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Abstract 

The usage of mobile devices such as smartphones has become a daily habit and need, as 

a way of managing and accessing personal data on the go. This created the emergent 

need to secure that data, which may contain not only contacts and messages, but also 

online accounts, files, bank account information and other applications or services 

which should be protected in case of device loss or theft. Biometrics have been an 

increasingly adopted solution, allowing individual recognition based on biometric traits 

(e.g., palmprint, voice, face, iris, signature), in a more practical and secure way, since 

biometrics cannot be forgotten or lost and are intrinsically associated with each 

individual. In this dissertation, a secure hand-based biometric recognition system is 

proposed and implemented for the Android 2.1 mobile platform. The system makes use 

of the camera present in Android devices (typically with a resolution of 5 Megapixel or 

higher) and performs a pre-segmentation of the captured images in the device to help 

the user optimize the data acquisition result. The data is then transferred over a secure 

connection to a server which performs further image analysis and feature extraction on 

the palmprint, using the Orthogonal Line Ordinal Features (OLOF) technique. A 

system-specific template composed of the extracted features is then securely stored in a 

database, with the help of a cryptographic hash function and an error correcting code 

(ECC). 

 

Key-words 

Android, binary templates, cryptographic hash function, error correcting code (ECC), 

hand-based, low-density parity-check (LDPC), mobile devices, Orthogonal Line 

Ordinal Features (OLOF), palmprint, secure biometric recognition system. 
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Resumo 

A utilização de dispositivos móveis como smartphones tornou-se um hábito diário e 

uma necessidade, como forma de gerir e aceder a informação pessoal a qualquer 

momento. Isto criou uma necessidade emergente de tornar essa informação segura, que 

pode conter não apenas contactos e mensagens, mas também contas online, ficheiros, 

informação de contas bancárias, e outras aplicações ou serviços que devem estar 

protegidos em caso de perda ou roubo do dispositivo. As biométricas têm sido uma 

solução cada vez mais adoptada, permitindo reconhecimento individual baseado em 

características biométricas (e.g. palma da mão, voz, cara, íris, assinatura), de forma mais 

prática e segura, já que as biométricas não podem ser esquecidas ou perdidas e estão 

intrinsecamente associadas a cada indivíduo. Nesta dissertação é proposto e 

implementado um sistema seguro de reconhecimento biométrico baseado na mão para a 

plataforma móvel Android 2.1. O sistema faz uso da câmera existente em dispositivos 

Android (tipicamente com uma resolução de 5 Megapixel ou superior) e faz uma pre-

segmentação das imagens capturadas no dispositivo para ajudar o utilizador a optimizar 

a aquisição de dados. Os dados são então transferidos numa ligação segura para um 

servidor que continua a análise de imagem e faz a extracção de features da palma da 

mão, utilizando a técnica Orthogonal Line Ordinal Features (OLOF). Uma template 

específica do sistema e composta das features extraídas é então guardada na base de 

dados de forma segura, com a ajuda de uma função de hash criptográfica e um código 

corrector de erros (ECC). 

 

Palavras-chave 

Android, templates binários, função de hash criptográfica, código corrector de erros 

(ECC), hand-based, código low-density parity-check (LDPC), dispositivos móveis, 

Orthogonal Line Ordinal Features (OLOF), palma da mão, sistema de reconhecimento 

biométrico seguro 
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1. Introduction 

In the modern world of 2011, with the increase in the density and complexity of 

information networks, users need to deal with increasing numbers of accounts, logins 

and other private data to interact with new products and services. With the evolution of 

the mobile phones industry, these services have become reachable on the go, anywhere, 

anytime, and with increasing demand, powdered by the increasing pace at which people 

must access and deal with information in today’s society. 

According to [1] it is estimated that the market of mobile phones will continue to 

increase in the years to come, notably from 2011 to 2015, in both emerging and 

developed markets around the world, sometimes with even higher penetration rates for 

middle income countries. This increase will lead to a continuous boost in the amount of 

available services and access to information and reveal emergent security and privacy 

needs. Issues such as private data protection, online banking, access management, 

identity authentication, and combinations of these, need to be addressed efficiently in 

order to protect the user from the higher risk of theft and loss inherent to accessing such 

application features through smaller devices such as mobile phones or tablet PCs. 

