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a b s t r a c t

The present work aims to support tactical and operational planning decisions of reverse logistics systems
while considering economic, environmental and social objectives. In the literature, when addressing such
systems economic aspects have been often used, while environmental concerns have emerged only
recently. The social component is the one less studied and rarely the combination of the three concerns
has been analyzed. This work considers the three objectives and was motivated by the challenge of
supporting decision makers when managing a real case study of a recyclable waste collection system,
where strategic decisions on the number and location of depots, vehicles and containers were taken
beforehand. Tactical and operational decisions are studied involving the establishment of service areas
for each depot and the definition and scheduling of collection routes for each vehicle. Such decisions
should represent a compromise solution between the three objectives translating a sustainable reverse
logistics plan. The problem is modeled as a multi-objective, multi-depot periodic vehicle routing problem
with inter-depot routes. A mathematical formulation and a solution approach are proposed. An approxi-
mation to the Pareto front is obtained for the case study and the trade-offs between the objectives are
discussed. A balanced solution is proposed.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sustainability is nowadays an increasing society concern demand-
ing for an active organizations posture. Within such context, logistics
organizations play a crucial role, due to their importance in society.
The design, plan and operation of sustainable logistics systems are
then a challenge for the involved companies. To respond to such
challenges, companies must effectively manage their logistics struc-
tures while considering economic, environmental and social objec-
tives. Due to the complexity involved in the associated decision levels,
tools that may support the decision-making process are required and
represent an important defy to the academic community.

The concept of sustainability, although quite old, is commonly
referred as defined in the Brundtland Report by the World Commis-
sion on Environment and Development (WCED) as “the ability to
meet the needs of the present without compromising the ability of
future generations to meet their own needs” [1]. To achieve such goal
the three dimensions of sustainability – economic, environmental
and social – need to be considered when addressing sustainable
systems [2]. This is not, however, a common approach in the
literature. The majority of the published works on logistics networks

has looked into problems with an economic view and, only in some
cases, environmental aspects have been tackled [3]. Furthermore,
literature addressing the social component is scarce [4].

Some authors have investigated the environmental dimension
when studying logistics decisions. This is in the case of Frota et al.
[5] who developed a framework for the design and evaluation of
sustainable logistics networks, where profitability and environmental
impacts are balanced. Dekker et al. [6] review the contribution of
Operations Research to green logistics focusing on the design, planning
and control of a logistics network. Bektas and Laporte [7] introduced
the pollution-routing problem, where the cost of CO2 emissions along
with the operational costs of drivers and fuel consumptions are
minimized when defining vehicle routes. Ubeda et al. [8] solve a
vehicle routing problem with an environmental criterion minimiza-
tion. Erdogan and Miller-Hooks [9] introduced the green vehicle
routing problem, where an alternative fuel vehicle fleet is considered.
A different way of reflecting environmental concerns in logistics
decisions is to manage the returned product flow and/or integrate
both forward and reverse flows in the supply chains. This topic has
been intensively studied in the literature in recent years (see, for
example, the works of Sheu et al. [10], Gu and Ji [11], Srivastava [12],
Lee et al. [13], Salema et al. [14,15], and Qiang et al. [16]).

On the social dimension, Labuschagne et al. [17] categorize
social sustainability issues into four main areas, being equity and
safety within the internal human resources category, along with
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job opportunities, labor sources, diversity, discrimination, flexible
working arrangements, research and development, career devel-
opment, among others. Some of these aspects have been hardly
explored within logistics systems. Ramos and Oliveira [18] study
an organizational concern when defining service areas of a
logistics system with multiple depots so as to pursuit equity. The
authors state that balancing the workload (working hours) among
depots is essential in problems with multiple depots, where the
human resources, although part of the same organization, are
fixed at each depot. A heuristic model to define depots service
areas is proposed, where the minimization of the workload
differences among depots is taken into account. Faulin et al. [19]
address safety concerns when defining vehicle routes. These
concerns are related with potential accidents in the workplace
due to loading, unloading or handling activities. The authors state
that avoiding workplace accidents will make logistics activities
safer and healthier. Environmental concerns are also tackled,
namely noise and polluting emissions. The safety and environ-
mental concerns are translated into costs and a heuristic algorithm
that optimizes the total cost is developed. Li et al. [20] address the
social dimension in a truck scheduling problem for solid waste
collection. A heuristic model is developed. This balances the
collection routes assigned to recycling facilities in order to ensure
that all recycling facilities receive solid waste, guarantying this
way the jobs of deprived people in the different city areas. Equity
can also be addressed when defining routes that minimize the
maximum route length or minimize the difference between the
longest and the shortest route lengths. Pasia et al. [21,22],
Jozefowiez et al. [23,24] and Reiter and Gutjahr [25] study such
problem, the so-called vehicle routing problem with route balan-
cing (VRPRB), where two conflicting objectives are addressed:
minimization of the total travel cost (or total tour length) and
minimization of the maximum route length.

As referred by Garetti and Taisch [26], when only two dimen-
sions are accomplished the system is said to be viable (economic
with environment), equitable (economic with social) or bearable
(environment with social) (see Fig. 1).

Under this framework, the designing, planning and operation
of sustainable logistics systems, i.e., systems that take a position
on economic prosperity, environmental quality and social justice
are almost inexistent. The present paper aims to contribute to the
reduction of this existent gap and aims to support tactical and
operational planning decisions in logistics systems in order to
make them sustainable: building less costly, more environmental
friendly and more social concerned systems.

This work was motivated by a real case study of a recyclable
waste collection system, where the problem faced was on the
definition of the system service areas and associated collection

routes that would support a sustainable solution, where not only
economic objectives would be considered, but also environmental
and social aspects would be accounted for. A multi-objective
solution approach based on mixed-integer linear programming
models is developed and applied to the case study. The economic
dimension is modeled through the traveling distance that directly
influences the variable cost. The environmental dimension is
modeled throughout the calculations of the CO2 emissions. Finally,
the social aspect is considered by aiming to define a balanced
solution in terms of working hours among drivers.

The paper is organized as follows. In Section 2 we present the
case study that motivated the present work. In Section 3 we
review the related work. The formulation of the multi-objective
problem is presented in Section 4 and the solution approach
described in Section 5. Then, the results obtained for the case
study are presented in Section 6. Finally, some conclusions are
drawn in Section 7.

2. Case study

The case-study that motivated the present work is based on a
recyclable packaging waste collection system that can be generally
defined as a system that, within a certain geographic area and on a
regular basis, collects three types of recyclable materials (glass,
paper and plastic/metal) dropped by the final consumer into
special containers. The involved materials are then sorted, at
sorting stations, and delivered to recyclers.

In Portugal there are several collection systems in operation,
each one responsible for a certain number of municipalities. Our
case study focuses on the company responsible for the recyclable
collection system covering 19 rural municipalities with a total area
of 7000 km2. This company operates four depots and a vehicle
fleet of eight vehicles. One of the depots operates also as a sorting
station (depot 208). The remaining three depots are only transfer
stations, where the recyclable waste is consolidated and after-
wards transferred to the sorting station. The system involves 1522
glass bins, 1238 paper bins and 1205 plastic/metal bins spread
over 207 localities (see Fig. 2). It is assumed that a collection site
corresponds to a locality instead of an individual container in
order to reduce the problem size. Due to the proximity of the
containers within a locality (an average distance of 500 m) it is
practicable to treat the containers to collect within a locality as a
single node. The number of containers at each locality/collection
site is a given parameter provided by the company. Regarding the
quantities to collect in each collection site, they were obtained
through the analysis of the historical database of the routes
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Fig. 1. The three pillars of sustainability [26].
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Fig. 2. Collection sites and depot locations.
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performed over a year. For each performed route, this database has
information concerning the day, the type of recyclable material
collected, the number of containers collected, the amount of
kilometers traveled, the route duration and the collected weight.
To estimate the amount to be collected in each collection site and
the collection frequency, the daily average amount disposed by a
container was determined. This estimation was based on the time
interval between two consecutive collections and on the average
amount collected by a container in each route.

