative studies between the two FOIM-DTM
and FOIM-FMM combinations is anticipated .

e In the case of problems with more than two defined a priori classes, when the HIERM model is
applied to the FOIM-DTM combination (Appendix: Cases 2, 3, 4, 5 and 6), in addition to increasing

the value of the correct classification rate, it also highlights the contribution of the combination itself.

e In the studies that were carried out (Appendix: Cases 1, 2, 3, 4, 5, 6 and 7), when compared with
the single models, the FOIM-DTM combination often presents a higher performance rate, although it
displays a certain degree of instability.

The first studies carried out with real datasets did not lead to a clear conclusion as to the contribution of
the FOIM-DTM combination for DDA, since the results were not consistently higher than those obtained
with the single models or with the previously proposed FOIM-FMM combination. This issue triggered
the research conducted within the scope of the present dissertation, and led the study to assess both the
importance of variable selection in DDA and the importance of understanding the relations between the data
complexity factors and the models’ performance. Moreover, it shed light upon the need to use simulated
data in order to ascertain the main field of application of the FOIM-DTM combination.

Indeed, by constructing a model combination, the complexity of the model is increased, as even by using
a simple convex linear combination, the number of parameters to be estimated is augmented. Moreover,
the dimensionality problem frequently emerges, mainly due to the fact that the proposed model sets out
to contribute to classification problems for small and moderate-sized samples. This knowledge served as
the basis for the research conducted on the study of the variable selection methods that would enable the
choice of a set of variables leading to similar or better results than the initial explanatory variable set. It
was possible to verify through this study (see: Marques et al., [2013; Appendix: Cases 6 and 7), how the
descriptive variable selection methods lead to an interesting choice in the run-time/correct classification rate

relation.
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It was also found that the use of inferential methods for selecting variables is not always possible, since
the significance level « tends to assume rather high values. Nevertheless, whenever it is possible to apply
inferential variable selection methods, they prove to be effective (Cases 6 and 7), showing that they can lead
to a better performance level than with a set of all the explanatory variables or equivalent. The BON proved
to be more efficient than the FDR method in terms of managing to maintain good performance of the model,
by reducing the number of explanatory variables under study. Nevertheless, the FDR method displayed the
ability to drastically reduce running time.

As already mentioned, concern was also shown towards ascertaining the main field of application of the
FOIM-DTM combination. Therefore, more recently, assessment of the performance of this combined
model was geared towards comparing datasets with different structures and comparing the performance
of the model in these various structures.

At an initial stage, the study focused on sample dimension control and the intensity of the relations among
variables within each class (Marques et al., [2014a; Appendix: Case 8). Secondly, an attempt was made
to study other complexity factors that might influence the performance of the afore-mentioned model such
as: separation between classes; balanced or unbalanced classes ; number of unobserved (missing) states;
number of parameters to be estimated and sample size.

At an initial stage (Appendix: Case 8), in the case of a moderate-sized independent structure, the
FOIM model is the dominant model that leads to better performance. For moderate-sized samples with
a correlation structure, the DTM model displays its contribution in the combined model, whereby the
FOIM-DTM combination proves to lead to better performance. For small-sized samples, of both an
independent and correlation structure, the FOIM-DTM presents the best results. When the structures
are independent, the FOIM model tends to obtain the best results, however for small-sized samples the
FOIM-DTM combination surpasses this model. When the structure assumes some degree of correlation,
the DTM model emerges naturally, however, the FOIM-DTM combination appears as an alternative to
DTM for moderate-sized samples.

InMarques et al.[(2014a) the study was broadened to the case of 4 classes and the results of the FOIM-DTM
combination were compared with the results obtained by application of the Random Forests to the same
dataset. In this study, the FOIM-DTM combination approach is shown to almost systematically surpass the
performance of Random Forests.

In the second stage, the binary case was explored for two and three a priori defined classes. It is the
non-binary case that will be analysed in greater depth in future studies.