Additionally, with the escalating computational power and inherent security threats, the 

need for more efficient and secure authentication methods is necessary, and noticeable 

in market studies such as “Global Biometric Forecast to 2012” [2] which states the 

global biometrics market is anticipated to grow at a Compound Annual Growth Rate 

(CAGR) of around 22% between 2011 and 2013. 

Recent Nielsen studies in [3] dating from 3 March 2011, state that Android bears a 29% 

market share in U.S., being ahead of Research in Motion (RIM) Blackberry (27%) and 

Apple iOS (27%). The tendency is for this increase to continue, since the same study 

refers that youth are giving preference to the Android OS over other mobile platforms. 

Typically, mobile phones have a Personal Identification Number (PIN) or password to 

protect their contents. In most Android versions a locking pattern is used (see Figure 1), 

which basically consists of a sequence of movements through 9 dots that works as the 

password but can easily be spotted because of the required finger movements. 
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Figure 1 – Android example lock pattern. 

What is proposed in this dissertation is the usage of biometrics as an alternative, safer 

method to protect mobile devices’ information. 

In fact the developed application aims to fill a gap in the market by presenting a new 

physical biometric alternative within the Android domain, which is the palmprint, and 

which is more practical to use than the face, in devices that only possess one camera, 

and much more practical than behavioral biometrics such as the signature, which is 

difficult to express in Android devices since most are meant to be used with just the 

fingers’ touch. 

The main contributions of this dissertation are: 

• The explorations on the possibilities and limitations regarding the usage of 

biometric recognition software in the Android platform, and the reutilization of 

code across different platforms. 

• A new biometric recognition system adapted from [4] into the mobile devices 

scenario and using a new technique for template creation. 

• A system architecture friendly to mobile commerce applications and adaptable 

to different devices’ specifications. 

• A communication interface between Android Java and MATLAB, developed in 

2 parts, one for each end of the connection used in the system. 

• To the best of the author’s knowledge, the first hand-based palmprint 

recognition system developed for Android, as of June 2011. The system targets a 

wide range of devices and works with the average hardware specifications. 
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• An important reference regarding performance results of hand-based palmprint 

recognition on mobile phones and its feasibility in the Android 2.1 platform. 

• System results for known databases but also for hand images from the mobile 

phone. Since there is a lack for other databases with hand images acquired with 

similar acquisition devices, these results are important for future biometric 

recognition research for mobile devices. 

This dissertation is structured as follows: 

• Chapter 2 – State of the art regarding biometrics and biometric systems. 

• Chapter 3 – The proposed secure biometric recognition system, explorations, 

and implementation details. 

• Chapter 4 – Results are presented, explored and discussed regarding the 

system’s performance. 

• Chapter 5 – The developed software is presented in terms of graphical user 

interface and functionality. 

• Chapter 6 – Conclusions and future work suggestions are discussed. 

• Chapter 7 – The references used throughout the dissertation are listed. 
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2. Biometrics 

2.1. Overview 

A biometric trait is a measurable physiological or behavioral trait of an individual, 

useable for recognition purposes through mathematical and statistical analysis methods 

or image processing and pattern recognition. In order to be a biometric trait, the human 

characteristic being considered must satisfy the following requirements [5] [6]: 

• Universality: each person should have the characteristic. 

• Distinctiveness/Uniqueness: any two individuals should be sufficiently 

different in terms of the characteristic, for the metrics used. 

• Permanence: the characteristic should be sufficiently invariant over a period of 

time (e.g., it should resist aging, regenerate fast and to the original form if 

injured). 

• Collectability: the characteristic should be acquired and measured with 

simplicity. 

One of the many advantages of using biometrics is that the user will not have to 

remember a password or a locking pattern, for he will be the key himself. This also 

makes the system much more resistant to attacks because there is a much broader 

spectrum of large possible inputs that can be the key and those complex inputs are 

always the ones in use. Although in a textual password system a 512 characters 

password can be used, typically a much smaller one is chosen for practical reasons, but 

with biometrics, the complexity of the authentication input is always high. Additionally, 

those inputs cannot be often perceived with bare eyes by the user’s surroundings, unless 

recorded by a surrounding device, in which case the inputs can be replicated whether 

text-based or biometric. The difference is in the fact that multi-biometric systems 

require more inputs to be captured, and for a single biometric trait there is the need that 

the acquisition fulfils some quality criteria harder to fulfill than to capture text-based 

passwords or movement patterns such as the ones used in Android’s pattern lock. 

