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The use and misuse of structural equation modeling (SEM) in management research: A 

review and critique 

 

 

1.  Introduction 

 

Structural equation models (SEM) with 

unobservable variables are a dominant research 

paradigm in the management community today, even 

though it originates from the psychometric 

(covariance-based, LISREL) and chemometric 

research tradition (variance-based, PLS). The 

establishment of the covariance-based SEM approach 

can be traced back to the development of the 

maximum likelihood covariance structure analysis 

developed by Jöreskog (1966, 1967, 1969, 1970, 

1973, 1979) and extended by Wiley (1973). The 

origins of the PLS approach, developed by Herman 

Wold, can be traced back to 1963 (Wold 1975, 1982). 

The first procedures for single- and multi-component 

models have used least squares (LS), and later Wold 

(1973) extended his procedure several times under 

different names: NIPLS (nonlinear iterative partial 

least square) and NILES (nonlinear iterative least 

square).   

Management measures in self-reporting studies 

are based almost exclusively (e.g., Diamantopoulos 

& Winklhofer 2001; Diamantopoulos et al. 2008) on 

creating a scale that is assumed reflective and further 

analysis is dependent on a multitrait-multimethod 

(MTMM) approach and classical test theory, which 

implies application of a covariance-based structural 

equation model (CBSEM). A partial least square 

(PLS) approach, which was introduced in 

management literature by Fornell and Bookstein 

(1982), is another statistical instrument; but so far 

this approach has not had a wider application in 

management literature and research practice. The use 

of PLS for index construction purposes is an 

interesting area for further research (Diamantopoulos 

& Winklhofer 2001; Wetzels et al. 2009) and with 

new theoretical insights and software developments it 

is expected that this approach will have wider 

acceptance and application in the management 

community.   

After reading and reviewing a great number of 

studies (articles, books, studies, etc.) that apply SEM, 

as well as analyzing a great number of academic 

articles (e.g., Diamantopoulos et al. 2008; Finn & 

Kayande 2005; Tomarken & Waller 2005), it has 

become obvious that many researchers apply this 

statistical procedure without a comprehensive 

understanding of its basic foundations and principles. 

Researchers often fail in application and 

understanding of (i) conceptual background of the 

research problem under study, which should be 

grounded in theory and applied in management; (ii) 

indicator - construct misspecification design (e.g., 

Chin 1998; Jarvis et al. 2003; MacKenzie 2001; 

MacKenzie et al. 2005); (iii) an inappropriate use of 

the necessary measurement steps, which is especially 

evident in the application of CBSEM (indices 

reporting, competing models, parsimonious fit, etc.) 

and (iv) an inaccurate reporting of the sample size 

and population under study (cf. Baumgartner & 

Homburg 1996).    

This is the first study that thoroughly analyzes, 

reviews and presents two streams using common 

methodological background. There are examples in 

the literature that analyze two streams (e.g. Chin 

1998; Henseler et al. 2009; Wetzels et al. 2009; Hair 

et al. 2010; cf. Anderson & Gerbing 1988), but 

previous studies take a partial view, analyzing one 

stream and focusing on the differences and 

advantages between the two streams. Fornell and 

Bookstein (1982) have demonstrated in their 

empirical study many advantages of PLS over 

LISREL modeling, especially underlying the 

differences in measurement model specification, in 

which reflective constructs are associated with 

LISREL (CBSEM), whereas formative and mixed 

constructs are associated with PLS (VBSEM). From 

the present perspective, the study of Fornell and 

Bookstein makes a great historical contribution 

because it was the first study that introduced and 

analyzed the two streams in management research. 
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Unfortunately, management theory and practice 

remained almost exclusively focused on the CBSEM 

application. Their study has somewhat limited 

theoretical contribution because they focused only on 

differences in the measurement model specification 

between the two streams. We focus on the correct 

model specification with respect to the theoretical 

framework, which is a crucial aspect of the model 

choice in SEM. Our intention is to extend the 

conceptual knowledge that remained unexplored and 

unutilized. Our paper is as minimally technical as 

possible, because our intention is not to develop new 

research avenues at this point, but to address possible 

theory enhancements and gaps in extant management 

research practice.     

The purpose of this article is two-fold: (i) to 

question the current research myopia in management, 

because application of the latent construct modeling 

almost blindly adheres only a covariance-based 

research stream; and (ii) to improve the conceptual 

knowledge by comparing the most important 

procedures and elements in the structural equation 

modeling (SEM) study, using different theoretical 

criteria. We present the covariance-based (CBSEM) 

and variance-based (VBSEM) structural equation 

modeling streams.  

The manuscript is organized into several sections. 

First, we discuss a general approach to structural 

equation modeling and its applicability in 

management research. Second, we discuss the two 

SEM streams in detail, depicted in Table 1, and 

followed by an analysis of topics such as theory, 

model specification, sample and goodness-of-fit. The 

remaining part of the paper is devoted to conclusions 

and some open questions in management research 

practice that remain under-investigated and 

unutilized. 

 

2. Covariance-based and variance-based 

structural equation modeling  

 

Structural models in management are statistical 

specifications and estimations of data and economic 

and/or management theories of consumer or firm 

behavior (cf. Chintagunta et al. 2006). Structural 

modeling tends to explain optimal behavior of agents 

and to predict their future behavior and 

performances. By behavior of agents, we mean 

consumer utility, employee performances, profit 

maximizing and organizational performances by 

firms, etc. (cf. Chintagunta et al. 2006). SEM is a 

statistical methodology that undertakes a multivariate 

analysis of multi-causal relationships among 

different, independent phenomena grounded in 

reality. This technique enables the researcher to 

assess and interpret complex interrelated dependence 

relationships as well as to include the measurement 

error on the structural coefficients (Hair et al. 2010, 

MacKenzie 2001). Byrne (1998) has advocated that 

structural equation modeling has two statistical 

pivots: (i) the causal processes are represented by a 

series of structural relations; and (ii) these equations 

can be modeled in order to conceptualize the theory 

under study. SEM can be understood as theoretical 

empiricism because it integrates theory with method 

and observations (Bagozzi 1994). Hair et al. (2010, p. 

616) have advocated that SEM examines “the 

structure of interrelationships expressed in a series of 

equations”. These interrelationships depict all of the 

causality among constructs, the exogenous as well as 

endogenous variables, which are used in the analysis 

(Hair et al. 2010).  

Two SEM streams have been recognized in a 

modern management research practice. The first one 

is the “classical” SEM approach – also known by 

different names including covariance structure 

analysis and latent variable analysis – which utilizes 

software such as LISREL or AMOS (Hair et al. 2010; 

Henseler et al. 2009). We will call this stream 

covariance-based SEM (CBSEM) in this manuscript. 

For most researchers in marketing and business 

research, CBSEM “is tautologically synonymous 

with the term SEM” (Chin 1998, p. 295). Another 

stream is known in the literature as partial least 

squares (PLS) or component-based SEM (e.g., 

Henseler et al. 2009; McDonald 1996; Tenenhaus 

2008). This stream is based on application of least 

squares using the PLS algorithm with regression-

based methods or generalized structured component 

analysis (GSCA), which is a fully informational 

method that optimizes a global criterion (Tenenhaus 

2008). This stream will be named the variance-based 

SEM (VBSEM) in this text. 

The rationale behind this notation is grounded on 

the following three characteristics: 
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Basic specification of the structural models is 

similar, although approaches differ in terms of their 

model development procedure, model specification, 

theoretical background, estimation and interpretation 

(cf. Hair et al. 2010). 

VBSEM intends to explain variance, i.e. 

prediction of the construct relationships (Fornell & 

Bookstein 1982; Hair et al. 2010; Hair et al. 2012); 

CBSEM is based on the covariance matrices; i.e. this 

approach tends to explain the relationships between 

indicators and constructs, and to confirm the 

theoretical rationale that was specified by a model. 

Model parameters differ in two streams. The 

variance-based SEM is working with component 

weights that maximize variance, whereas the 

covariance-based SEM is based on factors that tend 

to explain covariance in the model (cf. Fornell & 

Bookstein 1982).  

We present Table 1 below; in the remainder of 

this section, the two streams will be described in 

detail, using topics such as theory, model 

specification, sample and goodness-of-fit. Interested 

readers can use Table 1 as a framework and guide 

throughout the manuscript. 

 

---- TAKE IN TABLE 1 ---- 

 

 

2.1. Theory 

 

Academic research is grounded in theory, which 

should be confirmed or rejected, or may require 

further investigation and development. Hair et al. 

(2010, p. 620) have argued, “a model should not be 

developed without some underlying theory”, and this 

process includes measurement and underlying theory. 

Without proper measurement theory, the researcher 

cannot develop adequate measures and procedures to 

estimate the proposed model. Furthermore, the 

researcher cannot provide proper interpretation of the 

hypothesized model, there are no new theoretical 

insights and overall theoretical contribution is 

dubious without underlying theory (cf. Bagozzi & 

Phillips 1982). However, there is an important 

difference in theory background between CBSEM 

and VBSEM. CBSEM is considered a confirmatory 

method that is guided by theory, rather than by 

empirical results, because it tends to replicate the 

existing covariation among measures (Fornell & 

Bookstein 1982; Hair et al. 2010; Reinartz et al. 

2009; cf. Anderson & Gerbing 1988; 

Diamantopoulos & Siguaw 2006; Wetzels et al. 

2009), analyzing how theory fits with observations 

and reality. CBSEM is strictly theory driven, because 

of the exact construct specification in measurement 

and structural model as well as necessary 

modification of the models during the estimation 

procedure (Hair et al. 2010); “the chi square statistic 

of fit in LISREL is identical for all possible 

unobservables satisfying the same structure of 

loadings, a priori knowledge is necessary” (Fornell 

& Bookstein 1982, p. 449). 

VBSEM is also based on some theoretical 

foundations, but its goal is to predict the behavior of 

relationships among constructs and to explore the 

underlying theoretical concept. From a statistical 

point of view, VBSEM reports parameter estimates 

that tend to maximize explained variance, similarly to 

OLS regression procedure (Fornell & Bookstein 

1982; Anderson & Gerbing 1988; Diamantopoulos & 

Siguaw 2006; Hair et al. 2010; Hair et al. 2012; cf. 

Wetzels et al. 2009; Reinartz et al. 2009). Therefore, 

VBSEM is based on theory, but is data driven in 

order to be predictive and to provide knowledge and 

new theoretical rationale about the researched 

phenomenon. According to Jöreskog and Wold 

(1982), CBSEM is theory oriented and supports the 

confirmatory approach in the analysis, while VBSEM 

is primarily intended for predictive analysis in cases 

of high complexity and small amounts of 

information. 

There is one important distinction regarding the 

research orientation between the two streams. 

Residual covariances in CBSEM are minimized in 

order to achieve parameter accuracy, however for 

VBSEM, residual variances “are minimized to 

enhance optimal predictive power” (Fornell & 

Bookstein 1982, p. 443; cf. Bagozzi 1994; Chin 

1998; Yuan et al. 2008). In other words, the 

researcher tends to confirm theoretical assumptions 

and accuracy of parameters in CBSEM; in contrast, 

the predictive power of the hypothesized model is the 

main concern in VBSEM.  
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2.2. Specification of the measurement model  

 

The vast majority of management research 

includes self-reported studies of consumer behavior, 

attitudes and/or opinions of managers and employees, 

which express the proxy for different behavioral and 

organizational relationships in business reality. A 

researcher develops a model that is a representation 

of different phenomena connected with causal 

relationships in the real world. In order to provide a 

theoretical explanation of these behavioral and/or 

organizational relationships, the researcher has to 

develop complex research instruments that will 

empirically describe theoretical assumptions about 

researched phenomenon. This process is named the 

measurement model specification (Fornell & 

Bookstein 1982; Hair et al. 2010; Rossiter 2002). 

A measure is an observed score obtained via 

interviews, self-reported studies, observations, etc. 

(Edwards & Bagozzi 2000; Howell et al. 2007). It is 

a quantified record that represents an empirical 

analogy to a construct. In other words, a measure is 

quantification of the material entity. A construct in 

measurement practice represents a conceptual entity 

that describes manifest and/or latent phenomenon as 

well as their interrelationships, outcomes and 

performances. Constructs themselves are not real (or 

tangible) in an objective manner, even though they 

refer to real-life phenomena (Nunnally & Bernstein 

1994). In other words, the relationship between a 

measure and a construct represents the relationship 

between a measure and the phenomenon, in which 

the construct is a proxy for the phenomena that 

describe reality (cf. Edwards & Bagozzi 2000). 

Throughout this paper, we use the terms “measure” 

and “indicator” interchangeably to refer to a multi-

item operationalization of a construct, whether it is 

reflective or formative. The terms “scale” and 

“index” should be used to distinguish between 

reflective and formative items respectively 

(Diamantopoulos & Siguaw 2006).     

Academic discussions about the relationships 

between measures and constructs are usually based 

on examination of the causality among them. The 

causality of the reflective construct is directed from 

the latent construct to the indicators, with the 

underlying hypothesis that the construct causes 

changes in the indicators (Fornell & Bookstein 1982; 

Edwards & Bagozzi 2000; Jarvis et al. 2003). 

