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Abstract 

 

In this paper it is exemplified how the busy period of an infinite servers queue is 

applied to the equipments failures management. With this model it is possible to 

obtain system performance measures and also to contribute to solve organizing 

structures’ problems, by minimizing the risks of the organizations inoperative 

structures, with considerable logistics pernicious consequences for companies and 

often also for the regions where the companies are inserted. 
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1 Introduction 
 

Situations of scarce resources demand very rigorous management rules. Structures 

management requires strong capabilities and competences. Solving logistics 

machine failures problems becomes crucial on this context.  

In this model with MG queuing systems, customers arrive according to a 

Poisson process at rate 𝜆. Immediately after each one’s arrival, it receives a 

service which length is a positive random variable with distribution function G (.) 

and mean value 𝛼. An important system parameter is the traffic intensity   . 

The service of a customer is independent from the other customers’ services and 

from the arrivals process. The busy period of a queuing system begins when a  
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customer arrives, finding it empty, and ends when a customer leaves the system 

letting it empty. During the busy period there is always at least one customer in 

the system. Formulae that allow the calculation of some of the busy period length 

parameters for the MG queuing system are presented in the next section.  

These results can be applied in Logistics (see, for instance [4, 5, 6, 10, 13], being 

the customers the failures occurred in the equipments. The service time in the 

queue is the time that a machine is idle waiting for reparation or being repaired. 

See also the operations cases in aircraft, shipping or trucking fleets in [9].  

 

2 Some MG Queue System Parameters 
 

In an MG queuing system there are neither losses nor waiting. In fact there is 

no queuing in the common sense. For these systems, to study the population 

process is not particularly important as for other systems with losses or waiting. 

Generally it is much more interesting the study of some other processes as, for 

instance, the busy period. The results related to the busy period length of the 

MG queuing system permit to find performance evaluation measures for the 

equipments. An illustration will be presented in this study, considering a very 

simple and short numerical example. 

 

Being B the MG queuing system busy period length (see [8]), the mean value 

of B, whatever is G(.), is given in [15] as 

 

 
1e

B





                                                    (2.1). 

 

Calling now VAR [B] to the variance of B, it can be seen that it depends largely 

on the form of B. Anyway in [14] it is stated that: 

 

       2
2 2 2 2 2 2max 2 1;0 2 1 1 1s se e e VAR B e e e                                                                                      

(2.2) 

where s is the variation coefficient of G(.). 

 

Considering now R(t) the mean number of busy periods that begin in [0,t] (being t 

= 0 the beginning of a busy period), after [2], it is possible to show that  

 

                     𝑒−𝜌(1 + 𝜆𝑡) ≤ 𝑅(𝑡) ≤ 1 + 𝜆𝑡                                   (2.3), 

 

and that, see also [2], if the service time distribution function is  G1(t) =
e−ρ

(1−e−ρ)e−λt+e−ρ , t ≥ 0,  
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VAR[B] =
e2ρ−1

λ2
,

R(t) = 1 + λe−ρt  
                                              (2.4);  

  

if it is G2(t) = 1 −
1

1−e−ρ+e
−ρ+

λ

1−e−ρt
, t ≥ 0 , 

 

VAR[B] =
(  eρ − 1)2

λ2
,

R(t) = e−ρ + (1 − e−ρ)2 + λe−ρt + e−ρ(1 − e−ρ)e
−

λ
1−e−ρt

                                (2.5). 

 

Denote 𝑁𝐵 the mean number of the customers served during a busy period in the 

MG queuing systems. Considering the exposed in [3], if G (.) is  

 
−𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑁𝐵
𝑀 = 𝑒𝜌

−𝐴𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑁𝐵 ≅
𝑒

(𝜌(𝛾𝑠
2+1))

(𝜌(𝛾𝑠
2+1)+1)+𝜌(𝛾𝑠

2+1)−1

2𝜌(𝛾𝑠
2+1)

 

                                (2.6). 

 

A busy period is a period, in which there is at least one failure waiting for 

reparation or being repaired; and an idle period is a period in which there are no 

failures in the system. 

Here some simple expressions - that allow computing the mean and bounds to the 

variance of the busy period - were given; and also simple bounds to the mean 

number of busy periods that begin in a certain interval time. Finally, expressions 

to the mean number of failures that occur in a busy period were also presented. 

These formulae are very simple and of evident application. They only require the 

knowledge of , ,  and s that are very easy to compute. The only problem is to 

test the hypothesis that the failures occur according to a Poisson process. 

Note yet that, calling I(t) the idle period of the MG queuing system 

distribution function, I(t) = 1 − e−λt, as it happens for any queue with arrival 

Poisson process. In this application it gives the probability that the time length 

with no failures is lesser or equal than t. 

