

Department of Information Science and Technology

Model-Driven Generative Programming
for BIS Mobile Applications

Luís Miguel Pires Teixeira da Silva

A dissertation in partial fulfillment of the requirements for the degree of

Master in Computer Science and Business Management

Supervisor:

Fernando Brito e Abreu, PhD, Associate Professor

DCTI, ISTA

July, 2014

Luís Silva – July, 2014

[This page was intentionally left blank]

I
Luís Silva – July, 2014

Acknowledgments

I would like to thank:

– to my family, for all the given support and for the patience shown during the realization of this

master thesis;

– to all my friends, for the encouragement and positive criticism which helped me guide and

improve this thesis;

– to all the participants that were part of the experiments performed in this master thesis, for their

commitment and dedication;

– to Prof. Fernando Brito e Abreu, which supervised this master thesis, for all the time and

dedication, not only to this thesis but also to me, in both good and bad times.

II
Luís Silva – July, 2014

[This page was intentionally left blank]

III
Luís Silva – July, 2014

Abstract

The burst on the availability of smart phones based on the Android platform calls for cost-effective

techniques to generate mobile apps for general purpose, distributed business information systems

(BIS). To mitigate this problem our research aims at applying model-driven techniques to automatically

generate usable prototypes with a sound, maintainable, architecture. Following three base principles:

model-based generation, separation of concerns, paradigm seamlessness, we try to answer the main

guiding question – how to reduce development time and cost by transforming a given domain model

into an Android application?

To answer this question we propose to develop an application that follows a generative approach

for mobile BIS apps that will mitigate the identified problems. Its input is a platform independent model

(PIM), with business rules specified in OCL (Object Constraint Language). We adopted the Design

Science Research methodology, that helps gaining problem understanding, identifying systemically

appropriate solutions, and in effectively evaluating new and innovative solutions. To better evaluate

our solution, besides resorting to third party tools to test specific components integration, we

demonstrated its usage and evaluated how well it mitigates a subset of the identified problems in an

observational study (we presented our generated apps to an outside audience in a controlled

environment to study our model-based centered and, general apps understandability) and

communicated its effectiveness to researchers and practitioners.

Keywords: Model-driven development, source code generation, Unified Modeling Language (UML),

design patterns, software prototyping, object oriented software development

IV
Luís Silva – July, 2014

[This page was intentionally left blank]

V
Luís Silva – July, 2014

Resumo

O grande surto de disponibilidade de dispositivos móveis para a plataforma Android requer,

técnicas generativas de desenvolvimento de aplicações para sistemas comuns e/ou distribuídos de

informação empresariais/negócio, que otimizem a relação custo-benefício. Para mitigar este

problema, esta investigação visa aplicar técnicas orientadas a modelos para, automaticamente, gerar

protótipos funcionais de aplicações com uma arquitetura robusta e fácil de manter. Seguindo para tal

três princípios base: geração baseada no modelo, separação de aspetos, desenvolvimento sem

soturas (sem mudança de paradigma), tentamos dar resposta à pergunta orientadora – como reduzir

o tempo e custo de desenvolvimento de uma aplicação Android por transformação de um dado

modelo de domínio?

De modo a responder a esta questão nós propomos desenvolver uma aplicação que segue uma

abordagem generativa para aplicações de informação empresariais/negócio móveis de modo a

mitigar os problemas identificados. Esta recebe modelos independentes de plataforma (PIM), com

regras de negócio especificadas em OCL (Object Constraint Language). Seguimos a metodologia

Design Science Research que ajuda a identificar e perceber o problema, a identificar

sistematicamente soluções apropriadas aos problemas e a avaliar mais eficientemente soluções

novas e inovadoras. Para melhor avaliar a nossa solução, apesar de recorrermos a ferramentas de

terceiros para testar a integração de componentes específicos, também demonstramos a sua

utilização, através de estudos experimentais (em um ambiente controlado, apresentamos as nossas

aplicações geradas a uma audiência externa que nos permitiu estudar a compreensibilidade baseada

e centrada em modelos e, de um modo geral, das aplicações) avaliamos o quanto esta mitiga um

subconjunto de problemas identificados e comunicamos a sua eficácia para investigadores e

profissionais.

Palavras-chave: Desenvolvimento orientado por modelos, geração de código fonte, Linguagem de

Modelação Unificada (UML), padrões de desenho, prototipagem de software, desenvolvimento de

software orientado a objetos.

VI
Luís Silva – July, 2014

[This page was intentionally left blank]

VII
Luís Silva – July, 2014

Index

ACKNOWLEDGMENTS ... I

ABSTRACT ... III

RESUMO... V

INDEX ... VII

LIST OF FIGURES ... XI

LIST OF TABLES .. XIII

GLOSSARY .. XV

1 – INTRODUCTION .. 1

1.1 – GENERAL INTRODUCTION .. 1

1.2 – MOTIVATION .. 1

1.3 – GOALS .. 4

1.4 – CONTRIBUTIONS .. 5

1.5 – DISSERTATION GUIDELINES .. 5

1.6 – DISSERTATION STRUCTURE ... 6

2 – RELATED WORK .. 7

2.1 – INTRODUCTION ... 7

2.2 – ANDROID SPECIFIC RELATED WORK ... 7

2.3 – OTHER RELATED APPROACHES.. 8

2.3.1 – Dresden OCL ... 8

2.3.2 – OCLE (OCL Environment) .. 8

2.3.3 – The Naked Objects approach ... 9

2.4 – CONCLUSIONS ... 9

3 – METHODOLOGY ... 13

3.1 – EXPLORATORY PHASE .. 14

3.2 – DEVELOPMENT PHASE .. 14

3.2.1 – Development of a prototypical Android BIS application .. 14

3.2.2 – Development of the proposed artefact.. 14

3.2.3 – Generator Validation ... 15

3.3 – RESULTS EVALUATION .. 15

4 – DOMAIN AND GUI SPECIFICATION .. 17

4.1 – INTRODUCTION ... 17

4.2 – DOMAIN SPECIFICATION (PIM) .. 17

4.3 – GUI SPECIFICATION .. 20

VIII
Luís Silva – July, 2014

4.3.1 – Model-driven navigation metaphor ... 20

4.3.2 – GUI views and widgets ... 21

4.3.3 – Objects and links creation .. 23

4.3.4 – Server synchronization support .. 24

5 – ANDROID APPS TECHNOLOGICAL REQUIREMENTS .. 25

5.1 – ANDROID ... 25

5.2 – ANDROID APPLICATIONS STRUCTURE .. 25

5.2.1 – Architecture .. 25

5.2.2 – General structure and functionality ... 26

5.3 – ANDROID PERSISTENCY .. 34

5.3.1 – Persistency ... 34

5.3.2 – ORM libraries for Android ... 38

5.3.3 – The DB4O OODBMS .. 38

5.4 – ANDROID PATTERNS... 41

5.5 – ANDROID FRAGMENTS .. 41

5.5.1 – Static versus dynamic approach ... 42

5.6 – ANDROID LIFECYCLES .. 42

6 – GENERATED APPS STRUCTURE ... 49

6.1 – GENERIC ARCHITECTURE .. 49

6.2 – VIEW LAYER .. 52

6.2.1 – Concerns .. 52

6.2.2 – View Layer structure ... 53

6.2.3 – Reaching several screens sizes and densities ... 54

6.3 – VIEW-MODEL ... 55

6.3.1 – Concerns .. 55

6.3.2 – Binding Layer ... 55

6.4 – MODEL LAYER ... 59

6.4.1 – Concerns .. 59

6.4.2 – POJO classes ... 59

6.4.3 – Access class ... 59

6.5 – PERSISTENCY LAYER ... 60

6.5.1 – Concerns .. 60

6.5.2 – Database .. 60

6.6 – UTILS – SUPPORT LAYER/PACKAGE ... 61

6.6.1 – Concerns .. 61

6.6.2 – Generated support classes ... 61

6.7 – SYNCHRONIZATION ... 63

6.7.1 – Concerns .. 63

6.7.2 – Synchronization class ... 63

IX
Luís Silva – July, 2014

6.8 – IMPLEMENTED PATTERNS .. 64

6.8.1 – List view holder ... 64

6.8.2 – Observer pattern .. 65

6.8.3 – Command pattern ... 66

7 – JUSE4ANDROID ... 67

7.1 – JUSE4ANDROID – GUI AND REQUIREMENTS ... 67

7.2 – JUSE4ANDROID – STRUCTURE AND GENERATION PROCESS ... 68

7.2.1 – Open-source tool integration .. 68

7.2.2 – GUI and generator – project and standalone .. 69

7.2.3 – Internal generator structure .. 70

7.2.4 – Static generation process ... 73

7.3 – MODEL TRANSFORMATION .. 73

7.3.1 – View Layer .. 73

7.3.2 – Type mapping ... 80

7.3.3 – View-Model layer .. 81

7.3.4 – Model layer ... 83

7.3.5 – Persistency layer .. 86

7.3.6 – Static implementations ... 87

8 – VALIDATION ... 89

8.1 – GENERATED IMPLEMENTATION .. 89

8.1.1 – Seamlessness validation – Persistency and Model layers ... 89

8.1.2 – Validating – View-Model and View layers ... 92

8.1.3 – Validating – Understandability – UI layer and flow control .. 92

8.2 – JUSE4ANDROID .. 98

8.2.1 – Generator tool based on a PIM .. 98

8.2.2 – Code production – Time to market ... 98

8.2.3 – Scalability ... 99

9 – CONCLUSIONS AND FUTURE WORK .. 101

9.1 – CONCLUSIONS ... 101

9.2 – FUTURE WORK .. 102

9.2.1 – Systematic comparison/Software evolution .. 102

9.2.2 – Business rules enforcement ... 103

9.2.3 – Scalability ... 103

9.2.4 – Internationalization ... 104

9.2.5 – Portability .. 104

9.2.6 – Reliability .. 104

BIBLIOGRAPHY .. 105

APPENDIX ... 109

X
Luís Silva – July, 2014

A. PROJECTS WORLD – USE SPECIFICATION .. 110

B. PERSISTENCY – DB4O ... 113

1. Usage ... 113

2. DB4O vs SQLite – seamlessness .. 114

C. STATIC GENERATION PROCESS – IDENTIFIERS ... 116

1. Utils layer .. 116

2. View layer ... 118

D. POJO – RELATIONAL GETTERS AND SETTERS EXAMPLE .. 119

E. MODELS .. 121

F. EXPERIMENT ONE – RESULT EXAMPLE .. 124

XI
Luís Silva – July, 2014

List of Figures

Figure 1 – Software market in EU27 in M€ (adapted from (Aumasson et al. 2010)) 2

Figure 2 – Gartner’s magic quadrant – Mobile Application Development Platform vendors 4

Figure 3 – Followed methodology lifecycle ... 14

Figure 4 – Projects World UML class diagram ... 18

Figure 5 – Projects World launcher screen... 21

Figure 6 – Screen Division – Worker Class Example ... 22

Figure 7 – Alert icon ... 22

Figure 8 – Dialog when navigate in WRITE mode to Project .. 23

Figure 9 – Available options in WRITE mode ... 23

Figure 10 – Synchronization button .. 24

Figure 11 – Model View Controller pattern ... 26

Figure 12 – Layout building blocks ... 30

Figure 13 – Illustration of a view hierarchy, which defines a UI layout ... 31

Figure 14 – User Interface Tree – Illustrating example ... 32

Figure 15 – Approximate map of Android devices sizes and densities to generalized sizes and

densities .. 33

Figure 16 – Object-Oriented Model many-to-many relationship with UML example 37

Figure 17 – Relational model many-to-many relationship with SQL example....................................... 37

Figure 18 – Database engines – market share .. 39

Figure 19 – MySQL, NoSQL and NewSQL compound annual growth rate ... 39

Figure 20 – Activities lifecycle. ... 44

Figure 21 – Fragments lifecycle. .. 45

Figure 22 – Fragment lifecycle intersection with activity state. ... 46

Figure 23 –Activity recreation lifecycle. .. 47

Figure 24 – Model View View-Model .. 50

Figure 25 – Generated applications architecture (UML component diagram) 51

Figure 26 – Generated client-side apps main architecture ... 52

Figure 27 – Proposed Android View Layer Structure ... 53

Figure 28 – UI components styles reference structure ... 54

Figure 29 – Google Master Detail Flow design recommendation ... 58

Figure 30 – List view holder pattern ... 65

Figure 31 – Observer pattern ... 65

Figure 32 – Command pattern .. 66

Figure 33 – JUSE4Android GUI screen .. 67

Figure 34 – JUSE4Android Standalone mains structure .. 70

Figure 35 – JUSE4Android package diagram .. 71

Figure 36 – JUSE4Android relation to J-USE and Visit pattern class diagram 72

Figure 37 – JUSE4Android interaction diagram ... 72

XII
Luís Silva – July, 2014

Figure 38– Form XML template and worker detail form example ... 75

Figure 39 – Association Creation to Inheritance Tree example (worker class screen) 80

Figure 40 – Aggregated associative classes’ example ... 82

Figure 41 – ProjectWorlds analysis decisions – example. .. 83

Figure 42 – Insert method – Worker class example ... 85

Figure 43 – ProjectWorld Worker class – OME and generated Android Application validation example

– Application view ... 90

Figure 44 – ProjectsWorld Worker class – OME and generated Android Application validation example

 ... 91

Figure 45 – AirNova UML class diagram .. 121

Figure 46 – Royal & Loyal UML class diagram ... 122

Figure 47 – Football Leagues UML class diagram ... 123

Figure 48 – Experiment one – result example .. 124

XIII
Luís Silva – July, 2014

List of Tables

Table 1 – Android version evolution and actual (2/10/2013) app versioning distribution 3

Table 2 – Strengths and weaknesses of generative tools and/or approaches 10

Table 3 – MADP taxonomy categories ... 11

Table 4 – Design research criteria. Source: (Hevner and Chatterjee 2010) ... 13

Table 5 – Available annotation types .. 19

Table 6 – Navigation Icons ... 20

Table 7 – Available ORMs solutions for Android .. 38

Table 8 – Db4o versus SQLite – main feature comparison .. 40

Table 9 – DB4O different querying capabilities example .. 41

Table 10 – Support classes .. 62

Table 11 – Command class attributes .. 64

Table 12 – OCL tools differences ... 69

Table 13 – Naming convention qualifiers ... 74

Table 14 – OCL type to UI components (widget) transformation – detail XML 76

Table 15 – OCL type to UI components (widget) transformation – InsertUpdate XML 77

Table 16 – Navigation Bar association view group settings ... 77

Table 17 – Detail and InsertUpdate Views XML templates .. 78

Table 18 – OCL to Java types mapping ... 80

Table 19 – Collection OCL to Java type mapping .. 81

Table 20 – Deletion notification – Mapping solutions ... 86

Table 21 – Subject knowledge categories .. 93

Table 22 – Participants universe and sample description .. 94

Table 23 – Experiment two results ... 97

Table 24 – Test two final results ... 98

Table 25 – Code generated – ProjectsWorld example ... 99

Table 26 – Code generated – Royal & Loyal .. 99

Table 27 – Code generated – BPMN 2.0 ... 100

XIV
Luís Silva – July, 2014

[This page was intentionally left blank]

XV
Luís Silva – July, 2014

Glossary

TERM DEFINITION

ACID Atomicity, Consistency, Isolation and Durability

ADT Android Development Tools

API Application Programming Interface

BIS Business Information System

CASE Computer- Aided Software Engineering

CRUD Create, Read, Update and Delete

DAO Data Access Object

DB4O Database for Objects

DBMS Database Management System

EMF Eclipse Modeling Framework

GUI Graphical User Interface

JPA Java Persistency API

LOC Lines of Code

MADP Mobile Application Development Platform

MDA Model-Driven Architecture

MDD Model-Driven Development

MDT Model Development Tools

MVC Model View Controller

MVVM Model View View-Model

OCL Object Constraint Language

OODBMS Object-Oriented Database Management System

ORDBMS Object Relational Database Management System

ORM Object Relational Mapping

PIM Platform-Independent Model

POJO Plain Old Java Object

PSM Platform-Specific Model

SODA Simple Object Database Access

SQL Structured Query Language

RDBMS Relational Database Management System

UI User Interface

UML Unified Modeling Language

XVI
Luís Silva – July, 2014

WPF Windows Presentation Foundation

XMI XML Metadata Interchange

XSD XML Schema Definition

1
Luís Silva – July, 2014

1 – Introduction

1.1 – GENERAL INTRODUCTION .. 1

1.2 – MOTIVATION .. 1

1.3 – GOALS .. 4

1.4 – CONTRIBUTIONS .. 5

1.5 – DISSERTATION GUIDELINES .. 5

1.6 – DISSERTATION STRUCTURE ... 6

1.1 – General introduction

The burst on the availability of smart phones and tablets based on the Android platform calls for

cost-effective techniques to generate mobile apps for general purpose, distributed business

information systems (BIS). What drove us in doing this research was the need to find a better solution

for the time consuming app creation problem, as recognized in (Parada and Brisolara 2012):

“Developing applications for mobile platforms demands additional worries such as code efficiency,

interaction with device resources, as well as short time-to-market”.

1.2 – Motivation

The aforementioned burst characterizes the growing mobile business ecosystem (Basole and Karla

2011). This concept is based on the ecological metaphor that firms are part of a larger ecosystem,

each occupying a contributing role and forming symbiotic relationships with customers, suppliers, and

competitors. This ecosystem is fuelled by the emergence of an “App Economy”, enabling new

products and services, but also influencing strategies and shaping business models (Page et al.

2013). For instance, according to the forecasts for the software market in the EU27 region, the apps

share is the fastest growing one and will account for roughly half of that market by 2020 (see Figure

1).

2
Luís Silva – July, 2014

Figure 1 – Software market in EU27 in M€ (adapted from (Aumasson et al. 2010))

The expanding mobile ecosystem will put an increasing pressure in the demand for mobile

business information systems (BIS) apps, therefore enforcing the aforementioned short time-to-market

requirements (Parada and Brisolara 2012).

BIS apps target specific business-to-business or business-to-consumer problems and therefore

they must be built “from scratch” to answer each business requirement. Furthermore, as

aforementioned, developing such applications is a challenging task, due to several technical

hindrances. Some are generic, such as the need to support localization features, and others are

specific to mobile devices, such as the ability to support the diversity of available deployment

platforms (e.g. diverse screen sizes, resolutions and orientation). The combination of these factors

greatly increases both development time and cost.

The fast release pace of new Android versions also stands as a maintainability concern. As we can

see in Table 1 (Wikipedia 2013a), the average period between each “major” release is around one

year. Furthermore, notice that even the market is not able to follow the releases, showing still a large

28.5% usage of the 2.3 – 2.3.2 version. The API (Application Provided Interface – Interfaces that ease

the implementation and/or provide functions to control specific system behaviors) level is also different

for each released version. The greater it is, the more functionalities and easier interfaces are available

for developers. Moreover, if we target the latest releases, a big portion of the market will not be able to

use our application. The latter is an important fact since, even the application base structure might

change depending on the level of the targeted API. For instance, the Honeycomb (API level 12)

introduced the concept of fragments which drastically changed how applications can be structured.

Therefore and especially for BIS apps, since they tend to endure in time within the business

3
Luís Silva – July, 2014

ecosystem, providing a generative approach will facilitate maintainability and therefore will mitigate the

problem of BIS apps migration due to platform evolution.

Table 1 – Android version evolution and actual (2/10/2013) app versioning distribution

Version Code name Release date API level Distribution

1.5 Cupcake April 30, 2009 3 0%

1.6 Donut September 15, 2009 4 0%

2.0–2.1 Eclair October 26, 2009 7 0%

2.2 Froyo May 20, 2010 8 2.2%

2.3–2.3.2 Gingerbread December 6, 2010 9 0%

2.3.3–2.3.7 Gingerbread February 9, 2011 10 28.5%

3.1 Honeycomb May 10, 2011 12 0%

3.2 Honeycomb July 15, 2011 13 0.1%

4.0.3–4.0.4 Ice Cream Sandwich December 16, 2011 15 20.6%

4.1.x Jelly Bean July 9, 2012 16 36.5%

4.2.x Jelly Bean November 13, 2012 17 10.6%

4.3.x Jelly Bean July 24, 2013 18 1.5%

4.4 KitKat October 31, 2013 19 0%

Due to these facts, we believe that model-driven generative approaches will in time become

mainstream in BIS application development.

According to Gartner’s viewpoint (Riza Babaoğlan 2013) mobile application development platforms

(MADP) are generally based on one of three technologies. Each technology requires different

investments and skills: native toolkits (e.g. Apple’s iOS development toolkit), web toolkits (e.g. jQuery

Mobile) and specialized platforms. Our approach fits in this last category. As claimed in (Riza

Babaoğlan 2013), “Specialized platforms take a more proprietary route, but generally provide more

out-of-the-box enterprise capability than Web and native toolkits. They also often address more of the

full software development life cycle — from application design, development and integration to testing,

deployment and management. Some specialized platforms are optimized for high developer

productivity, and others are optimized for high application performance and developer control”. Also,

as shown in the latter, our approach falls, regarding the MADP market vendors, in the category of

application generators, the same as Kony, that, as it can be seen in Figure 2, is considered one of the

leaders.

http://en.wikipedia.org/wiki/Cupcake_%28operating_system%29
http://en.wikipedia.org/wiki/Cupcake_%28operating_system%29
http://en.wikipedia.org/wiki/Donut_%28operating_system%29
http://en.wikipedia.org/wiki/Donut_%28operating_system%29
http://en.wikipedia.org/wiki/Android_version_history#Android_2.0.2C_2.1_Eclair
http://en.wikipedia.org/wiki/%C3%89clair_%28operating_system%29
http://en.wikipedia.org/wiki/Android_Froyo
http://en.wikipedia.org/wiki/Android_Froyo
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Honeycomb_%28operating_system%29
http://en.wikipedia.org/wiki/Honeycomb_%28operating_system%29
http://en.wikipedia.org/wiki/Honeycomb_%28operating_system%29
http://en.wikipedia.org/wiki/Honeycomb_%28operating_system%29
http://en.wikipedia.org/wiki/Ice_Cream_Sandwich_%28operating_system%29
http://en.wikipedia.org/wiki/Ice_Cream_Sandwich_%28operating_system%29
http://en.wikipedia.org/wiki/Jelly_Bean_%28operating_system%29
http://en.wikipedia.org/wiki/Jelly_Bean_%28operating_system%29
http://en.wikipedia.org/wiki/Jelly_Bean_%28operating_system%29
http://en.wikipedia.org/wiki/Jelly_Bean_%28operating_system%29
http://en.wikipedia.org/wiki/Jelly_Bean_%28operating_system%29
http://en.wikipedia.org/wiki/Jelly_Bean_%28operating_system%29
http://en.wikipedia.org/wiki/KitKat_%28operating_system%29
http://en.wikipedia.org/wiki/KitKat_%28operating_system%29

4
Luís Silva – July, 2014

Figure 2 – Gartner’s magic quadrant – Mobile Application Development Platform vendors1

1.3 – Goals

Our main goal is to understand how to reduce development time and cost by transforming a

given domain model into an Android application.

In order to fulfil the previous goal we must answer a more technical set of goals, namely the

identification of adequate solutions to:

 Integrate different technologies;

 Generate an extendible and maintainable software architecture;

 Persist app data locally (required for offline usage), while being able to synchronize it with

other users using the same app.

Our research aims at applying model-driven techniques to automatically generate usable

prototypes with a sound, maintainable, architecture. Our generative approach is targeted to Android

devices and we have adopted three principles to facilitate understandability and extensibility:

 Model centered generation – everything follows the model, from GUI to persistence;

1 source: http://www.alibabaoglan.com/blog/gartner-2013-magic-quadrant-mobile-application-
development-platforms/

5
Luís Silva – July, 2014

 Separation of concerns – there is a clear separation in layers or components, each

encapsulating a concern of its own;

 Paradigm seamlessness – the object paradigm is used throughout, since both the host

language and data storage share the same type system, thus avoiding type conversions (e.g.

from object to relational and vice-versa).

To reify the aforementioned principles we propose to: (i) generate GUIs that allow a conceptual

navigation based on the type of relationships among domain entities (as described in a UML class

diagram); use a GUI architecture that avoids code repetition and supports several screen sizes,

resolutions and orientations; (ii) apply an architecture that separates different concerns in layers and

apply already proven design patterns; (iii) allow seamless data persistence by using an object-oriented

database; and finally (iv) grant distributed access by generating a simple Java server-side application,

which allows data synchronization among mobile devices.