In Marques et al.| (2014b)) and Appendix: Case 9, the influence of four factors in the performance of the
FOIM-DTM was observed: the separation between classes measured by the affinity coefficient that varies
between [0-1], the closer this coefficient is to zero, the stronger the separation; samples of balanced and
unbalanced classes were assessed with both equal and different-sized samples; the amount of missing data
was assessed by observation of the number of non-observed states in each class.

In relation to the accomplished work (Appendix: Case 9), the interest of the proposed method seems to
stand out whenever there are just a few factors reversely influencing the performance of the model. In other
words, if the classification problem has a very high level of difficulty (poorly separated classes, small-sized
sample and a large number of unobserved states), owing to its simplicity, the FOIM model displays the
best performance. However, if the level of difficulty is not quite so high (moderately or correctly separated
classes, very small-sized sample and large amount of unobserved states) or (moderately separated classes,

small-sized sample and some unobserved states) or (badly or moderately separated classes, moderate-sized
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7. Conclusions and Perspectives

sample and entirely observed states) the FOIM-DTM combination leads to the best result.

It was also possible to conclude that (Marques et al., [2014b) the advantage of the combined model when
compared to single models tends to become noticeable in the case of small or very small-sized samples. It
also provided an order of the complexity factors in accordance with their level of impact on the model’s
performance: separation between classes, ratio between the number of degrees of freedom and sample size,
proportion of missing states in the minority class.

It should be noted that, in this study, other measures were sometimes used to assess the performance
of the models in addition to the traditional correct classification rate. The Huberty Index, particularly
important in unbalanced cases, and the ¢ statistic are examples of such measures, although the interest of
these alternatives and their relation with the correct classification rate remain unclear, requiring continued
evaluation in the near future.

To sum up, the research developed in this study enabled us to verify that the interest of the FOIM-DTM
combination is effectively revealed in small or very small-sized samples and poorly separated a priori
classes.

When the performance of the combination is analysed on the basis of existing relations among the
explanatory variables within each class, the FOIM model proves to be the most suitable for independence
structures and small or moderate-sized samples. For samples with related explanatory variables, the
combination emerges as an alternative to the single models, especially when the available samples are
small.

On the other hand, this study has also given an important contribution to DDA with two issues that have
yet to be studied in greater depth in discrete data classification: variable selection and the study of model
performance using non-traditional methods, such as the ¢ statistic and Huberty Index.

In the future, continued assessment will be conducted on the performance of the combined model in
non-binary discrete data, and this assessment will be further studied in the case of K # 2 and in DDA

variable selection methods.
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CASE 1*
Data description:

Data collected from Goldstein and Dillon (1978) concerning purchasing prefe-
rences for types of stores that sell audio equipment:

o N = 412 subjects;
o K =2;
e (1 - Customers for Great Department Stores with 154 subjects;
e (5 - Clients Specialty Shops these devices with 258 subjects;
o P=4
The explanatory variables are four dichotomous variables (1 = yes; 0 = no):
e Variable 1: Did you search information with your relatives?
e Variable 2: Did you ask for products information?
e Variable 3: Had you previous experiences in purchasing audio equipment?
e Variable 4: Did you receive information about products from catalogs?

In this study, several combinations FOIM-DTM were trained, using values for the
B coefficient ranging from 0.05 to 0.95 with successive increments of 0.05.

8. Appendices

Results:
Table 1: Percentage of correctly classified cases
B * Prorv + (1 — B) * Ppru
B B=0|=05]010<5<035|5=04]045<5<095| 8=
% of correctly
classified cases (% CC) | 69.4% | 69.4% 68.7% 68.2% 69.9 % 69.9 %
% CC in C 70.8% | 70.8% 72.7% 67.5% 64.9% 64.9%
% CC in (5 68.6% | 68.6% 66.3% 68.6% 72.9% 72.9%

4Comunication presented at: XV Jornadas de Classificacdo e Andlise de Dados (JOCLAD
2008), in ESCE/IPS, 27-29 March 2008.
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CASE 2°

Data description:

Data collected from Prazeres (1996) concerning the evaluation of alexithymia
("alexithymia"means no words to express emotions). Experiments with the propo-
sed approach regard a data set which consists of 34 dermatology’s patients evalu-
ated by the psychological test TAS-20 (Twenty Item Toronto Alexithymia Scale)-
conceived to evaluate the presence of alexithymia.