The three recyclable materials present different collection fre-
quencies. Glass has to be collected every 6 weeks, plastic/metal every
3 weeks and paper every 2 weeks. Therefore, a 6-week planning
horizon is assumed. The materials have to be collected in separated
routes since the vehicle fleet has no compartments. Due to vehicle
volume capacity constraints and taking each material density into
account, vehicles can load a maximum of 8500 kg of glass, 3000 kg of
paper and 1000 kg of plastic/metal. For the outbound transportation,
i.e., from the depots to the sorting station, larger vehicles are used.
Weight capacities are increased to 12,000 kg for glass, 5000 kg for
paper and 3000 for plastic/metal. All collection routes start at a
depot, visit several localities collecting a single type of material, and
return to a depot to unload. Multiple trips per day, as well as inter-
depot routes (routes that start and end at different depots) are
allowed. However, by the end of a working day, all vehicles have to
return to their origin depot. Collection is performed 5-days a week,
8 h/day. Till recently, all operations have been managed under a
municipality-perspective, i.e., the service areas of each depot and the
collection routes were defined taking into account the municipalities
boundaries. This approach has proved to be very costly and moti-
vated the restructure of the company's tactical and operational
planning decisions. Moreover, the company aims to foster the
system's sustainability by integrating economic, social and environ-
mental objectives in the new plan.

The new plan should consider a vehicle route planning for a 6-
week period that is to be repeated every 6 weeks. To avoid
containers' overflow, route scheduling should take into account,
for each material, a minimal and a maximum interval between
two consecutive collections.

Regarding the economic objective, only the variable costs of the
system are considered, since the fixed costs are associated with
strategic decisions that had been taken beforehand (e.g. number of
depots, vehicles and drivers). In this context, the variable costs are
mainly associated with the distance traveled by vehicles when
collecting containers and transporting the recyclable waste to the
sorting station. Currently, the total distance traveled is about
270,000 km/year. On the environmental objective, and since

transportation is this system’s main activity, a concern towards
Greenhouse Gas emissions in the collection routes should be taken
into consideration. It was estimated that 340,000 kg of CO2 are
emitted per year. Finally, the social objective is linked to the promotion
of equity among human resources, in this case, the drivers. In the
current plan, the driver's schedules are imbalanced meaning that
some drivers operate excessive collection routes, while others may be
idle. A maximum of 220 and a minimum of 100 driving hours are
observed in a 6-week horizon. The company now wants to put into
practice a solution which will account this organizational issue.

3. Problem modeling framework and related literature

As mentioned, the case study involves the definition and schedul-
ing of vehicle routes in a multiple depot system, where inter-depot
routes and multiple trips per vehicle are allowed. This problem is then
modeled as a multi-depot periodic vehicle routing problemwith inter-
depot routes (MDPVRPI) that consists of simultaneously selecting a set
of visit days for each customer, defining the service areas of each depot
and establishing multiple routes for each day of the planning horizon.
The MDPVRP combines three problems: a multi-depot vehicle routing
problem (MDVRP), a periodic vehicle routing problem (PVRP) and a
vehicle routing problemwith multiple use of vehicles (VRPMU). While
the MDVRP considers a planning horizon of just one time unit, the
PVRP considers a planning horizon of several time units, as it assumes
that customers have different delivery (or collection) patterns.
A customer specifies a service frequency and a set of allowable
delivery patterns and the company has to decide on which day the
delivery will occur. In the VRPMU, a vehicle can perform several routes
during a working day and/or during the planning horizon. The
multiple use of vehicles appears when the vehicle fleet is small or
when the length of the working day is larger than the route average
duration (see the works in Refs. [27–30]).

The MDVRP and the PVRP have received a great deal of attention in
the literature (see, for example, the works in Refs. [31–35]), but the
combination of them has been seldom studied. Consequently, only few
models have been developed. Hadjiconstantinou and Baldacci [36]
present a heuristic approach based on tabu search for the MDPVRP,
where the boundaries of the geographic areas served by each depot
are firstly determined. Parthanadee and Logendran [37] provide a
model formulation, develop three tabu-search-based algorithms and
propose a fast technique to find a lower bound (the selective LP
relaxation) to the multi-product, MDPVRP. Vidal et al. [38] propose a
hybrid genetic algorithm with adaptive diversity control for the
MDPVRP.

Closed Routes Open Routes 

Inter-depot Routes (Rotation) 
Rotation with 2 inter-depot routes: Rotation with 3 inter-depot routes:

Inter-Depot 
Route #1

Inter-Depot 
Route #2

Inter-Depot 
Route #1

Inter-Depot 
Route #2

Inter-Depot 
Route #3

Fig. 3. Illustration of closed, open and inter-depot routes.
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While in the classical MDPVRP all routes have to start and end
in the same depot (closed routes), in the MDPVRP with inter-depot
routes (MDPVRPI), vehicles can renew their capacity in any depot
in order to continue delivering or collecting materials without
being forced to return to their base depot before the end of the
working day. Hence, routes can start and finish at different depots
enabling a vehicle rotation composed by inter-depot routes. The
concepts of closed, open and inter-depot routes are illustrated in
Fig. 3. While closed routes have to start and end at the same depot,
an open route ends at a different depot. The difference between an
open and an inter-depot route is that in the latter a rotation has
to be defined in order to get the vehicle back to its home depot.
A rotation is a set of inter-depot routes that can be performed
consecutively until the home depot is reached.

To the authors' best knowledge, the problem combining multiple
depots, multiple periods and inter-depot routes has not yet been
addressed in the literature. Nonetheless, the MDVRP with only open
routes appears with a different name (non-fixed destination MDVRP)
in the work of Filipec et al. [39], where it is studied and solved
through a genetic algorithm. Also Ramos et al. [40] study a similar
problem, the MDVRP with mixed open and closed routes (MDVRP-
MCO) through a MILP model approach. The MDVRP with inter-depot
routes (MDVRPI) was introduced by Crevier et al. [41] and solved
with a tabu search and a set partitioning algorithm. However, when
solving the problem, the authors assumed that all vehicles are based
at a single central depot rendering the problem as a VRP with
intermediate facilities [42]. Later on, the MDVRPI with the vehicle
fleet based at multiple depots is solved by Ramos [43] through a
hybrid method combining heuristics with MILP formulations.

In all the above works, the objective function is defined as the
minimization of either the total distance traveled or the total
routing cost. Only some recent works have explored environmen-
tal issues in vehicle routing problems (Bektas and Laporte [7],
Erdogan and Miller-Hooks [9]). To the best of the authors' knowl-
edge, the integration of the three dimensions of sustainability has
however never been addressed in vehicle routing problems with
multiple depots. Therefore, the main contribution of this work is to
propose a new solution approach to support tactical and opera-
tional decisions when planning sustainable logistics systems.