Discussions of formative measures indicate that a 

latent variable is measured using one or several of its 

causes (indicators), which determine the meaning of 

that construct (e.g., Blalock 1964; Edwards & 

Bagozzi 2000; Jarvis et al. 2003). Between the 

reflective and formative constructs exists an 

important theoretical and empirical difference, but 

many researchers do not pay appropriate attention to 

this issue and mistakenly specify the wrong 

measurement model. According to Jarvis et al. 

(2003), approximately 30% of the latent constructs 

published in the top management journals were 

incorrectly specified. The model ramification 

included incorrect specification of the reflective 

indicators when they should have been formative 

indicators, at not only the first-order construct level 

but also the relationships between higher-order 

constructs (Jarvis et al. 2003). Using the Monte Carlo 

simulation, they have demonstrated that the 

misspecification of indicators can cause biased 

estimates and misleading conclusions about the 

hypothesized models (cf. Yuan et al. 2008). The 

source of bias is mistakenly specified due to the 

direction of causality between the measures and 

latent constructs, and/or the application of an 

inappropriate item purification procedure 

(Diamantopoulos et al. 2008). The detailed 

descriptions and applications of the reflective and 

formative constructs are presented in the following 

subsection. 

The latent variables in CBSEM are viewed as 

common factors, whereas in VBSEM they are 

considered as components or weighted sums of 

manifest variables. This implies that latent constructs 

in the VBSEM approach are determinate, whereas in 

the CBSEM approach they are indeterminate (Chin 

1998; cf. Fornell & Bookstein 1982). The 

consequence is the specification of model parameters 

as factor means in CBSEM, whereas in VBSEM they 

are specified as component weights (cf. Reinartz et 

al. 2009). Factors in the CBSEM estimates explain 

covariance, whereas component weights maximize 

variance because they represent a linear combination 

of their indicators in the latent construct (Fornell & 

Bookstein 1982). Several researchers have examined 

the relationships between latent and manifest 

variables (e.g., Bagozzi 2007; Howell et al. 2007). 
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They have suggested that the meaning of epistemic 

relationships between the variables should be 

established before its inclusion and application within 

a nomological network of latent and manifest 

variables.      

The researcher can use single and multiple 

measures to estimate the hypothesized constructs. 

Researchers usually use multiple measures because 

(i) most constructs can be measured only with an 

error term; (ii) a single measure cannot adequately 

capture the essence of the management phenomena 

(cf. Curtis & Jackson 1962); (iii) it is necessary to 

prove that the method of measurement is correct 

(Nunnally & Bernstein 1994; MacKenzie et al. 

2005); and (iv) it is necessary to use a minimum of 

three indicators per construct in order to be able to 

identify a model in the CBSEM set-up (cf. Anderson 

& Gerbing 1988; Baumgartner & Homburg 1996). 

When multiple measures are developed, the 

researcher has to estimate the model that accurately, 

validly and reliably represents the relationship 

between indicators and latent constructs in the 

structural model. Research bias may arise if the 

researcher uses very few indices (three or less), or 

fails to use a large number of indicators for each 

latent construct (cf. Chin 1998; Peter 1979); so-called 

“consistency at large”. In the VBSEM technique, 

consistency at large means that parameters of the 

latent variable model and the number of indicators 

are infinite (Wold 1980; McDonald 1996; cf. 

Haenlein & Kaplan 2004; Reinartz et al. 2009).  

The structural constructs (i.e., multidimensional 

constructs, hierarchical constructs; cf. Fornell & 

Bookstein 1982; McDonald 1996; Wetzels et al. 

2009; Bagozzi 1994; Chintagunta et al. 2006) 

represent multilevel inter-relationships among the 

constructs that involve several exogenous and 

endogenous interconnections and include more than 

one dimension. The researcher should distinguish 

higher-order models from a model that employs 

unidimensional constructs that are characterized by a 

single dimension among the constructs. The literature 

(cf. Fornell & Bookstein 1982; Chin 1998; 

Diamantopoulos & Winklhofer 2001; MacKenzie et 

al. 2005; Wetzels et al. 2009, etc.) recognize three 

types of structural constructs: the common latent 

construct model with reflective indicators, the 

composite latent construct model with formative 

indicators, and the mixed structural model.  

 

2.2.1. Types of latent constructs  

Common topics and criteria for the distinction 

between reflective and formative indicators are 

presented in Table 2. These topics are grouped 

according to two criteria: i) the construct-indicator 

relationship; and ii) measurement. The construct-

indicator relationship topic is discussed via 

employing criteria such as direction of causality, 

theoretical framework, definition of the latent 

construct, common antecedents and consequences, 

internal consistency, validity of constructs and 

indicator omission consequences. The measurement 

topic is discussed by analyzing the issue of 

measurement error, interchangeability, 

multicollinearity and a nomological net of indicators.  

  

---- TAKE IN TABLE 2 ---- 

 

Application of the classical test theory “assumes 

that the variance in scores on a measure of a latent 

construct is a function of the true score plus error” 

(MacKenzie et al. 2005, p. 710; Podsakoff et al. 

2003), as we presented in equations 1 and 2, in 

Appendix A. The rationale behind the reflective 

indicators is that they all measure the same 

underlying phenomenon (Chin 1998) and they should 

account for observed variances and covariances 

(Fornell & Bookstein 1982; cf. Edwards 2001) in the 

measurement model. The meaning of causality has 

direction from the construct to the measures with 

underlying assumptions that each measure is 

imperfect (MacKenzie et al. 2005), i.e., that has the 

error term which can be estimated at the indicator 

level.   

Formative indicators were introduced for the first 

time by Curtis and Jackson (1962) and extended by 

Blalock (1964). This type of model specification 

assumes that the indicators have an influence on (or 

that they cause) a latent construct. In other words, the 

indicators as a group “jointly determine the 

conceptual and empirical meaning of the construct” 

(Jarvis et al. 2003, p. 201; cf. Edwards & Bagozzi 

2000). The type B model specification would give 

better explanatory power, in comparison to the type 

A model specification, if the goal is the explanation 
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of unobserved variance in the constructs (Fornell & 

Bookstein 1982; cf. McDonald 1996). Application of 

the formative indicators in the CBSEM environment 

is limited by necessary additional identification 

requirements. A model is identified if model 

parameters have only one set of values that generate 

the covariance matrix (Gatignon 2003). In order to 

resolve the problem of indeterminacy that is related 

to the construct-level error term (MacKenzie et al. 

2005), the formative-indicator construct must be 

associated with unrelated reflective constructs. This 

can be achieved if the formative construct emits paths 

to i) at least two unrelated reflective indicators; ii) at 

least two unrelated reflective constructs; and iii) one 

reflective indicator that is associated with a formative 

construct and one reflective construct (MacKenzie et 

al. 2005; cf. Fornell & Bookstein 1982; 

Diamantopoulos & Winklhofer 2001; 

Diamantopoulos et al. 2008; Edwards & Bagozzi 

2000; Howell et al. 2007; Bagozzi 2007; Wilcox et 

al. 2008).     

From an empirical point of view, the latent 

construct captures (i) the common variance among 

indicators in the type A model specification; and (ii) 

the total variance among its indicators in the type B 

model specification, covering the whole conceptual 

domain as an entity (cf. Cenfetelli & Bassellier 2009; 

MacKenzie et al. 2005). Reflective indicators are 

expected to be interchangeable and have a common 

theme. Interchangeability, in the reflective context, 

means that omission of an indicator will not alter the 

meaning of the construct. In other words, reflective 

measures should be unidimensional and they should 

represent the common theme of the construct (e.g. 

Howell et al. 2007). Formative indicators are not 

expected to be interchangeable, because each 

measure describes a different aspect of the 

construct’s common theme, and dropping an 

indicator will influence the essence of the latent 

variable (cf. Bollen & Lenox 1991; Coltman et al. 

2008; Diamantopoulos & Winklhofer 2001; 

Diamantopoulos et al. 2008; Jarvis et al. 2003).  

Internal consistency is implied within the 

reflective indicators, because measures must 

correlate. High correlations among the reflective 

indicators are necessary, because they represent the 

same underlying theoretical concept. This means that 

all of the items are measuring the same phenomenon 

within the latent construct (MacKenzie et al. 2005). 

On the contrary, within the formative indicators, 

internal consistency is not implied because the 

researcher does not expect high correlations among 

the measures (cf. Jarvis et al. 2003). Because 

formative measures are not required to be correlated, 

validity of construct should not be assessed by 

internal consistency reliability as with the reflective 

measures, but with other means such as nomological 

and/or criterion-related validity (cf. Bollen & Lenox 

1991; Coltman et al. 2008; Diamantopoulos et al. 

2008; Jarvis et al. 2003; Bagozzi 2007).  

The researcher should ascertain the difference of 

multicollinearity between the reflective and formative 

constructs. In the reflective-indicator case, 

multicollinearity does not represent a problem for 

measurement-model parameter estimates, because the 

model is based on simple regression (cf. Fornell & 

Bookstein 1982; Bollen & Lenox 1991; 

Diamantopoulos & Winklhofer 2001; Jarvis et al. 

2003) and each indicator is by purpose collinear with 

other indicators. However, high inter-correlations 

among the indicators are a serious issue in the 

formative-indicator case, because it is impossible to 

identify the distinct effect of an indicator on the latent 

variable (cf. Diamantopoulos & Winklhofer 2001; 

MacKenzie et al. 2005; Cenfetelli & Bassellier 2009). 

The researcher can control for indicator collinearity 

by assessing the size of the tolerance statistics (1 - 

), where  is the coefficient of the determination in 

predicting variable Xj (cf. Cenfetelli & Bassellier 

2009). Inverse expression of the tolerance statistics is 

the variance inflation factor (VIF), which has 

different standards of threshold values that range 

from 3.33 to 10.00, with lower values being better 

(e.g. Diamantopoulos & Siguaw 2006; Hair et al 

2010; Cenfetelli & Bassellier 2009). 

The multi-item measures can be created by the 

scale developed or the index construction. Traditional 

scale development guidelines will be followed if the 

researcher conceptualizes the latent construct as 

giving rise to its indicators, and therefore viewed as 

reflective indicators to the construct. This procedure 

is based on the intercorrelations among the items, and 

focuses on common variance, unidimensionality and 

internal consistency (e.g. Diamantopoulos & Siguaw 

2006; Anderson & Gerbing 1982; Churchill 1979, 
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Nunnally & Bernstein 1994). The index development 

procedure will be applied if the researcher 

conceptualizes the indicators as defining 

phenomenon in relation to the latent construct, and 

therefore will be considered as formative indicators 

of the construct. Index construction is based on 

explaining unobserved variance, considers 

multicollinearity among the indicators and underlines 

the importance of indicators as predictor rather than 

predicted variables (e.g. Diamantopoulos & Siguaw 

2006; Bollen 1984; Diamantopoulos & Winklhofer 

2001).                

It is possible for a structural model to have one 

type of latent construct at the first-order (latent 

construct) level and a different type of latent 

construct at the second-order level (Fornell & 

Bookstein 1982; MacKenzie et al. 2005; 

Diamantopoulos & Siguaw 2006; Wetzels et al. 

2009). In other words, the researcher can combine 

different latent constructs to form a hybrid model 

(Edwards & Bagozzi 2000; McDonald 1996). 

Development of this model type depends on the 

underlying causality between the constructs and 

indicators, as well as the nature of the theoretical 

concept. The researcher should model exogenous 

constructs in the formative mode and all endogenous 

constructs in the reflective mode, (i) if one intends to 

explain variance in the unobservable constructs 

(Fornell & Bookstein 1982; cf. Wetzels et al. 2009); 

and (ii) in case of weak theoretical background 

(Wold 1980). Conducting a VBSEM approach in this 

model, using a PLS algorithm, is equal to redundancy 

analysis (Fornell et al. 1988; cf. Chin 1998), because 

the mean variance in the endogenous construct is 

predicted by the linear outputs of the exogenous 

constructs.  

     

2.2.2. Reliability assessment  

The scale development paradigm was established 

by Churchill’s (1979) work as seen in the 

management measurement literature. This 

management measurement paradigm has been 

investigated and improved by numerous research 

studies and researchers, with special emphasis on the 

reliability and validity of survey research indicators 

and measures (e.g., Peter 1981; Anderson & Gerbing 

1982; Fornell & Bookstein 1982; Churchill & Peter 

1984; Finn & Kayande 2004, etc.). Any quantitative 

research must be based on accuracy and reliability of 

measurement (Cronbach 1951). A reliability 

coefficient demonstrates the accuracy of the designed 

construct (Cronbach 1951; cf. Churchill & Peter 

1984) in which certain collection of items should 

yield interpretation regarding the construct and its 

elements. 

It is highly likely that no other statistic has been 

reported more frequently in the literature as a quality 

indicator of test scores than Cronbach’s (1951) alpha 

coefficient (Sijtsma 2009; Shook et al. 2004). 

Although Cronbach (1951) did not invent the alpha 

coefficient, he was the researcher who most 

successfully demonstrated its properties and 

presented its practical applications in psychometric 

studies. The invention of the alpha coefficient should 

be credited to Kuder and Richardson (1937), who 

developed it as an approximation for the coefficient 

of equivalence, and named it rtt(KR20); and Hoyt 

(1941), who developed a method of reliability based 

on dichotomous items, for binary cases where items 

are scored 0 and 1 (cf. Cronbach 1951; Sijtsma 

2009). Guttman (1945) and Jackson and Ferguson 

(1941) also contributed to the development of 

Cronbach’s version of the alpha coefficient, by 

further development of data derivations for Kuder 

and Richardson’s rtt(KR20) coefficient, using the same 

assumptions but without stringent expectations on the 

estimation patterns. The symbol α was introduced by 

Cronbach (1951, p. 299) “… as a convenience. 