By providing a tool capable of generating robust and usable prototypes, we will free developers

from repetitive tasks and by applying proven architectures and patterns developers will be able to

extend or adapt the generated implementation – in case it does not fulfil the defined requirements or

the domain model does not provide the means to represent them.

1.4 – Contributions

The main contribution of this dissertation is the proposal of a model-driven approach for automatic

generation of Business Information Systems applications, to run in the Android platform. We also

propose a model-based representation and navigation scheme for our BIS apps. Given that the

generation targets a mobile platform, performance, screen size and resolution are main concerns

which make development harder. We will introduce our approach to reach different screen sizes and

resolutions with “minimal” effort, and to control screen orientation change in Android. We will also

describe how we applied good development practices to an Android application, and how we

implemented the already existing Android design patterns.

1.5 – Dissertation Guidelines

Given the fact that we are proposing a generative approach that focus in different areas, as

consequence there are terms which affect different actors depending on the targeted area. Therefore

during this dissertation the following concepts are going to be applied to better differentiate the

influenced actors.

The actors are:

 Tool engineer – – mainly composed by technology/programming experts actors

responsible for the generative approach.

 Domain expert – – mainly composed by business dedicated actors, responsible for the

domain model specification and/or final app creation.

6
Luís Silva – July, 2014

 Final user – – composed by every actor that may use the outcome final applications.

Along this dissertation, the given symbols will be placed next to a given requirement, in order to

indicate the actors that will be affected by it.

1.6 – Dissertation structure

This dissertation is structured as follows: chapter two, the state of art, describes the current

situation regarding the model-driven generative programming for the Android platform and also a brief

exploration over generative approaches and tools for other platforms, but that are closer to our own

approach. In chapter three we present our methodology. In chapter four, we present our solution.

Chapter five presents a general review of all technologies used to support our generative approach,

and a general explanation of the Android platform. In chapter six we describe the implementation of

the chosen technologies, we explain the decisions, present and explain our approach regarding the

generated applications. Chapter seven presents the research outcome, the JUSE4Android tool. Here

it is explained the generator implementation, we explain the decisions and, present and explain our

approach regarding our generative approach. Chapter eight, validates the decisions and approaches.

Finally, in chapter nine, we draw our conclusions, review our contributions and forecast the future

work.

7
Luís Silva – July, 2014

2 – Related work

2.1 – INTRODUCTION ... 7

2.2 – ANDROID SPECIFIC RELATED WORK ... 7

2.3 – OTHER RELATED APPROACHES.. 8

2.4 – CONCLUSIONS ... 9

3.1 – EXPLORATORY PHASE .. 14

3.2 – DEVELOPMENT PHASE .. 14

3.3 – RESULTS EVALUATION .. 15

2.1 – Introduction

Model-driven generative approaches and tool development has been the subject of research since

the eighties, by then under the CASE (Computer-Aided Software Engineering) acronym (Wikipedia

2013c). In this chapter we will survey and comment related generative approaches. Ideally they would

be targeted for Android apps, use UML for model specification and Java/XML for implementation. In

some cases, that related work only covers some of these requirements.

2.2 – Android specific related work

There are already some available software tools that generate code for Android apps, namely:

Basic4Android (Uziel 2013) and App Inventor (MIT 2013). Despite the usefulness of these tools, our

goals are different. Basic4Android is a commercial tool to speed up development by providing an IDE

that allows a simple visual programming development style, allowing detailed customizations. App

Inventor is based on MIT's Open Blocks (Roque 2007), a graphical programming system especially

suited for novice programmers. Although providing a more user friendly development environment,

using these tools for developing BIS apps would require a lot of development effort, namely because it

does not provide an adequate level of abstraction. For instance, regarding persistency actions, two

different entities may behave the same way, In such approaches we must describe every aspect of

such actions, for each entity, independently of being the exact same action or not.

In (Parada and Brisolara 2012) the authors also propose a generic round-engineering model-driven

development approach for Android applications, based on UML class and sequence diagrams. This

approach is not BIS-specific, but rather targeted at developing any type of application, since the

approach allows to specify specific Android components and through sequence diagrams also specify

different interactions between them. So it could also serve BIS apps but we would have the same

abstraction level problem.

The IBM Rational Rhapsody (D. Holstein 2011; IBM 2013), which supports modeling and code

generation for Android applications, shows itself as a complete model-driven solution, but in order to

8
Luís Silva – July, 2014

properly generate an application every detail must be specified, making the code generation almost a

one-to-one mapping, again penalizing development effort. Examples of those details include, the need

to specify in detail the actions to be executed in case we rotate the screen, to guarantee that we have

the same data, but with the views adjusted to the new layout.

Finally, none of the previous tools or approaches show any concerns regarding data

synchronization, an important BIS app requirement that must be fulfilled.

2.3 – Other related approaches

Since we propose herein a generative programming approach, we have also surveyed literature

and available tools which take a similar approach to our own, although not targeting the Android

platform.

2.3.1 – Dresden OCL

The Dresden OCL toolkit is a set of Eclipse plugins (Eclipse 2013). It provides model validation and

also a model-driven generative approach. The toolkit supports metamodels in different formats (e.g.

MDT (Model Development Tools) UML 2.0, Eclipse Modeling Framework (EMF), Java and XSD (XML

Schema Definition)). Unfortunately, XMI (XML Metadata Interchange) import/export is not supported.

The Dresden toolkit includes an OCL2 parser and editor (with syntax highlighting, code completion

and code folding), an OCL2 interpreter, a Java/AspectJ code generator and a SQL code generator

(Demuth 2013).

Comprehensive details on the Java/AspectJ code generator and its integration with the Dresden

toolkit, can be found in (Wilke 2009). Several implementation techniques, like StringTemplate (Parr

2006), a Java template engine to generate source code for fragments, are described there. The most

important handicap on this approach, since it reduces models’ expressiveness, is that it does not

support associative classes. Due to the usage of the Eclipse Modeling Framework (EMF)2. In fact the

Ecore3 (EMF core) metamodels does not consider associative classes.

2.3.2 – OCLE (OCL Environment)

Although this project seems to have been discontinued, the Java code generator embedded in the

OCLE toolkit (LCI_team 2005), still provides a good insight to this model-driven generative approach.

This toolkit has its own GUI and, as the previous one, also provides model validation support. Java

code is generated for every UML class and OCL constraint. Unfortunately, only a simple method

checker is provided. The latter issues an error or warning, as a simple print, whenever a constraint

fails. Other drawbacks deserve our attention, as follows: (i) the generated code has many

2 http://www.eclipse.org/modeling/emf/
3 http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-
summary.html

9
Luís Silva – July, 2014

dependencies on their own libraries; (ii) the UML/OCL collection types are not translated to the

corresponding Java parametric collection types, again relying on their proprietary collection libraries;

and (iii) the full path of Java collection types is also used, instead of the simpler imports. While these

aspects do not affect the application execution capabilities, they may affect code understandability

 and portability .

2.3.3 – The Naked Objects approach

The Naked Objects pattern, initially defined in (Pawson 2004), advocates that all business logic

should be encapsulated onto the domain objects. It also recommends that the user interface should be

a direct representation of the domain objects, with all user actions consisting, explicitly, of creating or

retrieving domain objects and/or invoking methods on those objects. The user interface should be

created 100% automatically from the definition of the domain objects, for instance combining source

code generation and reflection techniques.

There are some tools that do code generation based on the previous approach, such as the Naked

Objects for .NET (Pawson 2011) or the Apache Isis for Java (Haywood 2012). Both follow the same

principle, which is providing automatically a strong base structure, where the programmer can then

specify directly in code the domain model and reach other layers through annotations. Another

example is JMatter (Suez 2013), a software framework, also based in the Naked Objects pattern, for

constructing workgroup business applications, where the domain model can be specified in UML

trough Ultraviolet, a light UML editor (Ramage 2006). Regarding the visualization they are all very

similar, being the main difference that the first two are web oriented, and JMatter produces a Java GUI

environment. All aforementioned examples seem to follow a table oriented view style to represent

entities and their relationships, which could became a hindrance on small screen phones, due to

space restrictions for showing information. None of these tools seem to support / adjust to multiple

screen sizes. Last, but not the least, we have not found any Naked Object based tools targeting

mobile devices.

2.4 – Conclusions

We surveyed some Android-specific generative approaches, but they did not meet BIS apps

concerns. We also turned to other approaches and tools that, albeit not targeting the Android platform,

were closer to our main goals. These tools provided us with a better insight of the BIS apps generative

approach, on implementation techniques, and other generative specific concerns that somehow

inspired our proposal. In Table 2 we can see the strong and weak points of these tools and/or

approaches.

10
Luís Silva – July, 2014

Table 2 – Strengths and weaknesses of generative tools and/or approaches

Model-driven

generation

Model

customizability

Developing time

(modelling plus coding)

App

customizability

IBM Rational

Rhapsody
yes high high high

Dresden

OCL
yes medium small none

OCLE yes medium small small

Naked

Objects
no n/a medium high

Apache isis no n/a medium high

JMatter yes small small none

Except for the Naked Objects and Apache isis, notice that all approaches show a similar pattern. If

we gain in model customizability (higher value) and app customizability (higher value), it seems we

must sacrifice developing time (Smaller time is better). Based in Table 2, and in conclusion, we did not

find any tool or approach that performed well for all the different BIS application requirements. The

story seems to repeat itself in every targeted platform independently of the approach, that is, we either

target the persistency and model layers, or we specifically target the UI construction, adaptability and

flow control. If we target both, we either lose in developing time or customizability.

Regarding the Naked Objects and Apache isis, they seem to present the best maintenance

approach. Such statement derived from the fact that these approaches are built based on a reflection

approach and therefore there is not a domain specific language to describe the model, but instead we

describe our domain directly on the target code. And based on simple annotations we reach and set

rules to other layers like UI or persistency. The main problem with this approach is the main language

restrictions which may directly reflect on understandability of the domain itself, for instance the

simple description of a subclass usually requires a set of preparations (in order to use such API) that

normally are not necessary in the normal natural language. Such approaches reveal themselves as

great domain specific generative approaches since they mitigate very well the maintenance

problem and provide a great customizability , since the domain is directly described on our target

code language (i.e. the programmer can create its own calculations code and make use of the API to

only set the result). However where they gain in maintenance and customizability , they loose

on understandability . For instance, only a high level programmer would be able to use such an

approach and he would still have to learn the complex API system in order to properly use it. Finally,

besides providing a very strong domain specific app generation, the final generated UI does not seem

to be size concern and also does not seem to have screen rotation capability, maybe due to the fact

that all these approaches still only target web type apps.

11
Luís Silva – July, 2014

Finally, all the generative domain specific tools that offered a more complete generative approach

(i.e. a complete or almost complete app would be generated), followed the same, or very similar,

client/server data transfer pattern, i.e. the client would not persist any database data and therefore

there is not a need for any synchronization strategies. Their drawback is that they do not allow the app

to be used offline (i.e. without network connection).

A taxonomy for MADP generative approaches is outlined in Table 3. While it was used implicitly to

assess the different proposals discussed in this chapter, we plan to improve it by objectifying the

categorization. We have provisions to use the resulting taxonomy in a systematic review of MDD-

based mobile application development platforms.

Table 3 – MADP taxonomy categories

Category Sub-categories

Composition / extensibility
Getters/setters

Navigations

Domain semantics enforcement / functionality -

User interface / usability -

Platform support / Portability

Independency on external/proprietary libraries

Ability to handle multiple devices

(sizes/resolutions)

Persistency

Local persistence

Server synchronization granting distributed

consistency

Efficiency features Workload generation and benchmarking

Reliability features JUnit tests generation

12
Luís Silva – July, 2014

[This page was intentionally left blank]

13
Luís Silva – July, 2014

3 – Methodology

The adopted methodology to lead this research was the Design Research. We followed the

guidelines or “criteria” suggested in (Hevner and Chatterjee 2010), as shown in Table 4 to guide our

research.

As shown in the 1.3 – Goals sub section we accomplished the first criteria since we provide a tool

with generative capabilities. In 1.2 – Motivation, we showed how relevant the problem is (second

criteria). In 1.4 – Contributions we presented this research contributions (fourth criteria). Regarding the

evaluation and the research rigor (third and fifth criteria’s) we followed proven design patterns, tested

the tool by means of black box and white box techniques in both real and emulated devices, and we

used third party tools to confirm the tests. In a more quantitative manner, in order to test final user

experience and model app understandability, a series of tests were also taken over the generated

apps. The research was presented and criticized by external experienced researchers, namely in the

annual workshop QUASAR research group4, and also in the MODELSWARD’20145 conference, thus

fulfilling the seventh criteria.

Table 4 – Design research criteria. Source: (Hevner and Chatterjee 2010)

Criterion Description

1. Design as an artifact
Design research must produce a viable artifact in the form of a construct,

a model, a method, or an instantiation

2. Problem relevance
The object of design research is to develop technology-based solutions to

important and relevant business problems

3. Design evaluation
The utility, quality, and efficacy of a design artifact must be rigorously

demonstrated via well-executed evaluation plans

4. Research

contributions

Effective design research must provide clear and verifiable contributions

in the areas of the design artifact, design foundations, and/or design

methodologies

5. Research rigor
Design research relies upon the application of rigorous methods in both

the construction and evaluation of the design artifact

6. Design as a search

process

The search for an effective artifact requires utilizing available means to

reach desired ends while satisfying laws in the problem environment

7. Communication of

research

Design research must be presented effectively to both technology-

oriented and management-oriented audiences

The research was divided into three major phases: Exploratory, Development and Evaluation that

were mainly carried out by this order, although some cycling occurred between them, namely because

intermediate evaluations were required along the way. These phases, while presenting some

differences, also combine with the three cycles (relevance cycle; rigor cycle; and design cycle)

4 https://sites.google.com/site/quasarresearchgroup/
5 http://www.modelsward.org/?y=2014

14
Luís Silva – July, 2014

presented by Hevner. Figure 3 shows in a timeline manner the focus on each stage. Notice that the

literature review extends to the development stage. We will now describe each of those phases.

Figure 3 – Followed methodology lifecycle

3.1 – Exploratory phase

During this phase a problem was identified and a bibliographic literature review was conducted to

identify possible approaches, available technologies and implementation techniques to deal with it.

3.2 – Development phase

The development of the proposed tool was split in three steps, as follows:

3.2.1 – Development of a prototypical Android BIS application

In this step we developed a simple Android BIS application to increase our understanding of the

Android technology and possible problems for the model-driven generative approach since, we added

all the types of constructs that we wanted to test. Those issues include the interaction between UI,

user actions, navigability and data in Android. With this approach a more technical knowledge was

gained, making it possible to find patterns in the development process of Android applications.

3.2.2 – Development of the proposed artefact

In this step, with a working prototype as a reference app, we started to implement the generator. In

this phase we reviewed related approaches to code generation as described in section 2 – Related

work. After the development we evaluated the generative capabilities of the tool by comparing the

prototype application with the generated application.

15
Luís Silva – July, 2014

3.2.3 – Generator Validation

In this last step we tested the generator, fixed eventual bugs and tested its scalability by providing it

with different and, in each step, larger models. In each step we tested the generated apps and fixed or

adopted the generative capabilities.

3.3 – Results Evaluation

Lastly we evaluated the final outcome of our research. By analyzing the current development

approaches in the market with our generated applications functionalities we could study the feasibility

of our approach. As aforementioned we also carried out two quantitative experiments in order to better

improve UI interaction and most importantly, study the feasibility of the aforementioned model-based

navigational approach.

16
Luís Silva – July, 2014

[This page was intentionally left blank]

17
Luís Silva – July, 2014

4 – Domain and GUI specification

4.1 – INTRODUCTION ... 17

4.2 – DOMAIN SPECIFICATION (PIM) .. 17

4.3 – GUI SPECIFICATION .. 20

4.1 – Introduction

The proposed architecture for our generative approach follows the Model-Driven Architecture

(MDA) principles, since it “... provides an open, vendor-neutral approach to the challenge of business

and technology change. Based on OMG’s established standards, the MDA separates business and

application logic from underlying platform technology. Platform-independent models of an application

or integrated system business functionality and behavior, built using UML and other associated OMG

modeling standards, … ” (Object_Management_Group 2013). By adopting MDA principles, we aim at

providing an architecture that enforces portability, domain specificity and productivity

(Object_Management_Group 2013), therefore reducing the development schedule and cost for new

applications.

In our proposal the Platform-Independent Model (PIM) is a UML class diagram embedded with

OCL clauses and annotations. OCL is required because UML class diagrams do not allow providing all

the relevant business constraints required for model specification. As claimed in (Warmer and Kleppe

2003) model-driven approaches require good, solid, consistent, and coherent models. We can build

such models using the combination of UML and OCL.

4.2 – Domain specification (PIM)

To illustrate the usage of the proposed approach, the Projects World example (see Figure 4) will be

used throughout this dissertation. The semantics of this example is straightforward. Each company

hires workers and runs projects. Workers become employed when hired by a company; otherwise are

unemployed. Each worker has a set of qualifications and can get more by attending a special kind of

projects – the training ones. All projects require a set of qualifications to be run (become active).

18
Luís Silva – July, 2014

Figure 4 – Projects World UML class diagram

The serialized (textual) version of the Projects World model specification, contained in Projects

World – USE specification is self-explanatory. To generate a fully-functional BIS app, namely to

produce its different layers (e.g. view layer, domain layer, persistence layer), we need additional

information in the model, that is added to it as annotations. The latter can also be used to discriminate

between domain and utility classes (e.g. CalendarDate). Table 5 summarizes the available annotation

types, along with their rationale.

19
Luís Silva – July, 2014

Table 5 – Available annotation types

Annotation

Description
Name

Values

key Value (String)

S
ta

rt
in

g
P

o
in

t

NameToDisplay The name that will

appear on the launcher

screen to describe the

class

This class will appear on the launcher

screen (first screen to appear when

application starts)

U
s
e
r

In
te

rf
a

c
e

 D
e
fi
n

it
io

n

ImageToDisplay The path of the image. If

absent a default image

is used

lis
t

Any available

attribute including

inherited ones

Number indicating the

order

Indicates which attributes will be

shown in a list.

c
re

a
ti
o

n

Any available

attribute – already

contains inherited

ones

Number indicating the

order

Indicates which attributes need to be

filled by the user in order to create an

object.

d
is

p
la

y

Any available

attribute – already

contains inherited

ones

Number indicating the

order

Indicates which attributes should be

shown in the detail screen (the

screen that describes the object).

u
n

iq
u
e

Any available

attribute – already

contains inherited

ones

Number indicating the

order

Indicates which attributes are going

to be used in order to create a unique

ID.

M
o
d

e
l
a
n

d
 P

e
rs

is
te

n
c
y

h
o

ld
e

r

none none Used over the associations to specify

which side of a relationship will hold

the data. Only viable for specific

associations like a many-to-many

association.

d
o

m
a
in

 none Used to differentiate domain classes

from utility classes.

P
IM

The following code snippet illustrates the use of annotations for the Project class.

@StartingPoint(NameToDisplay="Projects", ImageToDisplay="project")

@list(name="1")

@creation(name="1",size="2",status="3",months="4")

@display(name="1",size="2",status="3",months="4")

@unique(name="1",size="2",status="3",months="4")

@domain()

20
Luís Silva – July, 2014

These annotations allow generating a full working prototype without requiring other external inputs

or PSM, while granting specification simplicity.

The generation approach follows a specific template but, as expected, for the same model, the

generated implementation may vary depending on the provided annotations

4.3 – GUI specification

4.3.1 – Model-driven navigation metaphor

Regarding the generated GUI, we propose a homomorphism between the traversal of the domain

space and the app navigation space. We have identified a limited set of domain traversal (navigation)

genders and we assigned an icon to each one, as shown in Table 6. These icons are used in the

navigation bar to provide semantic advice to the user, when he decides where to move to. Each

domain traversal gender corresponds to a single movement from one domain entity to another,

towards a UML association end (e.g. with cardinality one or many) or inheritance relation end (towards

the parent or the children classes). For instance, in the Projects World app, while standing in the

Worker form, we would get a “to many” icon for navigating to Qualification and a “to one” icon for

navigating to Company.

Table 6 – Navigation Icons

Icon Navigation Gender

To One

To Many

To Associative

To Super

To Sub

Therefore, the given domain model affects directly how the user navigates and perceives the

objects in the application. In Figure 5 we can see the launcher screen of the Projects World example.

21
Luís Silva – July, 2014

The available options (i.e. the domain types we can choose to explore) are the classes that have been

marked with the @StartingPoint annotation.

Figure 5 – Projects World launcher screen

4.3.2 – GUI views and widgets

Let us consider that we press the Workers button, whose class is associated with Qualification,

Company, Member and Project. The provided GUI functionalities would include the ability to: (i)

browse and select the available Worker instances (List View), (ii) access the detail of a selected

Worker instance (Detail View), (iii) navigate to the related domain entities (Navigation Bar) and (iv)

apply the basic CRUD operations. As shown in Figure 6, the aforementioned four requirements are

met by three distinct views, each with its own purpose, and by adding three buttons (create, update

and delete) to the default Android ActionBar.

22
Luís Silva – July, 2014

Figure 6 – Screen Division – Worker Class Example

As already shown in Table 5, we can configure what we want to show in each view. For instance, in

the List View of the Worker class we only show the attribute “nickname” since it is enough to

distinguish the workers among themselves. This behavior can be specified with the @list annotation.

The Detail View always follows this template style, where the attributes description is followed by

their assigned values, but it can be static (for reading purposes only, as shown in Figure 6) or dynamic

(for creating new instances or updating existing ones). Finally, the Navigation Bar View, as already

explained, has a button for each allowable navigation, through class associations and/or inheritance

relationships. In the case of the Worker class we have three associations, but since one of them is an

associative class we have four possible navigations. The corresponding buttons show the association

role, followed by the navigation icon and the number of objects of the associated entity that are linked

to the current Worker instance. Clicking in one button changes the context to the selected domain

entity. The alert icon shown in Figure 7 is used to indicate that an object is not fulfilling all its

constraints, if the user clicks on it a message will appear telling which constraints are not being met.

Figure 7 – Alert icon

23
Luís Silva – July, 2014

4.3.3 – Objects and links creation

If the user creates a new instance through the add button, the latter will be persisted, but it will not

be linked automatically to any other instance. In order to do so, the user must do a long-click (pressing

a button constantly for a few seconds) over the corresponding association, to trigger one of two

possible scenarios:

 Normal class scenario – the user navigates to a new screen corresponding to the select target

type, in WRITE mode i.e. with the intention of associating something.

 Inheritance class scenario – the exact same behavior as in the normal scenario with the

difference that, before the user navigates to the new screen, he will be prompted with a dialog

in order to choose the desired sub class. That is, when the user navigates to, and only to, a

super class (class that is parent to, at least, one other class), it is expected that the user

defines which type he really intends to associate to (the selected super-class or one of its

children). This behavior is normal since sub-classes also inherit their parent associations. In

Figure 8 we can see such a dialog from our Projects World example. In this case the user is

present in either Qualification, Worker or Company dedicated screens and did a long click in

“projects”. Since the Project class is not abstract, both Project and Training types are available

thus granting the user with the choice of associating with a Training (user navigates to

Training thus only seeing trainings which are also projects) or, a Project (user navigates to

Project thus sees both projects that might be super of Training or just projects).

Figure 8 – Dialog when navigate in WRITE mode to Project

In the new screen, in WRITE mode, the user can choose an already existing object or create a new

one. In the former case (explicit linking), the user presses the “Confirm” button (“check” icon in Figure

9) and the selected object will become linked to the one where the navigation started. In the latter

case, the user presses the create button (“plus” icon in Figure 9) and the newly created object will be

implicitly linked to the one where the navigation started.

Figure 9 – Available options in WRITE mode

After any of the latter operations are completed, the system closes the screen and it reopens and

updates the former screen (screen where the association creation action began).

24
Luís Silva – July, 2014

4.3.4 – Server synchronization support

There are three distinct mobile app types where internet connection is the key differentiator: those

that only work locally; those that retrieve all dynamic data from a server and therefore only work if an

internet connection is available and finally a mix of the previous two, i.e. where the mobile app can

alternate between online or offline periods. Since the latter case characterizes BIS apps, where

multiple users will be using it in a distributed fashion, we must provide synchronization features

between the local database (required for offline usage) and the server database (required for keeping

the overall system state consistent. Regarding the GUI specification, database synchronization is

triggered by the provided button on the launcher screen, as shown in Figure 10. This button is only

active when an internet connection is available.