4. Multi-objective formulation for the MDPVRPI

The multi-objective MDPVRPI is formulated as a set partition-
ing problem, where K represents the set of all feasible routes
(closed and inter-depot routes) and τk is a binary variable that
takes the value of 1 if route k is part of the optimal solution. In our
case, besides selecting the routes that take part of the solution, the
selected routes have also to be assigned to a day t of the planning
horizon and to a vehicle g. Therefore, we redefine the assignment
variable to τktg which equals 1 if route k is performed on day t by
vehicle g and 0 otherwise.

The mathematical formulation considers the following indices
and sets.
Indices

k Route indices
t Time period (days) indices
g Vehicle indices
i,j Node indices
m Recyclable material indices

Sets

K Route set K¼ [
mAM

Km and K¼Kin[Kcl

Km Route subset to collect material m

Kin Inter-depot route subset
Kcl Closed route subset
T Time period set
G Vehicle set
V Node set V¼Vc[Vd[Vs

Vc Collection site subset
Vd Depot subset
Vs Sorting station subset
M Recyclable material set

Each route kAK is characterized by (1) distance disk; (2) duration
durk, which includes travel, service and unloading times; (3) load Lok;
and (4) CO2 emissions Cok. The collection sites belonging to route k
are given by a binary parameter μik that equals to 1 if collection site i
belongs to route k and 0 otherwise. The starting and ending depots
for route k are also given by binary parameters Stki and Enki,
respectively: Stki equals to 1 if route k starts at depot i and Enki
equals to 1 if route k ends at depot i.

The vehicles are fixed at the depots. If vehicle g belongs to
depot i, the binary parameter αgi equals to 1 and 0 otherwise.

The collection frequency of each collection site iwith recyclable
material m is given by frim representing the number of times that a
collection site has to be visited within the planning horizon. The
minimum and maximum interval between two consecutive col-
lections for recyclable material m are given by Iminm and Imaxm,
respectively.

Three objective functions are addressed in this work to tackle
all three sustainability dimensions: economic objective (z1(S)),
environmental objective (z2(S)) and the social objective (z3(S)).
Let S be the vector of decision variables, z1(S), z2(S), and z3(S) the
three objective functions and Ω the feasible region, the multi-
objective problem can be written in the following form:

min fz1ðSÞ; z2ðSÞ; z3ðSÞg
st SAΩ ð1Þ

The economic objective is measured by the collection variable costs.
The fixed costs are not modeled since they correspond to decisions
that were taken beforehand, such as, number of depots, number of
vehicles, number of drivers, and cannot be changed. Therefore, only
variable costs are considered and a common approach in routing and
distribution/collection problems is used to estimate those as a
function of the distance traveled. Thus, the economic objective
function is here assessed by the total distance traveled. This includes
the inbound distance, from the collection sites to the depots, and the
outbound distance, from the depots to the sorting stations. The total
distance traveled (z1(S)) is given by equation (2).

z1ðSÞ ¼ ∑
kAK

∑
tAT

∑
gAG

diskτktgþ ð2aÞ

∑
jAVs

∑
iAVd

∑
mAM

∑
kAKm

∑
tAT

∑
gAG

EnkiτktgLok=QTm2dij� ð2bÞ

∑
jAVs

∑
iAVd

∑
mAM

∑
kAKm

∑
tAT

∑
gAG

αgj ¼ 1

StkiEnkiτktgLok=QTm2dijþ ð2cÞ

∑
gAG
αgi ¼ 1

∑
kAK
Enki ¼ 0
Stkj ¼ 1

∑
tAT

∑
i;jAVd

2τktgdij ð2dÞ

The total distance traveled involves, as mentioned, the inbound
distance (2a), the outbound distance (2b) and (2c) and also a possible
extra distance as it is allowed to have vehicles based at depot i to
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perform closed routes from and to depot j (2d). The distance (dij) of
moving a vehicle between depots is then penalized. The outbound
distance considers the ending depot of each route and the load
collected, in order to compute the number of needed round-trips to
the sorting station. Note that the number of round-trips is not round
upward as we are accounting for the number of round-trips that
occur within a finite time period, but these are repeated in the next
periods. When, for instance, 10.4 round-trips are considered within
the time period, it means that 10 round-trips occur within the time
period, and the 11th occurs in the next period, but some of the load is
related to the previous period. It is also considered that if a vehicle
belonging to the sorting station performs closed routes from depot i,
the load collected will be unloaded at the sorting station and not at
depot i. Therefore, no outbound distance will be accounted for. Term
(2c) decreases the objective function of such a value.

The environmental objective is related to the CO2 emissions
associated to the collection routes and to the outbound transpor-
tation between depots and the sorting station. Being a recyclable
waste collection transportation activity, Greenhouse Gas emissions
(GHG, like CO2, CH4 HFCs, NOx) are generated, particularly CO2

emissions, which negatively impact the environment. In this
context, we measure the environmental objective through the
CO2 emissions, where the total value (z2(S)) is given by Eq. (3).

z2ðSÞ ¼ ∑
kAK

∑
tAT

∑
gAG

Cokτktgþ ð3aÞ

∑
jAVs

∑
iAVd

∑
mAM

∑
kAKm

∑
tAT

∑
gAG

EnkiτktgLok=QTmðCoFijmþCoEjiÞ� ð3bÞ

∑
jAVs

∑
iAVd

∑
mAM

∑
kAKm

∑
tAT

∑
gAG

αgj ¼ 1

StkiEnkiτktgLok=QTmðCoFijmþCoEjiÞþ

ð3cÞ

∑
gAG

αgi ¼ 1

∑
kAK

Enki ¼ 0
Stkj ¼ 1

∑
tAT

∑
i;jAVd

2τktgCoEij ð3dÞ

The CO2 emissions for the inbound transportation are given by the
first term (3a), where the emission value of each route k is given
by parameter Cok. The CO2 emissions from the outbound trans-
portation are also considered (terms (3b) and (3c)), where larger
vehicles are used. Notice that round-trips between the sorting
station and the depots are performed, with vehicles traveling
empty from the sorting station to the depot and in full-truck-load
(FTL) back to the sorting station. The amount of CO2 emissions for
outbound transportation is given by parameter CoFijm when the
vehicle travels in FTL from depot i to sorting station j with material
m and CoEij when the vehicle travels empty in the opposite
direction. The last term (3d) accounts for the CO2 emissions of a
vehicle based at depot i traveling empty to depot j to perform
closed routes from and to depot j.

Finally, the social objective is modeled through the minimiza-
tion of the maximum working hours among all drivers in the
planning horizon. This metric has a twofold contribution towards
social sustainability. On one hand, it promotes equity amongst the
drivers, enabling a balanced workload. When minimizing the
maximum working hours among drivers, the under loaded drivers
will be assigned to more collection routes, while the over loaded
drivers will have allocated less collection routes. In this way, a
more balanced workload between drivers is achieved (see Fig. 4
for an illustrative example). On the other hand, minimizing the
maximum working hours releases drivers to activities other than
just collection such as sorting activities, participation in recycling
awareness campaigns or training. This latter activity helps to
improve the career development and promotes versatility among
human resources.

Assuming a fixed driver–vehicle combination, the maximum
value among vehicle's total working hours in the planning horizon
is given by a positive decision variable DMax (constraint (4)).

DMaxZ ∑
kAK

∑
tAT

τktgdurkþ ∑
kAK

Stkj ¼ 1
Enki ¼ 0

∑
i; jAVd

ia j

τktg2bij; 8g ð4Þ

Then, the function for the social objective is given by Eq. (5).

z3ðSÞ ¼DMax ð5Þ
Having defined the objective functions, the problem constraints of
the multi-objective model for the MDPVRPI are expressed in
constraints (6)–(13).