In order for a biometric system to be successful after its deployment it is also important 

that some additional issues are considered, both in terms of the biometric traits used and 

the system’s architecture itself [5]: 
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• Performance: which depends on the accuracy of the system, on its speed, and 

on the efficient usage of the available resources; 

• Acceptability: which indicates the approval rate the target audience of the 

system has; 

• Circumvention: which reflects how easily the system can be fooled using 

fraudulent methods. 

In a mobile device application, with limited sensors, memory and processing capability, 

it is difficult to achieve a good performance, which makes the optimization of the 

system’s resources usage a vital need. 

The lack of a controlled environment and the limitations of the average and generic 

acquisition hardware of the device are also important barriers that need to be overcome 

in order to achieve a good accuracy. 

A vast number of characteristics have been used in biometric recognition systems (see 

Figure 2), using different human traits [7] such as: 

• Fingerprint – the pattern of ridges and valleys on the surface of a fingertip. 

• Palmprint – the palms of the human hands contain the same type of tissue that 

fingertips do, but in a larger area. 

• Hand and finger geometry – shape and size of the hand, including the length 

and width of the fingers. 

• Iris – the texture of the colored membrane in the eye, responsible for controlling 

the diameter and size of the pupil. 

• Face – shape and position of facial attributes. 

• Ear – the shape of the ear and the structure of the cartilaginous tissue. 

• Deoxyribonucleic acid (D/A) – genetic data. 

• Gait – the way one walks. 

• Signature – the way a person signs their name. 

• Keystroke – the way one types on a keyboard. 

• Voice – acoustic spectrum of the voice. 

• Mouse – acceleration and speed of mouse pointer movement, clicks frequency 

and idle time [8]. 
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Figure 2 – Types of biometric

Nowadays, most mobile phones come with a camera and with a gravity sensor, in 

addition to the microphone, so the usage of biometric recognition systems that rely on 

images of average resolution can be attempted (e

voice recognition or gait. 

In the following table, multiple biometrics are compared according to the 

prioritization of the requirements mentioned earlier, highlighting the qualities that make 

palmprint a good biometric 

Biometrics Fingerprint

Universality M 

Uniqueness H 

Permanence H 

Collectability M 

Performance H 

Acceptability M 

Circumvention M 

Scalability H 

Maturity H 

Cost M 

Table 1 – Comparison of the human and technical factors of seven popular biometric 

from [9]). 

 
Legend: H – High, M – Moderate, L 

mobile palmprint domain through the colors green, yellow and red, which were assigned to the 

characteristics of higher, moderate and lower importance respectively.

Based Biometric Recognition System for Mobile Devices
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mobile phones come with a camera and with a gravity sensor, in 

addition to the microphone, so the usage of biometric recognition systems that rely on 

images of average resolution can be attempted (e.g., palmprint, face, ear, iris), as well as 

In the following table, multiple biometrics are compared according to the 

requirements mentioned earlier, highlighting the qualities that make 

 trait for mobile biometric systems [9]. 

Fingerprint Face Hand Geo. Palmprint Iris Voice

H M M H M

L M H H 

M M M H 

H H H M M

L M H H 

H M M L 

H M L L 

M L H H 

M H L M M

L H M H 

Comparison of the human and technical factors of seven popular biometric modalities

Moderate, L – Low. The biometric characteristics were prioritized for the 

through the colors green, yellow and red, which were assigned to the 

characteristics of higher, moderate and lower importance respectively. 

for Mobile Devices 

 

individual images from the Web). 

mobile phones come with a camera and with a gravity sensor, in 

addition to the microphone, so the usage of biometric recognition systems that rely on 

g., palmprint, face, ear, iris), as well as 

In the following table, multiple biometrics are compared according to the colored 

requirements mentioned earlier, highlighting the qualities that make 

Voice Signature 

M L 

L L 

L L 

M H 

L L 

H H 

H H 

L H 

M M 

L M 

modalities (Adapted 

Low. The biometric characteristics were prioritized for the 

through the colors green, yellow and red, which were assigned to the 
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Alternative behavioral biometrics can be used, such as signature recognition or 

keystroke patterns, but those are particularly ineffective in accuracy and acceptability in 

Android mobile devices, due to the fact that such devices typically only support finger 

touch interaction, which makes it difficult for proper signature or usage of virtual 

keyboards.  