Figure 10 – Synchronization button

25
Luís Silva – July, 2014

5 – Android apps technological requirements

5.1 – ANDROID ... 25

5.2 – ANDROID APPLICATIONS STRUCTURE .. 25

5.3 – ANDROID PERSISTENCY .. 34

5.4 – ANDROID PATTERNS... 41

5.5 – ANDROID FRAGMENTS .. 41

5.6 – ANDROID LIFECYCLES .. 42

5.1 – Android

Although built for mobile and tablet-based devices, the Android operating system exhibits the

characteristics of a full-featured desktop framework (Google 2013a). Application developers rarely feel

they are writing to a mobile device because they have access to most of the class libraries available

on a desktop or a server – including a relational database (Komatineni and MacLean 2012). The

language syntax used in Android is based on Java, but despite this similarity it uses a different virtual

machine (Dalvik Virtual Machine). As a result, not all Oracle Java Virtual Machine libraries are

available6. Android uses XML to describe the user interfaces (UI) and/or raw data, and it offers several

different ways of persisting data.

5.2 – Android Applications Structure

5.2.1 – Architecture

The Android UI framework, like other Java UI frameworks, is organized around the common MVC

(Model-View-Controller) pattern (Mednieks et al. 2012). Nevertheless, it does not fulfill all the required

requirements, namely the usage of the XML language in order to represent the user interfaces (UI) for

dynamic data. For instance, we can define views in XML but we cannot assign instances declared in

Java in the XML, only the other way around. As it can be seen in Figure 11, the View layer knows

about the Model layer, which in Android cannot be done when representing dynamic data, therefore

we must create a middle layer with the purpose of inflating (instantiating) the XML files and setting its

values. The other solution in this case would be defining the UI in Java code, but if we do so, we

would not be following the software development good practices: “The advantage to declaring your UI

in XML is that it enables you to better separate the presentation of your application from the code that

controls its behavior. Your UI descriptions are external to your application code, which means that you

can modify or adapt it without having to modify your source code and recompile.” (Google 2013a). The

6 http://developer.android.com/reference/packages.html

http://developer.android.com/reference/packages.html

26
Luís Silva – July, 2014

approach followed by the Android operating system, is to guarantee that its UI looks the best on each

device, by taking care of screen size adjustments and/or orientations for different device types.

(Google 2013a). To achieve these adjustments, UIs are declared in XML files and pre-compiled.

Figure 11 – Model View Controller pattern

5.2.2 – General structure and functionality

Independently of how Android applications are going to be used, they are built over five main

building blocks (class containers): Activities, Intents, Services, Broadcast Receivers, and Content

Providers. There is not a need to use all five blocks simultaneously, but certainly one or a combination

of them is going to be used in every application. All the classes defined on the aforementioned blocks

must be declared in the manifest.xml file. Not doing so will result in an error when the application tries

to use/call the corresponding class.

Android Manifest

The manifest.xml file holds application-specific configuration information, is mandatory in any

Android project and is located in the project folder (the root folder of the project). From all the possible

settings this file may contain, we can highlight as essential: the definition of the package name, the

definition of all the components used by the application, the required application permissions and the

minimum Android API level required by the application. By default, all the automatic behavioral

settings are on. So, if we want to control any of these settings, we must declare them in the manifest.

As an example, consider the configuration change control. By default, the screen rotation is enabled,

but we can disable it in the manifest and choose a standard orientation setting for the application (e.g.

adding the line android:screenOrientation="portrait");

Activities

Activities are the most common Android building blocks. An activity can be seen as a “screen”. Just

like a webpage, we can view all the contents it is displaying and, we can interact with the components

it is holding. Each activity is responsible for showing some pre-determined type of information. Users

navigate between activities in the app UI. Each activity is implemented as a single class that extends

the Activity base class and it will display a user interface composed of Views (which may be declared

27
Luís Silva – July, 2014

in XML) and respond to user or system events. For example, in Android phones we often have an

activity that shows a list of the available contacts. When we press one contact, we navigate to another

screen/activity responsible of showing the contact in a more detailed manner. So, we can say that

moving to another screen is accomplished by starting a new activity. An activity is also able to return a

value to the previous activity (i.e. its caller). For example, an activity that lets the user pick a photo

would return the chosen photo to the caller. In order to start a new activity, i.e. navigate to it, intents

musts be used.

Intents and Intent Filters

An intent generically defines an “intention” to do some work (Komatineni and MacLean 2012).

Intents can be initialized by our own application or by the operating system, for example for notification

purposes. Intents can be implicit or explicit, that is, we can send simple information data and, in an

implicit way, let the system decide what application or activity is the best to handle the requested

intent, or we can create an intent and explicitly define the source and target. For most cases, as for

application navigation purposes, we can simply create a new intent with two arguments, the caller

activity and the destination activity. For an implicit call, which is depending on what the system has to

offer, the two most important parts of the intent are the action and the data to act upon. Depending of

our intentions, these requirements may vary. For example, if our application manages information like

emails or contacts, and we want to send an email to one of those contacts, then, instead of creating

our own activity to send email messages, we can start an activity with an intent like the following:

Intent intent = new Intent(Intent.ACTION_SEND);

intent.putExtra(Intent.EXTRA_EMAIL, recipientArray);

startActivity(intent);

This allow us to reuse the system default email sending activity or, if there are many available, it

will ask the user to decide which one to use. Activities will be chosen depending on the action. Typical

values for the latter are MAIN (the launcher activity of an application), VIEW, PICK, EDIT, etc. For

example, if we have an URL, we can call the default browser to see the corresponding page by

creating an intent with the VIEW action, and send the URL as Website-URI, like in:

new

Intent(android.content.Intent.VIEW_ACTION,ContentURI.create("http://develop

er.android.com"));

If we expect a result from the called activity, then, instead of using the

startActivity(intent), we can use the startActivityForResult(intent,

requestCode). For example, we can retrieve a contact by using the already defined Android default

actions and codes like this:

Intent intent = new Intent(Intent.ACTION_PICK, Contacts.CONTENT_URI);

startActivityForResult(intent, PICK_CONTACT_REQUEST);

In order to catch the result every Activity offers the following method that will be triggered every

time the called activity posts a result:

28
Luís Silva – July, 2014

onActivityResult(int requestCode, int resultCode, Intent data)

So far we have shown how to navigate between activities inside an application and how to make

use of the activities already available, or expected to be, on the system. While an Intent may be seen

as a request, an IntentFilter describes what intents an Activity or Intent Receiver are capable of

handling. These are described in the manifest.xml file.

An Android application can also offer its own activities for other applications to deal with data.

Navigation is accomplished by resolving intents. If the destination is not defined, we may say that the

system checks all the installed intent filters and picks the one that best matches the given intent.

Android also retains history stacks for each application launched from the home screen. When the

user navigates to another screen/activity or the current screen/activity loses focus (i.e. another

screen/activity gains focus) due to unforeseen system events, the activities enter in a paused state

and are put onto a history stack. This mechanism allows to restore the control after any unforeseen

system event, or navigate back and forward. Activities are also cleaned from the history stacks, when

they are no longer required. For example, we can create an Intent and by making use of an already

defined flag, like “Intent.FLAG_ACTIVITY_CLEAR_TOP”, we can navigate to another activity

cleaning every other activity opened by our application, making the next activity the first in the history

stack.

Intent receivers and broadcast receivers

As shown before with the Intent Filters, we can use the Intent Receiver when we want our

application to react to an external event, as when the phone rings, or when a network connection is

available. Intent receivers do not display an UI, although they may display notifications to alert the use.

Intent receivers are also registered in the manifest.xml, but we can also register them dynamically in

code using Context.registerReceiver(). Applications do not have to be running for their intent

receivers to be called. When an intent receiver is triggered, if necessary, the system will start them.

Applications can also send their own intent broadcasts to others with

Context.broadcastIntent().

In order to implement a receiver, we must implement a class that extends Broadcast Receiver.

Then we can listen to events through the method onReceive(). As of Android 3.1, the Android

system will by default exclude all BroadcastReceiver from receiving intents if the corresponding

application has never been started by the user or if the user explicitly stopped the application via the

Android menu (in Manage Application) (Vogel 2013).

Content providers

Applications can persist data by means of a SQLite database, SharedPreferences (a primitive key-

value pair storage system provided in Android – usually used for simpler data types, for example for

persisting user preferences) or any other way. A Content Provider is a class that implements a

29
Luís Silva – July, 2014

standard set of methods, like CRUD, to let other applications store and retrieve the type of data that is

handled by that content provider. So, it can be used if we want to share our application data with other

applications.

Services

A Service is a class that runs without a UI and long-lives beyond the general state of the

application, for example locking the screen does not affect its state. We can create services that run

independently of our application state, for example to count the number of calls received, for statistical

purposes. A good example of a possible service is a media player. A media player found in any

Android phone usually provides activities that allow the user to choose songs and start playing them. If

a song is already playing, the user will be able to “close the application” (i.e. exit the presented activity,

go back to the home screen, lock the phone) without stopping the playback. For this scenario the

playback cannot be handled by an activity, but instead by a service. The media player activity would

start a service using Context.startService() to keep the music playing in the background, until

the service has finished. We can also connect to a service with the Context.bindService()

method. When connected to a service, we can communicate with it through an interface exposed by

the service, for example regarding the music service (e.g. to allow pause, rewind or stop).

User interfaces

As aforementioned, Android UIs can be built either by defining XML structures (best option) or by

programming them in plain Java. As also said, an activity can be seen as a screen and we inflate XML

views in to it. In order to express the UI, we must work with Views and ViewGroups – the basic units of

user interface expression on Android.

Views

The View class represents the basic building block for user interface components – found in

android.view.View – It occupies a rectangular area on the screen and is responsible for drawing and

event handling. It is also the base class for widgets. Android offers a varied set of widgets, (e.g.

TextView; EditText; RadioButton; CheckBox; Button; ScrollView;) which are used to create interactive

UI components. The widgets handle their own measuring and drawing, so we can use them to build

our UI more quickly.

ViewGroups

The ViewGroup subclass is the base class for layouts, which are invisible containers that hold other

Views (or other ViewGroups) and define their layout properties as shown in Figure 12. By using

ViewGroups we can add structure to our UI and build up complex screen elements that can be

addressed as a single entity. Android offers a varied set of predefined ViewGroup subclasses that

provide common types of screen layout (e.g. RelativeLayout, LinearLayout).

http://developer.android.com/reference/android/view/ViewGroup.html

30
Luís Silva – July, 2014

In Figure 12 we can see the Android View class hierarchy and get a better perspective of the

available widgets.

Figure 12 – Layout building blocks

A Tree-Structured UI

Now we can define an Activity UI using a tree of View and ViewGroup nodes, as shown in Figure

13. The tree can be as complex as required and can be defined in one or many XML files.

Figure 14 shows an example that matches the tree represented in Figure 13. As the latter shows

the two ViewGroups: LinearLayout and RelativeLayout, are not seen by the user. We use them to

order and properly place other Views in the screen.

31
Luís Silva – July, 2014

Figure 13 – Illustration of a view hierarchy, which defines a UI layout

32
Luís Silva – July, 2014

To attach the defined tree to one Activity we must call, in the Activity, the

setContentView(<Resource ID to be inflated>) method and pass a reference of the

intended tree layout. Once the Android system has the reference, it can work directly with the root

node to invalidate, measure, and draw the tree. When any Activity becomes active and receives focus,

the system notifies the Activity and requests the root node to measure and draw the tree. The root

node then requests that its child nodes draw themselves and, in turn, each ViewGroup node in the

tree is responsible for drawing its direct children. Each ViewGroup has the responsibility of measuring

its available space, laying out its children, and calling draw() on each child to let it render itself. The

children may request a size and location of the parent, but the parent object has the final decision on

where and how big each child can be.

Figure 14 – User Interface Tree – Illustrating example

Resources

In Android there are two main folders, the “src” (source) that will hold all the .Java code files and

the “res” (Resources) folder that holds any resources. Resources are external files (non-code files)

that are used by the code and compiled into the application at build time. Android supports a number

of different kinds of resource files, including XML, PNG, and JPEG files. The XML files have very

different formats, depending on what they describe. Resources are externalized from source code,

and XML files are compiled into a binary, fast loading, format (e.g. by compressing strings) for

efficiency reasons.

To differentiate among the different resource types, Android offers a set of folders inside the “res”

folder, each with its own purpose, namely:

33
Luís Silva – July, 2014

 layout-files – “/res/layout/”

 menu-files – “/res/menu”

 images – “/res/drawable/”

 animations – “/res/anim/”

 styles, strings and arrays – “/res/values/”

 raw files like media (music or videos) – “/res/raw/”

Screen size, resolution, orientation and localization

Android offers a static way to handle the required UI adaptation, regarding the different screen

sizes, resolutions, orientations and languages. By implementing predefined qualifiers, in the list of

resources folders shown before, we can benefit of the Android automatic UI behavioral system. The

available predefined qualifiers apply to the screen size (small, normal, large, xlarge) and to the screen

resolution or density (ldpi, mdpi, hdpi, xhdpi), as represented in Figure 15. There are also predefined

qualifiers for the screen orientation (land, port) and localization, following the usual two letter ids used

for language support such as: en (English), pt (Portuguese), or es (Spanish).

Figure 15 – Approximate map of Android devices sizes and densities to generalized sizes and
densities 7

Layout-specific XMLs are stored in a folder whose name is a composition of the qualifier name and

a specific range (e.g. layout-large). The same logic is applied to the other qualifiers, although in a

different context. For instance, namely resolution or density qualifiers are usually used/merged with

the drawable folder with the intention of separating one image into four, each one with a different

resolution. Meanwhile, both orientation qualifiers are used with the layout and/or the values folders,

depending on the goal. Finally, the localization qualifiers are mainly used in the values folder, since

the latter is the one that holds UI related static data.

With Android 3.2, Google launched three new qualifiers to address the increasing different size

screens available in the market and improve user support, namely: sw<N>dp; w<N>dp; and h<N>dp.

“N” is a user-defined constant (e.g. 600, 720 or 1024), corresponding to the desired customization.

These three qualifiers have different meanings. The “sw” represents “smallestWidth” and it can be

7 source: http://developer.android.com

34
Luís Silva – July, 2014

used when we want to make sure that certain UI XMLs are used if a device has at least N dp’s

(Density-independent Pixels) in the smallest of its width. The other two prefixes (“w” and “h”) mean

available width and height, respectively. Android will chose them if the present device has a minimum

of N dp’s of default width or height respectively. The difference regarding the previous one is that in

this case both width and height can change, depending on the orientation, while the smallest width

does not.

5.3 – Android persistency

There are several ways of persisting data locally, which are offered by default in Android. If we

have a considerable large data set that may be organized according to the relational model, then the

SQLite(Owens and Allen 2010) database management system may be used. If it is simple data (e.g.

application user configurations, temporary data or other small data sets) then the SharedPreferences

class can be used. If we need to persist more specific and simple data like a View state (which within

Android is almost mandatory, due to orientation changes) or if the data is not shared across the

application, instead of using the Shared Preferences, we can use the onSaveInstanceState() method

available in activities and fragments. This method enables the user to persist data in a bundle, tied to

the activity or fragment state. This method should be used with caution, since its calls are done

automatically by the system, according to a lifecycle that will be explained ahead.

5.3.1 – Persistency

Regardless of the technologies and platforms involved, the database management system should

provide transactional semantics. Transactions are bundles of CRUD operations to be execute against

the database as a single logical unit of work and, as such, treated in a coherent and reliable way,

independent of other transactions. The properties that the transactional semantics must fulfil are the

ones commonly called as A.C.I.D. (Grehan 2006):

 Atomicity – the components of a transaction must execute in an all-or-nothing fashion. For

example, if a transaction involves deleting 4 objects, then those 4 objects must be deleted as

they were a single object;

 Consistency – operations on the database move it from one well defined state to the next,

with no intermediate states visible. For instance, if an object references other objects and vice-

versa, in case of its deletion every other object must also be updated to a state where the

deleted object does not exists. Failing to do it would result in a, referential integrity failure;

 Isolation – multiple ongoing transactions are unaware of each other. So, if two users attempt

to modify the same object simultaneously, the database must implement some mechanism for

serializing their access to the object, so that neither user's work interferes with -- or even

'sees' -- the others;

 Durability – once a transaction has been 'committed' to the database, its work is not lost,

even in face of a hardware or software failure. So, if a user executes a transaction on the

35
Luís Silva – July, 2014

database to delete 3 objects, and the system crashes in the process of deleting the second

object, then, when the system is rebooted, the database will recover itself, including finishing

the pending transaction.

5.3.1.1 – Persistence management

Since we need to persist data, several alternatives were assessed to consubstantiate our choice,

as follows:

Flat files

The most basic approach of persisting data, is a plain text or binary file. This approach maybe

suitable in cases where there is a very small amount of data and there is no structural relationships

between the records (Wikipedia 1994). This is obviously not the case for BIS apps, where we will have

to deal with highly structured data and its size may be relatively large, depending on the domain.

Network databases

Network databases appeared as an attempt to improve the already existing hierarchical databases,

by adding the possibility to model many-to-many relations between entities. Each record may have

multiple parent and child records, forming a generalized graph structure. This property applies at two

levels: the schema is a generalized graph of record types connected by relationship types and the

database itself is a generalized graph of record occurrences connected by relationships (Wikipedia

2012a).

Network databases, now dubbed “graph databases”, are said to be very efficient and became a

mainstream research topic8 mainly due to the need to process social network data, as well as other

web-based networked info. However, we could not find yet such type of databases for Android.

XML databases

An XML database allows data to be stored in XML format. These data can then be queried,

exported and serialized into the desired format. XML databases are usually associated with document-

oriented databases. Two major classes of XML databases exist: (i) XML-enabled – these may either

map XML to traditional database structures (such as a relational database), accepting XML as input

and rendering XML as output, or support native XML types within the traditional database; and (ii)

Native XML (NXD) – the internal model of such databases depends on XML and uses XML

documents as the fundamental unit of storage, which are, however, not necessarily stored in the form

of text files (Wikipedia 2012b).

Regarding the second type (NXD), no database management system could be found for Android.

Meanwhile, the first database type (XML-enabled) is much used in Android, but using the cloud for

persistency (i.e. it requires internet to access the data), instead of local storage. In the server side we

must have a system able to interpret and create the XML files, but the actual storage system (server

side) may not be XML based. Two very popular libraries that are used in Android as support for this

8 http://mashable.com/2012/09/26/graph-databases/

http://en.wikipedia.org/wiki/Plain_text
http://en.wikipedia.org/wiki/Binary_file
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XQuery
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Relational_model

36
Luís Silva – July, 2014

type of system, are: JSON (Crockford 2013) and the GSON (Singh et al. 2013). Instead of XML

format, the files are in the JSON format. GSON is a project that enables to convert, in a very easy

way, any Java object to the JSON format. In 2013 Google released the JSON API in Google Cloud

SQL(Google 2013b) which is a service that offers a full relational database management system. This

would make very easy the transference of relational objects between the client side (Android) and the

server side (relational database in the cloud), and implement the CRUD operations, since the service

is already prepared to receive these operations within the JSON format, with all the required key

features, referenced in section 5.3.1 – Persistency, implemented automatically (abstracted).

Relational databases

Relational database management systems (RDBMS), which are based on the relational model as

introduced by (Codd F. 1970), are the most widespread ones (Wikipedia 2012a). The default

persistency engine offered by Android and most mobile solutions is SQLite (Owens and Allen 2010;

Pocatilu 2012). SQLite supports a subset of SLQ (ISO/IEC 9075-1 to 9075-14), the most widely used

query language in RDBMS. Since our target platform is based on Java, an object-oriented language,

there would be an object-relational impedance mismatch if we choose a RDBMS. That mismatch

arises from the different type systems, as follows:

 essential OO programming concepts, such as objects, inheritance and polymorphism are not

supported in RDBMS;

 the notion of information hiding in an OO language (i.e. visibility classifiers (public, private,

etc.), is disregarded in RDBMS;

 the available data types are different (e.g. a single type like the String in object-oriented

languages may have several primitive types in SQL to correspond to);

 OO enumerations have no equivalent in RDBMS and must be mimicked through an auxiliary

table and a foreign key.

 class instances (objects) have an implicit unique identifier (object id), while table instances

(tuples) require a primary key to grant unicity;

 relationships among classes are implemented through embedded attributes, while auxiliary

tables are required in OCL, as well as foreign keys.

As an example, for a many-to-many relationship, while in an object-oriented approach (Figure 16)

each type (class) holds its relationships itself as references, in a SQL based relational model (Figure

17) a third table is needed to hold the relationships. Notice that any type of data must be also

converted to the adequate SQL type.

http://en.wikipedia.org/wiki/Relational_model

37
Luís Silva – July, 2014

Figure 16 – Object-Oriented Model many-to-many relationship with UML example

Figure 17 – Relational model many-to-many relationship with SQL example

The aforementioned facts make this type of persistency solution hard to implement. To mitigate

them, most relational databases currently offer ORM (object-relational mapping) capabilities. However

this type of solution also comes with a cost, like (Grehan 2006) said “(…) an RDBMS adds space and

time overhead to the application (…)”.

Object-oriented databases

In OO database management systems (OODBMS) transient objects used in OO programming are

stored directly, therefore discarding complex mappings and transformations. Usually OODBMS use

the same model employed by the application programming language. This means that references

among objects are stored along with the objects themselves.

Objects-relational databases

OO databases (ORDBMS) are a hybrid of the previous two approaches (Wikipedia 1995). We

could not find any ORDBMS for Android, but there are other alternatives. In the ORM libraries for

Android section we present several solutions which, in combination with the provided SQLite, allow

obtaining an ORDBMS.

http://en.wikipedia.org/wiki/Object-relational_database

38
Luís Silva – July, 2014

5.3.2 – ORM libraries for Android

To avoid repeated work and also to facilitate code generation, we have surveyed existing ORM

solutions for Android, as represented in Table 7. Although there are more solutions available, like

AndrORM (Giese 2012) and activejdbc (Polevoy 2012), these ones seem to be the most popular and

more mature. After analyzing each one, we concluded that none fitted well our goals, since they hold

some important limitations. Some of the latter were: no inheritance support, no many-to-many

relationship support, or transactions support. Those limitations (shown in Table 7), along with the

aforementioned costs of using ORMs, made us consider an alternative solution, in our case the DB4O

OODBMS (Versant 2013b).

Table 7 – Available ORMs solutions for Android

Project ORMLite ORMAN greenDAO jpa-android

Reference (Watson 2013)
(Alp Balkan et al.

2012)

(Junginger and

Dollinger 2013)
(Junior 2011)

Annotations JPA or custom JPA-like N/A Codegen JPA

Model specification

Direct in code

(through

annotations)

Direct in code

(through

annotations)

Specified in

outside project

(Schema objects)

that will generate

classes to be used

in project

Direct in code

(through

annotations)

Database

Operations
DAO or Entity Entity DAO or Entity Entity

License Open Apache2 Apache2 Apache2

Age 07-01-2010 14-02-2011 4-08-2011 4-08-2011

M
a
p

p
in

g

C
a

p
a

b
il

it
ie

s
 To one Yes Yes Yes No

To many Yes Yes Yes No

Inheritance
Only for non-

entity classes
No

Only for non-entity

classes
No

5.3.3 – The DB4O OODBMS

As we can see in Figure 18, NoSQL databases management systems only occupy 5% (others) of

the market share versus the large 95% of market share occupied by RDBMS. However, the expected

growth rate by 2015 for NoSQL databases is the largest one (Figure 19). A good evidence of this

interest is that Google cloud datastore9 already offers a NoSQL database to its users, affirming that it

9 https://cloud.google.com/products/cloud-datastore/

39
Luís Silva – July, 2014

is easier to work with. So we decided to look for an OODBMS that would work on Android and we

found the DB4O.