∑
kAKm

∑
tAT

∑
gAG

τktgμik ¼ f rim 8 iAVc; 8m ð6Þ

∑
kAK

τktgdurkþ ∑
kAK

Stkj ¼ 1
Enki ¼ 0

∑
jAVd

ja i

τktg2bijrH 8 t; 8g; 8 iAVd : αgi ¼ 1 ð7Þ

∑
kAKin

Stki ¼ 1

τktg ¼ ∑
k0AKin

Enk0 i ¼ 1

τk0tg 8g; 8 t; 8 iAVd ð8Þ

∑
gAG

τktgμikþ ∑
gAG

τkt0gμikr1 8 iAVc;

8kAKm; 8m; 8 t; t0AT; t4t0; ðt�t0Þr Iminm ð9Þ

∑
gAG

τktgμikþ ∑
gAG

τk0t0gμik0 r1 8 iAVc; 8k; k0AKm; 8m; 8 t; t0AT ;

t4t0; ðt�t0Þr Iminm ð10Þ

∑
gAG

τktgμikþ ∑
gAG

τkt0gμikr1 8 iAVc; 8kAKm; 8m; 8 t; t0AT ;

t4t0; ðt�t0Þ4 Imaxm; ðt�t0Þr Imaxmþ Iminm ð11Þ

Max {60,120,80,40} = 120 hours Max {70,90,80,60} = 90 hours

0

20

40

60

80

100

120

140

Driver 1 Driver 2 Driver 3 Driver 4

Total of Working Hours

0
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80

100

120

140

Driver 1 Driver 2 Driver 3 Driver 4

Total of Working Hours

Fig. 4. Example of the effect of minimizing the maximum working hours.
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∑
gAG

τktgμikþ ∑
gAG

τk0t0gμik0 r1 8 iAVc; 8k; k0AKm; 8m; 8 t; t0AT ;

t4t0; ðt�t0Þ4 Imaxm; ðt�t0Þr Imaxmþ Iminm ð12Þ

τktgAf0; 1g 8kAK ; 8 tAT ; 8gAG ð13Þ
Constraint (6) ensures that a collection site i with material m has
to be collected frim times over the time horizon. Constraint (7)
states that the total route duration performed by vehicle g on day
t will not exceed the maximum time allowed for a working day
(H). If a vehicle g, belonging to depot i, performs a route starting at
depot j, the travel time between i and j (bij) is considered.

Considering that all vehicles have to return to their origin
depot, constraint (8) guarantees that an inter-depot route k
starting at depot i is part of the solution only if another inter-
depot route k0 ends at depot i. Considering all depots iAVd,
constraint (8) ensures continuity among inter-depot routes
enabling vehicle rotation.

Constraints (9)–(12) model the minimum and maximum inter-
vals between consecutive collections which can be performed by
the same route or by two different routes. Therefore, constraint (9)
states that the same route for material m has to be performed with
a minimum time interval of Iminm while constraint (10) considers
the case of two different routes collecting the same site i, at
consecutive collections. Analogously, constraints (11) and (12)
ensure the maximum interval Imaxm between consecutive collec-
tions. Variable's domain is given in constraint (13).

5. Solution approach

To solve the multi-objective MDPVRPI formulated in the pre-
vious section a solution approach is developed. Since the problem
is modeled with the set partitioning formulation, a procedure to
generate the set K of feasible routes is needed beforehand. There-
fore, our solution approach involves a first step to generate the
routes and a second step where the multi-objective problem is
solved (see Fig. 5). As the goal is to obtain a solution where the
costs are balanced with environmental and social concerns, the set
of routes K is defined considering only the economic objective.
When selecting and scheduling the routes, at step 2, the three
objectives are taken into account by solving the multi-objective
MDPVRPI through the augmented ε-constraint method. With such

method, an approximation to the Pareto front is obtained, which
can be used by the decision-maker to evaluate trade-offs and to
select the solution to be adopted.

Each step of the solution approach is detailed in the next
sections.

5.1. Step 1 – routes generation

As mentioned, the goal of step 1 is to build the set of feasible
routes K (K¼Kin[Kcl) required by the multi-objective MDPVRPI
formulation. Generating all the feasible routes is however
intractable (Laporte [44]), so only a subset of routes will be
defined. Regarding the characteristics of the addressed problem,
a diverse set of closed and inter-depot routes are generated
representing alternative solutions to collect all sites. To build only
closed routes (Kcl), a MDVRP is solved. To build closed (Kcl) and
inter-depot (Kin) routes, a MDVRPI is solved. To build only inter-
depot routes (Kin), a MDVRPI-Extension is solved. Therefore, set K
is fed by three independent procedures modeling the three
alternative solutions to collect waste from all collection sites (see
Fig. 6).

We recall that as we are dealing with a multi-product problem,
a set of recyclable materials M is involved, and given that each
material has to be collected in separated routes, each procedure of
step 1 is run independently for each material.

The problems involved in each procedure are formulated
through MILP formulations based on the two-commodity flow
formulation [45]. In such formulations, the network is defined by a
direct graph GR¼(V,E) with V¼Vc[Vd[Vf[Vs, being Vc¼{1,…, n}
a set of n customers, Vd¼{nþ1,…, nþw} a set of w depots,
Vf¼{nþwþ1,…, nþ2w} a replica of the depots set, Vs¼
{nþ2wþ1,…, nþ2wþs} a set of s sorting stations and E¼{(i,j):i,
jAVc[Vd[Vf[Vs, ia j} the edge set.

Each site iAVc is characterized by a demand pi and service
duration ti. The service duration depends on the average time to
collect a container (U), on the average distance between containers
within a locality (B), on the average speed within localities (vw)
and on the number of containers at each locality (ci), where
ti¼ci(Uþ(B/vw)). The inbound vehicles have a weight capacity of
Q and the outbound vehicles QT. The maximum duration for a
working day is given by H. Every edge (i,j) has an associated
distance dij and a travel time bij, where bij¼(dij/vb) and vb is the
average speed between localities. We assumed the same speed in
every edge as the type of roads and traffic in the studied rural
network are very similar. Moreover, only ordinary roads between
localities are traveled by these vehicles, so it is a reasonable
assumption to consider same speed in every edge. An unloading
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Fig. 5. Solution approach overview.
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time L is also considered to account for the time to unload a
vehicle at the end of each route.

The depot replica set (Vf) is needed because in the two-
commodity flow formulation routes are defined by paths starting
at the real depots and ending at the replica ones. To establish the
routes, this formulation requires two flow variables defining two
flow paths for any route. One path from the real depot to the
replica one modeled by the flow variable representing the vehicle
load (variable yij). In a collection problem, this load increases along
the route. The other path, from the replica depot to the real one,
is given by the second flow variable (yji) that models the vehicle
empty space which decreases along the route.

These sets, parameters and variables are the baseline to all
routes generation procedures which are briefly described in the
next sections.

5.1.1. Procedure 1 – MDVRP
In the MDVRP only closed routes are defined. A set of routes K is

considered and partitioned by depot: K¼K1[…[Ki, where Ki is
the subset of routes belonging to depot i. As decision variables we
have the binary variable xijk that equals to 1 if site j is visited
immediately after site i on route k (xijk¼0, otherwise) and the
corresponding reverse variable xjik when the reverse path is being
defined; the flow variables yijk and yjik; and a binary variableδikis
defined to assign site i to route k. The objective function also
considers the distance to be traveled within each collection site
(second term of Eq. (14)) and the outbound distance (third term of
Eq. (14)).