When biometric systems use more than one biometric trait they are called multimodal 

biometric systems and the acquired biometrics can be merged at different levels through 

the usage of fusion techniques [7]. 

For systems performing identification on large databases, a linear search is necessary 

since biometrics have no inherent natural order. For this reason, other techniques can 

also be used, such as indexation of the database through biometric hash generation 

techniques [10]. As discussed in [11], soft biometrics can be used to reduce search times 

in large databases, and when using hand images, biometric traits such as hand geometry 

can be used as soft biometrics for this purpose, without need for any additional 

acquisition sensors [12]. 

Additionally, biometric systems may use continuous biometrics in order to keep the user 

authenticated throughout his session, by continuously collecting biometric data of the 

user in a passive way [13]. 

This is most useful with mobile phones since they are highly portable and very prone to 

theft. It is possible that a genuine user could be authenticated in his mobile device when 

the theft occurs, leaving the impostor user with both the device and full access to the 

system. 

2.2. Performance Measures 

Whenever a measurement or capture is performed by a biometric system, it is processed 

and converted into a feature vector or template, which is a representation of the 

readings in a format supported by the system. This representation is typically different 

for multiple measurements of the same user because of the noise introduced by capture 

conditions, physical and physiological factors, so in order to compare them, a similarity 

score must be computed between two measurements and a decision must be taken. A 

threshold t is used to define the maximum differences between templates that is 

considered to result in a successful authentication decision, or the equivalent correcting 
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power applied to different templates, in an attempt to correct acquisition noise and 

making them equal. 

Performance measures universally accepted are important to achieve system results with 

significance, and to allow for different biometric systems to be compared. 

2.2.1. Accuracy 

Typically, a recognition system’s accuracy is measured through the False Accept Rate 

(FAR) and the False Reject Rate (FRR) and there is a trade-off between both, due to 

their inverse dependence with the threshold t, as we can see through their definition 

(also see Figure 3): 

• FAR – Corresponds to the probability with which an impostor successfully 

accesses the system. This is the probability of the similarity score between an 

impostor’s template and a genuine user’s template being greater than t. 

• FRR – Corresponds to the probability with which a genuine user fails to access 

the system. This is the probability of the similarity score between a captured 

genuine template and the genuine template used for enrolment being smaller 

than t. 

 

Figure 3 – Illustrative FAR and FRR graph. 

 
Source: http://www.tiresias.org/phoneability/accessible_biometrics_proceedings/images/mansfield_slide_9.jpg 
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The threshold t must be adjusted for each system, to ensure enough security with a low 

FAR, but enough flexibility with a FRR not high enough that could make the 

acquisition noise and variations become a problem for a genuine user. 

The balance between FAR and FRR is illustrated in Figure 4, along with the Equal 

Error Rate (EER) (or Crossover Error Rate (CER)), which is the rate at which FAR and 

FRR are equal: 

 

Figure 4 – Interpretative graph of FAR, FRR and Equal Error Rate (EER). 

 

The Asymptotic Relative Efficiency (ARE) region is marked and represents the “best 

possible” region of operation for a given loss function. This varies for each system, 

since some systems need high FARs and lower FRRs for practical reasons, while others 

require low FARs, to ensure that no impostor user enters the system. In Figure 4, the 

ARE was defined as the region between the EER and EER+5%, above the threshold 

value. The EER+5% was used as an example, and the considered region may change to 

consider different EER limits and/or different thresholds, depending on the system’s 

application domain and its security requisites. 

The EER gives an idea about the sensitivity of the system to threshold adjustments, and 

corresponds to the threshold of equilibrium between FAR and FRR. This point is not 

necessarily the best operating point for the system, because some systems may require 

high security, prioritizing FRR over FAR, and others may have speed and practical 

needs, prioritizing FAR over FRR. 

Source: http://2.bp.blogspot.com/_WovQZk-HYJw/TE0UALf-mbI/AAAAAAAAAAU/JvjkwDXG0Wo/s1600/31.JPG 
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Given the above discussion, it becomes useful to plot FAR against FRR in order to see 

how the system performs at all the possible threshold values. This plot is called the 

Receiver Operating Characteristic (ROC) curve (see Figure 5): 

 

Figure 5 – ROC curve, relating FAR and FRR at different threshold values [4]. 