For each subject, the values of six binary variables of another psychological test
Rorschach test - are available.

N = 34 subjects;

K =3;

C1 - Nonalexithymics Class with 7 subjects;

Cs5 - Alexithymics Class with 14 subjects;

(s - Intermediate Class with 13 subjects;

P =6.

In this study, several combinations FOIM-DTM were trained, using some values
for the 3 coefficient.

Results:

Table 2: Percentage of correctly classified cases

FOIM

DTM

HIERM: (1 — ) * Prorn + (8) * Poru

B=0

B=1

B = 0.25;0.50;0.75

64.7%

64.7%

82.5%

76.5%

85.3%

YPoster presented at: 18" International conference on Computational Statistics (COMPSTAT
2008), in FEUP, 24-29 August 2008.
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CASE 3¢

Data description:

8. Appendices

Table 3:
Sample | N Classes Number variables
Real Data* Monk 432 Ci =216e Cy = 216 6 variables, with 2 binary
Balance | 623 | '} =48; Cy = 288 e (3 = 287 | 4 non-binary variables
Simulated | 2 Classes | 200 C,=130e Cy, =170 4 variables, with 2 binary
Data 4 Classes | 250 Ci=80eCy, =170 3 binary variables

03:30604:70

- A. Asuncion and D.J. Newman, UCI Machine Learning Repository [http://www.ics.uci.edu/ mle-
arn/MLRepository.html]. Irvine, CA:, Technical Report University of California,
School of Information and Computer Science., 2007.

In this study, several combinations FOIM-DTM were trained, using some values
for the 3 coefficient.

¢Comunication presented at: 11*” Conference of the International Federation of classification
Societes (IFCS 2009), in Techinische Universitat Dresden - Germany, 13-18 March 2009.
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8. Appendices
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CASE 4¢
Data description:

The GSS1 - Gudjonsson Suggestibility Scale (Gudjonsson, 1997) was developed
to assess the tendency that some people have to distort facts when interviewed.
The experiment consists of:

e [t’s orally presented a story about a robbery, followed by one task of imme-
diate recall and one delayed recall task (with a range of about 50 minutes;

o At the end of the deferred memory tasks, each subject answers to 20 ques-
tions, 15 of which are constructed so as to induce the subject in error. At
the end of the 20 questions, subject is told that he had made some mistakes
(even if he didn’t committed any one) and therefore, he answers again to the
20 questions, trying to be this time be more precise;

e Answers to the 20 questions are listed as amendment or transfer depending
if the answer changes from 1st to 2nd time or if he is influenced by the
issues created for misleading.

In this work is considered a general hypothesis that exist individual differences
on vulnerability to suggestion. In particular, were analyzed the demographic cha-
racteristics and its association with vulnerability to suggestion. Classification task
considered, in particular, the classes offered by demographic variables like gender,
age group and educational level of individuals and suggestibility measured using
binary variables (Pires, 2010). In this study, several combinations FOIM-DTM
were trained, using some values for the 3 coefficient.

dComunication presented at: XVI Jornadas de Classificacio e Andlise de Dados (JOCLAD
2009), in Universidade do Algarve, 2-4 April 2009.
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Table 6: Data Cha

racteristics

Class N
Gender C, =30
Cy =68
Age group C, =172
CQ = 7
Cg - 19
Schooling level | C} = 17
Cy =46
C3 =22
C,=13

Results:

Table 7: Percentage of correctly classified cases for gender classes

Majority | Classification Resubst. Training Test

rule Method sample (50%) | sample (50%)