‘Kuder-Richardson Formula 20’ is an awkward 

handle for a tool that we expect to become 

increasingly prominent in the test literature”. 

Cronbach’s α measures how well a set of items 

measures a single unidimensional construct. In other 

words, Cronbach’s α is not a statistical test, but a 

coefficient of an item’s reliability and/or consistency. 

The most commonly accepted formula for assessing 

the reliability of a multi-item scale could be 

represented by: 

(1)     (
 

   
) (   

∑   
  

   

  
 )  

 

where N represents the item numbers,   
  is the 

variance of the item i and   
  represents the total 

variance of the scale (cf. Cronbach 1951; Peter 1979; 

Gatignon 2003). In the standardized form, alpha can 
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be calculated as a function of the total items 

correlations and the inter-item correlations: 

(2)     
  ̅

 ̅ (   )  ̅
  

 

where N is item numbers, c-bar is the average 

item-item covariance and v-bar is the average 

variance (cf. Gerbing & Anderson 1988). From this 

formula it is evident that items are measuring the 

same underlying construct, if the c-bar is high. This 

coefficient refers to the appropriateness of item(s) 

that measure a single unidimensional construct. The 

recommended value of the alpha range is from 0.6 to 

0.7 (Hair et al. 2010; cf. Churchill 1979), but in 

academic literature a commonly accepted value is 

higher than 0.7 for a multi-item construct and 0.8 for 

a single-item construct. Academic debate on the pales 

and usefulness of several reliability indicators, among 

them Cronbach’s α, is unabated in the psychometric 

arena, but this debate is practically unknown and 

unattended in the management community. The 

composite reliability, based on a coefficient alpha 

research paradigm, cannot be a unique assessment 

indicator because it is limited by its research scope 

(Finn & Kayande 1997) and is an inferior measure of 

reliability (Baumgartner & Homburg 1996). Alpha is 

a lower bound to the reliability (e.g., Guttman 1945; 

Jackson & Agunwamba 1977; Ten Berge & Sočan 

2004; Sijtsma 2009) and is an inferior measure of 

reliability in most empirical studies (Baumgartner & 

Homburg 1996). Alpha is the reliability if variance is 

zero for all i-th ≠ j-th, which implies essential τ-

equivalence among the items, but this limitation is 

not very common in practice (Ten Berge & Sočan 

2004; Sijtsma 2009). 

We shall now discuss several alternatives to the 

alpha coefficient that are not well-known in practical 

applications and the management community. The 

reliability of the test score X in the population is 

denoted by ρxx’. It is defined as the product-moment 

correlation between scores on X and the scores on 

parallel test scores X’ (Sijtsma 2009). From the 

psychometric studies, we have a well-known: 

 

(3)  0 ≤ ρxx’ ≤ 1 

 

and 

 

(4)  ρxx’ = 1 – 
  

 

  
   

 

where   
  represents variance of the random 

measurement error and   
  represents variance of the 

test score. It is evident from equation (8) that the 

reliability can be estimated if (i) two parallel versions 

of the test are analyzed; and (ii) the error variance is 

available (Sijtsma 2009; Gatignon 2003). These 

conditions are not possible in many practical 

applications. Several reliability coefficients have 

been proposed as a better solution for the data from a 

single test administrator (Guttman 1945; Nunnally & 

Bernstein 1994; Sijtsma 2009), such as the GLB and 

Guttman’s λ4 coefficient. 

The greatest lower bound (GLB) represents the 

largest value of an indicator that is smaller than each 

of the indicators in a set of constructs. The GLB 

solution holds by finding the nonnegative matrix CE 

that is positive semidefinite (PSD): 

(5)  GLB = 1 – 
   (  )

    ( )
  

 

where CE represents the inter-item error 

covariance matrix. Equation (9) represents the GLB 

under the limitation that the sum of error variances 

correlate zero with other indicators (Sijtsma 2009), 

because it is the greatest reliability that can be 

obtained using an observable covariance matrix.   

Guttman’s λ4 reliability coefficient is based on the 

split-half lower bounds paradigm. The difference 

between Guttman’s λ4 and the traditional “corrected” 

split-half coefficient is that it uses estimation without 

assumptions of equivalence. The split-half lower 

bound to reliability, with assumption of 

experimentally independent parts (Guttman 1945), is 

defined by 

(6)   λ4 = n (   
  

     
 

  
 ) 

 

 where σ
2

i and σ
2
j represent the respective 

variances of the independent parts and n represents 

the number of parts to be estimated. Guttman (1945) 

has proved that λ4 is a better coefficient in 

comparison to the traditional “corrected” split-half 

coefficient, and that alpha coefficient, in Guttman 

(1945) notated as λ3, is lower bound to λ4. 
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The relationships among different reliability 

indicators are: 

(7)  0 ≤ alpha (λ3) ≤ λ4 ≤ GLB ≤ ρxx’ ≤ 1 

 

This expression is true, because we know from 

Guttman (1945) that alpha (λ3) ≤ λ4, from Jackson 

and Agunwamba (1977) that λ4 ≤ GLB, and from Ten 

Berge and Sočan (2004) that GLB ≤ ρxx’ ≤ 1. The 

alpha and Guttman’s λ can be estimated using the 

SPSS, and the GLB can be calculated by the program 

MRFA2 (Ten Berge & Kiers 2003).      

From a research point of view the composite 

reliability, based on Cronbach’s so-called alpha 

indicator, cannot solely be an assessment indicator 

because it is limited by its scope only on the scaling 

of person, rather than on the scaling of objects such 

as firms, advertisements, brands, etc. (e.g., Peter 

1979; Finn & Kayande 1997). The generalizability 

theory (G-theory) introduced by Cronbach and 

colleagues (1972) and measured by the coefficient of 

generalizability includes wider management facets 

and takes into account many sources of error in a 

measurement procedure. The G-theory represents a 

multifaceted application of measurement (Cronbach 

et al. 1972; Finn & Kayande 1997) that generalizes 

over the scaling of persons in the population and 

focuses on the scaling of objects such as 

organizations, brands, etc. The measurement in G-

theory is conducted by variation from multiple 

controllable sources, because random effects and 

variance elements of the model are associated with 

multiple sources of variance (Peter 1979; Finn & 

Kayande 1997). The coefficient of generalizability is 

defined by the estimate of the expected value of ρ
2
 

(Cronbach et al. 1972): 

(8)   E ̂2
 = 

               
 

               
                   

   

 

where σ
2
us represents the variance component 

related to an object of measurement, and σ
2

re 

represents the sum of variance that affects the scaling 

of the object of measurement. This measure has no 

wider application in the management community due 

to its robust measurement metrics and high cost. 

There is some evidence in the literature (e.g., Finn & 

Kayande 1997) that a piece of such research, with 

200 respondents, may cost approximately 10,000 

US$ (as of 1995). 

In summary, researchers should be aware that 

conventional reporting of the alpha coefficient has 

empirical and conceptual limitations. We recommend 

that authors should make additional efforts to report 

Guttman’s λ (from SPSS, same as alpha) together 

with the alpha coefficient. 

Cohen’s ƒ
2
. The researcher can evaluate a 

VBSEM model by assessing the R-squared values for 

each endogenous construct. This procedure can be 

conducted because the case values of the endogenous 

construct are determined by the weight relations 

(Chin 1998). The change in R-squares will show the 

influence of an individual exogenous construct on an 

endogenous construct. The effect size ƒ
2 

has been 

used as a reliability measure in the VBSEM 

applications, but researchers do not address properly 

the role of effect size effects in the model. It is usual 

practice to report this effect directly from statistical 

program (such as SmartPlS), but this is not an 

automatic function and statistical power of the model 

must be calculated additionally. This indicator is 

proposed by Cohen (1988) and can be “calculated as 

the increase in R
2
 relative to the proportion of 

variance of the endogenous latent variable that 

remains unexplained” (Cohen 1988; 1991; cf. Chin 

1998). To estimate the overall effect size of the 

exogenous construct, the following formula can be 

used: 

(9)         
  

  

  –   
  

 

 

Another way to calculate this indicator is with a 

power analysis program such as GPower 3.1. The 

researcher can easily estimate effect size ƒ
2
 using 

partial R-squares (Faul et al. 2009). Cohen (1988; 

1991) has suggested that values of 0.02, 0.15 and 

0.35 have weak, medium or large effects, 

respectively. 

Composite reliability ρc indicator. The VBSEM 

models in reflective mode should apply the 

composite reliability ρc measure or Cronbach’s α 

(and/or Guttman’s λ4 and GLB), as a control for 

internal consistency. The composite reliability ρc 

indicator was developed by Werts, Linn and Jöreskog 

(1974) and can be interpreted in the same way as 

Cronbach’s α (Chin 1998; Henseler et al. 2009). This 

procedure applies the normal partial least square 
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output, because it standardizes the indicators and 

latent constructs (Chin 1998). 

(10)       
(∑     )

 

(∑     )
   ∑     (   )

  

 

where λij represents the component loading on an 

indicator by the j-th latent construct and Var(εij) = 1 – 

λij
2
. The ρc has more accurate parameter estimates in 

comparison to Cronbach’s α, because this indicator 

does not assume tau equivalency among the 

constructs. Werts et al. (1974) have argued that the 

composite reliability ρc is more appropriate to apply 

to VBSEM applications than Cronbach’s α, because 

Cronbach’s α may produce serious underestimation 

of the internal consistency of latent constructs. This is 

the case because Cronbach’s α is based on the 

assumption that all indicators are equally reliable. 

The partial least square procedure ranks indicators 

according to their reliability (Henseler et al. 2009) 

and makes them a more reliable measure in the 

VBSEM application. The composite reliability ρc is 

only applicable in the latent constructs with reflective 

measures (Chin 1998).   

 

---- TAKE IN TABLE 3 ---- 

 

2.2.3. Validity assessment  

The ongoing discussion in the measurement 

literature (e.g., Rossiter 2002; Diamantopoulos & 

Siguaw 2006; Finn & Kayande 2005) on procedures 

for the development of scales and indexes to measure 

constructs in management is beyond the scope of this 

manuscript. We only want to draw attention at this 

point to the validity and reliability of applied 

constructs. Validation represents the process of 

obtaining the scientific evidence for a suggested 

interpretation of quantitative results from a 

questionnaire by the researcher. In research practice, 

validity is very often assessed together with 

reliability. This process represents the extent to 

which a measurement concept obtains consistent 

estimations. From a statistical point of view, test 

validity represents the degree of correlation between 

the model and statistical criterion. The validity 

procedure has gained greater importance in SEM 

application than in other statistical instruments, 

because i) this procedure makes an important 

distinction between the measurement and the 

structural model; and ii) this application provides a 

more stringent test of discriminant validity, construct 

reliability, etc. (e.g.,Fornell & Larcker 1981; Gerbing 

& Anderson 1988; Jarvis et al. 2003; cf. Peter 1979).  

Construct validity is a necessary condition for 

testing the hypothesized model (Gerbing & Anderson 

1988), because “construct validity pertains to the 

degree of correspondence between constructs and 

their measures” (Peter 1981, p. 133; cf. Curtis & 

Jackson 1962; Bagozzi & Phillips 1982). In other 

words, construct validity represents the extent to 

which operationalizations of a latent construct 

measures the underlying theory. Evidence of 

construct validity represents empirical support for the 

theoretical interpretation of the constructs. The 

researcher must assess the construct validity of the 

model, without which one cannot estimate and 

correct for the influences of measurement errors that 

may deteriorate the estimates of theory testing 

(Bagozzi & Phillips 1982; Bagozzi et al. 1991). 

However, researchers must be aware that construct 

validity is applicable only with reflective constructs. 

The fidelity of formative measures in CBSEM, 

except in some limited cases such as concurrent or 

predictive validity (Bagozzi 2007), is hard to assess 

and difficult to justify in terms of the conceptual 

meaning of a model.   

Discriminant validity represents the distinctive 

difference among the constructs. In other words, 

discriminant validity shows the degree to which the 

indicators for each of the constructs are different 

from each other (cf. Churchill 1979; Bagozzi & 

Phillips 1982). The researcher can assess the 

discriminant validity by examining the level of 

correlations among the measures of independent 

constructs. A low intra-construct correlation is a sign 

of discriminant validity. The average variance 

extracted (AVE) for each construct should be greater 

than squared correlations among the measures of a 

construct in order to ensure the discriminant validity 

(Fornell & Larcker 1981).  

Nomological aspects of validation include 

connecting the index to other constructs with which it 

should be connected, for instance, antecedents and/or 

consequences (Diamantopoulos & Winklhofer 2001; 

Jarvis et al. 2003; cf. Gerbing & Anderson 1988). 

Nomological validity can be assessed by estimating 

the latent construct and testing whether correlations 
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between antecedents and consequences are 

significantly higher than zero (MacKenzie et al. 

2005). This validation is especially important when 

certain indicators are eliminated from the constructs 

and the researcher has to establish whether new 

constructs behave in an expected way. In other 

words, the nomological net of indicators should not 

differ in the reflective mode and may differ in the 

formative mode (e.g., Bollen & Lenox 1991; Jarvis et 

al. 2003).  