Another rate that is also useful and of important significance, especially in mobile 

systems, is the Failure to Enroll Rate (FER or FTE), which is the rate at which attempts 

to create a template are unsuccessful. This is mostly caused by insufficient quality of the 

input data, and is more significant in less constrained capture environments, such as the 

one considered for a mobile device usage scenario. 

2.2.2. Time 

The amount of time the system takes to perform its set of operations using a set of 

techniques is also a performance measure of the system, but not necessarily of the 

techniques themselves, for that depends on the way they are implemented and used 

within the system. 

This is most important in mobile applications where the computational power is limited 

and the user should not be left waiting for the application to respond. In order to 

guarantee the success and satisfaction of the users, and even to commercialize an 

application in some markets, some requirements of responsiveness must be taken into 

account. 

Ideally, the fastest a system performs, the better, as long as it continues to satisfy the 

other criteria such as security. 
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2.2.3. Resources 

The resources the system uses to perform its set of operations is also a measure of the 

system’s performance. 

In mobile phone applications this is even more important because memory and 

computational power are limited, and the application will also have to share those scarce 

resources with other applications that run in the mobile device. By being more efficient, 

the application will be faster and also ensure a longer lifespan of the battery’s charge of 

the mobile device. 

Ideally, the less the memory and Central Processing Unit (CPU) cycles used by the 

application, the better, as long as it also does not interfere with the other criteria. 

2.3. Biometric Systems 

Biometric recognition systems perform the biometric recognition of individuals through 

a set of 5 essential modules (see Figure 6): 

• Data Acquisition – User interface module where the biometric trait is presented 

and acquired by the system through sensors. 

• Signal Processing – Signal processing module, including pre-processing tasks, 

feature extraction and template creation. 

• Database – Database where the templates or the results of other functions 

applied to them, are stored for future comparisons. 

• Matching – Module responsible for computing a similarity score based on the 

post-processed acquired data and the data stored in database. 

• Decision – Decision module which decides if access is granted or not, based on 

a similarity score and a threshold value. 

 

Figure 6 – Main modules of a biometric recognition system. 
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Based on the application scenario, a biometric system may operate in two modes: 

• Verification Mode – The system validates a person’s identity, by performing a 

one-to-one comparison between the stored data and the presented data for a 

given identity, claimed by the user at authentication time. This claimed identity 

may be, for example, a username, an email, a PIN, or a smartcard. 

• Identification Mode – The system recognizes an individual without additional 

information other than the biometric data, by finding the best match between the 

presented data, and the data stored in database for each user. This way the 

system performs a one-to-many comparison. 

In either case, there is the need to store recognition-critical data in the database, but this 

poses some serious security concerns. If the biometric template is stored, whether 

encrypted or not, it may be stolen and eventually deciphered, resulting in identity theft. 

To make this worse, the users have a limited set of biometrics, and are unable to 

generate new ones. The need for data that must be stored for the system to work is 

typically the weakest link in security for biometric authentication systems.  

In the typical password based systems, this problem is addressed by using one-way hash 

functions. Hash functions have the particularity of providing very different output 

values (although with the same length) in most circumstances, even when the input 

values are very similar, as shown below using MD5 as an example hash function, with 

two similar input strings: 

MD5 

Input - P Output - H(P) 

password 5f4dcc3b5aa765d61d8327deb882cf99 

passwArd 769b6259c5c2ee6090b945826979e049 

Table 2 – Message Digest algorithm 5 (MD5) hash function example. 

Since they are one-way functions, those systems can allow the user to provide a 

password �, hash it with a function �, resulting in �(�) which is then stored for future 

comparisons, and cannot be reverted back into the original �. Upon authentication the 

user provides �′, and �(��) is calculated for comparison with the stored �(�). If they 

are equal, there is a high probability that �′ = � and the user is successfully 

authenticated. Even though two different inputs may result in the same output of a hash 
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function due to the limited number of outputs, that typically never happens, because the 

inputs for a given domain are also limited (e.g., passwords may not contain more than � 

characters in a given system, or generated templates may not be larger than a specified 

size). 