Comp. 79.6% 87.8% 65.3%

CART Prun. 77.6% 85.7% 67.7%

B=0(DTM) | 71.4% 73.5% 63.3%

B =0.25 71.4% 73.5% 65.3%

FOIM-DTM B = 0.50 73.5% 79.6% 65.3%

69.4% B =0.75 75.5% 77.6% 73.5%

’ g =1(F0IM) | 75.5% 81.6% 69.4%

B =0 (FOIM) | 83.7% 89.8% 46.9%

FOIM-FMM* £ =0.301 71.4%

Po = 0.126 72.7%

B3 = 0.147 89.8%

g=1FMM) | 75.5% 81.6% 69.4%

* (Sousa Ferreira, 2000)
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Table 8: Percentage of correctly classified cases for age group classes

Majority | Classification Resubst. Training Test

rule Method sample (50%) | sample (50%)

Comp. 85.7% 85.7% 73.5%

CART Prun. 85.7% 85.7% 69.4%

B=0DTM) | 77.5% 69.4% 67.3%

B =0.25 79.6% 69.4% 67.3%

FOIM-DTM B =0.50 78.6% 75.5% 67.3%

£ =0.75 77.5% 85.7% 75.5%

g =1(FOIM) | 75.5% 81.6% 77.5%

B=0(DTM) | 77.6% 79.6% 77.6 %

73.5% HIERM 8 =0.25 79.6% 79.6% 75.5%

FOIM-DTM B =0.50 78.6% 79.6% 71.4%

B =0.75 77.6% 83.7% 77.6 %

g =1(FOIM) | 76.5% 85.7% 77.6 %

6=0 92.9% 93.9% 65.3%

FOIM-FMM* | g; = 0.301 77.6%

B2 = 0.126 77.6 %

B3 = 0.147 75.5%

g=1 76.5% 83.7% 75.5%

* (Sousa Ferreira, 2000)
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CASE 5°

Data description:

This work refers to the study of data on clients of Belém Cultural Centre (CCB)
and their evaluation of the quality of products/services in CCB (Inquiry realized
in 2007, by. Ana Duarte (2009) to whom we thanks the availability of the data set.

Table 10: Data Characteristics

Class Schooling n %
1 Secondary grade 177 1 17.9
2 University frequency | 136 | 13.8
3 Graduation 462 | 46.8
4 Master or Phd 213 1 21.6
Total 988

In this study, several combinations FOIM-DTM were trained, using some va-
lues for the 3 coefficient.

Results:

Table 11: Percentage of correctly classified cases

Classification Test sample
Method (35%)
CART 46.1%
8 =0(DTM) 45.0%
8 =0.10 44.4%
8 =0.20 45.8%
B =10.30 46.4%
8 =0.40 46.4%
FOIM-DTM B =0.50 47.6%
B8 =0.60 47.3%
8 =0.70 47.8%
B =10.80 47.8%
8 =10.90 47.0%
8 =1 (FOIM) 47.0%

¢Comunication presented at: XVII Jornadas de Classificacdo e Andlise de Dados (JOCLAD
2010), in ISCTE, 25-27 March 2010.
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Table 12: Percentage of correctly classified cases by HIERM model

Classification Test sample
Method (35%)
CART 46.1%
8 =0(DTM) 47.8%
8 =0.10 47.7%
8 =0.20 48.1%
£ =10.30 48.1%
HIERM £ =0.40 49.3%
FOIM-DTM 8 =0.50 49.3%
8 =0.60 49.3%
8 =0.70 48.7%
8 =10.80 48.4%
B =10.90 49.9%
g =1 (FOIM) 49.9%

8. Appendices



CASE 6

These work was focused in feature selection, comparing some criterias as: Chi-
Square statistic ()?), Mutual Information (), Bonferroni Correction (BON) and
the False Discovery Rate (FDR).

Data description:

GSS1 - The Gudjonsson Suggestibility Scale (GSS1) (Gudjonsson, 1997) was de-
veloped to evaluate the trend in forensics, that some people have to distorting facts
when interviewed (Pires, 2010).