Min
1
2
∑
iAV

∑
jAV

∑
kAK

xijkdijþ ∑
iAVc

ci Bþ2 ∑
iAVc

∑
jAVf

∑
hAVs

∑
kAK

yijk
QT

dhj ð14Þ

subject to

∑
jAV
ja i

ðyijk�yjikÞ ¼ 2piδik; 8 iAVc; 8k ð15Þ

∑
iAVc

∑
jAVf

∑
kAK

yijk ¼ ∑
iAVc

pi ð16Þ

∑
iAVc

∑
jAVf

∑
kAK

yjikr jK jQ� ∑
iAVc

pi ð17Þ

∑
iAVc

yijkrQ 8 jAVf ; 8kAKj ð18Þ

∑
iAV

ia j

xijk ¼ 2δjk; 8 jAVc; 8k ð19Þ

yijkþyjik ¼ Qxijk 8 i; jAV ; ia j; 8k ð20Þ

∑
kAK

δik ¼ 1 8 iAVc : pi40 ð21Þ

δik ¼ δðiþwÞk 8 iAVd; 8kAKi ð22Þ

∑
iAVc

∑
jAV

tixijkþ ∑
iAV

∑
jAV

bijxijkr2ðH�LÞ 8kAK ð23Þ

∑
jAVc

xijkr1 8 iAVd; 8kAKi ð24Þ

∑
iAVc

xijk ¼ 0 8 jAVf ; 8k=2Kj ð25Þ

∑
jAVc

xijk ¼ 0 8 iAVd; 8k=2Ki ð26Þ

yijkZ0 8 i; jAV ; kAK ð27Þ

xijkAf0; 1g 8 i; jAV ; kAK ð28Þ

δikAf0; 1g 8 iAVc; kAK ð29Þ
The above formulation is an extension for the MDVRP of the
formulation proposed by Baldacci et al. [45] for the CVRP. Con-
straints (15)–(20) are re-written as we now consider index k and
the binary variable δik. Constraints (21)–(26) are new constraints
that deal with multiple depots and duration constraints. Con-
straint (21) guarantees that each locality with positive demand has
to be visited by a single route. Constraint (22) matches the real
depots with their replica, ensuring that a route will start at real
depot and will end at the corresponding replica. Constraint (23)
guarantees that the duration of each route does not exceed the
maximum allowed routing time. Constraint (24) ensures that each
route will leave its home depot at most once. Finally, constraints
(25) and (26) jointly ensure that a vehicle route cannot leave and
return to a depot other than its home depot (real and replica
depot). The new variable definition is given in Eq. (29).

The proposed formulation when applied to large instances is
difficult to solve. Therefore, a solution method is proposed to solve
the MDVRP (see Fig. 7). Firstly, one solves a problem where both
closed and open routes are allowed, the MDVRP with mixed closed
and open routes (MDVRP-MCO). The MDVRP-MCO formulation is
proposed in the work of Ramos et al. [40] and is capable of solving
large instances. Moreover, a great part of the routes in the solution
for the MDVRP-MCO are feasible for the MDVRP – the closed
routes. For the infeasible part of the solution (the open routes), the
MDVRP formulation is applied, having as input data only the sites
belonging to each open route.

5.1.2. Procedure 2 – MDVRPI
The MDVRPI also allows inter-depot routes, where vehicles

have to return to the home depot on the same working day.
Therefore, vehicle rotation is limited by the maximum duration of
a working day (H). To solve the MDVRPI, we use the solution
methodology proposed by Ramos [43], considering an unlimited
vehicle fleet. A MDVRPI Relaxation is firstly solved where inter-
depot and closed routes are obtained (see Fig. 8). This formulation
corresponds to the MDVRP-MCO formulation to which constraint
(30) is added.

∑
jAV

xijþ ∑
jAV

xji ¼ ∑
jAV

xðiþwÞjþ ∑
jAV

xjðiþwÞ 8 iAVd ð30Þ

Constraint (30) guarantees that the number of routes departing
from one depot is equal to the number of routes arriving at that
depot. This ensures connectivity between the inter-depot routes
and the rotation concept, i.e., a vehicle returns to its home
depot. However, it is not guaranteed that the vehicle returns
within a working day since no duration constraints for rotation
are considered in the MDVRPI Relaxation. Notice that in the

MDVRP-MCO
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Closed 
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Fig. 7. Solution method for the MDVRP.
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two-commodity formulation, to any real depot iAVd, a corre-
sponding replica depot is assumed iþwAVf (w is the number of
depots),
and xij and xji model the opposite paths.

For the inter-depot routes obtained from the solution of the
MDVRPI Relaxation, rotations are defined by linking the inter-
depot routes until one reaches the starting depot. The duration of
each rotation is then assessed. For rotations that do not respect the
working day time limit (H), the MDVRPI formulation is solved and
rotations are re-defined to comply with the imposed limit. As a
solution, one can have inter-depot routes belonging to rotations
that satisfy the maximum duration for a working day and/or
closed routes. More details can be found in Ramos [43].

5.1.3. Procedure 3 – MDVRPI extension
The MDVRPI Extension solves the problem by visiting all sites

only by inter-depot routes. For that, the MDVRPI Relaxation is used
but, instead of considering all depots and all collection sites at the
same time, only two depots are considered in each run and only
the closest sites to those depots are made available to be collected.
Moreover, a constraint is added to enforce routes to start and end
at different depots. As a result, only inter-depot routes are defined.

A pair of depots [dp,dp0]AVd is considered at a time and
constraints (31) and (32) are added to the MDVRPI Relaxation
formulation, imposing that all routes have to start at depot dp and
end at depot dp0 so as to obtain a solution with only inter-depot
routes between each pair of depots.

xij ¼ 0; 8 iAVc; j¼ dpþw ð31Þ

xij ¼ 0; 8 jAVc; i¼ dp0 ð32Þ
Regarding the maximum duration for each inter-depot route in
this procedure, the value (H�L�bdp,dp0) is considered to guarantee
that the vehicle can return to the origin depot within a
working day.

After running the three procedures, set K is built. Each route
kAK is characterized by mileage (disk), duration (durk), load (Lok)
and CO2 emissions (Cok). The first three parameters are provided
by the solutions of the problems solved. The last one, the CO2

emissions, has to be assessed a posteriori. For that, we use the
vehicle emissions model proposed by Barth et al. [46]. This work

assumes that when a vehicle travels over an arc (i,j) it emits a
certain amount of CO2, which depends on the fuel consumption
that, in turn, is function of many aspects such as: distance traveled,
vehicle load (curb weight plus load), speed, road angle, engine
features, vehicle frontal surface area, coefficients of rolling resis-
tance and drag, air density, among others (see Barth et al. [46]).
To convert fuel into CO2 emissions, we assumed the conversion factor
of one liter of diesel fuel containing 2.6676 kg of CO2 (as proposed in
[47]). Note that we considered CO2 emissions on edges and nodes,
since nodes represent collection sites aggregating one or more
containers and a certain mileage is traveled within each node.

The computation of the CO2 emissions for all routes kAK
concludes step 1.