Figure 18 – Database engines – market share 10

Figure 19 – MySQL, NoSQL and NewSQL compound annual growth rate 11

The main features offered by DB4O are the following: (i) is an embeddable (through an API library)

open source OODBMS for Java and .NET languages, and therefore is supported in different platforms

and systems; (ii) has client-server mode, which allows message and data exchange between the client

and server sides much more easier; (iii) is a true OODBMS, which means that the class model is the

same as the database schema; (iv) supports transactions with the ACID properties and commit-

recovery on system failures ; (v) and finally is a non-intrusive system which makes the

implementations seamless persistent (i.e. it does not require to specify which classes are going to be

10 source: http://www.vertabelo.com/blog/jdd-2013-what-we-found-out-about-databases
11 source: http://blogs.the451group.com/information_management/2012/05/22/mysql-nosql-newsql/

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/.NET_Framework
http://www.vertabelo.com/blog/jdd-2013-what-we-found-out-about-databases

40
Luís Silva – July, 2014

used and how they are used, as other implementation do, for instance by using annotations in the

business classes). DB4O is supported by Android, by means of the DB4O Java library.

Table 8 – Db4o versus SQLite – main feature comparison

Features

Seamlessness Transactions A.C.I.D. Maximum Size Client-Server support

SQLite No Yes Yes 2GB No

DB4O Yes Yes Yes 256GB Yes

As Table 8 shows, DB4O not only has all the features that SQLite has, but still offers more, namely:

(i) a bigger maximum limit size for the database, (ii) client-server support and (iii) seamlessness.

Database size is very important for BIS apps, since they usually work with large data sets. DB4O

supports BLOB (binary large object) storage, therefore allowing to store media type data which

consumes a lot of storage space without affecting querying performance. Thus, since we are targeting

mobile devices which usually offer by default media content capturing hardware capabilities, such a

limit in size may be proven as a very important feature when BIS apps require multimedia contents.

Regarding Client-Server support DB4O offers an API with the ability to directly connect to the

database on the server and also to exchange messages between the client and the server. Such

features are essential when creating a BIS app since, as it was aforementioned, synchronization

support is a requirement for allowing both offline and online modes in alternation.

Regarding seamlessness, the best way to figure out its improvement on understandability is by

looking at an example as the one in section DB4O vs SQLite – seamlessnessDB4O vs SQLite of the

Appendix.

For querying purposes there are several alternatives: the Native Query, Query by Example and

Simple Object Database Access (SODA) Query. SODA Query is faster, and is our alternative although

being the less “object oriented” one; Native Queries are the closer approach to the OO approach but

are much slower, since “Under the hood DB4O tries to analyze native queries to convert them to

SODA” (Versant 2013a). Finally, we do not use Query by Example, due to the dangerous nature of

losing references. Android has garbage collection capabilities, so references to objects may be

accidently removed, for instance, in an orientation change event. Due to this nature, we must

temporarily persist instances values and since every object will have an id, performance wise, it is

better to persist just the object id (using the provided temporary Android system) and query by it on

restoration, instead of the whole object and query it by example. The latter is also the reason,

regarding our choice for SODA, since we are able to retrieve objects by the id, using a static singleton

class with SODA built-in methods that search only by a given class type and id, we avoid moving any

database regarded code to above layers. We still do not disregard the other querying capabilities,

since for more specific filtering approaches they still may prove to be the best option, both for the

generative approach and for code understandability sake. Table 9 shows an example of these

three query types.

41
Luís Silva – July, 2014

Table 9 – DB4O different querying capabilities example

 Example – query of every pilot, named "Michael Schumacher"

Native Queries
List <Pilot> result = db.query(new Predicate<Pilot>()

{

 public boolean match(Pilot pilot) {

 return pilot.getName().equals("Michael

Schumacher");

 }

});

Query by example
Pilot proto = new Pilot("Michael Schumacher", 0);

ObjectSet result = db.queryByExample(proto);

listResult(result);

SODA query
Query query=db.query();

query.constrain(Pilot.class);

query.descend("name").constrain("Michael

Schumacher");

ObjectSet result=query.execute();

listResult(result);

5.4 – Android Patterns

Navigational patterns, UI design patterns and code structure patterns are enforced by Google while

developing Android applications. Of all the researched patterns, none made so much impact as the

ListViewHolder pattern, due to the performance increase of list views (Google 2013a; Guy and Powell

2010). Another set of reference patterns was also studied to provide better extensibility, namely the

Observer (Wikipedia 2013d) and the Command (Wikipedia 2013b) patterns. In 6 – Generated apps

structure we explain how we implemented those patterns.

5.5 – Android Fragments

Fragments were introduced in Android version 3.0. Their primary goal is to provide a more dynamic

and flexible way for UI design, namely in larger screens, as advocated in the “Building a dynamic GUI

with fragments” section of (Google 2013a): “To create a dynamic and multi-pane user interface (…)

You can create these modules with the Fragment class, which behaves somewhat like a nested

activity that can define its own layout and manage its own lifecycle”. In the more recent versions

(version 4.x) it still meets that goal and is also used for proper code separation, either for UI design or

not. Besides code separation, using fragments may also have a great impact in performance.

Fragments have a different lifecycle from the activities, which create and hold the fragments.

Consider, for instance, a configuration change like screen rotation, which forces activities to restart

(destroyed and created again), therefore also triggering the corresponding fragments to restart. If we

set the fragments to automatically retain their instance (setRetainInstance(true)) we can reuse

the fragment, for instance, on orientation changes, therefore saving all the deletion and recreation

(which may include database querying) process. In other words, the fragment still restarts with the

42
Luís Silva – July, 2014

activity (this action is essential for example if a UI change is needed) but we skip the onCreate()

method in the fragment lifecycle, since variables are maintained. This is why when developing for

Android it is essential to understand the components lifecycles, discussed ahead.

5.5.1 – Static versus dynamic approach

One of the most important decisions that a developer must make, before developing an Android

application, is choosing a static or a dynamic approach, although the latter may be mandatory in

specific scenarios. An easy way to explain both approaches regards the usage of resources. If it is a

static approach, there will be much more data in the resources, including fragment definition in the UI

XMLs, but it will be much less code in the controllers (Activities). In contrast, the dynamic approach is

much harder to implement, and has more code, but it gives the developer greater control and much

more variance possibilities, for example, when there is a need for a change in an already working

implementation (maintenance). While in the dynamic implementation we do not have to change the

implementation structure, in a static one we might have to, depending on the required changes. For

instance, consider a UI which has two fragments dividing the screen (let us call them fragment 1 and

fragment 2), and we want to add to this project a new behavior, namely the ability to show just the

fragment 1 or 2, depending on the user action. In the presence of a dynamic approach we just need to

catch the user action and hide the fragment 1 in order to fill the screen with the fragment 2 or vice-

versa. On a static approach, the screen would be left with a blank space (the one occupied by the

“old” fragment). The solution for this scenario would be creating 3 different static scenarios, one where

we have the two fragments, another with just the fragment 1 and another with fragment 2. As it can be

seen, the same problem may be very easy to solve or very hard (in the sense of writing much more

code) depending on the followed approach. Nevertheless, the static approach tends to be faster, since

the static UIs are compiled, while the dynamic approach implies run-time rendering. This may affect

application performance in situations such as screen rotation.

5.6 – Android Lifecycles

In Figure 20 and Figure 21 we can see the lifecycle of activities and fragments, respectively. There,

the arrows represent the flow based on events, the rounded nodes represent the component state

and, the rectangles represent the methods called upon the events. As briefly shown before, it is very

important to understand how these lifecycles work, in order to avoid bugs, time consuming mistakes

and to achieve good coding structure and performance. For instance, if we are working with one

activity, as we can see in Figure 20, we could not determine exactly where methods would be going to

be called and when, since the system overpowers our application. For example, if an activity is in a

paused state, we do not know when it will gain focus again, if it is going to start again on the

onResume() or on the onCreate() methods. This leaves us with one question: what code can we

put in each method to guarantee that the activity is always going to work and do it in the best possible

way. In other words, we could code everything on the onResume() method to guarantee that our

43
Luís Silva – July, 2014

code would always be executed in every possible scenario, but that would make the application more

confusing and probably with worse performance, since it would repeat steps even when not required.

As we can see in Figure 21, the same concern logic is applied for fragments, despite some minor

differences in the corresponding lifecycle. Yet another concern, that a programmer must be aware

when working with fragments, is the activity and fragment lifecycles intersection, as shown in Figure

22. Finally, as we can see in Figure 23, the programmer must also have into consideration, in case the

implementation requires it, activity state recreation or recuperation. As aforementioned it is possible to

instruct Android to retain fragments instances in order to avoid the repetition of the creation process.

This is one more concern of how to properly arrange the implementation. That illustrates the possible

advantages of a static approach, since it masks the programmer from all these problematics.

44
Luís Silva – July, 2014

Figure 20 – Activities lifecycle12.

Figure 20 shows many possible scenarios (e.g. if the device receives a call, another activity comes

into the foreground). Notice that there is not a need to identify what disrupted our activity, but we must

be aware of such a lifecycle, in order to properly make use of the available methods.

12 source: http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

45
Luís Silva – July, 2014

Figure 21 – Fragments lifecycle13.

13 source: http://developer.android.com/guide/components/fragments.html

http://developer.android.com/guide/components/fragments.html

46
Luís Silva – July, 2014

Fragments lifecycle (Figure 21) is similar to the one of activities. Notice that in this scenario we

have two possible ends: (i) the left one, where the fragment gets destroyed; (ii) and the one on the

right, where the fragment is reused. On (i), the fragment follows the typical lifecycle, i.e. is created,

used, and removed from memory. On (ii), the fragment is reused, skipping the attachment to the

parent activity and creation process, thus saving in possible reads or processing data on the latter

steps. An example scenario of the latter is a screen rotation event, where the view may change (i.e.

the layout must be updated and therefore the views must be recreated) but there is no need to

change, for example, the object that is being used to fill this view.

Figure 22 – Fragment lifecycle intersection with activity state14.

14 source: http://developer.android.com/guide/components/fragments.html

http://developer.android.com/guide/components/fragments.html

47
Luís Silva – July, 2014

Figure 22 shows the intersection between the lifecycles of activities and fragments, that must be

understood to avoid bugs and reach good code structure and application performance. For instance, if

a fragment needs to know the identity of his holder activity to do an action, it can only do it, for

example, after its view is created. This can be seen as a potential place where a developer can make

mistakes when trying to control the normal flow of an application, namely when deciding if a certain

view should be visible upon a rotation. Since we would be dealing with views, it is normal to execute

such functions inside the onCreateView() method but, in this case, we could not do it because the

activity was restarted and it would still not be created. The same logic is also applied to the activities.

As it could be seen in both Figure 20 and Figure 21, the methods required to execute certain tasks

must be carefully chosen, since we must follow a certain call order, to avoid errors.

Figure 23 –Activity recreation lifecycle15.

In the recreation lifecycle in Figure 23, two more persistence dedicated methods are supplied to

persist states temporarily. The robot in this scenario represents the app icon. The user would have

pressed the home button and therefore, the app would be “minimized”, which in Android is the

equivalent to close the app in its current state. The user can go back to the paused app by pressing its

icon (in this case the robot icon). The onSaveInstanceState() is where we persist the data and

the onRestoreInstanceState() where we restore the data. Again, we should notice that the

restore method is only called after the onCreate() method. The latter is very important when

creating an Android application, since we cannot expect to have access to persisted data before the

activity creation.

Such interactions are essential to achieve good performance by avoiding repeated tasks, for

instance, avoiding repetitive querying the database due to screen rotation, which is very common for

an everyday Android user.

15 source: http://developer.android.com/training/basics/activity-lifecycle/recreating.html

48
Luís Silva – July, 2014

[This page was intentionally left blank]

49
Luís Silva – July, 2014

6 – Generated apps structure

6.1 – GENERIC ARCHITECTURE .. 49

6.2 – VIEW LAYER .. 52

6.3 – VIEW-MODEL ... 55

6.4 – MODEL LAYER ... 59

6.5 – PERSISTENCY LAYER ... 60

6.6 – UTILS – SUPPORT LAYER/PACKAGE ... 61

6.7 – SYNCHRONIZATION ... 63

6.8 – IMPLEMENTED PATTERNS .. 64

6.1 – Generic architecture

We follow a template like generation, based on defined navigation principles. Since it is our goal to

decrease development time by means of a generative approach, patterns were studied so that the

generated implementation offers a low, or more loosed, coupling and thus offer better maintainability

and reusability.

To achieve that goal, the MVVM (Model View View-Model) was the base architecture chosen. As

aforementioned, Android is based on the MVC pattern, but does not force it. The MVVM is a more

recent pattern proposed by John Gossman (Gossman 2005) and based on Martin Fowler’s

Presentation Model (Fowler 2004). Both feature an abstraction of a View, which contains state and

behavior. The difference is that Gossman presented the MVVM as a standardized way to leverage

core features of the Windows Presentation Foundation (WPF) and Silverlight, in order to simplify the

creation of user interfaces. Besides not being an Android specific pattern, both are based on the MVC

pattern: “The Model is defined as in MVC; it is the data or business logic, completely UI independent,

that stores the state and does the processing of the problem domain. The Model is written in code or

is represented by pure data encoded in relational tables or XML.” (Gossman 2005). Some adaptions

had to be made in order to fully implement our solution in the Android platform. In Figure 24 we can

see the basic representation of the MVVM and how and which data is passed between layers, notice

that by comparison with Figure 11 (MVC) the main difference is that the view layer does not

communicate with the model layer. In the MSDN16, a more detailed explanation of Figure 24 and its

implementation is available.

16 http://msdn.microsoft.com/en-us/library/ff798384.aspx

50
Luís Silva – July, 2014

Figure 24 – Model View View-Model17

The UML component diagram in Figure 25 presents, a generic architecture of the generated

applications: the client-side (Android platform) and the server-side (Java platform). As in the MVVM,

there is no communication between the GUI specification component (View layer) and Domain logic

component (Model layer), as opposed to the typical Model-View-Controller. A persistency helper

(Persistence manager component) is also provided which contains generic methods that return

persisted data, based on the data type. If more specific data is required, a set of methods are also

available which can filter by a given data type, attribute name and value/constraint. The generated

Java server application holds the shared database and a Server manager component, whose only

function is to start a DB4O server instance, available through its API, with the given settings, in order

to trigger server-side listening and acceptance or refusal of incoming connections. The

Synchronization manager component is responsible for all the synchronization process and therefore

is the only one that uses the client-server API available in the DB4O to establish connections to the

server. In order to synchronize the data, the latter accesses type dedicated methods offered by the

Domain logic component (Model layer) by means of an interface thus, it is not required to know or

instantiate any domain logic. To know the data that is supposed to send/synchronize it accesses the

Persistence manager component and reads its own data specific type (Transactions) from the

database which in turn holds, in an ordered by creation manner, domain specific data type.

17 source: http://msdn.microsoft.com/en-us/library/ff798384.aspx

51
Luís Silva – July, 2014

Figure 25 – Generated applications architecture (UML component diagram)

Figure 26 shows our implementation based on the MVVM in a more detailed fashion, where the

persistency layer is shown, as well. Next we will demonstrate, in a more detailed manner, how each

layer is implemented and how it fulfils its concerns/responsibilities, namely regarding: (i) model

requirements; (ii) mobile requirements (i.e. screen size, density and rotation adjustments); (iii)

persistency requirements; and (iv) our implemented synchronization system.

52
Luís Silva – July, 2014

Figure 26 – Generated client-side apps main architecture

6.2 – View Layer

6.2.1 – Concerns

The View layer is responsible for guaranteeing screen size and resolution adjustments, defining the

UI components for each object type and for any configuration (portrait and landscape orientations),

and finally for defining basic UI action states (i.e. simple state changes like button pressed). To ensure

proper display on different screens types, Google provides a set of proven best practices (Google

2013a), such as using wrap_content, fill_parent, or dp units when specifying dimensions in an

XML layout file and supplying alternative bitmap drawables for different screen densities. Not using

hard coded pixel values and AbsoluteLayout (deprecated). Some additional organizational techniques

were applied to ensure better maintenance or change support, as described in the following

subsections.

53
Luís Silva – July, 2014

6.2.2 – View Layer structure

Figure 27 – Proposed Android View Layer Structure

The view layer is composed by general layout XMLs (one pane and two pane layouts), view XMLs

(specific to object types) that describe the layout used in a certain space of the screen and finally the

forms, the most specific XML type, which describe the layout of/and the components used for the

specific data type of the objects. Regarding this layered structure, the general layout XMLs are

independent, i.e. they merely represent the general layout. Any binding is done dynamically in the

View-Model layer. On the other hand, the view XMLs are set statically. For instance, they will hold the

form XMLs files and we is define statically which forms they hold. The form XMLs are defined as

mergeable XMLs, which means that they can be included in other XMLs, namely the view XMLs,

thereby promoting reuse. All XML files are placed in the layout folder, as shown in Figure 27, and

required by Android. The menu folder will hold XML files that describe the ActionBar, one for each

XML for each different ActionBar setting. The anim folder is used to store animations, but note used so

far. The drawable folder is used to store basic action styling based XMLs files. For example, it

contains an XML that will change the background colour of a view if the view is pressed. It is also used

to store media related files for density purposes as it will be explained next. Lastly, the values folder is

used to store raw data and in our approach as the base size and style controller like it is also

explained followingly.

54
Luís Silva – July, 2014

6.2.3 – Reaching several screens sizes and densities

All the screen size and density control support is handled in this layer. It could also could be

controlled in a dynamic way in the Java code but, as shown in chapter 4 – Domain and GUI

specification, Android offers a set of qualifiers to improve the construction and maintenance of this

control structure. As also shown in Figure 27, we may apply these qualifiers in several ways. Instead

of using the qualifiers in the layout folder, we use them in the values folder, and in the file

“pane_decider.xml” we reference the proper layout file depending on the size qualifier. The same

approach is used for specific component sizes, but this time we make every decision inside the files

“default_layout_styles.xml” and “default_component_styles.xml”, for example if we

want to define the text size. For density adjustments the same will happen, i.e. we will have in each

qualifier folder the exact same image or icon but with different densities. The difference here is that we

do not need an XML to reference different images, since they are always the same. Therefore we

have different images with the same content but with different densities but they must have the same

name. The same also applies for both previous XML files and the used IDs inside them.

This approach avoids a lot of code repetition. For example, we avoid the repetition of the file

“<type>_form_detail.xml” at least seven more times (the four size qualifiers in each orientation

setting), since more sizes can be defined beyond those standard settings. As Figure 28 shows, when

defining styles for specific UI components, like a TextView, we point to another XML file. This allow

using first one XML file for describing the objects (in this case the form XML files). Any information that

can be volatile depending on the screen size is set in the “<type>_styles.xml”, which in turn

inherits its styles from the “default_component_styles.xml”. This last XML inherits the Android

standard style chosen by us. For instance, for the normal qualifier we set the TextAppearance.Medium

Android setting. Currently we only use this structure for text specific components since, as far as we

know, these are the only ones that have changeable settings, besides width and height.

Figure 28 – UI components styles reference structure

55
Luís Silva – July, 2014

However, as it will be shown, despite applying these good practices in our generation approach

and therefore enforcing good coding, the amount of code generated for the View layer is, even with

considerable small models, very extensive.

6.3 – View-Model

6.3.1 – Concerns

The View-Model layer is responsible for binding the data to the views, controlling in a dynamic way

every configuration change that may occur, handling and validating the user inputs and acting as a

“middle man” between the model and view layers (i.e. handles information exchange). This layer was

sub-divided into a binding layer and a control layer.

6.3.2 – Binding Layer

The binding layer is composed by every class responsible for doing the binding between the

abstract views (XML defined view) and the data types, i.e. filling each view component with the value

of the given object type. Therefore, in our template approach there will be three main binding classes,

each responsible for a different view: (i) the “<type>DetailFragment” responsible for the Detail

View; (ii) “<type>ListViewHolder” responsible for representing the view of each item in the list

(i.e. this class does not represent or control in any way the list itself only the view of each item); and

finally the “<type>NavigationBarFragment” responsible for the navigation bar view. These

classes also carry other responsibilities. For example, they also handle user input, can control visual

effects and navigate to other activities. However, these actions are always restricted to the own view

“action space” (i.e. the action must not involve other views outside the “action space”). For example,

the “<type>DetailFragment” handles input validation and responds accordingly and the

“<type>NavigationBarFragment” can start other activities (user navigates to another screen)

which may seem like it is overpowering other views or activities, but in fact when we navigate to

another activity all the views and activity states are saved, and restored when returned to focus.

Therefore, it does not interfere with other views or activities, since each view and activity must be

prepared for handling any state change on its own. Another responsibility that these classes hold is

the set of listeners, namely upon buttons or the views themselves. While this behavior can, and

should, be set in the view layer thus following more closely the MVVM, we have chosen to do it here

(in the classes themselves). The rationale is that the Android framework only allows the activities to

receive such action triggers. In fact, we could had set the listener statically in the view layer, which in

turn could trigger a pre-defined method in this layer. However, since only activities could receive the

calls, and not the fragment classes, or the list view holder, in order to achieve such a structure we

would have to pass the call from the activities to the proper receiving classes. That would increase the

coupling effect and would go against our goal of separation of concerns with loose coupling.

56
Luís Silva – July, 2014

In conclusion, these classes set and remove their own listeners from both the view layer (i.e. views

or buttons listeners) and the model layer (in order to receive object state modification (Observer

pattern)), set and fill with data the static views defined in the view layer and/or remove them. They also

provide methods to control themselves more easily. For instance, simple hide and show methods are

generated in these classes, granting the activities easier control over their screen space. Finally they

also can show any type of Android dialog and handle the response independently (e.g. error input

messages).

6.2.4.3 – Control Layer

The main controllers are the activities. In our template approach each data type will have a

dedicated screen, which is an activity, named “<type>Activity”. These activities: create or destroy

every class/fragment of the binding layer and set their parameters; serve as base communication

between them, and if there is a cascade effect other layers18; control the ActionBar actions; and lastly

and most important since the activities are the first to start, they are the ones that receive the

arguments and decide which layout is best to display19. As shown in chapter 4 – Domain and GUI

specification in order to control every behavior, while maintaining good performance and avoiding as

much repetition as possible, the proper lifecycle methods must be chosen to each behavioral control,

namely:

 onCreate(Bundle savedInstanceState) – this method is the first to get called in the

lifecycle of an activity and it is called only once. It is called again when the activity is destroyed

and restarted, for example due to orientation change (screen rotation). So it is here where we

create and set the views layout instances to the proper fragments or, if the received Bundle is

not null (activity restarted), we just set them and also set the activity variables state. Also in

this method we check the activity received arguments and therefore it is here that we control

our navigation principle, i.e. decide what type of screen we should present based on the

navigation genders, if the activity should behave in a READ mode or WRITE mode.

 onSavedInstanceSate(Bundle outstate) – this method is used to store any data for

later use (restore screen state). Is only called when the activity is destroyed without intention.

For example, on screen rotation and also if in a paused state the activity may be destroyed by

the system due to low memory.

 onStart() – this is one of the most important methods, since it must be here where the view

settings must be implemented. For example, in our scenario the list may support long clicks or

18 The creation of a new object is done in the “<type>DetailFragment” fragment which in turn is

passed to the “<type>Activity” which is the one that triggers the action (insert, update or delete)

by communication with the Model layer.
19 In our approach when navigating to another screen/data type the layout chosen to display may vary
depending on the target multiplicity namely, if the user navigates in a ToONE (multiplicity of 1)
direction since it has only one possible object it does not make sense to show the list view therefore
the one pane layout is automatically chosen.

57
Luís Silva – July, 2014

not, depending on the device size, i.e. if we are in a two pane screen it will not, on the other

hand if on a one pane screen it will support in order to show the detail view.

 onResume() – used only to place the restarted instance (used to know if the activity suffered

from a restart effect, like a screen rotation) to false. This method was chosen since it is the

last method to be called, thus granting us assurance that the restarted instance will be true (in

case of a restarted) until “everything” is done (recreation and state restore where is possible),

that is the activity will be ready to start receiving events.

 onPause() – not used.

 onStop() – not used.

 onBackPressed() – in our approach, as shown, instead of navigating to details

screens/activities, we replace views. We use this method to gain control over the back button

(present in every Android device) thus deciding its behavior.

 onActivityResult() – in this method we prepare the activity for each possible answer

from other activities. In this case we prepare the activities for answers of both: association

creation or cancelations types.

 onDestroy() – called when the activities are destroyed. We use this method to remove any

previously set listeners.

By using the aforementioned methods accordingly, we can prepare every activity for every possible

scenario. Since we are dealing with dynamic data and we want to reach every possible combination

regarding screen rotation, we need to dynamically control these behaviors. For instance, in the worst

case scenario, we could have for the same device the one pane layout in a portrait mode and when in

landscape the two pane layout. In the onStart() method we know if the screen was restarted (for

example due to screen rotation) therefore here we decide if we are going to show the detail view or

not. This last type of control is performed by the activities in their screen controller.