 

2.2.4. Type of study  

The management studies that investigate 

organizational constructs, such as market/consumer 

orientation, sales force, etc., and drivers of success 

are by their nature theory predictive rather than 

theory confirmatory studies. These constructs are 

determined by a combination of factors that cause 

specific phenomenon and their indicators should be 

created in a formative mode (Fornell & Bookstein 

1982; Chin 1998). This implies that this type of study 

is better with VBSEM, but decisions about the 

approach should be made after careful examination of 

all elements that influence the two streams. However, 

behavioral studies that are based on psychometric 

analysis of factors such as attitudes, consumer 

intentions, etc., are seen as underlying factors that 

confirm a specific theory. They “give rise to 

something that is observed” (Fornell & Bookstein 

1982, p. 442) and should be created in a reflective 

mode. The researcher should start the conceptual 

examination from the CBSEM point of view. 

 

2.2.5. The structure of unobservables 

The structure of unobservables in the SEM 

constructs is a primary difference between CBSEM 

and VBSEM, because CBSEM specifies the residual 

structure and VBSEM “specifies the estimates of the 

unobservables explicitly” (Fornell & Bookstein 1982, 

p. 449). In other words, the underlying constructs are 

modeled as indeterminate in CBSEM and 

determinate in VBSEM. Indeterminacy can create 

difficulties for confirmatory studies because 

indeterminate factors have improper loadings 

(Fornell & Bookstein 1982) and assignment of 

surplus variance to the unobservable may lead to 

biased measurement results. The structure of 

unobservables in the VBSEM approach is 

determinate. The PLS procedure tries to minimize the 

variance of all dependent variables, because 

parameter estimates are obtained by minimizing the 

residual variance in latent and observed variables 

(Chin 1998). Bollen (1989b) has noted that the 

determinate nature of the VBSEM approach avoids 

parameter identification problems, which can occur 

in the CBSEM approach. 

 

2.2.6. Input data  

The CBSEM approach is based on a covariance or 

correlation input matrix as input data. The literature 

(e.g., Baumgartner & Homburg 1996) has suggested 

that researchers in most cases apply maximum 

likelihood (ML), unweighted least squares (ULS) and 

generalized least squares (GLS) that are scale 

invariant and estimate scale free. This implies that a 

choice between covariance and correlation input 

matrix has no effect on overall goodness-of-fit and 

parameter estimates, but standard errors can be 

biased if the correlation input matrix has been used 

(Baumgartner & Homburg 1996). Another issue is 

the application of correlation input matrices as if they 

were covariance matrices, because estimated standard 

errors are biased (Tomarken & Waller 2005). A 

general suggestion for researchers is to use a 

covariance input matrix as a preferred matrix type 

(e.g., Jöreskog & Sörbom 1996). As input data, the 

VBSEM approach uses individual-level raw data. 

The VBSEM parameter estimation is based on a least 

square algorithm.      

 

2.3. Sample 

 

A sample should represent a relevant part of 

reality. Identification and determination of the proper 

reality is a crucial step in the research set-up. There 

are many research studies in management that 

operate without a clear population of objects and an 

indication of the sample size under study. For 

instance, a researcher studies the problem of 

innovation in management. He/she conducts (or 

attempts to conduct) interviews with a great number 

of managers (>1000) from different industries, 

different management levels, different positions in 

companies, and different working and life experience 

and expectations. The first issue is that of objective 

reality. What does the researcher study? The great 
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population diversification leads to an inconsistent 

sample and biased estimation about the researched 

phenomenon, because of very heterogeneous 

variables (industry, position, experience, etc.). The 

second issue is sampling. Identifying the N-number 

of respondents to which the researcher can send 

his/her questionnaire is not the reality he/she wants to 

investigate. The researcher wants to identify the 

sample that is a representative part of objective 

reality. In the self-reported studies, which deal with 

cross-sectional data, the acceptable threshold level is 

15% (Hair et al. 2010). The researcher should 

consider the following two questions regarding the 

appropriateness of the employed sample size and 

model. Firstly, what is the proper sample size, in 

comparison to the number of observations, which 

will represent business reality? Secondly, what is the 

appropriate number of indicators to be estimated, in 

comparison with the obtained sample size, in a 

proposed model (cf. Baumgartner & Homburg 

1996)? 

The appropriate sample size of the model differs 

in two streams. The importance of sample size lies in 

the fact that it serves as a basis for estimation of the 

error term and the most important question is how 

large a sample must be to obtain credible results 

(Hair et al. 2010). There is no general rule of thumb 

or formula which can give an exact solution for the 

necessary number of observations in SEM. The 

adequate size of a sample in the CBSEM approach 

depends on several factors (cf. Hair et al. 2010; 

Marcoulides & Saunders 2006) such as i) 

multivariate normality; ii) applied estimation 

technique (cf. Baumgartner & Homburg 1996), 

because there can be applied maximum likelihood 

estimation (MLE), weighted least squares (WLS), 

generalized least squares (GLS), asymptotically 

distribution free (ADF) estimation, etc. (cf. Jöreskog 

& Sörbom 1996; Byrne 1998; Baumgartner & 

Homburg 1996); iii) model complexity, because more 

complex models require more observations for the 

estimation; iv) missing data, because it reduces the 

original number of cases; v) communality in each 

construct, i.e. the average variance extracted in a 

construct. A great number of simulation studies on 

CBSEM (usually the Monte Carlo simulation) report 

estimation bias, improper results and non-

convergence problems with respect to sample size 

(e.g., Henseler et al. 2009) and inadequate indicator 

loadings (Reinartz et al. 2009). In general, the 

researcher can apply the necessary sample size rule, 

bearing in mind the above limitations and 

suggestions, if the ratio of sample size to free model 

parameters is at least five observations to one free 

parameter for the minimum threshold level and ten to 

one for the optimum threshold level (cf. Baumgartner 

& Homburg 1996; Marcoulides & Saunders 2006; 

Peter 1979). Baumgartner and Homburg (1996) have 

shown that the average ratio of sample size to number 

of parameters estimated in management literature 

(from 1977-1994) is 6.4 to 1.      

The VBSEM approach is more robust and less 

sensitive to sample size, in comparison to the 

CBSEM approach. For instance, Wold (1989) has 

successfully conducted a study with 10 observations 

and 27 latent constructs; Chin and Newsted (1999) 

have conducted a Monte Carlo simulation study on 

VBSEM in which they have found that the VBSEM 

approach can be applied to a sample of 20 

observations. In general, the rule of thumb that 

researchers can use in VBSEM runs as follows (Chin 

1998): i) 10 observations multiplied with the 

construct that has the highest number of indicators; 

ii) the endogenous construct with the largest number 

of exogenous constructs, multiplied by ten 

observations. However, the researcher should be 

careful when employing the small sample size cases 

in the VBSEM study, because the PLS technique is 

not the silver bullet (cf. Marcoulides & Saunders 

2006) for any level of sample size, even though it 

offers “soft” assumptions on data distribution and 

sample size. 

 

2.4. Goodness-of-fit 

 

2.4.1. Goodness-of-fit in VBSEM 

A model evaluation procedure in VBSEM is 

different in comparison to the CBSEM approach. The 

VBSEM application is based on the partial least 

squares procedure that has no distributional 

assumptions, other than predictor specification (Chin 

1998). Traditional parametric-based techniques 

require identical data distribution. Evaluation of the 

VBSEM models should apply the measures that are 

prediction oriented rather than confirmatory oriented 

based on covariance fit (Wold 1980; Chin 1998). 
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The researcher has to assess a VBSEM model 

evaluating the model predictiveness (coefficient of 

determination, Q
2
 predictive relevance and average 

variance extracted – AVE) and the stability of 

estimates applying the resampling procedures (jack-

knifing and bootstrapping). Technical discussion is 

presented in Appendix C. 

Assessment of the VBSEM model starts with 

evaluation of the coefficient of determination (R
2
) for 

the endogenous construct. The procedure is based on 

the case values of the endogenous constructs that are 

determined by the weight relations and interpretation 

is identical to the classical regression analysis (Chin 

1998). For instance, Chin (1998b, p. 337) has 

advocated that the R-squared values 0.63, 0.33 and 

0.19, in the baseline model example, show 

substantial, moderate and weak levels of 

determination, respectively.   

The second element of the VBSEM assessment is 

that of predictive relevance, measured by the Q-

squared indicator. The Q
2
 predictive relevance 

indicator is based on the predictive sample reuse 

technique originally developed by Stone (1974) and 

Geisser (1975; 1974). The VBSEM adaptation of this 

approach is based on a blindfolding procedure that 

excludes a part of the data during parameter 

estimation and then calculates the excluded part using 

the estimated parameters. 

The average variance extracted (AVE) represents 

the value of variance captured by the construct from 

its indicators relative to the value of variance due to 

measurement errors in that construct. This measure 

has been developed by Fornell and Larcker (1981). 

The AVE is only applicable for type A models; i.e. 

models with reflective indicators, just as in the case 

of the composite reliability measure (Chin 1998). The 

AVE should be higher than 0.50, i.e. more than 50% 

of variance should be captured by the model. 

VBSEM parameter estimates are not efficient as 

CBSEM parameter estimates and resampling 

procedures are necessary to obtain estimates of the 

standard errors (Anderson & Gerbing 1988). The 

stability of estimates in the VBSEM model can be 

examined by resampling procedures such as jack-

knifing and bootstrapping. Resampling estimates the 

precision of sample statistics by using the portions of 

data (jack-knifing) or drawing random replacements 

from a set of data blocks (bootstrapping) (cf. Efron 

1979; 1981). Jack-knifing is an inferential technique 

used to obtain estimates by developing robust 

confidence intervals (Chin 1998). This procedure 

assesses the variability of the sample data using 

nonparametric assumptions and “parameter estimates 

are calculated for each instance and the variations in 

the estimates are analyzed” (Chin 1998, p. 329). 

Bootstrapping represents a nonparametric statistical 

method that obtains robust estimates of standard 

errors and confidence intervals of a population 

parameter. In other words, the researcher estimates 

the precision of robust estimates in the VBSEM 

application. The procedure described in this section is 

useful for the assessment of the structural VBSEM 

model, but detailed description and assessment steps 

of the outer and inner models are beyond the scope of 

this manuscript.    

 

2.4.2. Goodness-of-fit in CBSEM 

CBSEM procedure should be conducted by the 

researcher in three phases. The first phase is the 

examination of i) estimations of causal relationships; 

and ii) goodness-of-fit between the hypothesized 

model and observed data. The second phase involves 

model modifications in order to obtain the model 

with better fit or more parsimonious estimations. The 

third phase is justification that a nested model is 

superior in comparison to the original one (cf. 

Anderson & Gerbing 1982). 

In the first phase, the researcher begins by 

examining the estimated value of individual paths 

among latent constructs. The statistical significance 

of individual path coefficients is established by the t-

values or z-values associated with structural 

coefficients (Schreiber et al. 2006). The second step 

is examination of the goodness-of-fit between the 

hypothesized model and observed data. Covariance-

based structural equation modeling has no single 

statistical test or single significant threshold that 

leads to acceptance or refusal of the model 

estimations. It is, rather, the opposite – it has 

developed a great number of goodness-of-fit 

measures that assess the overall results of the model 

from different perspectives: overall fit, comparative 

fit and model parsimony. Measures of absolute fit 

determine the degree to which the overall model 

predicts the observed covariance/correlation matrix 

(Hair et al. 2010).  
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There is no rule of thumb for what model fit 

serves as the threshold in covariance-based structural 

equation modeling. There are attempts in the 

literature (e.g., Bentler & Bonett 1980; Hu & Bentler 

1999; etc.) to obtain “golden rules”, “silver metrics” 

or “rules of thumb” for the assessment of CBSEM. 

Setting “rules of thumb” is popular among 

researchers, because an established threshold level 

allows easy and fast evaluation of the covariance-

based models. The traditional cutoff values in 

practice, for incremental fit measures ≥ 0.90, have 

little statistical justification and are mostly based on 

intuition (Marsh et al. 2004; cf. Baumgartner & 

Homburg 1996; Tomarken & Waller 2005). This 

issue has also been addressed by Hu and Bentler 

(1998, 1999), who have suggested new, more 

stringent guidelines. According to these guidelines, 

the goodness-of-fit measures should be evaluated at ≥ 

0.95 levels, but researchers should be aware of 

possible limitations in the application and 

appropriateness of these in relation to the area of 

research (e.g. psychometrics vs. organizational 

studies) and the low level of generalizability of this 

approach (cf. Marsh & Hau 1996).  

As the process of the second and third phases, the 

researcher should assess measures of absolute fit, 

incremental fit and model parsimony in detail. We 

present these measures in Appendix B. 

 

3. Research illustration  

 

We present recently published research papers 

from management literature as an illustration, which 

deal with similar research topic. The idea is to show 

the contemporary state of research performance using 

similar research topic, but executed by different 

researchers that apply various theoretical assumptions 

and research approaches. We present papers on brand 

loyalty / success published in the world-known peer 

reviewed journals such as Management Decision, 

Journal of the Academy of Marketing Science, 

Journal of Brand Management, etc. Labrecque et al. 