 

3 A Short Numerical Case  
 

Let’s suppose a fleet (or any machine’s system) where the failures occur at a rate 

of 20 per year. So λ = 20/year. Suppose also that the mean time to repair a 

failure is 4 days ( = 4 day = (4/365) year). In consequence 0.22  . 
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Consider the possibility of decreasing  to 0.11. Either making  =10/year, for 

instance buying more items and decreasing, in consequence, each one use 

intensity. Or making  = 2 day, for instance increasing the teams affected to the 

failures repairs. 

On the contrary, if nothing is changed, things can get worse and maybe  jump 

to 0.44. The values 0.88 and 12 are also considered.  

If it is supposed that the repair services times are exponential3 s =1, and after 

(2.1), (2.2), (2.3) and (2.6), with t=1 year, being SD[B] = √VAR[B], 
 

 

 

Table 1 Example for exponential service times 

 
  E [B] SD [B] 

(Lower 

Bound) 

SD [B] 

(Upper 

Bound) 

R (1) 

(Lower 

Bound) 

R (1) 

(Upper 

Bound) 

M

BN  

0.11 2.12 day 2.16 day 2.2 day 18 21 1.12 

0.22 4.5 day 4.65 day 4.82 day 16 21 1.25 

0.44 10 day 10.72 day 11.46 day 13 21 1.60 

0.88 26 day  28.5 day  32 day 9 21 2.40 

1.00  31 day  35 day  40 day 8 21 2.70 

 

 

 

and it is possible to conclude, for these values, that when   increases, less busy 

periods in one year occur, with more failures in each one, of course in mean 

values. The busy period mean and dispersion length also increase with  . 

If it is supposed now that the repair service times are constant (D = deterministic),

0s , and after (2.1), (2.2)4, (2.3) and (2.6), with t = 1 year. 

 

 

                                                 

2 A neutral value for which the service rate equals the arrivals rate. 
3 A very frequent supposition assumed for this kind of services. 
4 In this case the lower bound is equal to the upper bound and so the real value of VAR [B] is got. 
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Table 2 Example for deterministic service times 

 

 
  E [B] SD [B] 

 

R (1) 

(Lower 

Bound) 

R (1) 

(Upper 

Bound) 

D

BN  

0.11 2.12 day 0.41 day 18 21 1.59 

0.22 4.5 day 1.22 day 16 21 1.68 

0.44 10 day 3.85 day 13 21 1.90 

0.88 26 day  14 day 9 21 2.51 

1.00 31 day 18 day 8 21 3.09 

 

 

E [B] and the R (1) bounds are the same that in the former case, evidently. The 

behavior of the parameters with the increase of  is similar to the one of the 

exponential situation. But now the busy period length dispersion is much lesser 

and the mean value of failures in each busy period is greater. 

As for the service times with distribution functions 𝐺1(𝑡) and 𝐺2(𝑡), it is not 

possible to present results for 𝑁𝐵 because there is not an efficient formula to 

calculate 𝛾𝑠. But 𝑆𝐷[𝐵] and 𝑅(1) are exactly calculated after (2.4) and (2.5) for 

𝐺1(𝑡) and 𝐺2(𝑡), respectively. 

 

Table 3 Example for service times with 𝑮𝟏(𝒕) distribution function 

 
  E [B] SD [B] R (1) 

0.11 2.12 day 9.1 day 19 

0.22 4.5 day 13.57 day 17 

0.44 10 day 21.68 day 14 

0.88 26 day 40  day 9 

1.00  31 day 46.13 day 8 
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Table 4 Example for service times with 𝑮𝟐(𝒕) distribution function 

 
  E [B] SD [B] R (1) 

 

0.11 2.12 day 2.12 day 19 

0.22 4.5 day 4.5 day 17 

0.44 10 day 10 day 13 

0.88 26 day  26 day 9 

1.00  31 day  31 day 8 

 

Note that for G1(t)  service time distribution function the busy period is 

exponentially distributed with an atom at the origin. For G2(t) service time 

distribution function the busy period is purely exponential. Anyway, in both cases, 

for these traffic intensity values, it is possible to conclude that the busy period 

mean and dispersion length also increase with  . 

 

4 Concluding Remarks  
 

When operating a fleet5 managers are interested in big idle periods and little busy 

periods. And if these busy periods occur they prefer that they are as rare as 

possible, with the shortest number of failures possible. 

 

If he/she knows , ,  and s the manager of the fleet can evaluate the quality of 

the operation, namely in terms of : 

 

 The mean length of a period with failures, 

 

 The length dispersion of a period with failures, 

 

 The mean number of periods with failures that will occur in a certain length of 

time, 

 

 The mean number of failures that occur in a period with failures.   

                                                 

5 Or any company. 
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As the expressions depend only on a few parameters, very simple to obtain and 

interpret, they show tracks to improve the operation, although they may be hard to 

implement depending on the company capabilities.  

In the context of recent financial and economic crisis, numerical reliable 

indicators are very important because they allow defining good managing politics 

and practices. Besides their simplicity, the ones proposed in this paper own this 

reliability property. 
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