5.2. Step 2 – solution method for the multi-objective problem

In step 2 the multi-objective problem defined in Section 4 is
solved. In such problems is rarely the case where a single point
optimizes simultaneously all the objective functions [48], there-
fore, trade-offs between the objectives have to be analyzed in line
with the notion of Pareto optimality. A solution is Pareto-optimal if
no feasible solution exists which would improve some objective
without causing a simultaneous deterioration in at least one other
objective. This concept generally does not provide a single solu-
tion, but rather a set of solutions called the Pareto-optimal set.
The image of the Pareto-optimal set under the objective functions
is called Pareto front [48].

Several methods exist to solve this kind of problems. According
to Hwang and Masud [49], the multi-objective methods are
classified as a priori, interactive and a posteriori, depending on
when the decision-maker preferences are provided. In a posteriori
methods, the decision-maker analyzes the Pareto-optimal solu-
tions that were previously generated and takes the final decision.
The most widely used a posteriori methods are (1) the weighting
method, where the weighted sum of the objective functions is
optimized and by varying the weights different Pareto-optimal
solutions are obtained; and (2) the ε-constraint method, where
one objective function is optimized and the other objectives are
considered as constraints bounded by some allowable levels ε.
The levels ε are then altered to generate the entire Pareto-optimal
set. The ε-constraint method has been successfully applied to
routing and distribution problems (Berube et al. [50], Grandinetti
et al. [51], and Liu and Papageorgiou [52]). For a detailed survey
about multi-objective problems see [53,54].

An improved version of the traditional ε-constraint method is
applied to our problem so that the Pareto front is generated.
According to Mavrotas [55], the conventional ε-constraint method
presents three points that need careful attention when imple-
menting such a method: (1) the calculation of the range of the
objective functions over the efficient set; (2) the guarantee of
efficiency of the obtained solution, and (3) the increased solution
time for problems with more than two objective functions.
Mavrotas [55] proposes an improved version of the ε-constraint
method to address those aspects, the so-called augmented ε-
constraint method. To overcome the first issue, Mavrotas [55]
proposes a lexicographic optimization over every objective func-
tion in order to compute the range of the objective functions (the
payoff table) over the efficient set. The lexicographic approach will
ensure the Pareto optimality by optimizing a first objective
function and then, among the possible alternative optima, opti-
mizing for a second objective function and so on. If the range of
the objective functions is obtained only by individual optimization,
it is not guaranteed that the solutions obtained are Pareto-optimal
solutions since alternative optima may be presented (weak
efficiency).

MDVRPI Relaxation

Inter-Depot 
Routes

Closed 
Routes

Rotation 
Definition

Inter-DepotRoutes
belonging to rotations 

Inter-DepotRoutes
belonging to rotations 

with duration > H 

MDVRPI

Inter-DepotRoutes
belongingto rotations 

and/or
ClosedRoutes

Fig. 8. Solution method for the MDVRPI.

T.R.P. Ramos et al. / Omega 48 (2014) 60–74 67



To overcome the second issue, Mavrotas [55] proposes that the
objective function constraints are transformed into equalities
(instead of inequalities as in the conventional method) by incor-
porating slack or surplus non-negative variables. These new
variables are then used as a second term in the objective function
penalizing the objective function if their value differs from zero.
This strategy forces the model to produce only efficient solutions.

When dealing with three objective functions, a total of (q2þ1)
(q3þ1) runs are performed to obtain the Pareto front, if q2 and q3
are the equal intervals dividing the range of each objective
function. To overcome the third issue and decrease the number
of runs, the algorithm initiates with the more relaxed version of
the constrained objective function and gradually restricts the
bounds. When the problem becomes infeasible, it means that
there is no need to further restrict the corresponding objective
function as it will also result in infeasible solutions. Therefore, the
algorithm proceeds to the next grid point. For further insights on
the augment ε-constraint method please see [55].

When solving the problem under analysis in this paper, where
three objectives are being tackled, an approximation to the Pareto
front is designed by using the augmented ε-constraint method,
where the economic objective is optimized and the social and
environmental objectives constrained (see Table 1).

Finally, to propose a sustainable solution, that is, a compromise
solution between the three objectives, the compromise solution
method [56] is applied, where the Pareto-optimal solution closest

to the ideal point is obtained. The ideal point (zI) is defined
according to the individual minima of each objective (zI ¼ ðz1min;

z2min; z
3
minÞ), while the nadir point (zN) is defined according to the

worst values obtained for each objective (zN ¼ ðz1max; z
2
max; z

3
maxÞ).

In order to apply this method, the objective functions are normal-
ized by the differences between the nadir and ideal points,
measuring the variability of the objective function within the
Pareto set. Afterwards, the compromise solution is obtained by
minimizing the distance from the Pareto front to the ideal point,
where the Tchebycheff norm is used as a distance measure:

min max
j ¼ 1;…;ϕ

fλj j zjðSÞ�zjI j g : SAΩ
� �

ð33Þ

where ϕ is the number of objective functions in study and λj the
normalized factor for each objective function:

λj ¼
1
rj

∑
ϕ

i ¼ 1

1
ri

" #�1

ð34Þ

rj ¼ zjmax�zjmin ð35Þ

6. Results and analysis

In this section the solution approach proposed is applied to the
described case study in order to define a sustainable plan for the
recyclable waste collection in 19 Portuguese municipalities. The
solution approach was implemented in GAMS 23.7 and solved
through the CPLEX Optimizer 12.3.0, on an Intel Xeon CPU X5680
@ 3.33 GHz.

6.1. Results for step 1

In step 1, a set of diverse closed and inter-depot collection
routes for the three recyclable materials are generated through the
run of the three described procedures. The number of routes
obtained from each procedure for each material is shown in
Table 2.

It can be seen that the mixture plastic/metal, which acts as a
single material, requires more collection routes than the other two
materials. This mixture has a lower density when compared to the
other two materials, and thus the vehicle weight capacity for such
material is smaller for the same vehicle volume capacity.

In order to illustrate the procedure's results, the routes obtained
for the glass collection are provided in Figs. 9–11 Fig. 9(a) shows the
39 closed routes designed by procedure 1, where a MDVRP is solved.
Fig. 9(b) shows the partial results for procedure 2, where 26 closed
routes and nine inter-depot routes are defined by the MDVRPI
Relaxation. To complete procedure 2, the nine inter-depot routes
are assigned to four rotations and the total duration of each rotation
is assessed. All proposed rotations exceeded the maximum time
allowed for a working day. Thus, the inter-depot routes belonging to
each rotation are re-worked by the MDVRPI formulation in order to
satisfy the duration constraints. Fig. 10(a) and (b) shows two of the
four rotations before and after being re-worked.

Procedure 3 defines 38 inter-depot routes for glass considering
two depots at each run. To select the sites for each run, the closest
and the second closest depots for each site are determined. Then,
for each pair of depots, one selects the sites that have these two
depots as the closest and second closest depots. The result of this
process is shown in Fig. 11. For 31 collection sites, marked with
triangles, the closest and the second closest depots are depots 208
and 209; for pair [208–210] there are 40 sites; for depot pair [208–
211] there are 46 sites; for pair [209–211] there are 54 sites and for
pair [210–211] there are 36 sites (see Fig. 11).

Table 1
Pseudo-code of the augment ε-constraint method.