However, in biometric systems, hash functions cannot be used as easily. The acquisition 

noise makes two templates 	 and 	′ from the same user be typically slightly different, 

resulting in �(	) ≠ �(	�) most of the time. 

In order to solve the secure biometrics template storage problem, biometric systems take 

one of two approaches: usage of an Error Correcting Code (ECC); or the usage of 

Encryption. 

For ECC-based biometric systems, an Error Correcting Code (ECC) is used to calculate 

and store the parity bits for a given template along with its hash, instead of storing the 

template itself. In this way, when authentication is necessary, the stored parity bits are 

used to “correct” the presented template. In this approach, acquisition noise is a concept 

equivalent to user variability [14]. The desired correction power depends on each 

application scenario, but the ideal is that templates from different users are not corrected 

enough that they become the same, and templates from the same user are corrected 

enough that the acquisition noise is eliminated, resulting in the same template. Since the 

stored information consists of only the parity bits and the hash result of the template, it 

is considered very difficult to recover the biometric based on the stored data. The 

security of this approach is not provided by the difficulty of inverting the hash function 

(since it is considered non-invertible), but by the number of the equally likely 

biometrics which may match the stored data. 

For encryption-based biometric systems, homomorphic encryption is applied to the 

biometric, and authentication uses a protocol based on the homomorphic properties of 

the used encryption, providing security and data privacy [15]. The logic behind this is 

that portions of transferred messages reveal no important biometric information by 

themselves, but when the other end of the connection receives the message, based on 

those properties and in information the receiving entity knows, it can extract biometric 

information from the received message. The computational security offered by this 

approach is that of the cryptographic algorithms used and the used protocol. 
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Hybrid approaches can be taken, especially when the system works with a client-server 

architecture, in which an encryption approach is necessary for the communication, and 

the error correcting code approach can still be used as a means of storing biometric data 

with transforms considered to be irreversible. 

Regardless the approaches that are used, it is important to understand that biometric 

systems can be the target of multiple security threats at various modules of their 

architecture and processing stages [16] [17] [18]. In general, the attacks which can be 

performed on a biometric recognition system can be summarized in four major types 

[18]: 

• Attacks at the User Interface – A spoof biometric trait is presented to the 

system, allowing the attacker to intrude the system in the event it cannot 

distinguish between the fake biometric trait, and a genuine one. Liveliness 

detection is a possible solution to deal with this problem. 

• Attacks at the Interface Between Modules – The information exchanged 

between modules is intercepted by an attacker and manipulated with the goal of 

triggering the system’s behavior desired by the attacker. Secure communication 

channels and cryptography are ways to minimize the risk associated with these 

attacks. 

• Attacks on the Software Modules – The attacker changes and corrupts the 

system’s behavior by changing the software’s code statically using for example 

Trojan horses, or dynamically, by providing inputs for which the system’s 

algorithms are not prepared, triggering different  and unexpected behaviors in 

the system. 

• Attacks on the Template Database – The templates database is attacked, 

compromising to some extent the users’ identities. Some problems associated 

with this attack are the fact that: legitimate access can be denied by the deletion 

of templates; templates can be stolen and worked outside of the system for the 

creation of physical spoofs that originate equal templates; the templates can be 

injected directly at the matching module; the templates can be used for tracking 

of the user’s access to other systems; and in the event the template is not 

encrypted or can be decrypted and provide a good regeneration of the original 

biometric traits, the biometric identity of all the system’s users can be stolen and 

compromised. 
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When looking at a biometric system’s architecture, more specific attack points can be 

looked into, as shown in Figure 7: 

 

Figure 7 – Attack points in a biometric system. 

The red hexagons mark the attack points, which can be described as: 

• Type 1 – Attack on the Data Acquisition Module – A denial of service can be 

caused by destruction or corruption of the system’s sensors and/or data 

acquisition components. 

• Types 2, 4, 7, 8, 10 – Attack on the Communication Channel between 

Modules – The attacker intercepts the communication channel between two 

modules, being able to steal, alter, and/or inject channel information. In the 

event data previously captured is sent again by the attacker, it is also known as a 

Replay Attack. 

• Type 3 – Attack on the Feature Extraction Module – A Trojan horse can be 

used by the attacker to remotely control the module and send any desired 

combination of values as input to the matching module. 