(2011) and Mazodier & Marunka (2011) applied the 

CBSEM approach, and Hur et al. (2011) and Davcik 

& Rundquist (2012) applied the VBSEM approach; 

presented in Table 5.   

 

---- TAKE IN TABLE 5 --- 

 

Labrecque et al. (2011) and Mazodier & Marunka 

(2011) applied their research on a convenient student 

sample group and a very few indices per construct (3 

– 4), which is a minimum requirement and gives a 

good factor loading. They failed in theoretical 

justification of their research studies, because they 

had not explained and motivated reasons to apply the 

CBSEM approach, neither the relationships between 

indicators and constructs. As a reliability measure, 

they used only Cronbach’s alpha indicator which is 

lower-bound to the reliability. Their assessment of 

the model fit is very poor. Labrecque et al. (2011) 

presented only chi-square, degrees of freedom, GFI, 

RMSEA, CFI, TLI and NFI; Mazodier & Marunka 

(2011) applied only chi-square, RMSEA, CFI and 

NFI.  

Hur et al. (2011) studied consumers and applied a 

very few indicators per construct (3.3 in average). 

This paper partly analyses reliability measures 

because they report composite reliability, but not 

report Cohen’s f
2
. Assessment of the model was 

executed only partially and in a poor technical 

manner. The performance of the outer model in the 

model was not discussed at all. Therefore, the readers 

cannot be sure that predictive relevance is achieved 

and relative impact is substantial in the model. 

Stability of estimates is assessed only by the 

bootstrapping, but the authors failed to report the 

jack-knifing assessment of the model. 

The study of Davcik & Rundquist (2012) is a 

good example for the VBSEM approach. They 

justified theoretical approach due to the exploratory 

nature of study, data distribution assumptions and 

less stringent sample requirements in comparison to 

the CBSEM approach. The authors studied firms and 

their sample size is substantially smaller than in 

studies that put a consumer in research focus or 

student samples. However, their approach satisfies 

research and technical standards. This study presents 

all required reliability measures, indicators of model 

predictiveness and stability of estimates.  

This short illustration shows typical research 

papers from management journals. Unfortunately, 

even recently published papers are executed in a 

weak theoretical and technical manner. We urge the 

editors and reviewers to pay more attention and effort 

to the theoretical justification of study, sample groups 
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(because student sample cannot be useful and 

justification for theoretical generalizability) and poor 

technical performance of the reported studies.     

 

4.  Conclusions, limitations and opportunities 

for future research 

 

This paper illustrates a common conceptual 

background for the variance-based and covariance-

based SEM. Methodological analysis and comparison 

of the two SEM streams is the main contribution of 

this conceptual manuscript. We identified several 

common topics in our analysis. We discussed the 

covariance-based and variance-based SEM utilizing 

common topics such as (i) theory (theory 

background, relation to theory and research 

orientation); (ii) measurement model specification 

(type of latent construct, type of study, reliability 

measures, etc.); (iii) sample (sample size and data 

distribution assumption); and (iv) goodness-of-fit 

(measurement of the model fit and residual 

co/variance). 

The two research approaches have substantial 

theoretical background differences. The CBSEM 

approach is based on a priori knowledge about the 

model (Fornell & Bookstein 1982; Fornell 1983; Hair 

et al. 2010), because the researcher investigates the 

difference between the management reality and the 

hypothesized model. The VBSEM approach is 

framed by the theory, but its goal is to predict 

behavior among variables. In comparison to CBSEM 

which tends to confirm the underlying theory, the 

VBSEM approach tries to give exploratory meaning 

to theoretical foundations of the model.  

The researcher can specify the measurement 

model in three modes: reflective, formative and 

mixed. Between the reflective- and formative-

indicator constructs exist important methodological 

and practical differences. Almost 30% of the models 

published in the top marketing journals were 

mistakenly specified (Jarvis et al. 2003), because the 

researchers did not pay attention to the appropriate 

specification of the measurement model and many 

formative constructs were incorrectly specified in the 

reflective mode. There is a debate in the academic 

community about the usefulness and applicability of 

formative measures (e.g., Howell et al. 2007; Wilcox 

et al. 2008; Bagozzi 2007; Diamantopoulos et al. 

2008). For instance, Howell et al. (2007) have argued 

that formative measurement has very little usefulness 

and it is not an attractive alternative to the reflective 

measurement approach. Several other authors (e.g., 

Diamantopoulos et al. 2008) have suggested that 

formative measures are important but are 

underestimated by the management community. In 

the words of Diamantopoulos et al. (2008; p. 1216), 

“further theoretical and methodological research is 

necessary to finally settle this debate. Time will tell”.   

The requirements of the sample size in the SEM 

study differ in two streams. In general, the CBSEM 

study is more sensitive to sample size than the 

VBSEM study. The literature suggests that some 

statistical algorithms applied by CBSEM cannot 

produce trustworthy results (Hair et al. 2010) or that 

the researcher will have estimation problems with 

small samples. The VBSEM approach is more robust 

and less sensitive to sample size. Several simulations 

suggest that the study can be conducted with a 

sample of 20 observations and many latent constructs 

(e.g., Wold 1989; Chin & Newsted 1999). However, 

small sample size and “soft” distributional 

prerequisites should not be employed as a “silver 

bullet” by default; i.e., without any sound reasons for 

theoretical and empirical justification.    

The evaluation of fit and model selection are 

based on a great number of, and sometimes 

controversial, issues and criteria (e.g., Bentler 1990; 

Bentler & Bonett 1980; Bollen 1989a, 1989b; Fornell 

& Larcker 1981; Hair et al 2010; Hu & Bentler 1999; 

Jöreskog 1973; Marsh & Hau 1996; Tucker & Lewis 

1973). We synthesized and presented the minimum 

consensus that exists in SEM literature. This 

consensus represents different groups of measures 

and important conceptual differences between 

VBSEM and CBSEM approaches. The evaluation of 

the goodness-of-fit in the VBSEM approach includes 

assessment of the model predictability and the 

stability of estimates. A model evaluation in CBSEM 

includes assessment of different measures such as 

measures of absolute fit, incremental fit and model 

parsimony.  

 

4.1. Some remaining open questions 

 

An important research step is the problem of 

reliability. We have presented evidence against the 
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usage of Cronbach’s alpha in management studies, 

because alpha is not an appropriate reliability 

indicator, and λ4 and GLB are more appropriate (e.g., 

Guttman 1945; Jackson & Agunwamba 1977; Ten 

Berge & Sočan 2004; Sijtsma 2009). The literature is 

silent about the behavior of the λ4 and GLB in 

different measurement specification contexts. We 

know that a researcher can apply these reliability 

indicators in the type A mode, but we do not know 

whether we can also apply them in modes B and C. 

We also do not know if they are applicable only in 

the CBSEM set-up, or whether (and how) we can use 

them in the VBSEM set-up. From Werts et al. (1974) 

we know that the composite reliability ρc is a better 

indicator of reliability than Cronbach’s α in the 

VBSEM approach. We do not know what the 

theoretical and practical interrelationships are, if any, 

among ρc, Guttman’s λ and GLB in the VBSEM 

environment. Further software and theoretical 

development is needed. 

An important issue is further scale modification, 

after the management scale has shown dimensionality 

and construct validity. Finn and Kayande (2004) have 

pointed out that effects of modified scale on scale 

performance is under-investigated in the literature, 

because scale adopted to a particular management 

context as well as scale refinement are not covered by 

classical reliability theory.  

Researchers have tried to determine the minimum 

sample size needed for a study that employs the SEM 

approach, not only in management but also in other 

academic fields (e.g., Baumgartner & Homburg 

1996; Chin 1998; cf. Marcoulides & Saunders 2006). 

For instance, we are not familiar with any research 

that questioned or extended Chin’s “10” rule for a 

minimum sample size in the VBSEM environment 

(cf. Marcoulides & Saunders 2006). The ongoing 

academic debate on how to corroborate the adequate 

sample size in both streams needs further theoretical 

enhancement and simulation studies, especially for a 

heterogeneous discipline such as management.    

The conventional use of SEM employs linear 

models on cross-sectional data. There are two 

beneficial research avenues not employed in 

management. The first is the use of nonlinear models, 

such as quadratic effects of exogenous variables and 

Bayesian methods (e.g., Lee 2007). On the one hand, 

this application can open many new research 

opportunities for researchers, but on the other we 

must be aware of the limited use of this approach 

because variables that employ cross-sectional data 

are usually linear. The second beneficial avenue 

could be the employment of longitudinal data and 

time-series research. The SEM modeling of time-

series data is known in the literature as latent curve or 

latent growth modeling.  

 

4.2. Limitations of study 

 

This is a conceptual manuscript and a clear 

limitation is an absence of contributions and 

discussions based on empirical data. Empirical 

simulation, such as the Monte Carlo study, and an 

analysis of management data should be a logical 

continuation of this topic, but these enterprises are 

beyond the scope of this paper (cf. Tomarken & 

Waller 2005). The complex CBSEM model that 

employs many latent constructs and indices, in three 

or more layers, is based on a high-dimensional 

integration of a parameter that cannot be efficiently 

estimated by standard maximum likelihood methods. 

The solution might be an application of Bayesian 

methods that are based on Markov Chain Monte 

Carlo (MCMC) estimation procedure (cf. Lee 2007). 

Management literature is scarce on empirical 

simulations and/or studies that analyze and compare 

conceptual foundations of covariance- and variance-

based SEM. One of the few studies that do exist was 

conducted by Fornell and Bookstein (1982) almost 30 

years ago, but was limited by their research scope, 

which focused only on differences in the 

measurement model specification. Tenenhaus (2008) 

made a simulation on the ESCI model, using 

customer satisfaction data, in which he compared 

CBSEM (“classical”, PCA and ULS-SEM) and 

VBSEM (PLS and GSCA) approaches. He concluded 

that all approaches yielded practically the same 

results if the model specification was conducted 

correctly and the researcher used “good” data. This 

implies that model estimation is not dependent upon 

the method used, but on the underlying theoretical 

background, adequate sampling (cf. Churchill & 

Peter 1984) and the correct model specification. Only 

a few studies in management literature analyze the 

measurement model specification, using Monte Carlo 

simulations, but exclusively in the CBSEM context 
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(e.g., Diamantopoulos & Winklhofer 2001; Jarvis et 

al. 2003; etc.), and they are silent about the VBSEM 

approach. We are aware of the marketing application 

of SEM in experimental designs by Bagozzi (1994) 

and Bagozzi and Yi (1989) that are applied in the 

CBSEM and VBSEM streams, but their findings and 

conceptualizations were not widely disseminated in 

the management community. 

The second limitation is that we did not discuss 

the common method bias. This is an important issue 

in research practice but beyond the aim of this paper. 

However, researchers must be aware that most of the 

academic findings which are disseminated in the 

management community are based on self-reported 

research studies (Podsakoff & Organ 1986). 

Problems with self-reporting arise because the 

subject is asked to express specific opinions and 

attitudes that can be questioned and changeable over 

time and in different environments. Research 

measures might be contaminated, causing 

measurement errors in informant reports, because all 

measures come from the same respondent, with the 

presumption that the source answers in the same 

fashion and via the same way of thinking (Podsakoff 

and Organ 1986; cf. Bagozzi et al. 1991). The 

researcher can apply two primary procedures to 

control common method biases: (i) the design of the 

study; and/or (ii) statistical tests (Podsakoff et al. 

2003). Common method bias is traditionally tackled 

by Harman’s one-factor test (Harman 1967) in order 

to control common method variance. All variables 

are entered into a factor analysis in this procedure. 

The unrotated factor solution results are examined in 

order to determine the number of factors that account 

for the variance in examined variables (Podsakoff & 

Organ 1986), applying the commonly accepted 

threshold for the eigenvalue above value 1. The 

correlated uniqueness model has been suggested as 

an appropriate approach to tackle the estimation 

problems within the MTMM model (Podsakoff et al. 

2003), because this model allows the error terms to 

be correlated in order to account for the measurement 

effects by the same method (Podsakoff et al. 2003). 

The common method bias techniques are based on 

the classical test theory, which means that indicators 

are formed in the type A mode, i.e., as the reflective-

indicator constructs. This implies two problems that 

are not addressed in the literature. First, how the 

common method bias remedies are applied within 

formative and mixed models. The difference between 

the formative and reflective constructs is an 

important issue because of the source of common 

method bias. The error term in the reflective mode is 

identified at the indicator level, but in the formative 

mode the error resides at the construct level. 

Formative constructs in the CBSEM approach are 

identified if there are at least two additional reflective 

paths that emanate from the construct (Podsakoff et 

al. 2003). Second, the current body of knowledge 

assumes that common method biases are applied in 

the CBSEM environment. The literature is also silent 

about the matter of what the common method 

remedies will be if the researcher applies the VBSEM 

approach. 

In our view, it is important that future theoretical 

enhancements and simulation studies in management 

address these issues in detail.  