58
Luís Silva – July, 2014

Figure 29 – Google Master Detail Flow design recommendation

We decided to follow this approach, even if not following Google’s recommendations for this case

scenario, as shown in Figure 29, since it showed a greater changeability and behavioral control and a

much easier implementation and therefore comprehension. We must also point out that we are dealing

with dynamic and relational data and a lot of information exchange between different modules with

CRUD operations as a requirement. For instance, in the last example, where we would pass from a

two pane layout to a one pane layout, we do every check and change with very few lines of code.

Since we are working in the same activity, everything is already set. If we followed Google’s

recommendations, we would have an entire new activity that we would need to prepare and possibly

destroy in case we passed from one pane to the two pane layout. We would also have to pass a lot of

information from one activity to another, since we would need to show the navigation bar on the detail

screen (it shows data of the objects), or at least be aware of the data transference. Furthermore, but in

this case for our navigational approach, as previously mentioned if we navigate to a ToONE gender,

the list view is not required, only the detail view. Therefore, in this case scenario, we would have an

activity A which only purpose would be to call activity B. If the activity B would be called directly, then

the activity B must have a lot of repeated code, since it can be called in both READ or WRITE modes.

This behavior would also hamper code understandability and generation, since it would fragment into

different places what it should be done in the same method or place. For example, if an instance type

is target of a ToONE gender type, in READ mode it only shows the detail view, but in WRITE mode it

must show the list in order to give the possibility of choice. Therefore, activity B would repeat the code

that analyses the received arguments for READ mode.

59
Luís Silva – July, 2014

6.4 – Model Layer

6.4.1 – Concerns

This layer includes the POJO classes corresponding to the model classes, plus the ones that will

hold the persistency dedicated methods. One of our main goals was to make use of OCL to describe a

more “volatile” constraints checking. Since in an application lifecycle the base model structure has a

minor chance to suffer changes we can consider the OCL constraints a more volatile type of

constraints. Besides this fact and due to the large nature of the research we still do not check such

constraints, but we have considered the UML associations, i.e. how an instance type relates to

another, as simple model constraints. For each model class this layer will contain two Java classes: (i)

the POJO class named with the same name as the class in the model, therefore Type; and the

Access class, named as <Type>Access. The word Access was added since it is this class that

mainly communicates with the persistency layer and implements the ModelMusts interface which

contains the necessary methods to realize all the actions, i.e. local persistency actions, server

synchronization actions and notification actions.

6.4.2 – POJO classes

These classes are a “pure” representation of those described in the model. The above layer (View-

Model) will only use these classes to obtain information, set listeners or to command new actions,

namely persistency actions, and they never call directly the persistency layer or the access classes,

which are the ones that fulfil these actions. Therefore the POJO’s will have: (i) every parameter and

association instance described in the model; (ii) extra parameters to hold each association state (i.e. if

the current association is considered valid), a general object state (i.e. valid or not valid) and an ID

attribute (Integer) used as an identifier (for persistency purposes); (iii) getter methods (i.e. methods

that retrieve information) for every parameter, association and states (previous point). Besides these it

is also provided an allInstances method which returns all the objects present in the database, a type

getter and lastly a specific by ID object getter (takes an ID as argument); (iv) to complement the

previous getters methods the same set of setters methods (i.e. methods that set/change information)

are also available, except for the allInstances and the type method. (v) lastly, it is also provided a

getAccess method in case there is a need to access the Access class, and five persistency action

methods namely, insert, update, delete, insertAssociation and deleteAssociation.

6.4.3 – Access class

The Access classes act as a bridge to the persistency layer. They hold the listeners and the

respective add and remove methods. Regarding the persistency methods, the aforementioned five

methods are provided and it is provided the, previously mentioned, five methods and it is in these

60
Luís Silva – July, 2014

classes that every local action is done. Also four server dedicated methods namely serverInsert,

serverUpdate, serverInsertAssociation and serverDeleteAssociation. These server

methods are needed for synchronization purposes. For instance, we need to call all the setters’

methods for an update action since the object is not in memory, therefore is not seamlessly update by

the DB4O engine. Furthermore for insert purposes we need to verify and set the object state. Finally

and most important, since is not in memory the references used in the server to represent the

associations are different from the ones used locally, therefore we must replace them “manually” (i.e.

simple object replacement would not suffice). The delete method is not necessary since it does not

require any special treatment. Other methods are also provided for coding purposes.

6.5 – Persistency Layer

6.5.1 – Concerns

As aforementioned, the goal of this layer is to fulfill the persistency requirements required by the

other layers.

6.5.2 – Database

For persistency purposes, instead of the default Android persistency engine (SQLite) the DB4O

was chosen as discussed in section 5.3.3 – The DB4O OODBMS. As shown in Figure 26 (MVVM

diagram), only one class is used for this layer, which is the reason of using DB4O in our approach,

since this engine allow us to seamlessly persist data. Depending on the model some configurations

must be implemented. Such configurations will affect the engine behavior, regarding the results upon

usage of the normal CRUD operations. So, in order to make the DB4O act accordingly to the model,

one essential configuration must be set, namely: (i) the update depth. For instance, inheritance trees

and many-to-many relationships must have a minimum update depth of two, since a change of any

object participant of such relationships will mandatorily affect another type object, namely its

neighbour or child. The later configuration setting not only is important for performance, but also for

regular operations that may involve any relationship. (ii) Lastly, and by default, we set all the domain

types present in the model and therefore in the database to be indexed by the “ID” attribute, added by

default. Since we will do all the queries based only on this attribute, we index all the classes by this

attribute. By doing this the queries will perform faster.

61
Luís Silva – July, 2014

6.6 – Utils – Support layer/package

6.6.1 – Concerns

In this layer/package is placed every class that will serve as support. For instance, to avoid code

repetition in the caller class, to serve specific purpose algorithms like the classes used for

synchronization purposes and other all-round purposes. Every class in this package should provide

such service to the callers and still maintain itself fully independent (i.e. it should receive enough

arguments to completely perform its task and return, if it is the case, the result without compromising

the process flow of the caller).

6.6.2 – Generated support classes

As aforementioned there are classes that will be independent of the model namely, the classes

present in the Utils layer. In Table 10 we can see all the classes present in this layer and their

purpose.

62
Luís Silva – July, 2014

Table 10 – Support classes

Class Purpose

AndroidTransaction

Used to represent one Android transaction, i.e. it contains a list of

commands, an id and if it is the case an error tittle and message.

Command
Class that represents a command.

CommandTargetLayer
Enumerated target layers.

CommandType
Enumerated type of commands.

DetailFragment
Interface to be used by the detail fragments.

FragmentMethods
Super interface with generic all-round fragment methods.

InheritanceListFragment

Used to show the possible navigational possibilities for inheritance

scenarios (as shown in Figure 8 example).

ListAdapter

Generic list adapter. Can be used to create list adapters for any

type of objects.

ListFragmentController

Generic list fragment. Can be used to create list fragments for any

type of objects, with a set of defined settable rules.

ListViewHolder

Interface, with the required methods, used by the specific type list

view holders.

ModelContracts

Class that contains methods that check the UML constraints given

an object (single object or collection) and the cardinalities.

NavigationBarFragment
Interface to be used by the navigation bar fragments.

PropertyChangeEvent
Class that represents a persistency action event.

PropertyChangeListener
Interface used to communicate events.

ServerActions

Synchronization dedicated class. It holds two functions, one to

send and the other to update the local database.

ServerInfo

Contains all the required information to connect to the right

database on the right server.

StartServer
It starts the server (server-side).

StopServer
It stops the server (server-side).

Transactions

It sets and controls the transactions. Class used in a higher level

to better encapsulate commands and notifications.

UtilNavigate

Class used as a facilitator; it holds methods; which enable code

reuse thus granting greater understandability and maintainability

and facilitating the generative approach.

Utils
All-round generic useful methods.

WarningDialogFragment
Class used to show messages in Android. It should be used by

63
Luís Silva – July, 2014

means of the method showwarning present in the UtilNavigate

class, which can be called anywhere, that is any activity or

fragment.

6.7 – Synchronization

6.7.1 – Concerns

As aforementioned, every BIS app requires consistent data in both server and client sides.

Therefore, we either provide an application that would always require a server connection in order to

work which in turn, would greatly affect our final mobility factor or, we provide an application with

synchronization capabilities, i.e. with the ability to work offline and still offer the same working

capabilities/features. When a connection becomes available the application should be able to

automatically synchronize the new data in a consistent way.

6.7.2 – Synchronization class

As shown in the previous sub section the only class fully responsible for the synchronization

process is the ServerAction class. The latter provides two methods, one to send the new changes,

and the other will synchronize the local database with the database present in the server. The code in

these two methods is executed in a separate asynchronous thread.

For this specific task, not only the user actions (deletion or creation of an object) are persisted in a

command like form, but also every automatic command derived from that action (e.g. the deletion of

an aggregated object would result in possible several other deletions). Therefore every action is going

to be replicated in the server side.

The process to send the changes to the server requires querying for all the transactions persisted

in the database (persisted as AndroidTransaction type) using the provided persistence manager

component. Every AndroidTransaction is composed by one or many Commands which in turn hold the

attributes shown in Table 11.

64
Luís Silva – July, 2014

Table 11 – Command class attributes

Type Attribute

CommandType
type

CommandTargetLayer
targetLayer

Integer
oldObjectID

Integer
oldNeighbourID

Class<?>
oldNeighbourType

Object
oldObject

Object
newObject

Object
oldNeighbour

Object
newNeighbour

Object
source

The existence of both ID attributes may be useful to avoid or even accelerate object comparison or

querying (these commands are also used locally for notification purposes). To access any needed

domain logic and still maintain a low coupling effect, this class uses the provided interface

(ModelMusts) of the model layer, which as aforementioned provides the four needed, synchronization

with server, dedicated methods which are then filled with the values stored in these commands.

Getters and setter methods are also available for each attribute, to access these values. A detailed

diagram showing the relationship of the Command class is shown in the next sub section since it is a

fundamental piece of the aforementioned command pattern.

6.8 – Implemented patterns

To guarantee maintainability, the generated apps implementation is built upon reference patterns.

Among other used patterns like the singleton pattern, we present in this section three well known

patterns, since they are important for our generated architecture. The observer and the command

patterns, whom are known to be implemented in several different languages and platforms, and the list

view holder pattern, which, as far as we could find, is an Android specific pattern. Using modelGoon20,

a plug-in for the Eclipse IDE that enables the creation of UML class, interaction, package and

sequence diagrams, from an existing source code, we created, from a generated application, the

following presented diagrams illustrating these patterns.

6.8.1 – List view holder

The list view holder pattern is introduced in the generative process of the lists. By using this pattern

we guarantee looser coupling, and greater maintainability. As shown in (Guy and Powell 2010), by

following this pattern we also increase the performance of the list views. We also created a generic

20 http://www.modelgoon.org/

65
Luís Silva – July, 2014

ListFragmentController class (adapts to every object type), which in turn removes complexity to both

generation and generated implementation. In Figure 30, we can see our implementation of the given

pattern. Notice that we only have the <type>ListViewHolder class as the concrete object type class.

The latter class is responsible for inflating its concrete XML view, and react accordingly to state

changes. The, also shown, concrete activity is not part of this pattern, it is present in the diagram for

understanding purposes. In conclusion by applying this pattern we provide better performance, and

both greater maintainability and easier generative process, since within our implementation only one

class must represent its own domain type.

Figure 30 – List view holder pattern

6.8.2 – Observer pattern

Another very important followed pattern is the observer pattern. With this pattern we guarantee that

every view its properly updated, but most importantly, as the latter, we also significantly reduce

coupling. Since each fragment has its own responsibilities and can also be reused in other ways, that

is, by other activities besides its own purpose type activity, it is very important that each fragment has

the ability to, by following its own lifecycle, set itself as a listener, remove itself from listening, and

finally update itself or its contents in a completely independent way. If any notification received affects

other components, it is passed to the holder activity. In Figure 31, we can see the diagram

representing our implementation of this pattern. The concrete observer must implement the

propertyChangesListener, and to start listening it only has to set itself as a listener by means of a

static method present in each domain class type, for example, <type>.

getAccess().setChangeListener(this);.

Figure 31 – Observer pattern

66
Luís Silva – July, 2014

6.8.3 – Command pattern

Lastly, the command pattern is also implemented. This pattern plays a heavy role over the

implementation. As Figure 32 shows, besides the usage of the DB4O, since we allow the data to be

synchronized in a later state, we had to create our own transaction system to store action commands.

Since we allow to associate objects by means of different screens usage, that is, in order to associate

objects a user can navigate to other activities that do not hold the listening fragment. The presented

Transactions class is also responsible for triggering the state change notifications (implemented by

means of the latter observer pattern), which are only triggered after we guarantee database

consistency, i.e. even if DB4O or other management systems provide a function to guarantee

consistency, namely the commit function, our views do not get updated by these management

systems, therefore we had to create our own system. Thus the Transaction class besides triggering

the notifications of the views, it also confirms the end of a transaction to the DB4O by means of the

commit function. We provide five commands types, which every listener can then use to separate

action based events, and we specify which layer is the target of the command, i.e. if it targets the

database or the listeners. For instance, let us consider a many to one association and a creation of an

association action (action that represents a creation on a link between two objects). Regarding the

views, we may have to update every possible view available therefore there might be more than one

view command available. However regarding the database or synchronization process there can be

only one database command and the latter is created by the holder class (i.e. the class that holds the

neighbor). By separating the intent of the commands, this specific model logic is abstracted to the

other layers, but it is still available for use in case it is needed, since we know the source of the

command. Thus granting greater maintainability, understandability and easier code generation.

Figure 32 – Command pattern

67
Luís Silva – July, 2014

7 – JUSE4ANDROID

7.1 – JUSE4ANDROID – GUI AND REQUIREMENTS ... 67

7.2 – JUSE4ANDROID – STRUCTURE AND GENERATION PROCESS ... 68

7.3 – MODEL TRANSFORMATION .. 73

7.1 – JUSE4Android – GUI and Requirements

In Figure 33 we can see the JUSE4Android GUI screen, created in order to provide a more friendly

and easier input environment. Each filling zone is a required setting for the generation process.

Figure 33 – JUSE4Android GUI screen

1. The directory where the project is going to be generated to.

2. The path of the file containing the model.

68
Luís Silva – July, 2014

3. Since two different projects will be generated, a name for each one can be set. If these fields

are not set the model name is used instead followed by Android and Server for, respectively,

the client side and the server side.

4. The user name and password used to access the database on the server.

5. A port and ip address used by the server. If not set the local host ip address is used (can be

used for local tests).

6. The box or console used to show the outputs of the generator (the outputs regarding errors

thrown by USE or the generation done, and not what is generated).

Besides these simple input requirements, JUSE4Android also has other Android specific

requirements in order to successfully generate an error free application project. When creating a new

Android project in Eclipse many files are created which may overwrite the generated ones, in case the

project is created after the generation, an example of such a file is the “manifest.xml Since this tool

was tested mainly on an Eclipse environment, which in turn uses the ADT for the Android

development, it is important to notice that a project should be already created before running the

generator.”. On the other hand, the server side project does not suffer from this type of problems,

since it is a Java based application.

Furthermore, and considering other alternatives since Eclipse solves this problem seamlessly, the

generator does not considers the R.Java file in the generation process or any available Android

compiler, so in order to build the final .apk’s a R.Java must be created/generated. Lastly, to run

JUSE4Android, Java must be installed.

7.2 – JUSE4Android – Structure and generation process

7.2.1 – Open-source tool integration

To reach our proposed goals we researched available open-source projects, upon which we could

integrate our project. To make the project feasible, these projects would have to present a minimal set

of requirements. They should present the ability to specify models in the UML syntax and also support

the OCL. As shown in the 2 – Related work section we found some open-source projects, like the

Dresden toolkit, that already provided an advanced generative approach upon we could work on, but

unfortunately this project, as aforementioned, does not allow the specification of associative classes.

Besides the projects presented in the related work section we also found the UML-based Specification

Environment, also known as USE (Gogolla et al. 2007), which is a Java open-source tool developed in

the University of Bremen. USE is a system for the specification of information systems. It is based on

a subset of the Unified Modeling Language (UML). A USE specification contains a textual description

of a model using features found in UML class diagrams, expressions written in the Object Constraint

Language (OCL) may be used to specify additional integrity constraints on the model. The USE tool

also gives the possibility animate a model “(…) to validate the specification against non-formal

requirements. System states (snapshots of a running system) can be created and manipulated during

an animation. For each snapshot the OCL constraints are automatically checked. Information about a

69
Luís Silva – July, 2014

system state is given by graphical views. OCL expressions can be entered and evaluated to query

detailed information about a system state …”(Fabian et al. 2013). While this tool provides a graphical

interface that can interpret models, the same ones must be declared textually in a file with a “.use” file

extension. Besides the advantage that this fact give us, because the models become this way

independent of the tool UI, a possible down factor is the fact that this tool does not offer any XMI to

USE model conversion capabilities, while not critical this fact requires the users to learn the needed

syntax to describe the UML models.

In conclusion, we decided to use the USE tool as base model interpreter and validator, since from

the described tools it was the solution that fulfilled all our requirements, as shown in Table 12, USE

allows the models to have associative classes, and contrarily to OCLE it is open-source. In order to

better access the USE tool we used the J-USE (Brito e Abreu 2011).

Table 12 – OCL tools differences

 Dresden OCLE USE

UML class diagram completeness No Yes Yes

Open-Source Yes No Yes

OCL support Yes Yes Yes

By offering a facade to work with the USE services, combined with the fact that USE uses input

models declared outside its UI environment, we were able to create model-driven generation capable

projects in a USE seamless way.

7.2.2 – GUI and generator – project and standalone

As previously mentioned this tool was created on top of other tools, i.e. makes use of separate

open-source projects like J-USE and USE. In order to take advantage of such open-source projects

and at the same time create a stable working environment, without the need for direct adaptation in

the other projects, two mains classes or launchers were created: (i) the main tool launcher built over

the J-USE; (ii) and a separate main for the GUI. This allows the JUSE4Android tool to be launched as

a standalone tool without third party (J-USE and USE) crash consequences, for instance due to

thrown exceptions.

In order to achieve such characteristic the GUI main class becomes the standard choice for the

standalone tool. This main starts the GUI as in any normal Java application and waits for the start

command as shown in Figure 34. When the generated button is pressed this application launches the

other JUSE4Android main (generator purpose main) on a different process or JVM. This will allow the

generator to throw any exceptions or crash, without crashing the GUI application. In order to inform

the user of any validation errors, for example, caught by the USE toolkit, the output stream channel of

the generated is redirected to the GUI process. Therefore, any output or thrown exception is then

printed there, as shown Figure 34.

70
Luís Silva – July, 2014

Figure 34 – JUSE4Android Standalone mains structure

7.2.3 – Internal generator structure

JUSE4Android, as shown in Figure 35, also uses some APIs of J-USE. From the several APIs

available we can highlight the usage of the classes: FileUtilities; AssociationInfo; and AssociationKind.

The FileUtilities, class provided functions that eased our file creation. The AssociationInfo class

provided a representation for an association and it provided the required getters methods, e.g. it

provide a role name which would already follow a common convention, it provides functions that would

return the source and target classes of a given association and it also applied a name convention for

the classes’ names. The AssociationKind class is an enumeration class with an already defined set of

association types following the UML class diagram standards.

During the development of this tool other Android specific interfaces were added, such as

AndroidTypes, and several methods were also added to some of these interface to fulfill the project

needs.

71
Luís Silva – July, 2014

Figure 35 – JUSE4Android package diagram

The internal generation process also follows a separate layer structure, i.e. for each layer there will

be a class that will handle the generation regardless of any inter layers dependencies. As shown in

Figure 36, the main controller (PrototypeGeneratorFacade.java) extends the J-USE

BasicFacade class. Also shown in Figure 36, the standard pattern followed is the visitor pattern with

the generated methods as being who is visited and the model classes as being the common argument

to work with. This pattern was chosen to allow a sustainable growth, i.e. the ability to reuse later these

methods. In Figure 37 we can see that only the main controller accesses the openOutputFile or

closeOutputFile. Therefore, the visited classes’ only action is to print to an already opened file or

stream. Regarding the view layer, since we need to produce XML files, we adopted the JDOM toolkit

(Hunter et al. 2013) that provide a simple API to create, and manipulate XML files.

72
Luís Silva – July, 2014

Figure 36 – JUSE4Android relation to J-USE and Visit pattern class diagram

Figure 37 – JUSE4Android interaction diagram

73
Luís Silva – July, 2014

7.2.4 – Static generation process

As shown in Figure 36, the generator structure is divided in layers, corresponding to the target

implementation layers, and is controlled by the PrototypeGeneratorFacade class (main

controller), but only for the above main four layers. Aside this layers there is also the “utils” layer,

besides being essential to the generation outcome (i.e. generation of a fully working prototype), it was

not considered in the previous section due to the fact of the generation process being completely

model independent. Therefore its generation did not require “visiting the model”.

The generation process applied here was simpler since all the code was independent, except for

some classes who need to import other classes, but since these imports are inside this set of classes

(i.e. target other independent/static classes) the process could be done differently. For instance, these

classes are all defined in text files (.txt) and to solve import problems simple identifiers were used in

the right place to be replaced later, namely for the package and in some cases also the Application

class name, since its name derives from the main model name or final project name. In the sub-

section Utils layer of the section Static Generation Process – identifiers in the Appendix we can see

the classes that are in this set, notice that most of these are classes that define the implemented

patterns. Besides these classes there are also other files that also follow a simple copy approach in

the view layer, namely all the files placed in the folders: drawable; menu; some files in the layout

folder; and values; as can be seen in the sub-section View layer of the section Static Generation

Process – identifiers in the Appendix. These files are even simpler and do not even have any

identifiers since there is not a need, so they simply are copied to the right folder. Except for four files

which will contain the project or model name in the beginning of their file name, but only for better

understanding purposes, namely the files present in the latter sub-section whose name file starts with

<model_name>.

7.3 – Model transformation

In this sub-section we will present the most important part of our generative process, for each of

the presented layers, i.e. the applied rules for each given model parameter.

7.3.1 – View Layer

7.3.1.1 – Generation Approach – Static

Since, in our generative approach, we follow a template model there is always a static data side

that does not need any information from the model to be generated, so as said before we enforce

some decision making, namely by generating:

 The folders, with the shown qualifiers, as shown in Figure 27.

 The sizes applied for each qualifier (default_layout_styles.xml).

74
Luís Silva – July, 2014

 The layout applied to each qualifier (pane_decider.xml) – off course this is done for all

domain classes, and therefore is model dependent, and we already have pre-defined which

layout is set for each qualifier therefore is considered static.

But since there is the possibility that the user may want different settings for each type of data, we

replicate some of the files like the two layout files.

7.3.1.2 – Generation Approach – Dynamic

For all files shown in Figure 27 are considered dynamic, since they are completely model

dependent, in both existence and content generation. Next is shown the goal and the approach

applied to each of these files as well as the adopted naming convention.

Naming convention

As shown in Figure 27, every XML file name will start with the name of the corresponding domain

class (represented surrogate “type”), followed by other qualifiers separated with an underscore, whose

semantics is described in Table 13.

Table 13 – Naming convention qualifiers

Qualifier XML file content

view Type specific view

form Type specific mergeable representation

layout General layout

strings Type specific raw string data

detail A none editable representation of information data

insertupdate A editable representation of information data

list Information data used in a list

navigationbar Information data used in a navigation bar

onepane One pane layout screen view

twopane Two pane layout screen view

component_styles Type specific view style settings

For example, considering again the “Worker” class, we would have at least these two files: the

“worker_view_detail.xml”; and the “worker_form_insertupdate.xml”; the first would hold

the view (i.e. holds all the viewgroups and views) that will be shown, in a static way (not editable), in

the detail part of the worker assigned screen (see Figure 6). The second example file is a mergeable

XML and holds all the components that allow a creation or modification of a worker object type (i.e.

depending on the chosen attributes in the annotation creation).