• Type 5 – Attack on the Matcher Module – The module can be controlled 

remotely with a Trojan horse, providing the possibility for the attacker to cause a 

denial of service by forcing the matcher to produce poor scores always, or 

providing access to the system to himself or to all, by producing high scores. 

• Type 6 – Attack on the System’s Database – The attacker can access the 

system’s database by either cracking an account or exploiting vulnerabilities in 
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the database software and its provided management interfaces. Once inside, the 

attacker can steal and compromise the templates of all the system’s users. 

• Type 9 – Attack on the Application – The vulnerabilities in the final 

application to which the biometric recognition system is attached to are explored 

and exploited by the attacker. The fact that all software inevitably has bugs and 

flaws provides room for an attacker to find them and use them to achieve his 

impostor goals. Additionally, in the event that the application provides other 

authentication methods as alternatives to biometrics, they can be used for this 

attack instead. 

Every module and each channel between modules is a possible point of attack, and as 

such, security is an issue that must be addressed at its various levels, from the top view 

of the application to each of the modules that compose it and the channels between 

them. The weakest link in this path will typically be what compromises the system’s 

security. 

2.4. Existing Mobile Phone Biometric Recognition Systems 

Many mobile biometric recognition systems work through the usage of a specific 

acquisition device, which is connected to the mobile device in question, and provides a 

way to capture the necessary biometrics within a favorable environment, and with 

higher standards of quality in the captured data and consequent results, when compared 

with systems that do not use specific attachable capturing devices. 

In the context of mobile devices such as mobile phones, the usage of external biometrics 

acquisition devices is not practical, and in some cases, not possible because if used for 

user authentication to third party systems, these systems might not load enough 

connectivity system settings and/or drivers necessary for the acquisition module and/or 

the biometric recognition system as a whole, prior to authentication. For example, 

before logging in to the mobile device, the operating system might not allow the 

execution of applications which are not part of the OS’s core, or load the drivers and 

ports necessary for the recognition of the external biometrics acquisition device. 

The big challenge for biometric recognition systems in mobile phone devices is for 

them to be capable of capturing biometric data with the typical acquisition sources 

native to the devices, and managing to optimize the results and security obtained 

through them. 
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There are some mobile phone biometric solutions available for most of the mobile 

phone platforms available, but still many issues to address and evolution to undertake. 

Those solutions typically make use of the iris [19] [20], the face [21], the voice [22] or a 

combination of any of those. 

For the chosen platform, Android, there are essentially three solutions known within the 

community: 

• BioWallet from Mobbeel [23] – which originally makes use of the user’s 

signature for authentication and to allow access to private encrypted files stored 

within the device. 

• BioLock – which allows the user to access private data through iris scan, face 

recognition, or the usage of a traditional text password. This software has been 

in development for more than six months and is still in beta, being only available 

to partners and/or press, upon request [24]. 

• CredentialME AppLock [25] – which performs applications protection 

(lock/unlock access) based on face recognition. 

Mobbeel also has software for other devices, which performs biometric recognition 

through the iris, but according to forum discussions [26] on the possibility of porting it 

for the Android mobile phones, Mobbeel staff mentions that the image acquisition from 

the phones does not provide enough overall quality for an accurate iris scan. 

The alternative used by Mobbeel is a good solution, but the fact that most Android 

devices are operated with the user’s fingers, authenticating through a signature becomes 

a rather impractical, inaccurate and cumbersome task. 

BioLock’s software sounds promising, but the fact that the beta versions have remained 

unreleased to the public, suggests that many issues are still arising and needing to be 

addressed. 

No systems using the palmprint were found for Android phones at the time of this 

dissertation’s proposal. 

For those reasons, and for the promising insight on the usage of the palmprint as a 

recognition biometric with characteristics well-suited for a mobile phone environment, 

the usage of this biometric trait was chosen and attempted.  
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3. Proposed Secure Biometric System 

In this section the proposed secure biometric system will be presented, starting with the 

planning of the target platform, device and tools, and proceeding to the internal system 

architecture and implementation details. 

3.1. Target Platform, Device and Tools 

In order to develop a system for a platform, it is important to study and research the 

available alternatives, their advantages and disadvantages and how they connect with 

the goal of the work and the application. 