MYVS - The psychological test My Vocational Situation (MVS) (Lima, 1998) is
organized into two scales: Occupational Information and Barriers (Difficulties).
In this case, the aim is to study the relationships between features personality and
career Concerns.

Table 13: Data Characteristics

Sample Class N° of variables
B Ci=30M)
GSS1 (n=98) | Gender C, = 68 (F) 10
C1 = 480 (Biol+Psic.)

Course Cy = 297 (Letras) 8
MVS (n=1203) C3 = 426 (Eng.)
C1 =560 (M.)

Gender C, — 643 (F) 8

In this study, several combinations FOIM-DTM were trained, using some va-
lues for the 3 coefficient.

fPoster presented at: XVIII Congresso Anual da Sociedade Portuguesa de Estatistica (SPE
2010), in S. Pedro do Sul, 29 September - 2 October 2010.
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CASE 7¢

Data description:

NINA - This data set which consists of 34 dermatology’s patients evaluated by
a psychological test set. The whole sample is divided into two classes - Unhe-
althy (C7) and Healthy (C5). In this data set we considered eleven binary varia-
bles.(Prazeres, 1996)

GSS1 - This data set refers to measurements of susceptibility to changes the tes-

timony of 98 individuals. The target classes are related to gender - Men (C') and
Women (C5). In this data set we considered eight binary variables.(Pires, 2010)

Table 18: Data Characteristics

Sample Class N° of variables
B Cy =14
NINA (n=34) | Healthy C, = 20 11
_ Cy =30
GSS1 (n=98) | Gender O, = 68 8

In this study, several combinations FOIM-DTM were trained, using some va-
lues for the 3 coefficient.

Poster presented at: 14" Applied Stochastic Models and Data Analysis Conference (ASMDA
2011) in Roma, 7-10 June 2011.
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CASE 8"

Data description:

To evaluate the performance of the proposed model, were considered two defined
classes a priori and resort to simulation of binary data based on the model Bahadur
proposed by Goldstein and Dillon (1978) and Celeux and Mkhadri (1992). Based
on this model 10 simulations were performed considering two types of structures
with P = 6 binary variables. The parameters ), considered in the simulation of the
Bernoulli variables were:

6, = (0.6,0.4,0.6,0.5,0.5,0.6) and 6, = (0.5,0.3,0.5,0.4, 0.4, 0.5).

The first structure, denoted IND (Independent), is generated according to FOIM,

(pe(p,p) =1 and pi(p,g) =0,if p#g, k=1,..,K; p,g=1,..,6) forall
classes.

The second one, called DIF (Different), is implemented considering the existence
of different relations among the variables, for different classes, in the bi-class case
pi(p,p) =1 and pi(p,g) = 0.2, if p#g, p,g=1,...6; p2(p,p) =1 and
p2(p,g) =04, if p# g, p,g=1,...,6;.For each of the structures are considered
very small samples (30 observations in each class) and samples of small size (60
observations in each class). The a priori probabilities were considered equal.

In this study, several combinations FOIM-DTM were trained, using values for
the [ coefficient.

"Poster presented at: XIX Jornadas de Classificacio e Andlise de Dados (JOCLAD 2012) in
Instituto Politécnico de Tomar, 28-31 March 2012.
and
Poster presented at: International Conference on Trends and Perspectives in Linear Statistical
Inference (LINSTAT 2010), in Tomar, 27-31 July 2010.
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CASE 9

Data description:
In this numerical experiments for simulated data using the R function rmultinom
(n, size, prob) that generates vectors according to multinomial distribution, where:

e n - number of random vectors to draw;

e size - integer, say N, specifying the total number of objects that are put into
K boxes in the typical multinomial experiment;

e prob - numeric non-negative vector of length K, specifying the probability
for the K classes; is internally normalized to sum 1.