75
Luís Silva – July, 2014

Forms

Both <type>_form_detail.xml and <type>_form_insertupdate.xml follow the same

generation approach with only three differences: (i) the available attributes are based on their

annotations respectively display and creation; (ii) regarding the ids, the detail has the detail qualifier

and the insertupdate has the insertupdate qualifier; (iii) and finally the Android UI components applied

for each attribute type. Both files are mergeable, so both start with the merge tag. Both will have a

RelativeLayout view group to define the layout to apply and order all the views inside it. For both

the latter id is composed by the class name, followed by the qualifier detail or insertupdate depending

on the file, and finally by the qualifier layout. The width is set to match_parent (this means that will

be as big as its parents width, by default the view groups width will always be match_parent which

means the available screen width) and the height to wrap_content (this means that it will have the

height equal to the sum of the of the height of its children views). Immediately inside the latter there

are many LinearLayout view groups. As the given attributes their width and height are

wrap_content, their id follow the same principle as their parent, but instead of the qualifier layout it

will end with the name of the attribute. Regarding the orientation it will always be horizontal (this

setting means that the children of this view group will be disposed horizontally). Lastly, the latter will

have another setting namely, and since it is inside a RelativeLayout, all attributes will be set below

the previous set attribute, unless they are the first to be set. Inside each LinearLayout there will be

two components: (i) a static TextView that acts as a data descriptor; (ii) and a dynamic UI component

(for generation purposes this UI component varies depending on the data type).

In Figure 38 we can see the given effect. On the left side is an abstract representation of the

template used to both form XML files. On the right side is the concrete representation of the same

template, for the Worker class example shown previously (“worker_form_detail”). The square in the

left side with an asterisk (LinearLayout) represents a repetition/loop, in the right side we can see

the resulting effect.

Figure 38– Form XML template and worker detail form example

These last UI components will have the same ID as its parent, with one more qualifier in the end, (i)

will end with text and (ii) will end with the attribute name.

76
Luís Silva – July, 2014

Regarding (i): it will have wrap_content as width and height and since its text is static, its text

setting will point to a string which as the same id. This string value can be found in the values folder, in

the XML file named <type>_strings.xml.

Regarding (ii): the next two tables show for each attribute type the UI component chosen and its

settings. In Table 14 we can see the detail, and in Table 15 the InsertUpdate case.

Table 14 – OCL type to UI components (widget) transformation – detail XML

Detail

OCL Type UI component width height special

Integer TextView wrap_content wrap_content None

Number TextView wrap_content wrap_content None

String TextView wrap_content wrap_content None

Real TextView wrap_content wrap_content None

Date DatePicker wrap_content wrap_content Clickable = false

Boolean CheckBox wrap_content wrap_content Clickable = false

Enum TextView wrap_content wrap_content None

Object

Type

Include (uses the

dedicated type form)
- - None

77
Luís Silva – July, 2014

Table 15 – OCL type to UI components (widget) transformation – InsertUpdate XML

InsertUpdate

OCL Type UI component width height special

Integer EditText match_parent wrap_content inputType=number

Number EditText match_parent wrap_content inputType=numberDecimal

String EditText match_parent wrap_content None

Real EditText match_parent wrap_content None

Date DatePicker wrap_content wrap_content Clickable = true

Boolean CheckBox wrap_content wrap_content Clickable = true

Enum Spinner match_parent wrap_content
prompt=<type>descriptor ,

entries=<type_enum>

Object

Type

Include

(uses the

dedicated type

form)

- - None

The special settings shown are used to constrain the input to special settings (e.g. integers will only

show a numerical keyboard and that keyboard only allows simple numerical input), or completely like

for the DatePicker (it only allows the user to change the date in case is clickable).

Finally, we generate the form for the navigation bar. This last form follows a more static generation

approach since the only change is in the settings of the UI components, which are always the same. It

also starts with the merge tag, and for each class association found, it will generate a LinearLayout

with the settings presented in Table 16.

Table 16 – Navigation Bar association view group settings

ID

<SourceRole>_navigationbar_association_<TargetRole>

or if no role is found/used

<ClassName>_navigationbar_association_<TargetClass>

Width
match_parent

Height
wrap_content

Orientation
horizontal

clickable
false

Long_clickable
True

Inside this view group a TextView will be always generated, followed by an ImageView and lastly

another TextView. All of these will have the wrap_content setting for both width and height and as

78
Luís Silva – July, 2014

ID, will have the same id as its parent with one more qualifier in the end namely and respectively:

name, image and numberobjects_text. The only association dependent setting in the above is the

image source name (in the ImageView UI component). As shown in Table 6, for each association, we

select a pre-determined image source, depending on the association target multiplicity value. If is one

is a ToONE otherwise it is considered as a toMANY. Besides these, we must also check if the class in

question is a sub class, to allow navigation to its super. Finally, if the class is a super class, we must

check its direct children and properly set the source image name.

Views

The View type XMLs are responsible for choosing the right forms and putting everything properly

together. If we need to add any other component to a specific view, this is where it should be done.

This avoid polluting the form type XMLs with any content outside the model specification, making the

code much more easy to maintain and construct. As Table 17 shows, both views are very similar. The

only differences are: (i) the form that is included – the “include” tag in Android is used when we want

to use, the already defined, mergeable XML files – in each view; (ii) and for the insertupdate view

another inclusion at the bottom of the view, namely two buttons (ok and cancel buttons) present in the

mergeable XML file “default_okcancel_buttons”.

Table 17 – Detail and InsertUpdate Views XML templates

Detail View InsertUpdate View

Besides the templates not showing, both views may also have a repetition/loop, namely the sub-

classes present in the model (inheritance scenario). In case we are dealing with sub-classes, where

by their own nature they inherit their parents characteristics, the views are responsible for merging the

different forms by the order of the inheritance tree, that is, from the most super class until reaching the

class which the view is responsible for. For instance, the “training_view_insertupdate.xml”

will firstly include the “project_form_insertupdate.xml” and below it will include its own form

79
Luís Silva – July, 2014

(besides the fact that for this case its own form does not present any new information). The latter is

one more example of the importance of separation of concerns. Notice that by separating the data into

form type xml we can represent each class in its own XML without any modeling effects like the

inheritance case, and thereafter in the view type XML we merge these contents as needed and add

any other needed contents and functions like the buttons and scrollable capabilities. The other, not

shown, views follow the exact same approach with the difference that the content on the list depends

on the annotation “list” and the navigation bar only depends on the associations of the class.

Special case scenarios

Some special cases will now be described. One is the conjunction of inheritance with the

associations when creation is needed. When the user intends to associate one instance to an instance

of a super class, the user is presented with a list of the possible instances types (a super instance if

not abstract and all its children). To provide these lists, special XML files are generated for instance

types that are not expected. Let us consider the Worker, Qualification and Company types from our

example. While they seem normal classes with normal binary associations to other classes, they all

fall in this category simply because they are associated with an inheritance three (Project class) and

therefore must have these XML view files. On the other hand, every class in an inheritance tree must

provide knowledge of its children. So in order to solve this problem two new XML files are introduced

in the generation process: (i) “<type>_generalizationoptions_offsprings.xml” generated

for every super class present in the model. These are mergeable XMLs files (like the form type files

but instead of serving their own class type views they will server another class type), which have their

direct children representation followed by a simple divider bar, and which also include their direct

children off springs XML file. The children will do the same. So a top-down approach, as shown in

Figure 39, will be generated guaranteeing a full inheritance tree coverage; (ii)

“<sourceType>_generalizationoptions_<targetType>_view.xml” are the XMLs views

files used by the classes that are associated to an super class, i.e. that are going to show the,

explained previously, dialog. So, as shown in Figure 39, in the latter file we represented the

association to the super class, therefore the super class is represented, and finally it is included after a

divider the super class off springs XML file. In Figure 39 we can also see the dialog box that appears

in the Worker class dedicated screen when the user does a long click over the projects (Project class)

association. The reason for the existence of the offsprings files in the last child (i.e. it should not be

necessary since it is the last child), is to maintain the coherency, that is, we threat the inheritance

relationships like associations. A super class should only be aware of its direct children, therefore it

should not know if its direct children also have children. Consequently, the children must supply their

parents with an offspring file even if it is empty.

80
Luís Silva – July, 2014

Figure 39 – Association Creation to Inheritance Tree example (worker class screen)

7.3.2 – Type mapping

7.3.2.1 – To Java

So far, we presented the transformation mapping for the view layer that uses XML. From this point

forward, that is, the other layers, the target language is Java and also we target Android specific types.

Therefore, in this sub-section, we present the transformation of the OCL types to the specific target

language types.

Primitive types

Table 18 – OCL to Java types mapping

OCL types Java types

Integer
int

Real
double

Boolean
boolean

String
String

Collections

For these special cases, there is a need for both super Java type and implementation type to be

able to initialize the collection.

81
Luís Silva – July, 2014

Table 19 – Collection OCL to Java type mapping

OCL type Java type Java implementation type

Bag<T> List<T> ArrayList<T>

OrderedSet<T> SortedSet<T> TreeSet<T>

Sequence<T> Queue<T> ArrayDeque<T>

Set<T> Set<T> HashSet<T>

7.3.2.2 – To Android

We can also create views dynamically using the Java syntax, for instance to set click listeners or

change content in runtime, we reused the same properties. For instance, an OCL Integer is also

transformed to a TextView or EditText, and this is all we need to know, since for instantiation

purposes we only need to either set as a View type (super type of any widget), or the specific type

which is the same. For implementation purposes there is no need for a transformation process, since

we retrieve the already initialized view from the system. Again, we just need to do the casting in case

the View super type is used. In the next piece of code we can see an example of the instantiation code

for an EditText component.

(EditText)rootView.findViewById(R.id.<type>_insertupdate_<atribute>_value);

7.3.3 – View-Model layer

There are mainly two file types in this layer that are model dependent, the activities and the

fragments. For each domain class one activity, and three fragments (navigation bar, list view and

detail) are created. The model independent files, also generated for this layer, are the Launcher,

MasterActivity (super activity that holds generic actions to all activities) and the Application class.

The latter three do not have any model specific parsing requirements. Therefore are generated as we

specified them, with the exception of the Launcher class which requires to know whose classes have

the Startingpoint annotation so it can set the navigational action upon the buttons shown in the

initial screen. Since the initial navigation does not require to send any arguments, it only needs to add

“Activity” after the class name to indicate where it is navigating to.

In our generative approach the classes are our main argument, i.e. we cycle every class and we

generate an entire class content upon its characteristics which include: own features (attributes,

methods); and indirect features which include the neighbors class (relate to other class through an

association) relation features however, there some specific that deserve special attention: (i) having

associative classes as a member of another associative class; (ii) and having a class being associated

to a super class. In the (i) case scenario, represented in Figure 40 where the class that we are

82
Luís Silva – July, 2014

processing is the Associative1, we are obliged to generate all the path from the first associative class

to the farthest members in order to show the intended screen, for instance, in the list view.

Figure 40 – Aggregated associative classes’ example

In the (ii) case scenario, which it was already aforementioned in the previous sub section, we must

have knowledge of all the inheritance three namely, when generating the

NavigationBarFragment, since the navigational action is defined and reified by this fragment and

it must know every class it must navigate to and the arguments it has to send. The activities also

experience from the same characteristic, i.e. upon a navigation the activities are the ones who

received the arguments and therefore must analyse and react upon them. Therefore, an activity

representing a subclass must react accordingly to arguments from a neighbour of its super class (not

direct neighbour) and, most importantly, an activity must react to arguments from a subclass of its

neighbour (not direct neighbour).

7.3.3.1 – Model parsing/analysis

To analyse and decide upon the characteristics of each class, some decisions had to be made,

namely which characteristics to use to serve as arguments in the generated implementation (these

arguments have to be unique) and also how to perceive those characteristics when analysing the

model. In Figure 41 we can see a portion of the model used as example in this dissertation which

represents a good example of how we must be careful when making such a decision. Let us consider

the Training activity which receives arguments in order to prepare its initial state. When navigating to

the Training activity we must send an argument that would identify the source/caller. If we use any of

the roles name, the Training activity would not know the source, since the roles names are not unique

in the entire model. For instance, as it can be seen in Figure 4, there are many “projects” role names

for the Project class. If we use the class name to distinguish the source/caller, we will be using a

unique qualifier, since there cannot be two classes with the same name in the same UML class

diagram. However, there is a problem, if we navigate from the Qualification activity to the Training

activity while there is a way to identify the source/caller, there is not a way to identify its origin path, i.e.

its intent. Consider that we navigated from the Qualification to the Training activity in creation mode. If

83
Luís Silva – July, 2014

this was the scenario, the Training activity had to know if the user had navigated through the Project or

directly from the Qualification, in order to decide which association was meant to be created.

Figure 41 – ProjectWorlds analysis decisions – example.

In conclusion, we used the names of the associations to distinguish them, since they also are

unique. For the inheritance scenario we created a naming convention namely the name of the class

followed by the word “Association”. For instance, if navigating from the Project, a “ProjectAssociation”

would be received by the Training activity. Lastly, to distinguish the relationship between the

associative class and its members, we used the names of both classes like in: “<name of member

class>_<name of associative class>Association”. The relationship between both

members has its own name specified in the model.

7.3.4 – Model layer

For each domain class in the PIM (identified with that domain annotation) two classes are

generated: a POJO and an Access classes. The @holder annotation, used over the associations’

specifications, also directly affects the outcome of the code in this layer.

7.3.4.1 – POJO

The POJO class will hold all the attributes as defined in the model, plus the getters and setters

methods, following the common naming convention. The getters have the same name in lowercase,

the setters naming will start by “set” followed by the capitalized name. The associations follow the

exact same principle but with the target class name, with the exception that, if there is the identifier

role present in the model its value will be used instead. Besides the defined attributes it is also going

to be generated an ID attribute and respective getter and setter methods. Regarding the defined

84
Luís Silva – July, 2014

operations a //TO DO comment is added in the generated code as common in IDEs such as Eclipse21

to identify pending issues. The relationships are defined as a normal relationship would, that is, as a

reference or a collection of references and also have the respective getter and setter methods.

Regarding our generative approach for the latter instances and methods the type of association

and the @holder annotation will have impact. For instance, in case we are facing a many to many or a

one to one association, we automatically decide, based on the complexity of the classes, which class

will hold the other (i.e. which class will have defined the instance of the other class), or if the @holder

annotation is present in the model, the class with the given annotation will be the holder, regardless of

its complexity. In many-to-one scenarios the holder will always be the class that hold only one

instance of its neighbour. For each association found in a class, the generation approach will depend

on the latter being a holder class or not. If it is, the reference or collection of references, will be

created, and the getters and setters methods body will reflect that knowledge by working directly with

the reference or collection of references. If it is not the holder class, there is not going to be any

reference to the neighbour and the latter methods bodies will make use of the neighbour methods in

order to retrieve the data. For collections we also generate an add method and a remove method in

both sides to allow adding and removing single instances, without the need of preparing an entire

collection for an update action. The latter methods also use the same naming convention as setters,

but instead of “set” it is used “add” and “remove”, and, regarding the method body content, also follow

the same holder logic. To better understand the generative approach an example between the Project

and the Worker classes is shown in the POJO – Relational getters and setters example section of the

Appendi.

Regarding the Aggregation and Composition, the POJO class would look the same as the previous

ones depending of course on the cardinality between this two classes. For Inheritance, the same

principle is applied, since each class is responsible for its own relationships.

Besides the latter an allInstances method is also generated, which returns all the instances of

the given type and is the same in every scenario, even for the inheritance case, since the responsible

method in the persistency layer is prepared for this case scenario. It is also generated a Boolean for

each association to control validation state, a Boolean to store the general validation state (e.g. used

for deciding if the alert icon should be displayed as shown in section 4.3.2 – GUI views and widgets),

and methods that control and verify such states. Five CRUD methods that access the respective

methods in the own <type>Access class with the appropriate parameters, and lastly other methods

which purpose is to facilitate both generation and understandability. An example is the getType

reflexive method which returns the type of the class and can be useful when using interfaces, like in

our synchronization manager component, since there might be a need for more specific verification

criteria.

21 http://www.eclipse.org/

85
Luís Silva – July, 2014

7.3.4.2 – Access class

We have already described in section 6.4.3 – Access class which methods these classes hold.

They are called <type>Access and are generated along with the POJO classes. A sequence

diagram of the insert method for the Worker class, shown in Figure 42, is used to illustrate the

required steps and process to fulfill this action.

Figure 42 – Insert method – Worker class example

Through a try/catch block we ensure that if any error occurs during the insert process the

transaction is cancelled. Next, in the if condition, we verify if the given object does not already exists,

if it does we cancel the transaction. Finally we call the methods that will verify the associations’

constraints and in the process update them, then we access the current session and store the object.

In the end we had two commands, one to target the database (for server synchronization) and another

that targets the views for notification purposes.

The other methods follow the same process with minor changes. The update method verifies that

the received object still exists and the new one does not. Both insert and delete associations also

receive as argument the neighbour, and also verify if the received object exists, and then if the class is

the holder, they do the respective process and create a database command. If not, they call the

respective neighbours method. In the end the associations both verify the associations’ constraints

and store the object.

86
Luís Silva – July, 2014

Lastly, the delete method also follows the same process as the previous methods, but before the

deletion it calls the notifyDeletion to guarantee consistency. In Table 20 we can see the different

scenarios, depending on the existing associations and if it is a holder class or not.

Table 20 – Deletion notification – Mapping solutions

Association Type notifyDeletion Code

Class A Class B

for(B x : a.Bs())

 x.deleteAssociation(a

);

if(b.A() != null)

 b.A().deleteAssociation(

b);

A is the holder

for(B x : a.Bs())

 x.deleteAssociation(a

);

for(A x : b.As())

 x.deleteAssociation(b);

for(B x : a.Bs())

 x.delete();

if(b.A() != null)

 b.A().deleteAssociation(

b);

7.3.5 – Persistency layer

As aforementioned, this layer is composed only by the Database class and, except for

dbServerConfig and dbConfig methods, every content is pre-defined with the exception of the

required imports needed depending on the generated contents in the latter methods. As already

explained, we need to set the updatedepth for each domain class. Therefore, for each domain class

we must analyze its needed update depth. Following the same logic as in the previous sub-section we

set the rule for this calculation. If the class is the holder of all its associations, then its update depth is

one, since it holds every reference. If the class contains any association which it does not hold, then

its neighbor is the holder class. Therefore, the update depth must be two. In addition to the update

depth we also configure the database, for each domain class, to be indexed by the attribute ID.

As it can be seen in the following code, only two lines of code are necessary for each domain,

model class to allow us to set these rules, namely:

configuration.common().objectClass(<type>.class).objectField("ID").indexed(

true);

configuration.common().objectClass(<type>.class).updateDepth(N);

Where Type represents the class name, and N is always one, except in the two previously mentioned

cases. The rest of this class generative process follows a static approach, since all the querying

methods provide simple filtering arguments. For instance, to retrieve an object as previously shown,

we only require the type of the object (class type) and an Integer, since every object has its own

unique ID.

get(Class<T> c, int constraint)

87
Luís Silva – July, 2014

The same is also applied to retrieve sets of objects, for both simple and inheritance participants’

classes as shown in the next code.

public synchronized static <T, Y> Set<T> allInstances(Class<Y> prototype) {

return new HashSet<T>((Collection<? extends T>)OpenDB().query(prototype));

}

public synchronized static <T, Y> ObjectSet<T> allInstancesOrdered(Class<Y>

prototype) {

return (ObjectSet<T>) OpenDB().query(prototype);

}

7.3.6 – Static implementations

As already aforementioned, there are classes that will be independent of the model, namely the

classes present in the Utils layer. Although some of these classes require domain logic algorithmic

usage and therefore domain specific type knowledge, as in for our synchronization manager

component. By providing various specific methods, which in turn fulfill all the requirements of this

layer, through an interface (in our case the ModelMust interface as shown in Figure 26) we avoid

passing any domain logic to this layer. Thus avoiding the need for any model-driven generative

approaches besides the obviously need to know the domain type abstraction provided interface and its

methods. Since there is not a need for any domain specific type knowledge, for the generation of this

layer we followed another approach. We specified the code in normal text files, since it is sufficient,

and for any needed import or cast we specified a specific qualifier, as shown in the sub section Utils

layer of the section Static Generation Process – identifiers in the Appendix.

88
Luís Silva – July, 2014

[This page was intentionally left blank]

89
Luís Silva – July, 2014

8 – Validation

8.1 – GENERATED IMPLEMENTATION .. 89

8.2 – JUSE4ANDROID .. 98

8.1 – Generated implementation

In order to test the generated implementation, we followed a bottom-up validation approach.

Starting from the persistency layer and going upwards until the view layer, each layer and its purposes

were tested. The latter approach was chosen in order to guarantee safer results, since sound third

parties technologies were used in order to test the persistency capabilities.

8.1.1 – Seamlessness validation – Persistency and Model layers

To validate the persistency layer, besides following the DB4O guides (Versant, 2013a), we used

the Object Manager Enterprise (OME) (Versant 2013a) to query and maintain data in a DB4O

database. The validation technique was based on matching the black-box perspective granted by the

generated app UI, against the white-box perspective granted by the OME. This way, by means of a

proven third party tool, we could assure a functional persistency and model layers implementations. In

the example on Figure 43 we can see a worker object with data content and already associated to

other objects. In Figure 44 we can see the corresponding OME view in Eclipse, showing all the

instances of the Worker class and all its attributes and associations. In its bottom we can see the

values of the selected object, which is the same as the one selected in Figure 43. After each test,

involving the execution of the CRUD operations, we tried to make sure that the expected result was in

an expected state in the OME, to guarantee that we did not get wrong results due to improper

querying in the generated code, or improper code in the presentation layer. After providing a stable

data layer we were able to test the upper layers. For example, let us consider an update action, which

means that we are going to change an old object state to a new state. With DB4O, since we always

use the store function to either update or create objects, we may get false results if we test such an

action in our own UI views, If the DB4O engine loses the reference to the object under consideration

the same store function will create a new object instance instead of updating the old one, and both

objects would still show the same information in the UI views.

90
Luís Silva – July, 2014

Figure 43 – ProjectWorld Worker class – OME and generated Android Application validation example
– Application view

91
Luís Silva – July, 2014

Figure 44 – ProjectsWorld Worker class – OME and generated Android Application validation example

92
Luís Silva – July, 2014

8.1.2 – Validating – View-Model and View layers

The implementation for these two layers, besides already following the proposed proven patterns,

was tested using a simple observation methodology over the logs present in the LogCat (Android

logging system), a mechanism for collecting and viewing system debug output. We observed that

output in both available real devices and emulated ones by means of the Android mobile device

emulator, and lastly using the Eclipse IDE environment with the ADT installed. By generating to an

already existing dummy project in the Eclipse IDE, we were able to test, more easily, our generated

code against compilation errors. By means of real and emulated devices, we carried out black box

tests and, by means of the LogCat, we were able to run simple white box tests. Within the first

scenario, we were able to check the screen size and resolution adaptions for different devices. At the

same time, by means of the LogCat, we were able to search for run-time errors when testing basic

mobile functionalities, like rotating the screen and locking and unlocking the phone, test the views

state consistency, the flow control and the views notifications process.

8.1.3 – Validating – Understandability – UI layer and flow control

Two tests were taken in order to study the model-based UI generation perception and also to study

if the control flow was perceived as it was intended. In this case we were interested in perceiving if the

– navigate in order to associate – actions were indeed understood.

The subjects of the two experiments were not randomly selected. However, the available

convenience sample covers the set of desired characteristics for the expect subject profiles, as

described in Table 21.

The Mobile tech knowledge, BIS app knowledge and Modelling knowledge categories were

identified to characterize subjects’ knowledge. The first relates to an all-round knowledge in

technology, more specifically of how to use mobile technologies. The second relates to usage of BIS

apps and finally the third to knowledge about generic modelling. These categories are graded with an

ordinal scale (Basic, Advanced and Expert) as described in Table 21.

93
Luís Silva – July, 2014

Table 21 – Subject knowledge categories

Characteristics Values Description

Mobile tech

knowledge

Basic The subject owns a mobile device, uses it to basic functions like

making calls and others, knows its way around the device but is

not acquainted to using apps.

Advanced The subject owns a mobile device, uses it for everything it is

offered to him. Already has enough apps experience to criticize

an app in terms of both presentation and performance regarding

user experience.

Expert The same as “Advanced” but also has development experience

and so is also capable to criticize from a developer’s point of

view.

BIS app knowledge

Basic The subject might have used or uses one or two small BIS apps

on a daily basis, besides the fact that would not consider such

apps as BIS apps.

Advanced The subject knows what BIS apps are and understands the

concept. Already has seen different types of BIS apps, might

use one or two small BIS apps on a daily basis.