 

 

 

 

References 

 

Anderson, J. and Gerbing D. (1982). “Some 

Methods for Respecifying Measurement 

Models to Obtain Unidimensional Construct 

Measurement”, Journal of Marketing 

Research, XIX (November), 453-460  

Anderson, J. and Gerbing D.(1988). “Structural 

Equation Modeling in Practice: A Review and 

Recommended Two-Step Approach”, 

Psychological Bulletin, 103 (3), 411-423 

Bagozzi, R. P.   (1994). “Structural Equation 

Models in Marketing Research: Basic 

Principles”, in Principles of Marketing 

Research, R.P. Bagozzi, ed., Oxford: 

Blackwell Publishers, 125-140 

Bagozzi, R. P.  (2007). “On the Meaning of 

Formative Measurement and How It Differs 

from Reflective Measurement: Comment on 

Howell, Breivik, and Wilcox (2007)”, 

Psychological Methods, 12 (2), 229-237   

Bagozzi, R. P. and Phillips L. (1982). 

“Representing and Testing Organizational 

Theories: A Holistic Construal”, 

Administrative Science Quarterly, 27 

(September), 459-489   

Bagozzi, R. P.  and Youjae Yi (1989). “On the Use 

of Structural Equation Models in Experimental 



 

19 

 

Designs”, Journal of Marketing Research, 26 

(3), 271-284 

Bagozzi, R. P., Youjae Yi and Lynn W. Phillips 

(1991). “Assessing Construct Validity in 

Organizational Research”, Administrative 

Science Quarterly, 36 (September), 421-458 

Baumgartner, H. and Homburg C.(1996). 

“Applications of structural equation modeling 

in marketing and consumer research: A 

review”, International Journal of Research in 

Marketing, 13 (2), 139-161 

Bentler, P.M. (1990). “Comparative fit index in 

structural models”, Psychological Bulletin, 107 

(2), 238-246 

Bentler, P.M. and D.G. Bonett (1980). 

“Significance test and goodness-of-fit in the 

analysis of covariance structures”, 

Psychological Bulletin, 88 (3), 588-606 

Blalock, H. (1964). Causal Inferences in 

Nonexperimental Research. Chapel Hill: 

University of North Carolina Press 

Bollen, K. (1984). “Multiple Indicators: Internal 

Consistency or No Necessary Relationship”, 

Quality and Quantity, 18 (4), 377-385 

Bollen, K. (1989). “A New Incremental Fit Index 

for General Structural Models”, Sociological 

Methods & Research, 17 (3), 303-316 

Bollen, K. and Richard Lennox (1991). 

“Conventional Wisdom on Measurement: A 

Structural Equation Perspective”. 

Psychological Bulletin, 110 (2), 305-314 

Byrne, B. (1998). Structural Equation Modeling 

with LISREL, PRELIS and SIMPLIS: Basic 

Concepts, Applications, and Programming. 

Mahwah: Lawrence Erlbaum Associates  

Cenfetelli, R. and G. Bassellier (2009). 

“Interpretation of Formative Measurement in 

Information Systems Research”. MIS 

Quarterly, 33 (4), 689-707  

Chin, W.  (1998). “The Partial Least Squares 

Approach to Structural Equation Modeling”, in 

Modern Methods for Business Research, 

Marcoulides G.A., ed. Mahwah: Lawrence 

Erlbaum Associates, 295-358 

Chin, W.  and P.R. Newsted (1999). Structural 

equation modeling analysis with small samples 

using partial least squares. In Statistical 

strategies for small sample research, Hoyle, R. 

H., ed. Thousand Oaks: Sage, 307-342 

Chintagunta, P., T. Erdem, Peter E. Rossi and M. 

Wedel (2006). “Structural Modeling in 

Marketing: Review and Assessment”. 

Marketing Science, 25 (6), 604-616  

Churchill, G. (1979). “A Paradigm for Developing 

Better Measures of Marketing Constructs”. 

Journal of Marketing Research,  XVI 

(February), 64-73 

Churchill, G. and P. Peter (1984). “Research Design 

Effects on the Reliability of Rating Scales: A 

Meta-Analysis”. Journal of Marketing 

Research, XXI (November), 360-375  

Cohen, J. (1988). Statistical power analysis for the 

behavioral sciences, 2
nd

 ed., Hillsdale: 

Lawrence Erlbaum Ass.  

Cohen, J. (1991). “A Power Primer”, Psychological 

Bulletin, 112 (1), 155-159 

Coltman, T., T. Devinney, D. Midgley and S. 

Venaik (2008). “Formative versus reflective 

measurement models: Two applications of 

formative measurement”, Journal of Business 

Research, 61 (12), 1250-1262 

Cronbach, L. (1951). “Coefficient Alpha and the 

Internal Structure of Tests”. Psychometrika, 16 

(3), 297-334  

Cronbach, L., G. Gleser, H. Nanda and N. 

Rajaratnam (1972). The Dependability of 

Behavioral Measurements: Theory of 

Generalizability for Scores and Profiles. New 

York: John Wiley & Sons 

Curtis, R. and Elton F. Jackson (1962). “Multiple 

indicators in survey research”, American 

Journal of Sociology, 68 (2), 195-204 

Davcik, N. S. and J. Rundquist (2012). “An 

exploratory study of brand success: Evidence 

from the food industry”, Journal of 

International Food and Agribusiness 

Marketing, 24 (1), 91-109; DOI: 

10.1080/08974438.2012.645747 

Diamantopoulos, A., P. Riefler and K. Roth (2008). 

“Advancing formative measurement models”, 

Journal of Business Research, 61 (12), 1203-

1218 

Diamantopoulos, A. and J. Siguaw (2006). 

“Formative Versus Reflective Indicators in 

Organizational Measure Development: A 

Comparison and Empirical Illustration”, 

British Journal of Management, 17 (4), 263-

282 

Diamantopoulos, A. and H. Winklhofer (2001). 

“Index Construction with Formative 

Indicators: An Alternative to Scale 

Development”, Journal of Marketing 

Research, XXXVIII (May), 269-277 

Edwards, J. and R. Bagozzi (2000). “On the Nature 

and Direction of Relationships Between 

Constructs and Measures (lead article)”, 

Psychological Methods, 5 (2), 155-174. 

Efron, B. (1979). “Bootstrap Methods: Another 

Look at the Jackknife”. The Annals of 

Statistics, 7 (1), 1-26 



 

20 

 

 Efron, B. (1981). “Nonparametric Estimates of 

Standard Error: The Jackknife, the Bootstrap 

and Other Methods”. Biometrika, 68 (3), 589-

599 

Faul, F., E. Erdfelder, A. Buchner and Albert-Georg 

Lang (2009). “Statistical power analyses using 

G*Power 3.1: Test for correlation and 

regression analyses”. Behavior Research 

Methods, 41 (4), 1149-1160 

Finn, A. and U. Kayande (1997). “Reliability 

Assessment and Optimization of Marketing 

Measurement”. Journal of Marketing 

Research, XXXIV (May), 262-275 

Finn, A. and U. Kayande (2004). “Scale 

modification: alternative approaches and their 

consequences”. Journal of Retailing, 80 (1), 

37-52 

Finn, A. and U. Kayande (2005). “How fine is C-

OAR-SE? A generalizability theory 

perspective on Rossiter’s procedure”. 

International Journal of Research in 

Marketing, 22 (1), 11-21 

Fornell, C., D. Barclay and Byong-Duk Rhee 

(1988). “A model and simple iterative 

algorithm for redundancy analysis”. 

Multivariate Behavioral Research, 23 (3), 349-

360  

Fornell, C. and F. Bookstein (1982). “Two 

structural Equation Models: LISREL and PLS 

Applied to Consumer Exit-Voice Theory”. 

Journal of Marketing Research, XIX 

(November), 440-452 

Fornell, C. and D. Larcker (1981). “Evaluating 

Structural Equation Models with Unobservable 

Variables and Measurement Error”, Journal of 

Marketing Research, XVIII (February), 39-50  

Gatignon, Hubert (2003). Statistical Analysis of 

Management Data, Dordrecht: Kluwer 

Academic Publishers 

Geisser, S. (1974). “A Predictive Approach to the 

Random Effect Model”, Biometrika, 61 (1), 

101-107 

Geisser, S. (1975). “The Predictive Sample Reuse 

Method with Applications”. Journal of the 

American Statistical Association, 70 (June), 

320-328 

Gerbing, D. and J. Anderson (1988). “An Updated 

Paradigm for Scale Development Incorporating 

Unidimensionality and Its Assessment”. 

Journal of Marketing Research, 25 (2), 186-

192 

Guttman, L. (1945). “A basis for analyzing test-

retest reliability”. Psychometrika, 10 (4), 255-

282  

Hair, J., W. Black, B. Babin, R. Anderson (2010). 

Multivariate data analysis, 7
th
 ed., Prentice 

Hall 

Hair, J., M. Sarstedt, C. Ringle and J. Mena (2012). 

“An assessment of the use of partial least 

squares structural equation modeling in 

marketing research”, Journal of the Academy 

of Marketing Science, 40(3), 414-433 

Harman, H. (1967). Modern factor analysis, 2
nd

 ed., 

Chicago: University of Chicago Press  

Henseler, J., C. Ringle and R. Sinkovics (2009). 

“The use of partial least squares path modeling 

in international marketing”. Advances in 

International Marketing, 20, 277-319 

Howell, R., E. Breivik and J. Wilcox (2007). 

“Reconsidering Formative Measurement”. 

Psychological Methods, 12 (2), 205-218 

Hoyt, C. (1941). “Test reliability estimated by 

analysis of variance”. Psychometrika, 6 (3), 

153-160 

Hu, Li-tze and P.M. Bentler (1998). “Fit indices in 

covariance structure modeling: Sensitivity to 

underparameterized model misspecification”. 

Psychological Methods, 3 (4), 424-453 

Hu, Li-tze and P.M. Bentler (1999). “Cutoff criteria 

for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives”. 

Structural Equation Modeling, 6 (1), 1-55 

Hur, Won-Moo, Kwang-Ho Ahn and Minsung Kim 

(2011). “Building brand loyalty through 

managing brand community commitment”. 

Management Decision, 49 (7), 1194-1213 

Jackson, P. and C. Agunwamba (1977). “Lower 

bounds for the reliability of the total score on a 

test composed of non-homogenous items: I: 

Algebraic lower bounds”. Psychometrika, 42 

(4), 567-578 

Jackson, R.W. and G.A. Ferguson (1941). “Studies 

on the reliability of tests”. Bulletin No. 12, 

University of Toronto, Toronto 

Jarvis, C., S. MacKenzie and P. Podsakoff (2003). 

“A Critical Review of Construct Indicators and 

Measurement Model Misspecification in 

Marketing and Consumer Research”. Journal 

of Consumer Research, 30 (September), 199-

218 

Jöreskog, K. (1966). “Testing a simple structure 

hypothesis in factor analysis”. Psychometrika, 

31 (2), 165-178  

Jöreskog, K. (1967). “Some contributions to 

maximum likelihood factor analysis”. 

Psychometrika, 32 (4), 443-482 

Jöreskog, K. (1969). “A general approach to 

confirmatory maximum likelihood factor 

analysis”. Psychometrika, 34 (2), 183-202 



 

21 

 

Jöreskog, K. (1970). “A General Method for 

Analysis of Covariance Structures”. 

Biometrika, 57 (2), 293-351 

Jöreskog, K. (1973). “A General Method for 

Estimating a Linear Structural Equation 

System”, in Structural equation models in the 

social sciences, Arthur S. Goldberg & Otis D. 

Duncan, eds. New York: Seminar Press, 85-

112  

Jöreskog, K. (1979). “Structural Equation Models 

in the Social Sciences: Specification, 

Estimation and Testing”, in Advances in 

Factor Analysis and Structural Equation 

Models, Karl G. Jöreskog and Dag Sörbom, 

eds. Cambridge: ABT Books, 105-127  

 Jöreskog, K.and D. Sörbom (1996). LISREL 8: 

User’s Reference Guide, Chicago: Scientific 

Software International 

Jöreskog, K.and H. Wold (1982). “The ML and 

PLS technique for modeling with latent 

variables: Historical and comparative aspects”, 

in Systems under indirect observations: 

Causality, structure, prediction (part I), 

Jöreskog, K.G. & H. Wold, eds. Amsterdam: 

North-Holland, 263-270 

Kenny, D. and D. Betsy McCoach (2003). “Effect 

of the Number of Variables on Measures in 

Structural Equation Modeling”. Structural 

Equation Modeling, 10 (3), 333-351 

Kuder, G.F. and M.W. Richardson (1937). “The 

theory of the estimation of test reliability”. 

Psychometrika, 2 (3), 151-160 

Labrecque, L., A. Krishen and S. Grzeskowiak 

(2011). “Exploring social motivations for 

brand loyalty: Conformity versus escapism”. 

Journal of Brand Management, 18 (7), 457-

472 

Lee, Sik-Yum (2007). Structural Equation 

Modeling, A Bayesian Approach, West Sussex: 

Wiley 

MacKenzie, S. (2001). “Opportunities for 

Improving Consumer Research through Latent 

Variable Structural Equation Modeling”. 

Journal of Consumer Research, 28 (June), 

159-166  

MacKenzie, S., P. Podsakoff and C. Jarvis (2005). 