In this work, we consider the bi-class case and four types of population structures,
using very small (n = 60), small (n = 120) and moderate (n = 400) samples
sizes, with P = 4 binary variables:

A Structure:
Cy - prob = (0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
Cy - prob = (0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)

B Structure:
Cy - prob = (0.4,0.6,0.6,0.4,0.4,0.6,0.6,0.4)
Cy - prob = (0.70.3,0.3,0.7,0.7,0.3,0.3,0.7)

C Structure:
Cy - prob = (0.4,0.6,0.6,0.4,0.4,0.6,0.6,0.4)
Cy - prob =(0.9,0.1,0.1,0.9,0.9,0.1,0.1,0.9)

D Structure:
Cy - prob =(0.1,0.9,0.7,0.3,0.2,0.80.6,0.4)
Cy - prob =(0.9,0.1,0.3,0.7,0.8,0.2,0.1,0.9)

Twenty random samples are generated for each structure. Prior probabilities are
considered equal.

iPoster presented at: 7*" Workshop on Statistics, Mathematics and Computation, in Instituto
Politécnico de Tomar, 28-29 May 2013.
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Results:

Table 23: Percentage of correctly classified cases for A structure: (/3) * PFO v+

(1*5) *pDTM

very small sized

small sized

moderate samples sized

[)) n1:n2:30 n1:n2:60 77,1:712:200

mean s.d. mean s.d. mean s.d.

B=0 | 4870% | 0.088 | 52.10% | 0.034 | 50.10% 0.030
B=10.10 | 49.00% | 0.094 | 52.00% | 0.035 | 50.20% 0.030
B =020 | 49.60% | 0.095 | 51.70% | 0.038 | 50.00% 0.029
B=10.30 | 49.90% | 0.083 | 51.40% | 0.039 | 50.20% 0.032
B =10.40 | 49.70% | 0.086 | 51.10% | 0.041 | 50.20% 0.030
B=10.50 | 50.40% | 0.092 | 51.50% | 0.043 | 50.40% 0.030
B=10.60 | 51.70% | 0.090 | 51.40% | 0.045 | 50.50% 0.030
B =0.70 | 52.40% | 0.083 | 51.60% | 0.051 | 50.30% 0.032
B =0.80 | 52.30% | 0.080 | 50.70% | 0.055 | 50.30% 0.030
B =0.90 | 52.80% | 0.077 | 50.10% | 0.052 | 50.30% 0.029
B=1 |53.60% | 0.078 | 49.80% | 0.052 | 50.00% 0.028
aff ] 0791 [0.047] 0921 [0.030| 0981 | 0.007
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Table 24: Percentage of correctly classified cases for B structure: (/3) * PFOIM +

(1—ﬁ)*pDTM

very small sized

small sized

moderate samples sized

B n1:n2:30 n1:n2:60 n1:n2:200
mean s.d. mean s.d. mean s.d.
5=0 65.60% | 0.069 | 68.10% | 0.059 | 70.70% 0.025
6 =0.10 | 65.70% | 0.077 | 69.10% | 0.055 | 71.40% 0.028
6 =0.20 | 66.20% | 0.078 | 69.30% | 0.054 | 72.00% 0.025
6 =0.30| 66.10% | 0.076 | 69.50% | 0.052 | 72.30% 0.025
5 =0.40 | 66.80% | 0.080 | 70.30% | 0.053 | 72.80% 0.026
6 =0.50 | 66.40% | 0.081 | 70.40% | 0.054 | 73.20% 0.026
5 =0.60 | 67.10% | 0.088 | 70.30% | 0.051 | 73.30% 0.026
65 =0.70 | 68.80% | 0.086 | 70.70% | 0.050 | 73.20% 0.026
5 =0.80| 69.50% | 0.083 | 70.80% | 0.049 | 73.30% 0.027
6 =0.90 | 69.30% | 0.090 | 71.10% | 0.051 | 73.60% 0.025
g=1 69.80% | 0.087 | 71.00% | 0.048 | 73.60% 0.024
aff | 0571 [0.136] 0.716 [0.060 | 0.786 |  0.031