Expert The subject knows what BIS apps are and understands very

well its concept. Already has seen different types of BIS apps,

either small BIS apps or complex corporative BIS apps. Might

use one or two small BIS apps on a daily basis in a personal

manner and has experience in using complex corporation BIS

apps.

Modelling knowledge

Basic The subject has basic knowledge in modelling, might already

use it to describe business processes.

Advanced The subject knows more than one modelling language, already

has used more than one modelling language to describe both

software and business processes.

Expert The subject knows many modelling languages, already has

used them to describe both software and business processes.

Has experience in modelling transformations and generative

approaches are nothing new to him.

94
Luís Silva – July, 2014

Table 22 – Participants universe and sample description

Characteristics
Participant

Available Sample Desired Universe

Age 18 - 25 18 - 60

Sex Both Both

Field knowledge Advanced and Expert Basic, Advanced and Expert

BIS app knowledge Basic and Advanced Basic, Advanced and Expert

Modelling knowledge Basic and Advanced Basic, Advanced and Expert

We carried out two experiments to validate our approach. None of the subjects in our sample had

ever seen our generated apps, and therefore had no idea of what they were going to do until the start

of the experiment. Before starting a five minutes demonstration was given to everyone. This

demonstration introduced the interaction paradigm, showing how to create, update, delete and

associate objects. The app used in the demonstration was generated from a model that the subjects

already knew, so that the complexity of the problem domain was not confounding factor. After the five

minutes demo, an app (generated with a different model which the participants had never seen) a task

was given to each participant, and they had thirty minutes to complete it.

 Experiment one – The subject was given a script and an app with no objects. The script told a

story which ultimately described a database state. The subject was then asked to create and

associate objects so that the final state of his database would describe the script.

 Experiment two – The subject was given an app with no objects. Then the subject was asked

to reverse engineer the app. The expected output was a UML class diagram in the USE

syntax format that would describe the app that he was seeing or thought that should be.

These two experiments were carried out in two different days. In the first day thirteen subjects

performed the first experiment. In the background (i.e. not intrusively) every action they did in their

apps was recorded and stored in their own database by the app itself. Also in the first day we did a

pre-test of the second experiment. The reason why the second test had an empty database, was to

expose the issues of cardinality constraints required for a correct understanding of the underlying

model. All subjects used the same platform, an Android emulator, therefore blocking a possible

influence of adopted device on the results. Running efficiency was not an issue when using the empty

database, there was only a small delay when handling apps in the emulator environment.

We noticed, both in the first and second experiments, that the subjects did a lot of random clicks,

apparently not associated with the task in hand, namely often performing useless navigations to other

neighbor concepts (types). We believe that this behavior was due to the need to explore the provided

app, by understanding how the display and navigation features look like.

95
Luís Silva – July, 2014

Experiment one – app usage

The goal of this experiment was to assess our generated apps understandability regarding our

proposed navigational paradigm and overall functionality . A script was given to the subjects which

ultimately represented a database state. The goal of the experiment was to reach that state using the

given generated apps, i.e. filling the empty database with objects, so that it would represent the state

described in the given script. The apps were generated from the Football Leagues model shown in

Figure 47 in the sub section Models in the Appendix. This model was already a familiar model to the

subjects, since they already had used it to do other recent academic assignments. Once the goal was

explained to the subjects, a five minutes presentation was done to show the creation and association

of objects in the app process. After that, the subjects had 30 minutes to complete the script.

To evaluate the results of this test, we followed a simple observation method, that is, during the

realization of the test we observed and recorded the difficulties shown by the subjects. Since there

were many doing the test at the same time, it was not feasible to follow the actions of every subject.

Therefore we instrumented the generated app to record, non-intrusively (hidden from the subjects),

every action executed in the app. Since our app uses the Command pattern to persist actions for later

synchronization, the apps architecture already had scaffolding features to support such tracking

purposes. For instance, every time the back button was pressed, we persisted a command with the,

CommandType BACK. For other purposed actions we added other specific CommandType’s. In the

end of the test, we asked the subjects to press the added finish button, which sent the used database

to a server, so that we would be able to analyze it later.

After this experiment and analyzing the data we concluded that our generated apps lacked enough

informative properties. For instance, we noticed several clicks over the navigation bar without having

any object selected, we also noticed that the subjects were constantly trying to navigate to empty sets

(i.e. trying to see some associated objects type screen when there were any associated objects of that

type). The subjects also showed a lot of confusion when associating two types by means of an

associative class. Lastly since we never prevented the navigation in WRITE mode, the subjects

already confused, especially with the associative classes, would leave undone, occasionally,

navigational actions. The latter faults were easily fixed after the first day tests, by simply adding alert

messages for the later actions and preventing any kind of navigational action while any other action is

undergoing (e.g. if the user enters in WRITE mode in any screen he will not be able to navigate

forward until he either finishes the action or cancels it). In Figure 48 of the section Experiment one –

result example in the Appendix, we can see how we could trough an UML sequence diagram better

identify problematic user actions. The latter can be generated based upon the commands that we

retrieved. In this scenario the <Type>GUI represents the activities or screens. The latter figure is

already filtered of some actions and only shows a very small step, namely the creation of three objects

(championship, participation and country) and their association actions based on the navigation. We

did not provided more due to, as it can be seen, space constraints.

96
Luís Silva – July, 2014

Experiment two – reverse engineering

In this experiment the subjects’ goal was to reverse engineer the class diagram describing the

underlying model, by just navigating in the app. The syntax of the output was one used by the USE

tool. Subjects were proficient in it and used it to check model integrity. In Figure 45 (Models section of

the Appendix) we can see the model used for this test.

In Table 23 we can see the results of this experiment. On the right column it shows the group

score, that is the produced model percentage comparatively to the model used to generate the apps.

In order to not bias the results, since some model characteristics were impossible to retrieve from

the app (e.g. association names), we carefully took out such variables from the model comparator

program and only used variables which were possible to detect from the app.

To check if the team size (factor or independent variable) influenced the reversed model

percentage (outcome or dependent variable), we will apply a between groups test. We have three

groups, corresponding to team sizes of 1, 2 or 3 subjects. To determine the appropriate test

(parametric or non-parametric), we have to check if the outcome variable is normally distributed. To

test distribution adherence we will use the Shapiro-Wilks' W test. This test is the preferred test of

normality because of its good power properties as compared to a wide range of alternative tests. The

null hypothesis (H0) here is that there is no distance between the theoretical distribution and the

sample distribution. The test interpretation is as follows:

- If the W statistic is significant (i.e. p ≤ α), then the hypothesis that the respective distribution is

normal should be rejected.

In our case we obtained p = 0.798; therefore, for a test significance α = 0.05 (95% confidence

interval), we cannot reject H0, which means that we have no statistical evidence that the variable does

not follow a Normal population. As a consequence, we can use a parametric test.

Since we have one factor with more than two treatments, we should use the One-factorial ANalysis Of

Variance (One-Way ANOVA). This procedure is used to test the hypothesis that the means among

several groups (determined by a factor variable) are equal. Therefore, it allows testing if there is a

variance on the outcome variable (reversed model percentage) that is due to the factor (the team

size).

The ANOVA compares the sum of the squares of the deviations between groups (difference between

groups, SSB), with the sum of the squares within groups (SSW). The null hypothesis is tested using

the following test statistic:

𝑇 =
𝑆𝑆𝐵/(𝑘 − 1)

𝑆𝑆𝑊/(𝑛 − 𝑘)

where n (number of cases) = 29 and k (number of groups) = 3.

97
Luís Silva – July, 2014

Table 23 – Experiment two results

Subjects per group Reversed model (%)

2 23,6%

2 15,7%

2 23%

2 64,2%

2 42,4%

2 61,8%

2 41,8%

2 44,2%

2 40,3%

2 57%

2 26%

2 30%

1 57,2%

2 10%

2 46,3%

2 50,8%

2 6,6%

3 19,8%

3 32,5%

3 43,1%

2 29,9%

3 37,6%

2 38,8%

3 30,5%

2 15,2%

3 21,3%

3 55,8%

2 25,9%

1 36%

Under the null hypothesis, the T statistic follows an F (Snedecor) distribution with (k-1,n-k) degrees of

freedom, i.e., T F(k-1,n-k) = F(2,26)

We reject H0, for a given level of significance α, if the calculated value of the calculated F is greater

than the upper critical value for the F distribution that can be found in a table with 3 entries22. In our

case, if we use α=5%, we get:

 Fcalc> F1- (k-1,n-k) = F95% (2,26) = 3.369

Since Fcalc = 0.54, we cannot reject the null hypothesis, so we can say that:

There is no statistical evidence that allows denying that the team size influences the reversed model

percentage.

22 http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm

98
Luís Silva – July, 2014

In Table 24 we can see the final results, we had a 35,43% produced model average, the largest

produced percentage was 64,24% and the lowest was 6,6%.

Table 24 – Test two final results

 .use files Average Largest produced

percentage

Lowest produced

percentage

Number of tests 29 35,43% 64,2% 6,6%

Overall and based on these results we believe that our generated apps do represent very well the

supplied models. Given the extreme conditions: (i) candidates never had used our generated apps; (ii)

short five minute presentation of basic domain concepts; (iii) thirty minutes time frame limit to perform

the experiment; (iv) and finally the relatively large size model used; a 35,43% average for model

reverse is a very good indicator that the candidates understood their work environment, that is, the

environment that the app was supposed to deliver.

8.2 – JUSE4Android

As shown in section one, we placed our approach under the category of application generators, the

same category as one of the leaders in the Gartner’s magic quadrant.

8.2.1 – Generator tool based on a PIM

While looking at Gartner’s magic quadrant reproduced in Figure 2 (section 1.2 – Motivation), the

use of the PIM is expected to provide support for multiple platforms, thus enhancing our “technology

vision”. Regarding our “focus on tomorrow”, we expect that by following the visitor pattern in the app

generator, we are better equipped to face the future extensibility challenges. We reach the ability

to execute by reducing the development cost and time, and increasing the quality due to reduced risk

of human error, as shown in the next section.

8.2.2 – Code production – Time to market

As represented in Table 25, even for a moderate small sized model such as the Projects World

example, our tool generated Android app code is considerably large, in both number of files and code

length. If this source code were produced manually, it would certainly corroborate the “time-consuming

app creation problem” that we referred to in the introduction (Parada and Brisolara 2012). Notice that

for this specific small case scenario the tool transformed around 163 lines of PIM “code” (the UML

class diagram representing the domain model) into 16877 lines of Java + XML, corresponding to the

generated Android application.

99
Luís Silva – July, 2014

Table 25 – Code generated – ProjectsWorld example

Layer Type Files LOC

Business layer (Model) Java 17 (10,2%) 4517 (26,8%)

Control layer (View-Model) Java 4 (2,4%) 420 (2,5%)

Presentation layer (View)
XML 117 (70,1%) 3345 (19,8%)

Java 28 (16,8%) 8365 (49,6%)

Persistency layer Java 1 (0,6%) 230 (1,4%)

Total Java + XML 167 (100,0%) 16877 (100,0%)

It is worth mentioning that more than two thirds of the source code relates to the presentation layer

(see Table 25). This is mainly due to the need of supporting a considerable range of screen sizes and

resolutions for both orientations that characterize the multiple mobile devices that run Android

nowadays and data biding. Without adequate code generation facilities, like the one we presented

herein, Android application programmers can face “massive” code development. By following a

generative approach we were able to greatly reduce the development costs and time, and grant a

good usability , as observed in two experiments.

8.2.3 – Scalability

To test the scalability of tool and also to enforce the aforementioned statements we tested our tool

with considerable larger models, namely the Royal & Loyal, a middle scale model shown in Figure 46

(Models section of the Appendix), and the BPMN2.0, a very large model, which due to its size it is not

represented in this dissertation.

In Table 26, the amount of generated files and lines of code (LOC) for the Royal & Loyal model.

Table 26 – Code generated – Royal & Loyal

Layer Type Files LOC

Business layer (Model) Java 26 (7,9%) 8682 (25,4%)

Control layer (View-Model) Java 4 (1,2%) 427 (1,2%)

Presentation layer (View)
XML 254 (77,0%) 8568 (25,0%)

Java 45 (13,6%) 16339 (47,7%)

Persistency layer Java 1 (0,3%) 229 (0,7%)

Total Java + XML 330 (100,0%) 34245 (100,0%)

In Table 27 we can see the amount of generated code for the BPMN2.0 model. Notice that,

percentually, as we increase the size of the model the presentation layer also increases its presence

within the LOC, while maintaining a similar number of files growth.

100
Luís Silva – July, 2014

Table 27 – Code generated – BPMN 2.0

Layer Type Files LOC

Business layer (Model) Java 314 (8,8%) 108477 (16,3%)

Control layer (View-Model) Java 4 (0,1%) 1687 (0,3%)

Presentation layer (View)
XML 2665 (74,3%) 167252 (25,1%)

Java 604 (16,8%) 388293 (58,2%)

Persistency layer Java 1 (0,0%) 924 (0,1%)

Total Java + XML 3588 (100,0%) 666633 (100,0%)

This means that the effort for data representation and data binding increases with the growth of the

models. This validates our decision to use simple annotations to obtain the attributes that would be

used in the presentation layer but, does not validate the fact that a more specific set of rules should be

available to increase the model descriptive capabilities. The conclusion that we may take from this

scalability test is the fact that these rules, if implemented, should be specified without the need to

reference every specific data types present in the model. Instead generic rules should be applied to all

the model, except if a specific target is explicitly set. Therefore avoiding a scalable specification effort.

101
Luís Silva – July, 2014

9 – Conclusions and Future Work

9.1 – CONCLUSIONS ... 101

9.2 – FUTURE WORK .. 102

9.2.1 – Systematic comparison/Software evolution .. 102

9.2.2 – Business rules enforcement ... 103

9.2.3 – Scalability ... 103

9.2.4 – Internationalization ... 104

9.2.5 – Portability .. 104

9.2.6 – Reliability .. 104

9.1 – Conclusions

In conclusion, by combining several open-source tools, we were able to address our given main

problem – How to reduce development time and cost by transforming a given domain model

into an Android BIS application?

We used the COCOMOII23 tool to calculate the estimated gained value in both time and cost for our

ProjectsWorld case study, based on the generated LOC. We set its parameters to simulate a best-

case scenario. For instance, we left every parameter with the default nominal value and set the

following parameters settings:

 Required Software Reliability – very low.

 Data Base Size – low.

 Product Complexity – very low.

 Developed for Reusability – very low

 Documentation Match to Lifecycle Needs – very low

We also left the default value for every other feature checking turned off and set the Cost per Person-

Month (Dollars) with 500$. Thus granting a possible result outcome of our approach for this case

study. The tool showed a needed effort of 28 person per month, a required 11 months’ time frame with

a cost of 13891$.

Therefore by using our tool we could decrease time and cost in the development process by 11

months and 13891$.

As aforementioned, our generative approach is implemented on top of the USE tool. Since the

latter is a standalone tool, with a GUI and other components of its own that we do not require for our

model-driven approach, we used and improved a façade component (J-USE) for USE that allows

accessing its services conveniently. We dubbed JUSE4Android our generator that, from a domain

model, generates a full working Android app supporting the proposed model-based navigation

23 http://csse.usc.edu/tools/COCOMOII.php

102
Luís Silva – July, 2014

metaphor. The visitor pattern was used in the code generator component to allow maintainability

and extensibility .

The MVVM-based architecture of the generated Android BIS apps, grants a separation of concerns

through loosely coupled layers (business layer, presentation layer, control layer, persistence layer)

which increases maintainability . While we could not find any related work applying MVVM in the

context of Android we strongly believe that our architecture is a good choice by comparison to other

mobile related implementations, namely by granting a “strong separation between data, behavior, and

presentation, making it easier to control the chaos that is software development” (Smith 2009).

As for the paradigm, our approach uses the object paradigm all the way through, from user

navigation to objects persistence, thus achieving the seamlessness desideratum. The latter was made

possible by using an object database (Versant DB4O) where the persistence programming paradigm

is the same as in the remaining generated app code. We showed how easy it can be to do the

mapping of an UML class diagram in order to guarantee persistence. As showed in (Ambler 2013),

this is a much better approach than the recurrent alternative where a relational database is used (e.g.

SQLite), thus requiring the usage of some ORM middleware or hard-coded transformations in the app

code that decreases its understandability and hampers extensibility .

Finally we showed our proposed GUI generation principles and navigability approach, aiming at

producing BIS apps. As shown in (Pires Silva and Brito e Abreu 2014), we do not require the

description of every possible scenario to generate a lot of screen sizes for both orientations and

different devices running Android. We have shown how easily we can change one view for all possible

configurations, based upon a template, thus avoiding “massive” code development. We accessed our

model-to-app transformation understandability , by performing a reverse engineering experiment

(app-to-model) on real candidates. The latter results also showed high understandability .

9.2 – Future Work

A set of problems are open for future research, as described in (Pires da Silva 2014; Pires da Silva

and Brito e Abreu 2014) and in the following subsections.

9.2.1 – Systematic comparison/Software evolution

We plan to perform a systematic comparison on available generative approaches for Android, by

using the same initial model as input and then assess the effect of requirements volatility. We are

particularly concerned with the efforts required for:

(i) producing the input specification;

(ii) generating a baseline app;

(iii) adding extra requisites or removing existing requisites from the baseline app;

103
Luís Silva – July, 2014

(iv) understanding the code of generated apps for maintenance sake.

9.2.2 – Business rules enforcement

BIS applications require the definition of business. The latter can be as simple as setting a lower

limit for marriage age or as complex as the preconditions for granting a bank loan or being refunded

by an insurance in case of an auto collision. Thus, any BIS app generative approach will be

incomplete unless that support is provided. At the model side we will enrich our UML class diagrams

with OCL clauses to specify the required BIS rules. Some interesting research problems then arise

regarding where those rules will be verified (client or server) and how to grant state consistency on a

distributed environment. If every verification is only done in the server side, the user will only go as far

as the simplest operation since none of its data is valid until the server validates it, performance wise,

such verifications in both client and server side may be considered avoidable. Another issue will be

generating automatic error dialogs with context-sensitive help. Lastly all of the latter concerns must be

researched, having the maintainability feature as our main unaffected feature, which in turn also arise

another problem, given our mobility factor and the greater changeability of the business rules, i.e. in

comparison to the model itself, will OCL have enough specification characteristics to allow

differentiating a more temporarily rule from a more perdurable rule, in order to decide in which side

this rule should definitely be.

9.2.3 – Scalability

Regarding the scalability issue and its effect on performance. We plan to produce a model-driven

workload generator for our BIS apps. Taking our PIM as input we will perform a transformation to

generate a

The user will be queried to indicate the desired cardinalities for the instances of each concept in the

domain (i.e. number of objects for each class and number of lines for each association). The latter will

then allow generating USE objects. A second transformation, using reflection techniques will generate

POJO objects from the USE objects. This workload generator will then be used to develop scalability

experiments that we expect to automate as much as possible. In fact, we also plan to generate a

performance evolution (benchmarking) test battery that will profile the resources spent on performing

CRUD and navigation operations model-wise.

Besides scalability degradation curves we expect to identify the component/layers responsible for

performance bottlenecks. For instance, the integration of multi-threading capabilities, i.e. the clearly

separation of background process work versus UI thread work thus making the app more responsive

and therefore providing greater usability. The latter can be implemented without the need of any model

specification techniques but, such implementations may affect the already established architecture,

namely we should validate that the DB4O can handle multi-threading (multi-tasking) in a combination

with user actions and still maintain consistent local data.

104
Luís Silva – July, 2014

9.2.4 – Internationalization

Regarding internationalization, we need to provide support for different languages at the GUI side.

As shown previously, we can change the layout in a single XML (corresponding to a domain entity)

and that change will be propagated to all screen sizes and orientations. We intend to apply the same

approach to the language support, since different languages will require different styles to adjust,

namely in size, due to different average word lengths and desired verbosities (e.g. in contextual help).

9.2.5 – Portability

Finally, we also intend to enable the generative capabilities to other mobile platforms such as iOS

and Windows Mobile. This issue raises a set of problems, namely the possible different requirements

of each different platform, which in turn will require a PSM. Thus, a deeper research in MDD is

needed, like applying language engineering transformation techniques (Santiago et al. 2012) in two-

steps. In the first step (model-to-model transformation) we will go from the PIM to a PSM,

corresponding to the desired platform (e.g. iOS, Windows mobile device). In the second step (model-

to-code transformation) we will take as input the PSM and generate source code for the client-side

(the BIS app running on the users’ mobile device). The code generation process for the server-side

will hopefully be performed directly from the PIM, since we cannot envisage dependencies on the

platform. The portability of the DB4O component on all the required mobile platforms is also an issue

here, but we expect the Versant open-source community
24

 will find a solution for that problem

9.2.6 – Reliability

Our reliability tests, described in section 8 – Validation, were not exhaustive. First we plan to

generate a JUnit test battery (white box testing approach) that will provide a 100% coverage of the

business layer (measured with the Eclemma25 plugin). This will be great help for developers extending

specific features manually. Second, we want to address the reliability of the presentation layer by

using a black-box approach that will exercise the GUI extensively. We will survey existing techniques

such as “Monkey-Testing” (Amalfitano et al. 2012; Hu and Neamtiu 2011; Takala et al. 2011) and

model-driven techniques such as the one proposed in (Barbosa et al. 2011; Cunha et al. 2010).

24 http://community.versant.com/
25 http://www.eclemma.org/

105
Luís Silva – July, 2014

Bibliography

ALP BALKAN, AHMET, OGUZ KARTAL AND BERKER PEKSAG. ORMAN - Lightweight and practical
ORM in Java for your Android apps. 2012. Available at: https://github.com/ahmetalpbalkan/orman.

AMALFITANO, DOMENICO, ANNA RITA FASOLINO, PORFIRIO TRAMONTANA, SALVATORE DE
CARMINE, et al. Using GUI ripping for automated testing of Android applications. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering. ACM, 2012, p.
258-261.

AMBLER, SCOTT. Agile Techniques for Object Databases. 2013. Available
at:http://www.db4o.com/about/productinformation/whitepapers/db4o%20Whitepaper%20-
%20Agile%20Techniques%20for%20Object%20Databases.pdf.

AUMASSON, A, V BONNEAU, T LEIMBACH AND M GÖDEL. Economic and Social Impact of
Software & Software-Based Services. Cordis (Online): 2010. Available at:
http://cordis.europa.eu/fp7/ict/ssai/docs/study-sw-report-final.pdf.

BARBOSA, ANA, ANA C. R. PAIVA AND JOSÉ CREISSAC CAMPOS. Test case generation from
mutated task models. In Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems. ACM, 2011, p. 175-184.

BASOLE, RAHULC AND JÜRGEN KARLA. On the Evolution of Mobile Platform Ecosystem Structure
and Strategy. Business & Information Systems Engineering, 2011, 3(5), 313-322. Available at:
http://dx.doi.org/10.1007/s12599-011-0174-4.

BRITO E ABREU, FERNANDO. J-USE. Version: 1.0. Google Code: Google, 2011. Available at:
https://code.google.com/p/j-use/.

CODD F. , EDGAR. A relational model of data for large shared data banks. Communications of the
ACM, 1970, 13(6).

CROCKFORD, DOUGLAS, JSON, Available at: http://www.json.org/.

CUNHA, MARCO, ANA C. R. PAIVA, HUGO SERENO FERREIRA AND RUI ABREU. PETTool: A
pattern-based GUI testing tool. In International Conference on Software Technology and Engineering.
San Juan, PR: IEEE, 2010, vol. 1.

D. HOLSTEIN, BEERY. Speed delivery of Android devices and applications with model-driven
development. 2011. Available at:http://www.ibm.com/developerworks/rational/library/model-driven-
development-speed-delivery/model-driven-development-speed-delivery-pdf.pdf.

DEMUTH, BIRGIT. DresdenOCL:Documentation 2013. Available at: http://www.dresden-
ocl.org/index.php/DresdenOCL:Documentation.

ECLIPSE, Eclipse market place, Available at: http://marketplace.eclipse.org/.

FABIAN, BUETTNER, HAMANN LARS AND HOFRICHTER OLIVER. USE: UML-based Specification
Environment. Version: 3.0.6. http://sourceforge.net/projects/useocl/, 2013. Available at:
http://sourceforge.net/projects/useocl/.

FOWLER, MARTIN, Presentation Model, Available at:
http://martinfowler.com/eaaDev/PresentationModel.html.