“The problem of Measurement Model 

Misspecification in Behavioral and 

Organizational Research and Some 

Recommended Solutions”. Journal of Applied 

Psychology, 90 (4), 710-730 

Marcoulides, G. and Carol Saunders (2006). “PLS: 

A Silver Bullet”. MIS Quarterly, 30 (2), iii-ix 

Marsh, H. and Kit-Tai Hau (1996). “Assessing 

Goodness of Fit: Is Parsimony Always 

Desirable?”. Journal of Experimental 

Education, 64 (4), 364-390  

Marsh, H., Kit-Tai Hau and Z. Wen (2004). “In 

Search of Golden Rules: Comment on 

Hypothesis-Testing Approaches to Setting 

Cutoff Values for Fit Indexes and Dangers in 

Overgeneralizing Hu and Bentler’s (1999) 

Findings”. Structural Equation Modeling,  11 

(3), 320-341 

Mazodier, M. and D. Merunka (2011). “Achieving 

brand loyalty through sponsorship: the role of 

fit and self-congruity”. Journal of the Academy 

of Marketing Science, DOI: 10.1007/s11747-

011-0285-y  

McDonald, Roderick P. (1996). “Path Analysis with 

Composite Variables”. Multivariate 

Behavioral Research, 31 (2), 239-270 

Nunnally, J. and I. Bernstein (1994). Psychometric 

theory, 3
rd

 ed., New York: McGraw-Hill  

Peter, P. (1979). “Reliability: A Review of 

Psychometric Basics and Recent Marketing 

Practices”. Journal of Marketing Research, 

XVI(February), 6-17  

Peter, P.  (1981). “Construct Validity: A Review of 

Basic Issues and Marketing Practices”. Journal 

of Marketing Research, 18 (May), 133-145 

Podsakoff, P., S. MacKenzie, J. Lee and N. 

Podsakoff (2003). “Common Method Biases in 

Behavioral Research: A Critical Review of the 

Literature and Recommended Remedies”. 

Journal of Applied Psychology, 88 (5), 879-

903  

Podsakoff, P. and D. Organ (1986). “Self-Reports 

in Organizational Research: Problems and 

Prospects”. Journal of Management, 12 

(Winter), 531-544 

Reinartz, W., M. Haenlein and J. Henseler (2009). 

“An empirical comparison of the efficacy of 

covariance-based and variance-based SEM”. 

International Journal of Research in 

Marketing, 26(4), 332-344 

Rossiter, J. (2002). “The C-OAR-SE procedure for 

scale development in marketing”. International 

Journal of Research in Marketing, 19(4), 305-

335 

Schreiber, J., N. Amaury, F. Stage, E. Barlow and J. 

King (2006). “Reporting Structural Equation 

Modeling and Confirmatory Factor Analysis: 

A Review”. The Journal of Educational 

Research, July-August, 99 (6), 323-337   

Shook, C., D. Ketchen, T. Hult and K. Michele 

Kacmar (2004). “An Assessment of the Use of 

Structural Equation Modeling in Strategic 

Management Research”. Strategic 

Management Journal, 25 (4), 397-404  



 

22 

 

Sijtsma, K. (2009). “On the use, the misuse, and the 

very limited usefulness of Cronbach’s Alpha”. 

Psychometrika, 74 (1), 107-120 

Steiger, James H. (1990). “Structural Model 

Evaluation and Modification: An Interval 

Estimation Approach”. Multivariate 

Behavioral Research, 25 (2), 173-180 

Stone, M. (1974). “Cross-Validatory Choice and 

Assessment of Statistical Predictions”. Journal 

of the Royal Statistical Society, Series B 

(Methodological), 36 (2), 111-147 

Ten Berge, Jos M.F. and Henk A.L. Kiers (1991). 

“A numerical approach to the exact and the 

and the approximate minimum rank of a 

covariance matrix”. Psychometrika, 56 (2), 

309-315 

Ten Berge, J.F.  and G. Sočan (2004). “The greatest 

lower bound to the reliability of a test and the 

hypothesis of unidimensionality”. 

Psychometrika, 69 (4), 613-625 

Tenenhaus, M. (2008). “Component-based 

Structural Equation Modelling”. Total Quality 

Management, 19 (7-8), 871-886 

Tomarken, A. and N. Waller (2005). “Structural 

Equation Modeling: Strengths, Limitations, 

and Misconceptions”. Annual Review of 

Clinical Psychology, 1, 31-65 

Tucker, Ledyard R. and Charles Lewis (1973). “The 

Reliability Coefficient for Maximum 

Likelihood Factor Analysis”. Psychometrika, 

38 (1), 1-10 

Werts, C.E., Linn, R.L. and Karl G. Jöreskog 

(1974). “Intraclass reliability estimates: 

Testing structural assumptions”. Educational 

and Psychological Measurement, 34 (1), 25-33  

Wetzels, Martin, Gaby Odekerken-Schröder and 

Claudia van Oppen (2009). “Using PLS Path 

Modeling for Assessing Hierarchical Construct 

Models: Guidelines and Empirical 

Illustration”. MIS Quarterly, 33 (1), 177-195    

Wilcox, J., R. Howell and E. Breivik (2008). 

“Questions about formative measurement”. 

Journal of Business Research, 61 (12), 1219-

1228 

Wiley, D.E. (1973). “The identification problem for 

structural equation models with unmeasured 

variables”, in Structural equation models in the 

social sciences, Arthur S. Goldberg & Otis D. 

Duncan, eds. New York: Seminar Press, 69-83 

Wold, H. (1973). “Nonlinear iterative partial least 

squares (NIPALS) modeling: Some current 

developments”, in Multivariate analysis: II. 

Proceedings of an international symposium on 

multivariate analysis, P.R. Krishnaiah, ed. 

New York: Academic Press, June 19-24 1972, 

383-407 

Wold, H. (1975). “Path Models with Latent 

Variables: The NIPALS Approach”, in 

Quantitative Sociology: International 

Perspectives on Mathematical and Statistical 

Model Building, H.M. Blalock et al., eds. New 

York: Academic Press, 307-357 

Wold, H. (1980). “Model construction and 

evaluation when theoretical knowledge is 

scarce: Theory and application of partial least 

squares”, in Evaluation of econometric models, 

Kmenta, J. & J.B. Ramsey, eds. New York: 

Academic Press, 47-74 

Wold, H. (1982). “Soft modeling: the basic design 

and some extensions”, in Systems under 

indirect observations: Causality, structure, 

prediction (part II), Jöreskog, K.G. & H. Wold, 

eds. Amsterdam: North-Holland, 1-54 

Wold, H. (1989). “Introduction to the second 

generation of multivariate analysis”, in 

Theoretical empiricism: A general rationale 

for scientific model-building, Wold, H.O., ed. 

New York: Paragon House, VIII-XL 

 Yuan, Ke-Hai , C. Kouros and K. Kelley (2008). 

“Diagnosis for Covariance Structure Models 

by Analyzing the Path”, Structural Equation 

Modeling, 15 (4), 564-602  

  



 

23 

 

Table 1: Structural equation modeling: CBSEM & VBSEM 

TOPIC 
S E M 

COVARIANCE (CBSEM) VARIANCE (VBSEM) 

T
h

eo
ry

 Theory background  strictly theory driven  based on theory, but data driven 

Relation to the theory  confirmatory  predictive 

Research orientation    parameter  prediction  

M
o

d
el

 s
p

ec
if

ic
at

io
n

  

Type of the latent measures 

(constructs)  

reflective indicators (and formative, if identified by 

reflective) 
reflective and/or formative indicators 

Latent variables  factors components 

Model parameters   factor means component weights 

Type of study  psychometric analysis (attitudes, purchase intention, etc.) 

drivers of success, organizational constructs (market / 

service / consumer orientation, sales force, employees, 

etc.) 

Structure of unobservables indeterminate determinate  

Reliability measures  Cronbach’s α (and / or Guttman’s λ and GLB) 

a) Cohen’s ƒ
2
 

b) ρc indicator or Cronbach’s α, Guttman’s λ and 

GLB (for the reflective models only) 

Input data  covariance / correlation matrix individual-level raw data 

S
am

p
le

 

Sample size   
ratio of sample size to free model parameters – minimum 5 

observations to 1 free parameter, optimum is 10  

a) Ten observations multiplied with the construct that 

has highest number of indicators 

b) The endogenous construct with the largest number 

of exogenous constructs, multiplied with ten 

observations  

Data distribution assumption  identical distribution “soft” modeling , identical distribution is not assumed  

G
o

o
d

n
es

s-
o

f-
fi

t 

Assessment of the model fit  

a) Overall (absolute) fit measures 

b) Comparative (incremental) fit measures 

c) Model parsimony 

a) Model predictiveness (coefficient of 

determination, Q
2
 predictive relevance and average 

variance extracted – AVE)  

b) Stability of estimates, applying the resampling 

procedures (jack-knifing and bootstrapping). 

Residual co/variance  
residual covariances are minimized for optimal parameter 

fit  

residual variances are minimized to obtain optimal 

prediction 

    

 Software LISREL, AMOS, etc. SmartPLS, SPSS (PLS module), etc. 
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Table 2: Indicators: RI & FI 

TOPICS 
Indicators 

REFLECTIVE (RI) FORMATIVE (FI) 

T
h
e 

co
n
st

ru
ct

 –
 i

n
d
ic

at
o
r 

re
la

ti
o
n
sh

ip
 Direction of causality  from the construct to the measure (indicator) from the measure (indicator) to the construct 

Theoretical framework (type of the 

constructs)  
psychometric constructs (attitudes, personality, etc.) 

organizational constructs (marketing mix, drivers of 

success, performances, etc.)  

The latent construct is empirically 

defined   
common variance total variance 

The indicators relationship to the same 

antecedents and consequences  
required  not required  

Internal consistency reliability  implied  not implied  

Validity of constructs  internal consistency reliability nomological and / or criterion-related validity  

Indicator omission from the model  does not influence the construct may influence the construct 

Number of indicators per construct minimum 3  

i) In VBSEM: Conceptually dependent   

ii) In CBSEM: min 3 formative, with 2 reflective 

for identification 

 

M
ea

su
re

m
en

t Measurement error  at the indicator level at the construct level 

Interchangeability  expected not expected 

Multicollinearity expected not expected 

Development of the multi-item 

measures  
scale index 

Nomological net of the indicators should not differ may differ 
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Table 3: Preferred value of the Cronbach’s Alpha, ρc indicator, Guttman’s λ, GLB and Cohen’s ƒ-

square indicators 

 
Cronbach’s α & ρc indicator (and / or 

Guttman’s λ and GLB) 
Cohen’s ƒ-square 

Preferred value 

i)  0.60 – 0.70 for multi-item constructs 

(minimum) 

ii)  ≥ 0.70 preferred for multi-item 

constructs 

iii)  ≥ 0.80 for single-item constructs 

(minimum) 

i)   0.02 – weak effect 

ii)  0.15 – medium effect 

iii)  0.35 – strong effect                      
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Table 4: Research illustration 

CRITERION TOPIC ASSESSMENT HUR et al. 2011 
DAVCIK & 

RUNDQUIST 2012 

LABRECQUE et al. 

2011 

MAZODIER & 

MARUNKA 2011 

Justification of 

theoretical approach 
If YES, motivation 

YES, because of “minimal 

restrictions on sample size 

and residual distribution” (p. 

1202) 

YES, because of exploratory 

nature of the study, data 

distribution assumptions and less 

stringent sample requirements 

NO NO 

Type of the latent 

measures 
Reflective, formative or mixed Reflective Mixed 

? (Not stated, but we can 

assume reflective) 

? (Not stated, but we can 

assume reflective) 

Type of study Confirmatory, exploratory, etc. 
? (Not stated, but the nature 

of study is exploratory) 
exploratory 

? (Not stated, but the nature 

of study is exploratory) 

? (Not stated, but the nature 

of study is confirmatory) 

Reliability measures 
CBSEM 

Cronbach’s α 

 
 
 

+ + 

Guttman’s λ -- -- 

GLB -- -- 

VBSEM 
Cohen’s f2 -- + 

  
Composite reliability ρc (or α, λ or GLB) + + 

Sample size  200 58 330 449 

Sample group (consumers, firms, students, etc.) Consumers Firms  Students Students 

No. of constructs  6 7 7 7 

No. of indicators  20 37 27 21 

A
ss

es
sm

en
t 

o
f 

th
e 

m
o

d
el

 f
it

 

C
B

S
E

M
 

Overall fit measures 

Chi-square (χ2) 

  

+ + 

degrees of freedom (df) + -- 

Chi-square / df ratio  -- -- 

Goodness-of-fit index (GFI) + -- 

Root mean square residual (RMSR) -- -- 
Root mean square error of 

approximation (RMSEA) 
+ + 

Confidence interval of RMSEA -- -- 

Comparative fit 

measures 

Comparative fit index (CFI) + + 

Incremental fit index (IFI) -- -- 

Tucker – Lewis index (TLI / NNFI) + -- 

Relative non-centrality index (RNI) -- -- 

Relative fit index (RFI) -- -- 

Normed fit index (NFI) + + 

Model parsimony 

Adjusted goodness-of-fit index 

(AGFI) 
-- -- 

Parsimony normed fit index (PNFI) -- -- 

Parsimony ratio ψ  -- -- 

V
B

S
E

M
 Model 

predictiveness 

Coefficient of determination +  + 

  

Q2, predictive relevance -- + 

q2,  relative impact  -- + 

AVE + + 

Stability of 

estimates 

Jack-knifing  (yes / no) no yes 

Bootstrapping  (yes / no) yes yes 
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APPENDIX A – Types of latent constructs 

The simplified structural models with the 

reflective and/or formative constructs are 

represented in Figures A.1, A.2 and A.3. A circle 

or ellipsis represents an unobserved or latent 

variable; a square represents an observed or 

manifest variable (cf. Bagozzi & Phillips 1982). 