1. Lexicographic optimization to create the payoff table
1.1 min z1ðSÞ

st
Eqs. (4), (6)–(13)
Output: solution s1¼(z1*,z2,z3)

1.2 min z2ðSÞ
st
Eqs. (4), (6)–(13)þz1(S)¼z1*

Output: solution s2¼(z1*,z2*,z3)
1.3 min z3ðSÞ

st
Eqs. (4), (6)–(13)þz1(S)¼z1*þz2(S)¼z2*

Output: solution s3¼(z1*,z2*,z3*)
1.4 Repeat (1.1) to (1.3) for z2(S) and z3(S)
1.5 Determine the payoff table for the three objectives

2. Set ε values
2.1 Set ranges of the objective functions:

r2 ¼ z2max�z2min

r3 ¼ z3max�z3min

2.2 Set number of grid points q2 and q3
2.3 Set the variation of ε2 and ε3:

Δε2 ¼ r2=q2Δε3 ¼ r3=q3

3. Solve problem (where υ2, υ3 are the surplus variables and eps is a small
number, usually between 10�3 and 10�6)
n2 ¼ 0; n3 ¼ 0
while n2rq2 and n3rq3
do

min ðz1ðSÞ�epsðυ2=r2þυ3=r3ÞÞ
st
Eq: ð4Þ; ð6Þ–ð13Þ
z2ðSÞþυ2 ¼ z2max�n2Δε2
z3ðSÞþυ3 ¼ z3max�n3Δε3
n2 ¼ n2þ1
n3 ¼ n3þ1

end
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Procedure 3 uses the MDVRPI Extension for each pair of depots
and the inter-depot routes are then obtained. In Fig. 11, the eight
glass inter-depot routes obtained for pair [208–211] can be seen as
an illustrative example.

To sum up, a set of 97 different routes to collect glass have been
defined in step 1. The same procedure is applied to the other two
materials and, as final results, 95 routes to collect paper and 145
routes to collect plastic/metal are obtained. A total of 337 routes
are defined for the three types of materials. Considering that the
routes obtained by procedure 3 may start at any of the two depots,
these 140 routes are replicated by reverting direction and added

to set K. Moreover, direct routes between depots are also added
(10 direct routes, considering both directions). In conclusion, 487
routes compose set K.

6.2. Results for step 2

Step 2 selects routes from set K, while considering the number
of vehicles available (eight in total) and where they are based.
It also accounts for the planning horizon of 6 weeks (i.e. 30
working days) and observes the interval between collections.
At step 2, the multi-objective problem is solved by applying firstly
the augmented ε-constraint method to define an approximation to
the Pareto front, and then the compromise solution method to
obtain a sustainable solution for the case study.

The payoff table generated by the lexicographic method is
shown in Table 3. When minimizing the total distance (economic
objective z1), a solution with 27,261 km is obtained. This solution
emits 34,982 kg of CO2 and the maximum number of hours among
the eight vehicles is 200 h. When minimizing the CO2 emissions
(environmental objective z2), a solution with 34,747 kg of CO2 is
achieved. This solution implies 0.7% less of CO2 emissions, and
0.3% more kilometers when compared to the economic solution.
The number of working hours remains unaltered. Lastly, when
minimizing the maximum number of working hours in the
planning horizon (social objective z3), a solution with a maximum

Table 2
Number of routes defined by procedure and by recyclable material.

Glass Paper Plastic/metal

Procedure 1
Closed routes 39 42 66

Procedure 2
Closed routes 37 41 64
Inter-depot routes 9 6 9

Procedure 3
Inter-depot routes 38 40 62

 Procedure 2 
MDVRPI Input 

 (Inter-depot routes belonging to rotations that do not 
satisfy a working day duration) 

 

 Procedure 2 
MDVRPI Output 

 (Inter-depot belonging to rotations that satisfy a  
working day duration or closed routes) 

 

Fig. 10. Procedure 2 – MDVRPI partial solution for material glass.

 Procedure 1  
 Final Output 
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 MDVRPI Relaxation Output 
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Fig. 9. Final solution for procedure 1 and partial solution for procedure 2 for material glass.
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of 165 h is obtained. This solution implies a total of 30,118 km
(about 11% more than in the economic solution) and 38,042 kg of
CO2 (about 10% more than in the environmental solution).

When analyzing in detail the results of the payoff table, Fig. 12
shows the number of hours each driver has to work (social
concern) in the collection activity considering the economic,
environmental and social solutions. It can be seen that both
economic and environmental solutions are quite unbalanced, with
a difference between the maximum and minimum working hours
of 102 and 120 h, respectively. On the other hand, the social
objective presents an equity solution, where all drivers work the
same number of hours in the collection activity (165 h).

The solution obtained in step 2 is a daily schedule for each
vehicle, defining all routes to be operated. Fig. 13 shows, as an
example, the schedules proposed for vehicle 7 that belongs to
depot 210, when considering the economic and social solutions.

Each day of the schedule shows the number and type of routes to
be performed (Pl stands for plastic/metal, Gl for glass and Pa for
paper) and the total duration (in minutes). For example, on day 1 of
the economic solution, vehicle 7 has to perform route #56 to collect
plastic/metal and afterwards route #250 to collect paper. The total
duration (including unloading activities) is 461 min. Route #250 is
repeated three times over the planning horizon given the collection
frequency for material paper (days 1, 12, and 22). The interval
between consecutives visits respects the minimum and maximum
interval allowed for this material (9 and 11 days, respectively).

Comparing both schedules (Fig. 13(a) and (b)), fewer routes are
performed by vehicle 7 in the social solution (44 routes against 52
routes in the economic solution). In the social schedule, the driver
of vehicle 7 works 165 h in collection activities, while in the
economic schedule works 200 h. To reduce 35 working hours from
vehicle 7, the scheduled hours for the remaining vehicles have to
increase. This can be achieved with the reconfiguration of each
depot service area. As an illustrative example, the service areas for
material glass for the three solutions are shown in Fig. 14. In the
social solution, the number of collection sites assigned to depot
208 (114 sites) is lower than in the other two solutions (128 sites
in the economic solution and 136 in the environmental solution)
while the number of sites assigned to depot 209 is larger (46 sites

in the social solution against 32 and 26 in the economic and
environmental solutions, respectively). Depot 209 (where vehicles
5 and 6 are based) is the one with less working hours in the
economic and environmental solutions (Fig. 12). In order to
balance the number of working hours in the social solution, more
sites have to be assigned to this depot.

The environmental solution is the one with the highest number
of sites assigned to depot 208, which acts also as the sorting
station. The outbound transportation is performed by larger
vehicles that emit a higher value of CO2. Therefore, as the objective
is to minimize the CO2 emissions, more sites are assigned to the
sorting station to avoid the outbound transportation. Moreover,
the environmental solution chooses routes where the vehicles
travel shorter distances with heavy load given that it minimizes
the CO2 emissions.

In the three solutions, a few sites are collected by inter-depot
routes.

With the results of the payoff table, one determines the ranges
of the objective functions that are going to be constrained in the
augmented ε-constraint method, i.e., the environmental and social
objectives. For the environmental objective range r2, the value is
3295 kg of CO2 (r2 ¼ z2max�z2min). For the social objective r3, the
value is 35 h (r3 ¼ z3max�z3min).

After defining the ranges, it is important to define the grid size
parameters (q2 and q3). These influence the number of Pareto-
optimal solutions that will be found and the computational time.
The total Pareto-optimal solutions can only be found if the grid is
fine enough such that at most one Pareto-optimal solution is
contained in each cell [57]. However, it is not our intention
to generate all Pareto-optimal solutions as our ultimate goal is to
identify a compromise solution and for that it is not required to
generate all Pareto-optimal solutions. Only an approximation
to the Pareto front is then needed and for that the use of seven
grid points is sufficient (q2¼7 and q3¼7). Based on this assump-
tion, the variation of the constraints bounds to use (ε2 and ε3) are
Δε2¼471 kg of CO2 and Δε3¼5 h.