GIESE, PHILIPP. androrm. 2012. Available at: http://www.androrm.com/.

http://www.db4o.com/about/productinformation/whitepapers/db4o%20Whitepaper%20-%20Agile%20Techniques%20for%20Object%20Databases.pdf
http://www.db4o.com/about/productinformation/whitepapers/db4o%20Whitepaper%20-%20Agile%20Techniques%20for%20Object%20Databases.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/study-sw-report-final.pdf
http://dx.doi.org/10.1007/s12599-011-0174-4
http://www.json.org/
http://www.ibm.com/developerworks/rational/library/model-driven-development-speed-delivery/model-driven-development-speed-delivery-pdf.pdf
http://www.ibm.com/developerworks/rational/library/model-driven-development-speed-delivery/model-driven-development-speed-delivery-pdf.pdf
http://www.dresden-ocl.org/index.php/DresdenOCL:Documentation
http://www.dresden-ocl.org/index.php/DresdenOCL:Documentation
http://marketplace.eclipse.org/
http://sourceforge.net/projects/useocl/
http://sourceforge.net/projects/useocl/
http://martinfowler.com/eaaDev/PresentationModel.html
http://www.androrm.com/

106
Luís Silva – July, 2014

GOGOLLA, MARTIN, FABIAN BUTTNER AND MARK RICHTERS. USE: A UML-based specification
environment for validating UML and OCL. Science of Computer Programming, December 2007, 69(1-
3), 27–34. Available at: http://dx.doi.org/10.1016/j.scico.2007.01.013.

GOOGLE, Android Developers, Available at: http://developer.android.com/.

GOOGLE, Google Cloud SQL, Available at: https://developers.google.com/cloud-sql/.

GOSSMAN, JOHN, Model-View-ViewModel, Available at:
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx.

GREHAN, RICK. The Database Behind the Brains. 2006. Available
at:http://www.db4o.com/about/productinformation/whitepapers/#database_brains.

GUY, ROMAIN AND ADAM POWELL, The world of ListView Google, 2010, Multimedia Online at:
http://www.youtube.com/watch?v=wDBM6wVEO70

HAYWOOD, DAN, Apache Isis, Available at: http://isis.apache.org/.

HEVNER, ALAN AND SAMIR CHATTERJEE. Design Research in Information Systems: Theory and
Practice. In Design Research in Information Systems: Theory and Practice. Springer, 2010.

HU, CUIXIONG AND IULIAN NEAMTIU. Automating GUI testing for Android applications. In
Proceedings of the 6th International Workshop on Automation of Software Test. ACM, 2011, p. 77-83.

HUNTER, JASON, ROLF LEAR AND BRETT MCLAUGHLIN, JDOM, Available at:
http://www.jdom.org/.

IBM. Rational Rhapsody. 2013. Available at: http://www-
03.ibm.com/software/products/us/en/ratirhapfami.

JUNGINGER, MARKUS AND VIVIEN DOLLINGER. greenDAO – Android ORM for SQLite. 2013.
Available at: http://greendao-orm.com/.

JUNIOR, ASSIS. jpa-android. 2011. Available at: http://code.google.com/p/jpa-android/.

KOMATINENI, SATYA AND DAVE MACLEAN. Pro Android 4. 4th ed.: Apress, 2012.

LCI_TEAM. OCLE. Version: 2.0.4. 2005. Available at: http://lci.cs.ubbcluj.ro/ocle/overview.htm.

MEDNIEKS, ZIGURD, LAIRD DORNIN, BLAKE MEIKE AND MASUMI NAKAMURA. Programming
Android. 2nd ed.: O'Reilly Media, 2012.

MIT. App Inventor. 2013. Available at: http://appinventor.mit.edu/.

OBJECT_MANAGEMENT_GROUP, MDA - Model-Driven Architecture Available at:
http://www.omg.org/mda/.

OWENS, MIKE AND GRANT ALLEN. The Definitive Guide to SQLite. 2nd ed.: Apress, 2010.

PAGE, MARK, MARIA MOLINA AND GORDON JONES. The Mobile Economy. London, United
Kingdom 2013.

PARADA, ABILIO G. AND LISANE B. BRISOLARA 2012. A Model Driven Approach for Android
Applications Development. In Proceedings of the Brazilian Symposium on Computing System
Engineering (SBESC'2012), Natal, Brazil2012, 192-197.

PARR, TERENCE. A Functional Language For Generating Structured Text. 2006. Available at:
http://www.cs.usfca.edu/~parrt/papers/ST.pdf.

http://dx.doi.org/10.1016/j.scico.2007.01.013
http://developer.android.com/
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://www.db4o.com/about/productinformation/whitepapers/#database_brains
http://www.youtube.com/watch?v=wDBM6wVEO70
http://isis.apache.org/
http://www.jdom.org/
http://www-03.ibm.com/software/products/us/en/ratirhapfami
http://www-03.ibm.com/software/products/us/en/ratirhapfami
http://greendao-orm.com/
http://code.google.com/p/jpa-android/
http://lci.cs.ubbcluj.ro/ocle/overview.htm
http://appinventor.mit.edu/
http://www.omg.org/mda/
http://www.cs.usfca.edu/~parrt/papers/ST.pdf

107
Luís Silva – July, 2014

PAWSON, RICHARD. Naked objects. Doctor University of Dublin, Trinity College, 2004, Available at:
http://isis.apache.org/intro/learning-more/Pawson-Naked-Objects-thesis.pdf.

PAWSON, RICHARD, Naked objects, Available at: http://nakedobjects.codeplex.com/.

PIRES DA SILVA, LUÍS 2014. A Model-Driven Approach for Mobile Business Information Systems
Applications. In Proceedings of the MODELS'2014 Doctoral Symposium, Valencia, Spain2014 CEUR.

PIRES DA SILVA, LUÍS AND FERNANDO BRITO E ABREU 2014. A MDE Generative Approach for
Mobile Business Apps. In Proceedings of the Simpósio de Estudantes de Doutoramento em
Engenharia de Software (SEDES'2014), Guimarães, Portugal2014 IEEE Computer Society.

PIRES SILVA, LUÍS AND FERNANDO BRITO E ABREU 2014. Model-Driven GUI Generation and
Navigation for Android BIS Apps. In Proceedings of the 2nd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD’2014), Lisbon, Portugal2014, P. LISBON
ed. SCITEPRESS Digital Library, 400-407.

POCATILU, PAUL. Building Database-Powered Mobile Applications. Informatica Economică, 2012,
16, 132-141.

POLEVOY, IGOR. ActiveJDBC. 2012. Available at: http://javalite.io/activejdbc.

RAMAGE, RYAN, umlc, Available at: https://code.google.com/p/umlc/.

RIZA BABAOĞLAN, ALI. Gartner's 2013 Magic Quadrant for Mobile Application Development
Platforms. 2013. Available at:http://www.alibabaoglan.com/blog/gartner-2013-magic-quadrant-mobile-
application-development-platforms/.

ROQUE, RICAROSE. OpenBlocks: An Extendable Framework for Graphical Block Programming
Systems. Master Massachusetts Institute of Technology, 2007, Available at:
http://dspace.mit.edu/bitstream/handle/1721.1/41550/220927290.pdf?sequence=1.

SANTIAGO, IVÁN, ÁLVARO JIMÉNEZ, JUAN MANUEL VARA, VALERIA DE CASTRO, et al. Model-
Driven Engineering as a new landscape for traceability management: A systematic literature review
December 2012, 54, 1340–1356. Available at:
http://www.sciencedirect.com/science/article/pii/S0950584912001346.

SINGH, INDERJEET, JOEL LEITCH AND JESSE WILSON, GSON, Available at:
http://code.google.com/p/google-gson/.

SMITH, JOSH. WPF Apps With The Model-View-ViewModel Design Pattern. MSDN Magazine [Type
of Work]. 2009. Available at:http://msdn.microsoft.com/en-us/magazine/dd419663.aspx.

SUEZ, EITAN, JMatter, Available at: http://www.jmatter.org/.

TAKALA, T, M KATARA AND J HARTY. Experiences of System-Level Model-Based GUI Testing of an
Android Application. In Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth
International Conference on. Berlin: IEEE, 2011, p. 377 - 386.

UZIEL, EREL. Basic4android. 2013. Available at: http://www.basic4ppc.com/.

VERSANT, db4o Reference Documentation, Available at:
http://community.versant.com/documentation/reference/db4o-8.0/java/reference/.

VERSANT, db4objects, Available at: http://www.db4o.com/.

VOGEL, LARS. Vogella - Expert Android and Eclipse development knowledge 2013. Available at:
http://www.vogella.com/.

http://isis.apache.org/intro/learning-more/Pawson-Naked-Objects-thesis.pdf
http://nakedobjects.codeplex.com/
http://javalite.io/activejdbc
http://www.alibabaoglan.com/blog/gartner-2013-magic-quadrant-mobile-application-development-platforms/
http://www.alibabaoglan.com/blog/gartner-2013-magic-quadrant-mobile-application-development-platforms/
http://dspace.mit.edu/bitstream/handle/1721.1/41550/220927290.pdf?sequence=1
http://www.sciencedirect.com/science/article/pii/S0950584912001346
http://code.google.com/p/google-gson/
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://www.jmatter.org/
http://www.basic4ppc.com/
http://community.versant.com/documentation/reference/db4o-8.0/java/reference/
http://www.db4o.com/
http://www.vogella.com/

108
Luís Silva – July, 2014

WARMER, JOS AND ANNEKE KLEPPE. Object Constraint Language, The: Getting Your Models
Ready for MDA, Second Edition. ed.: Addison Wesley, 2003. 240 p.

WATSON, GRAY. OrmLite - Lightweight Object Relational Mapping (ORM) Java Package. 2013.
Available at: http://ormlite.com/.

WIKIPEDIA, Flat file database, Available at: http://en.wikipedia.org/wiki/Flat_file_database.

WIKIPEDIA, Object database, Available at: http://en.wikipedia.org/wiki/Object_database.

WIKIPEDIA, Relational database management system, Available at:
http://en.wikipedia.org/wiki/Relational_database_management_system.

WIKIPEDIA, XML database, Available at: http://en.wikipedia.org/wiki/XML_database.

WIKIPEDIA, Android (operating system), Available at:
http://en.wikipedia.org/wiki/Android_%28operating_system%29.

WIKIPEDIA, Command pattern, Available at: http://en.wikipedia.org/wiki/Command_pattern.

WIKIPEDIA, Computer-aided software engineering, Available at:
http://en.wikipedia.org/wiki/Computer-aided_software_engineering.

WIKIPEDIA, Observer pattern, Available at: http://en.wikipedia.org/wiki/Observer_pattern.

WILKE, CLAAS. Java Code Generation for Dresden OCL2 for Eclipse. Master Technische Universität
Dresden, 2009, Available at: http://www.claaswilke.de/publications/study/beleg.pdf.

http://ormlite.com/
http://en.wikipedia.org/wiki/Flat_file_database
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/XML_database
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Computer-aided_software_engineering
http://en.wikipedia.org/wiki/Observer_pattern
http://www.claaswilke.de/publications/study/beleg.pdf

109
Luís Silva – July, 2014

Appendix

A. PROJECTS WORLD – USE SPECIFICATION .. 110

B. PERSISTENCY – DB4O ... 113

1. Usage ... 113

2. DB4O vs SQLite – seamlessness .. 114

Using the Querybyexample to read, update and delete objects .. 115

C. STATIC GENERATION PROCESS – IDENTIFIERS ... 116

1. Utils layer .. 116

2. View layer ... 118

D. POJO – RELATIONAL GETTERS AND SETTERS EXAMPLE .. 119

E. MODELS .. 121

F. EXPERIMENT ONE – RESULT EXAMPLE .. 124

110
Luís Silva – July, 2014

A. Projects World – USE specification

--

model ProjectsWorld

--

enum ProjectSize {small,medium,big}

enum ProjectStatus {planned, active, finished, suspended}

@list(year="1",month="2",day="3")

@creation(year="1",month="2",day="3")

@display(year="1",month="2",day="3")

@unique(year="1",month="2",day="3")

@domain()

class CalendarDate

attributes

 day: Integer

 month: Integer

 year: Integer

end

--

@StartingPoint(NameToDisplay="Qualifications",

ImageToDisplay="qualification")

@list(description="1")

@creation(description="1")

@display(description="1")

@unique(description="1")

@domain()

class Qualification

 attributes

 description : String

end

@StartingPoint(NameToDisplay="Companies", ImageToDisplay="company")

@list(name="1")

@creation(name="1")

@display(name="1")

@unique(name="1")

@domain()

class Company

 attributes

 name : String

end

111
Luís Silva – July, 2014

@StartingPoint(NameToDisplay="Workers", ImageToDisplay="worker")

@list(nickname="1")

@creation(nickname="1",salary="2")

@display(nickname="1",salary="2")

@unique(nickname="1",salary="2")

@domain()

class Worker

 attributes

 nickname: String

 salary: Integer

end

--

@StartingPoint(NameToDisplay="Projects", ImageToDisplay="project")

@list(name="1")

@creation(name="1",size="2",status="3",months="2",start="3")

@display(name="1",size="2",status="3",months="4",start="5")

@unique(name="1",size="2",status="3",months="4",start="5")

@domain()

class Project

 attributes

 name : String

 size : ProjectSize

 status : ProjectStatus

 months: Integer

end

--

@StartingPoint(NameToDisplay="Training Courses",

ImageToDisplay="training")

@list(name="1", size="2")

@creation()

@display()

@unique()

@domain()

class Training < Project

 attributes

end

--

@list(startDate="1", endDate="2")

@creation(startDate="1", endDate="2")

@display(startDate="1", endDate="2")

@unique(startDate="1", endDate="2")

@domain()

associationclass Member

 between

 Project[0..*] role projects

 Worker[1..*] role members

 attributes

 startDate: CalendarDate

 endDate: CalendarDate

end

112
Luís Silva – July, 2014

composition CarriesOut between

 Company[1]

 Project[0..*] role projects

end

association Employs between

 Company[0..1] role employer

 Worker[1..*] role employees

end

association IsQualified between

 Worker[0..*] role workers

 Qualification[1..*] role qualifications

end

association Requires between

 Project[0..*] role projects

 Qualification[1..*] role requirements

end

association Trains between

 Training[0..*] role trainings

 Qualification[1..*] role trained

end

113
Luís Silva – July, 2014

B. Persistency – DB4O

1.Usage

Since it uses Java, DB4O seamlessly integrates itself in Android, with the exception of only one or

two needed Android specific commands. Let us see what commands are specific and see some

simple commands.

First we need to prepare our database. To do this we must supply a path, a name and the

configuration settings that we want to use. In order to create, a database or just open it if already

created, an ObjectContainer must be created through the following method:

ObjectContainer oc = Db4oEmbedded.openFile(dbConfig(),

db4oDBFullPath(context));

We also need to give a path. In Android there are several ways of doing storage, in this case we

are using the internal memory but the external memory can also be used, namely from an SD Card

which if it would be the case the necessary code for setting the path, would be a little different but

everything else is the same. Another note regarding this code, is the Context type. This is a specific

Android type, which in this case is always needed to get access to files system.

public static String db4oDBFullPath(Context ctx) {

return ctx.getDir("data", Context.MODE_PRIVATE) + "/" + DataBaseName +

DataBaseExtension;

}

Finally we set any configuration we need, in this case and since is for Android we add the

“AndroidSupport” feature, so DB4O better adapt to the system.

public static EmbeddedConfiguration dbConfig() {

EmbeddedConfiguration configuration = Db4oEmbedded.newConfiguration();

configuration.common().add(new AndroidSupport());

configuration.file().lockDatabaseFile(false);

return configuration;

}

To do any operation we must use the ObjectContainer variable that we initialized before, here it will

be showed the simpler ones. For storage purposes, that is for the typical commands INSERT and

UPDATE it is only used the store operation. If the object is not already in the database it will be

inserted, otherwise is updated to the new state. Regarding the update, the DB4O uses its own

reference system, so, to be safe, we should always make sure that we are working with the intended

object. Consider for instance that we are using adapters to represent lists. It might happen that we

may be working with an object stored in the adapter and the reference to the DB4O was lost

meanwhile, due to garbage collecting. In order to make sure we have the proper object before we

make any operation we query the database for the object in question.

oc.store(object);

For DELETE purposes we just have to call the operation delete.

114
Luís Silva – July, 2014

oc.delete(object);

After we are done with all the operations, we can call commit in order to persist all changes we have

made. We can also close the session with one database by calling the close operation.

oc.commit();

oc.close();

Finally, we can rollback any changes that were already stored but not committed by calling the

rollback operation.

oc.rollback();

2.DB4O vs SQLite – seamlessness

In this example, let us consider the classes Qualification and Worker. Let us also assume that for

the SQLite case scenario we already have all the tables defined and created.

To create, associate and persist objects with SQLite we would do like the following:

INSERT INTO qualification VALUES("1","programmer");

INSERT INTO worker VALUES("1","Bob the Builder",”200”);

The first parameter would be for identifying the association. But in a relational approach we would also
need a third table, therefore we would also need to have a, let us call it, “qualification_worker” table.
Now we would be able to persist the link like so:

INSERT INTO qualification_worker VALUES("1","1");

After this action we would just need to commit, to have the data persisted.

The same actions in the DB4O would look like so:

Qualification qualification = new Qualification(“programmer”);

Worker worker = new Worker(“Bob the Builder”, 200);

Now we just need to call either the add qualification or add worker for one of the latter like so:

qualification.addWorkers(worker);

or

worker.addQualification(qualification);

If the called function belongs to the holder class it adds the object to the instance list. Otherwise it

calls the other method. In this scenario the worker class is the holder therefore each method would
look like the following:

In the Worker class:

/**

* MANY2MANY single setter for Worker[*] <-> Set(Qualification)[*]

* @param qualification the qualification to add

**/

public void addQualifications(Qualification qualification)

{

 this.qualifications.add(qualification);

}

In the Qualification class:

115
Luís Silva – July, 2014

/**

* MANY2MANY single setter for Qualification[1..*] <-> Worker[*]

* @param worker the worker to add

**/

public void addWorkers(Worker worker)

{

 worker.addQualifications(this);

}

So given that the Worker class is the holder. Using the, previously explained, already opened

ObjectContainer (oc), we just need to store the object and commit.

oc.store(worker);

oc.commit();

Using the Querybyexample to read, update and delete objects

READ:

SQLite:

SELECT * FROM qualification WHERE name="programmer";

DB4O:

Qualification qualification = new Qualification("programmer");

ObjectSet results = oc.queryByExample(qualification);

UPDATE:

SQLite:

UPDATE qualification SET description = "medic" WHERE name = "programmer";

DB4O:

ObjectSet result = oc.queryByExample(new Qualification ("Transactions"));

Qualification qualification = (Qualification) result.next();

Then we change the data through a method call on the retrieved object. The updated object is then

stored with a call to set:

qualification.setName("medic");

container.store(qualification);

DELETE:

SQLite:

DELETE FROM qualification WHERE name = "medic";

DB4O:

ObjectSet result = oc.queryByExample(new Qualification ("medic"));

Qualification qualification = (Qualification) result.next();

container.delete(qualification);

116
Luís Silva – July, 2014

C. Static Generation Process – identifiers

1.Utils layer

Classes Package Identifiers Other identifiers

Identifier Used to access Identifier Replace

AndroidTransaction
DATABASE

_PACKAGE
Database none -

Command none - none -

CommandTargetLaye

r
none - none -

CommandType none - none -

DetailFragment none - none -

FragmentMethods none - none -

InheritanceListFragme

nt
none - none -

LauncherGridViewAd

apter
none - none -

ListAdapter none - none -

ListFragmentControlle

r

TARGET_P

ACKAGE
R

MAIN_APPLICA

TION

Application

class

UTILS_PAC

KAGE

ListAdapter

PropertyChangeEvent

PropertyChangeListener

BUSINESS_

PACKAGE
ModelMusts

ListViewHolder none - none -

ModelContracts none - none -

ModelMusts
BUSINESS_

PACKAGE
CommandType none -

NavigationBarFragme

nt
none none -

PropertyChangeEvent
UTILS_PAC

KAGE
CommandType none -

117
Luís Silva – July, 2014

PropertyChangeListen

er
none none -

ServerActions

TARGET_P

ACKAGE
MAIN_APPLICATION

none -

DATABASE

_PACKAGE
Database

BUSINESS_

PACKAGE
ModelMusts

UTILS_PAC

KAGE
UtilNavigate

ServerInfo none -

GENERATION-

IP

Given IP

address

GENERATION-

PORT
Given Port

GENERATION-

USER

Given user

name

GENERATION-

PASS

Given

password

StartServer none - none -

StopServer none - none -

Transactions

DATABASE

_PACKAGE
Database

none -
BUSINESS_

PACKAGE
ModelMusts

UtilNavigate
UTILS_PAC

KAGE

InheritanceListFragment

none -

WarningDialogFragment

Utils none - none -

WarningDialogFragm

ent

TARGET_P

ACKAGE
R none -

118
Luís Silva – July, 2014

2.View layer

XML files folder

actionbar_compat_item drawable

actionbar_compat_item_focused drawable

actionbar_compat_item_pressed drawable

default_list_selector drawable

<model name>_launcher_gridview_round_borders drawable

<model name>_launcher_gridview_selector drawable

navigationbar_association_new_object_state drawable

navigationbar_divider drawable

navigationbar_error_state drawable

navigationbar_new_object_state drawable

navigationbar_original_state drawable

navigationbar_selector_error drawable

navigationbar_selector drawable

default_blank_fragment layout

default_navigationbar layout

default_okcancel_buttons layout

default_warning_fragment layout

<model name>_launcher_activity layout

<model name>_launcher_gridview_row layout

menu_launcher menu

menu_read menu

menu_write menu

colors values

119
Luís Silva – July, 2014

D. POJO – Relational getters and setters example

Generated many-to-many association between the class Worker and the class Project given that

we have the Member as an associative class. In this scenario the Member class is the holder class

and therefore holds the instances of both Project and Worker neighbours.

Worker class code to represent the association between himself and Project:

/**

* MEMBER2MEMBER getter for Worker[1..*] <-> Project[*]

* @return the projects of the members

**/

public Set<Project> projects()

{

 Set<Project> result = new HashSet<Project>();

 for (Member x : Member.allInstances())

 if (x.members() == this && x. projects() != null)

 result.add(x.projects());

 return result;

}

/**

* MEMBER2MEMBER setter for Worker[1..*] <-> Project[*]

* @param projects the projects to set

**/

public void setProjects(Set<Project> projects)

{

for (Project t : projects)

 for (Member x : Member.allInstances())

 if (x.members() == this)

 x.setProjects(t);

}

Projects class code to represent the association between himself and Worker:

/**

* MEMBER2MEMBER getter for Project[*] <-> Worker[1..*]

* @return the members of the projects

**/

public Set<Worker> members()

{

 Set<Worker> result = new HashSet<Worker>();

 for (Member x : Member.allInstances())

 if (x.projects() == this && x. members() != null)

 result.add(x.members());

 return result;

}

120
Luís Silva – July, 2014

/**

* MEMBER2MEMBER setter for Project[*] <-> Worker[1..*]

* @param members the members to set

**/

public void setMembers(Set<Worker> members)

{

 for (Worker t : members)

 for (Member x : Member.allInstances())

 if (x.projects() == this)

 x.setMembers(t);

}

Member class code to represent the association between himself and both Project and Worker:

/**

* ASSOCIATIVE2MEMBER getter for Member[*] <-> Project[1]

* @return the projects of the member

**/

public Project projects()

{

 return projects;

}

/**

* ASSOCIATIVE2MEMBER setter for Member[*] <-> Project[1]

* @param projects the projects to set

**/

public void setProjects(Project projects)

{

 this.projects = projects;

}

/**

* ASSOCIATIVE2MEMBER getter for Member[*] <-> Worker[1]

* @return the members of the member

**/

public Worker members()

{

 return members;

}

/**

* ASSOCIATIVE2MEMBER setter for Member[*] <-> Worker[1]

* @param members the members to set

**/

public void setMembers(Worker members)

{

 this.members = members;

}

121
Luís Silva – July, 2014

E. Models

Figure 45 – AirNova UML class diagram

122
Luís Silva – July, 2014

Figure 46 – Royal & Loyal UML class diagram

123
Luís Silva – July, 2014

Figure 47 – Football Leagues UML class diagram

124
Luís Silva – July, 2014

F. Experiment one – result example

Figure 48 – Experiment one – result example