Table 25: Percentage of correctly classified cases for C structure: (/3) * PFO v+

(1= 8)* Ppru
very small sized small sized moderate samples sized
15} ny =nqe = 30 ny = ng = 60 ny = ng = 200
mean s.d. mean s.d. mean s.d.
=0 80.00% | 0.068 | 84.00% | 0.043 | 84.90% 0.028
6 =10.10 | 80.60% | 0.067 | 84.30% | 0.045 | 85.20% 0.028
6=10.20 | 81.20% | 0.068 | 84.50% | 0.045 | 85.80% 0.029
6=10.30 | 82.30% | 0.060 | 85.20% | 0.042 | 86.20% 0.031
£ =10.40 | 83.60% | 0.058 | 86.10% | 0.039 | 87.10% 0.027
6 =10.50 | 83.40% | 0.056 | 86.10% | 0.034 | 87.40% 0.025
6 =10.60 | 85.00% | 0.056 | 86.20% | 0.037 | 87.90% 0.023
6 =0.70 | 85.30% | 0.053 | 86.70% | 0.034 | 88.30% 0.021
6 =0.80 | 85.60% | 0.043 | 86.80% | 0.032 | 88.40% 0.021
6 =0.90 | 85.20% | 0.038 | 86.90% | 0.032 | 88.50% 0.021
g=1 85.20% | 0.039 | 86.90% | 0.030 | 88.40% 0.020
aff | 0321 [0.112] 0383 [0.082] 0451 | 0.044
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Table 26: Percentage of correctly classified cases for D structure: (/3) * PFO v+

(1—5)*pDTM

very small sized

small sized

moderate samples sized

B n1:n2:30 n1:n2:60 n1:n2:200
mean s.d. mean s.d. mean s.d.

5=0 85.20% | 0.043 | 88.10% | 0.050 | 90.50% 0.024
5 =0.10 | 87.10% | 0.051 | 88.60% | 0.046 | 90.80% 0.024
5 =0.20 | 83.10% | 0.054 | 89.40% | 0.041 | 91.20% 0.024
5 =0.30 | 89.00% | 0.049 | 89.40% | 0.042 | 91.40% 0.023
5 =0.40 | 90.40% | 0.046 | 90.60% | 0.034 | 91.80% 0.015
5 =0.50 | 90.40% | 0.042 | 91.10% | 0.033 | 92.00% 0.016
£ =0.60 | 90.50% | 0.033 | 91.40% | 0.033 | 92.30% 0.015
6 =0.70 | 90.70% | 0.034 | 91.80% | 0.031 | 92.40% 0.015
6 =10.80 | 90.50% | 0.041 | 92.00% | 0.030 | 92.50% 0.016
6 =0.90 | 90.70% | 0.042 | 92.30% | 0.030 | 92.50% 0.014
8=1 90.50% | 0.038 | 92.40% | 0.025 | 92.60% 0.014

aff

| 0114 [0.076 [ 0.208 [0.087 | 0.297 |

0.046
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CASE 10/

Data description:

In order to evaluate the impact of separability on the performance of ADD we
consider simulated data - multinomial distributed (R function rmultinom (n, size,
prob) ) - with poorly and well separated classes (affinity coefficient >0,7 for poorly
separated and < 0,4 for well separated classes). We control for three additional
factors on the experiments considering: the number of classes (C=2 and C=3), the
sample dimension (e.g n=60 and n=120 for C=2 ) and balance - unbalance (1:2,
for C=2, for example). Thirty random samples are generated for each structure
with equal prior probabilities. Finally, we report the Pearson correlation coeffici-
ents between separability and performance measures (r averaged for 30 samples
in each scenario).