Table 4 presents the 64 combinations of bounds considered to
optimize the economic objective in the augmented ε-constraint
method. All the CPLEX computational runs are limited to 1 h. Nine

Procedure 3 

211

210
208

209

Sites assigned to pair [209-211]

x

Sites assigned to pair [208-209]

Sites assigned to pair [208-211]

Sites assigned to pair [208-210]

Sites assigned to pair [210-211]
Inter-depot routes 

Fig. 11. Collection sites assigned to each pair of depots and the inter-depot routes for pair [208–211] provided by procedure 3.
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different solutions are obtained (S1–S9 in Table 4). Such solutions
can be visualized in Fig. 15, where it is shown that with improving
social objective (reducing the number of maximum working
hours), the economic and environmental objectives deteriorate.
For instance, to improve the social objective by 17.5%, the eco-
nomic and the environmental objectives deteriorate 10% and 9.5%,
respectively (S1 versus S8). However, the economic objective only
deteriorates 1.2% and the environmental 2.4% with an improve-
ment of 12.5% in the social objective (S3 versus S8). Regarding the
economic and environmental objectives, the trade-off only exists
between S8 and S9. To improve 0.7% in the environmental
objective, the economic objective deteriorates 0.3%. In the remain-
ing solutions, these objectives are directly proportional and in an
inverse proportion to the social objective.

Aiming to find a compromise solution between the three objec-
tives so as to plan a sustainable solution for the logistics network, the
compromise solution method is applied. The ideal point is defined
according to the individual minima of each objective, in this case
zI¼(27,261 km, 34,747 kg CO2, 165 h) and the nadir point is

zN¼(30,118 km, 38,042 kg CO2, 200 h). After normalizing the objec-
tive functions with the amplitude between the nadir and ideal
points, the compromise solution (zC) is obtained by minimizing the
Tchebycheff distance to the ideal point. The compromise solution
obtained is then zC¼(28,013 km, 35,653 kg CO2, 174 h). Fig. 15 also
depicts the compromise solution and the ideal point.

In the compromise solution, the economic objective deterio-
rates 2.7%, the environmental 2.6% and the social 5.5% with respect
to the ideal point. This solution is detailed in Fig. 16. For all
materials, the number of sites assigned to the sorting station is
smaller than the ones obtained for the economic and environ-
mental solutions, but higher than for the social solution. For
instance, in the compromise solution for paper, 39% of the sites
are assigned to depot 208 (sorting station), while 45% are assigned
when the economic and environmental objectives are minimized
individually and 38% when considering the social objective. Also
more sites are collected in inter-depot routes. These differences
contribute to an increase in the distance traveled and CO2 emitted
but balances the solution in terms of workload among depots
(Fig. 17).

The compromise solution then represents a sustainable
solution that we have proposed to be implemented by the
company in study. Compared to the company current solution,
where the municipalities' boundaries are expected to define the
service areas and the collection routes, savings of about 10% in
distance and 9% in CO2 emissions and a reduction of 21% in the
maximum of driving hours are obtained with the sustainable
solution.

Table 3
Payoff table obtained by the lexicographic optimization of the objective functions.

z1 (km) z2 (kg) z3 (h)

min z1 27,261 34,982 200
min z2 27,337 34,747 200
min z3 30,118 38,042 165

Economic Environmental Social

159 h
187 h 196 h 185 h

100 h 98 h

200 h

163 h
179 h 179 h

196 h 190 h

80 h
108 h

200 h

161 h

165 h 165 h 165 h 165 h 165 h 165 h 165 h 165 h

Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 5 Veh. 6 Veh. 7 Veh. 8 Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 5 Veh. 6 Veh. 7 Veh. 8 Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 5 Veh. 6 Veh. 7 Veh. 8

Fig. 12. Number of working hours by vehicle in the three solutions.
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Fig. 13. Schedule for vehicle 7 in economic (a) and social (b) solutions.
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7. Conclusions

The problem of planning a multi-depot logistics system taking
into account the three dimensions of sustainability has been
studied. Economic, environmental and social objective functions
are considered in a tactical routing and scheduling problem with
multiple depots. The aim was to find a compromise solution
between the three objectives in order to obtain a sustainable

logistics system. To the best of the authors' knowledge, this
problem has not yet been addressed in the existing literature.

The problem solution is achieved through the development of a
multi-objective solution approach based on a set partitioning
formulation. Firstly, a set of feasible routes is generated consider-
ing only the economic objective. Then, in the second step, the
augmented ε-constraint method is applied to determine the
Pareto front and the compromise solution method finds a solution

Economic Environmental Social

Fig. 14. Service areas for glass material for the economic, environmental and social solutions.

Table 4
Constraints bounds for the environmental (ε2) and social (ε3) objectives and Pareto-optimal solutions obtained.
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where costs (as a linear function of the distance traveled) are
balanced with environmental and social concerns. The environ-
mental concerns are measured through the CO2 emissions of the
vehicle routes, while the social concerns are measured in terms of
maximum number of drivers working hours. The latter objective
leads to the promotion of equity among the drivers as, in an ideal
situation, all human resources should have the same number of
driving hours.

The solution approach is applied to a real recyclable waste
collection system, where the trade-offs between the three objectives
are highlighted and a compromise solution is reached. When
economic and environmental objectives are minimized, unbalanced
solutions are obtained in terms of working hours by vehicle. On the
contrary, when the social objective is minimized, a balanced solution
is obtained, where all drivers have to drive the same number of
hours. However, this equity solution leads to a significant increase in
distance and CO2 emissions. Between environmental and economic
objectives there are only slight trade-offs, indicating that the three-
objective model could collapse into a two-objective model. An
efficient solution taking into account the three objectives is obtained
through the compromise solution method, where the distance to the
ideal point is minimized.

As the main conclusion it can be stated that an innovative
approach to planning sustainable logistics system has been

proposed. Tactical and operational decisions are considered simul-
taneously and different solutions are obtained when each dimen-
sion of sustainability is addressed individually. The main
contribution of this work is to integrate within a single solution
the three dimensions of sustainability, where new aspects that
should be considered when planning reverse logistic systems are
modeled. In particular, service areas, routes definition as well as
routes scheduling, CO2 emissions and human resources working
hours have been considered.

As future work, a sensitivity analysis to some model's
parameters could be performed in order to assess how the
Pareto front reacts to changes in some parameters. Also further
investment should be made on measures for economic and
social objectives. On the economic side, a common assumption
of routing models (and used in this work) is that the variable
costs depend linearly on the distance traveled, leading to an
objective function that minimizes distance. However, this
may be improved and a more comprehensive function could
be developed to measure variable costs. For instance, fuel
consumption and vehicle maintenance could be also modeled.
The former depends on distance, load, speed and vehicle
features, and the latter depends on distance traveled and
vehicles typology. On the social objective, other measures to
account for such objective should be investigated. The social
objective is the less studied of the three sustainability dimen-
sions and further work should then be performed in this area.
Moreover, this work can be extended to cope with strategic
decisions like depots location and/or vehicle fleet sizing and
location in order to promote the logistics system's sustainability
as a whole.
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Fig. 15. Approximation to Pareto front considering the three objectives with the
ideal point and the compromise solution highlighted.

Fig. 16. Representation of the compromise solution for the three recyclable materials.
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Fig. 17. Number of working hours by vehicle in the compromise solution.
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