An arrow that indicates a direction between a 

circle and square represents the effects of a latent 

variable on its measure in the first order reflective 

construct and, vice versa, the effects of a manifest 

variable on a latent variable in the first-order 

formative construct. 

These figures use “classical” SEM notation 

that needs some attention. ξ (ksi) represents a 

latent construct associated with observed xi 

indicators, η (eta) stands for a latent construct 

associated with observed yi indicators, the error 

terms δi (delta) and εi (epsilon) are associated with 

observed xi and yi indicators, respectively. ζ (zeta) 

is the error term associated with the formative 

construct. λij represents factor loading in the i-th 

observed indicator that is explained by the j-th 

latent construct. γij represents weight in the i-th 

observed indicator that is explained by the j-th 

latent construct.  

Figure A.1 depicts the “classical” SEM case 

where the model is specified in the reflective 

mode. The type A case depicts a path diagram 

between the two latent constructs (ξ – exogenous 

and η – endogenous), with three indicators per 

construct (xi and yi). This case can be represented 

by equations 1 and 2:  

(A.1) xi = λijξ + δi  

(A.2) yi = λijη + εi  

This specification assumes that the error term 

is unrelated to the latent variable COV(η, εi) = 0, 

and independent COV(εi, εj) = 0, for i ≠ j and 

expected value of error term E(εi) = 0. This type 

of model specification is typical for the classical 

test theory and factor analysis models (Fornell & 

Bookstein 1982; Bollen & Lennox 1991; Chin 

1998; Diamantopoulos & Winklhofer 2001) used 

in behavioral studies. 

Figure A.1 – Type A: Latent constructs with 

reflective indicators 

 
 

The type B model specification, presented in 

Figure A.2, is known as a formative (Fornell & 

Bookstein 1982) or causal indicator (Bollen and 

Lennox 1991), because the direction of causality 

goes from the indicators (measures) to the 

construct and the error term is estimated at the 

construct level. This type of model specification 

can be represented by equations A.3 and A.4: 

(3)  ξj = γijxi + ζj 

(4)  ηj = γijyi + ζj   

This specification assumes that the indicators 

and error term are not related, i.e. COV (yi, ζj) = 0, 

and E(ζj) = 0 

Figure A.2 – Type B: Latent constructs with 

formative indicators 

 
 

The mixed case is represented by Figure A.3. 

The researcher can create a model that uses both 

formative and reflective indicators. 

Figure A.3 – Type C: Latent constructs with 

reflective and formative indicators 
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APPENDIX B – Goodness-of-fit 

Goodness-of-fit in VBSEM: The Q
2
 predictive 

relevance indicator, the relative impact of the 

predictive relevance and average variance 

extracted 

The Q
2
 predictive relevance indicator 

procedure uses a block of N cases and M 

indicators and takes out a part of the N by M data 

points. The estimation is conducted by using the 

omission distance d in which every d data point is 

excluded and calculated separately. This 

continues until the procedure reaches the end of 

the data matrix (cf. Wold 1982; Chin 1998).     

The predictive relevance indicator is 

represented by: 

(B.1)   

where Q
2
 represents a fit between observed 

values and values reconstructed by the model. The 

sum of squares of prediction errors (SSE) 

represents the estimated values after the data 

points were omitted. The sum of squares of 

observations (SSO) represents the mean value for 

prediction. Q
2
 values above zero (Q

2
>0) indicate 

that observed values are well reconstructed and a 

model has predictive relevance; Q
2 

values below 

zero (Q
2
<0) indicate that observed values are 

poorly reconstructed and that the model has no 

predictive relevance (Fornell & Bookstein 1982; 

Chin 1998; Henseler et al. 2009). The relative 

impact of the predictive relevance can be assessed 

by the q
2
 indicator. This measure can be 

calculated: 

(B.2)  q
2
 = (Q

2
 / 1 – Q

2
)  

where Q
2 

represents the above-presented 

predictive relevance. The assessed variables of the 

model reveal a small impact of the predictive 

relevance if q
2
 ≤ .02, a medium impact of the 

predictive relevance if q
2
 has a value between .02 

and .15; and a strong impact of the predictive 

relevance if q
2
 ≥ .35. Interested readers are 

referred to Wold (1982), Fornell and Bookstein 

(1982) and Chin (1998b) for further discussion.       

The average variance extracted ρη for the 

construct can be calculated as (Fornell & Larcker 

1981): 

(B.3)    

where λi is the component loading to an 

indicator and Var(εi) = 1 – λi
2
. If the average 

variance extracted ρη is bigger than 0.50, the 

variance due to measurement error is smaller than 

the variance captured by the construct η, and 

validity of the individual indicator (yi) and 

construct (η) is well-established (Fornell & 

Larcker 1981). 

 

Goodness-of-fit in CBSEM: Measures of 

absolute fit, incremental fit and model parsimony 

in detail 

 

Table B.1 represents measures of absolute fit, 

incremental fit and model parsimony in detail. For 

detailed technical assessment and explanations, 

interested readers are referred to Marsh and Hau 

(1996), Hu and Bentler (1999); Kenny and 

McCoach 2003 and Hair et al. (2010).   

 

Table B.1: Measures of absolute fit, incremental fit and model parsimony 

Topic Measure Preferred value 

Overall fit 

measures 

Chi-square (χ
2
) 0.05 ≥ p ≤ 0.20  

degrees of freedom (df) 
no p.v., the researcher uses for 

comparative and computational purposes  

Chi-square / df ratio  < 2.0 

Goodness-of-fit index (GFI) ≥ 0.90 

Root mean square residual (RMSR) ≤ 0.08 

Root mean square error of approximation 

(RMSEA) 
no threshold level, practice suggest ≤ 0.08 

Confidence interval of RMSEA min 90% 

Comparative 

fit measures 

Comparative fit index (CFI) 
0.0 – 1.0, larger values indicate higher 

levels of G-of-F 

Incremental fit index (IFI) 
0.0 – 1.0, larger values indicate higher 

levels of G-of-F 

Tucker – Lewis index (TLI / NNFI) ≥ 0.90 
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Relative non-centrality index (RNI) ≥ 0.90 

Relative fit index (RFI) ≥ 0.90 

Normed fit index (NFI) ≥ 0.90 

Model 

parsimony 

Adjusted goodness-of-fit index (AGFI) ≥ 0.90 

Parsimony normed fit index (PNFI) Higher value, better fit 

Parsimony ratio ψ  
0.0 – 1.0, higher values indicate better 

model parsimony  

 

Overall (absolute) fit measures (indices). The 

researcher can apply several overall fit measures, 

such as likelihood-ratio chi statistics, degrees of 

freedom, GFI, AGFI, RMSR, RMSEA, etc. The 

only statistically based measure of goodness-of-fit 

in the CBSEM application is the likelihood-ratio 

chi-squared (χ
2
) statistic. According to Fornell and 

Larcker (1981), the χ
2
 statistic compares the fit 

between the covariance matrices for the observed 

data and theoretically created model. The 

researcher investigates the non-significant 

difference between the actual and predicted 

matrices (cf. Hair et al. 2010; Gatignon 2003), 

because the theoretical model strives to account 

for all the covariance among the latent constructs. 

In other words, we are looking for the non-

significant χ
2
, which is opposite to common 

statistical logic where the researcher is striving to 

obtain a model that is statistically significant at a 

certain level, usually at 1 or 5%. Indications that 

actual and predicted input covariance matrices are 

not statistically different might be obtained if the 

χ
2
 value is 0.05 ≥ p ≤ 0.20 (Hair et al. 2010; 

Marsh & Hau 1996; cf. Bagozzi & Phillips 1982). 

Some recent studies (e.g. Marsh et al. 2004) have 

suggested that χ
2
 should be used for statistical 

testing of a model fit, rather than for descriptive 

use of a model fit assessment.               

The degrees of freedom (df) of an estimate are 

the amount of independent pieces of information 

available to estimate a model, i.e. the number of 

parameters that are free to vary in a model. The 

fundamental difference between SEM and other 

statistical techniques is in fact that df in the SEM 

application is based on the size of the covariance 

matrix (Hair et al. 2010), which is based on the 

number of indicators, and not on the sample size.   

The goodness-of-fit index (GFI) is a non-

statistical index that measures the overall degree 

of model fit. The fit ranges from very poor 

(GFI=0.0) to perfect (GFI=1.0). The adjusted 

goodness-of-fit index (AGFI) differs from the GFI 

in terms of its adjustment for the number of 

degrees of freedom in the model (Byrne 1998). 

These two indices can be understood as absolute 

indices of fit because they compare the 

hypothesized model with no model at all (Byrne 

1998) as well as an index of parsimony for the 

overstated parameter number and relationships. 

Hair et al. (2010) have advocated that higher 

values indicate better fit, which in practical 

application is accepted as ≥ 0.90 even though 

there is no established minimum acceptability 

level.  

The root mean square residual (RMSR) 

represents the average of the residual’s fit 

between observed and estimated input matrices 

(Hair et al. 2010; Byrne 1998). For this index 

there does not exist an official threshold level 

(Hair et al. 2010), but in the literature (Byrne 

1998) and practice for the standard RMSR ≤ 0.08 

is established. 

The root mean square error of approximation 

(RMSEA) is a measure that estimates how well 

the population non-centrality index Φ (Steiger 

1990) fits to a population covariance matrix per 

degrees of freedom (cf. Baumgartner & Homburg 

1996) and controls the χ
2 
statistics to reject models 

with a large sample or a large number of variables 

(cf. Hair et al. 2010). The purpose of the RMSEA 

in an SEM study is to adjust the complexity of the 

model and sample size. Theory does not advise as 

to a generally acceptable threshold value, but in 

practice the RMSEA ≤ 0.08 is established. The 

researcher should take into consideration the level 

of the confidence interval.  

Comparative (incremental) fit measures. A 

great number of incremental fit measures that 

exist in the literature, and that are mostly used in 

practical CBSEM applications, are: normed fit 
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index (NFI), comparative fit index (CFI), 

incremental fit index (IFI) and Tucker-Lewis 

index (TLI). The normed fit index (Bentler and 

Bonett 1980) represents a relative comparison 

between a proposed and the null model (Hair et al. 

2010). The fit ranges from very poor (NFI=0.0) to 

perfect (NFI=1.0), with preferred value ≥ 0.90. 

This index was a “classic” criterion of model 

choice in the 1980s, until it became evident that 

the NFI underestimated the model fit in small 

samples (Byrne 1998). Bentler (1990) revised the 

normed fit index and proposed the comparative fit 

index (Byrne 1998). The index value has a range 

of 0.0-1.0, where larger values indicate higher 

levels of goodness-of-fit. The Tucker-Lewis index 

(1973), also known as the non-normed fit index 

(NNFI), represents a measure of parsimony 

between the comparative index in the proposed 

and null models (Marsh & Hau 1996; Hair et al. 

2010). The TLI estimates a model fit per degree 

of freedom, penalizing less parsimonious models 

(Baumgartner & Homburg 1996). A 

recommended value is ≥ 0.90. The incremental fit 

index (Bollen 1989a) describes the parsimony of 

the sample size in the estimated and null model. 

The values lie between 0.0-1.0, and larger values 

indicate higher levels of goodness-of-fit.   

Model parsimony. Parsimony of the SEM 

model represents comparisons among competing 

models, in which the researcher compares 

observed model fit relative to its complexity. A 

parsimony fit is estimated as the ratio of degrees 

of freedom (df) with reference to the total degrees 

of freedom (dft) available for the estimation 

(Marsh & Hau 1996). Parsimony ratio is 

represented by coefficient ψ: 

 

(B.4)   ψ = dfo / dft    

 

This equation states that the greater the 

observed degrees of freedom (dfo) are, the greater 

the parsimony ratio will be, which indicates the 

better fit of the model (cf. Marsh & Hau 1996; 

Kenny & McCoach 2003; Hair et al. 2010). 

Parsimony fit indices, such as the adjusted 

goodness-of-fit index (AGFI) and parsimony 

normed fit index (PNFI), tend to relate model fit 

to model complexity, which is similar to the 

application of an adjusted R
2
 (Hair et al. 2010). 

The PNFI is used as an adjustment of the normed 

fit index (NFI). Higher values represent better fit 

and model adjustment. The researcher is advised 

not to use these indices in a single model as an 

independent measure, but rather as a tool to 

compare the fit of competing models.    

Competitive fit – Nested models. The primary 

goal of an SEM study is to show acceptable model 

fit, employing numerous goodness-of-fit indices, 

as well as to confirm that the tested model has no 

better theoretical alternative. Assessment of the 

competing models, which must be grounded in 

theory, can be conducted by comparison using 

incremental and parsimony fit measures as well as 

with differences in the likelihood-ratio chi-

squared statistics. The researcher can compare 

models of similar complexity, but with variation 

in terms of the underlying theoretical relationships 

(Hair et al. 2010; Schreiber et al. 2006; cf. 

Anderson & Gerbing 1982). If a model contains 

the same number of latent constructs as a 

competing model, and alters the paths and 

causality among them, the researcher can compare 

nested models by examining the difference in chi-

squared statistics (Δχ
2
). 

 

 