Table 28: Best classifier model and frequency of unobserved states by level of
separability and sample size

Structure 4 binary predictors vector: P(X; =1)e P(X; = 0),i=1,....4

poor separated 4 (0.5;0.5;0.5;0.5;0.5;0.5;0.5; 0.5
7 Classes Cy (0.5;0.5;0.5;0.5;0.5;0.5;0.5; 0.5
well separated Ch (0.1;0.9; 0.7, 0.3; 0.2, 0.8; 0.6; 0.4)
Cy (0.9; 0.1, 0.3; 0.7, 0.8, 0.2; 0.1; 0.9)

Ch (0.45; 0.55; 0.55; 0.45; 0.45; 0.55; 0.55; 0.45)
poor separated | Cy (0.6;0.4;0.4;0.6;0.6;0.4;0.4; 0.6)
3 Classes Cs (0.4;0.6;0.6;0.4;0.4;0.6; 0.6; 0.4)
Ch (0.1;0.9; 0.7, 0.3; 0.2, 0.8; 0.6; 0.4)
well separated | Cy (0.9;0.1,0.3; 0.7, 0.8; 0.2; 0.1; 0.9)
Cy (0.5;0.5; 0.1; 0.9; 0.5, 0.5; 0.8; 0.2)

iPoster presented at: The Twelfth International Symposium on Intelligent Data Analysis (IDA
2013), in Royal Statistical Society - London, 17-19 October 2013.
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Results:

Table 29: Percentage of correctly classified: (5) * PFO v+ (L= 5) % Ppros

Structure | size (balanced) Best Py s.d | Huberty Index | r(HI,aff)
60(30,30) 53.7% (8 = 0.7) 0.078 13.10% -0.20
60(20,40) 542% (8 = 0.6) 0.079 -28.50% -0.32
poor 120(60,60) | 51.6% (DTM)  0.034 7.60% 0.23
120(30,90) 52.4% (8 =0.9) 0.052 -80.30% -0.53
60(30,30) 90.7% (8 = 0.9) 0.042 85.4% -0.76
well 60(20,40) 542% (8 =0.9) 0.042 72.40% -0.73
120(60,60) 92.1% (FOIM) 0.026 85.40% -0.75
120(30,90) 91.0% (8 =0.9) 0.035 68.40% -0.72

Table 30: Percentage of correctly classified: (5) * PFo v+ (1= 5) % Poror

Structure | size (balanced) Best Py s.d | Huberty Index | r(HI,aff)
90(30,30,30) 39.0% (FOIM) 0.073 -16.50% -0.52
90(20,20,50) | 42.0% (8 = 0.8) 0.054 -24.60% -0.28

POOT T 180(60,60,60) | 41.9% (5 = 0.7) 0.048 | -12.40% 20.64
180(30,50,90) | 44.8% (B = 0.8) 0.055 -6.70% -0.28
90(30,30,30) | 74.7% (8 = 0.7) 0.050 52.6% -0.57

well 90(20,20,50) | 75.3% (8 = 0.9) 0.059 47.00% -0.35
180(60,60,60) | 76.8% (FOIM) 0.032 54.90% -0.74
180(30,50,90) | 75.5% (FOIM) 0.038 52.70% -0.50




Table 31: Percentage of correctly classified: (HIERM) - (B) * PFO v+ (1= 06)*

PDT]W
Structure | size (balanced) Best P s.d | Huberty Index | r(HI,aff)
90(30,30,30) | 52.6% (3 = 0.3) 0.059 11.30% 2038
90(20,20,50) | 56.4% (3 = 0.8) 0.055 8.40% 0.25
POOT 7 180(60,60,60) | 54.8% (5 = 0.4) 0.061 13.20% 0.27
180(30,50,90) | 58.7% (3 = 0.7) 0.040 |  21.40% -0.02
90(30,30,30) | 80.9% (3 = 0.7) 0.050 |  65.90% 2037
well | 90(20.20,50) | 81.8% (FOIM) 0.064 |  61.90% 0.25
180(60,60,60) | 83.3% (FOIM) 0.027 | 67.80% 20.66
180(30,50,90) | 83.6% (FOIM) 0.032 |  69.10% -0.10
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