Each mobile platform has got its specificities just like any OS, and each device has got 

its own set of hardware, which will dictate its performance limitations but also the range 

of sensors that will limit the biometric traits useable by the system. Additionally, the 

tools to use will influence the productivity and the depth of detail and complexity that 

can be faced at development time. 

3.1.1. Platform 

In order to create a biometric recognition system for a mobile device, the first choice to 

make is to decide on the target platform, bearing in mind that this choice will have a 

huge impact in the implementation, potential, adaptability and limitations of the 

application to develop. 

There are many mobile platforms available for development, such as Symbian, 

Blackberry, Android, iOS (for iPhone), Windows Mobile, Palm, and various others, 

including cross-platform choices such as Java Micro Edition (Java ME). Each platform 

with their own set of tools and communities of developers, each with their pros and 

cons. 

At first thought, cross-platform choices would be the best way to go for a flexible 

application, capable of running on multiple Operating Systems and consequently 

targeting a wider range of mobile devices. However, Java ME is harder to understand, 

less responsive and provides less Java Standard Edition (Java SE) support when 

compared to Android [27]. 

Android was the taken choice for multiple reasons: 
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• Open source Operating System (OS) – Code available online, based on Linux, 

and can be changed to make specific versions if necessary, extending possible 

limitations and also making it adaptable to different types of hardware, including 

customized hardware designed with specific purposes in mind. Additionally, 

continuous updates are made available, providing a steady evolution of the OS; 

• Java Programming Language – The applications that run on the OS use the 

Java Dalvik Virtual Machine (DVM), which runs applications written using the 

Java Programming language and making use of a specific set of android 

libraries. This also reduces the learning curve for people experienced with the 

Java Programming Language, which is the case for this dissertation; 

• Computational efficiency – Java is a slow language by nature, because it is 

interpreted, meaning that the code is compiled into class files which are then 

read by virtual machines specific to each platform, which in turn “translates” 

them into byte code to execute. However, it is also possible to optimize code 

within the application by the usage of the Native Development Kit (NDK), and 

Java Native Interface (JNI), which allow for the execution of C and C++ code 

from within the Java application. Additionally, the Dalvik Virtual Machine used 

within Android has got lots of optimizations to improve performance and 

optimize the energy spent to translate and process the code. In [28], it is shown 

that for simple algorithmic tasks, the implementations are almost as fast in Java 

as they are in C/C++, as long as they are iterative. For recursive implementations 

big improvements are achieved through the C/C++ language. 

• Growing share of mobile phones – According to Gartner’s forecast from April 

2011 in [29], Android will have a worldwide market share of around 38.5% in 

2011, and is forecast to continue growing, reaching 49.2% in 2012. 

• Supported by the Open Handset Alliance – Supported by a group of over 60 

international device manufacturers and service carriers such as Telefonica, 

Vodafone, T Mobile, and various others. 

• Efficient Tools and Development – According to a study from Mobile 

Developer Economics in 2010 [30], done with a universe containing both 

beginners and experts from the various platforms, Android is the faster platform 

to master, and the faster to debug, making it one of the best choices to develop 
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applications at a steady pace, and with time constraints regarding their delivery 

(see Figure 8 and Figure 9). 

• “Easily” Cross-Platform – Since applications developed for Android are 

mostly written in the Java Programming Language, converting the application to 

Java ME to make it cross-platform becomes easier, for most of the functional 

and technical code remains the same. What changes is the set of core libraries 

used, which imply an architecture change in the way the application works, to 

respect the different lifecycles imposed by each platform. 

 

Figure 8 – Graph of the average time for platform mastery [30]. 

 

 

Figure 9 – Graph of the average debug time required for each platform [30]. 
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Upon deciding for the Android platform, it is important to choose which version of the 

platform the application will target, bearing in mind that the versions have been 

progressively improved and optimized with each release and that at the time of choosing 

there were mostly devices with Android 1.6, 2.1 and 2.2 available in the market. 

There is a difference between the hardware specifications of mobile phones that come 

with the Android 1.6 (and previous versions) by default, and those that come with 2.1 or 

newer versions. Typically, devices running 1.6 or older versions have slower CPUs, in 

the range of 0.5 GHz and about 256 MB Random-Access Memory (RAM). There are 

however some exceptions (such as Gigabyte GSmart G1305 Boston, also known as 

Codfish), where the devices run Android 1.6 and have a CPU of 600 MHz, also 

allowing the user to update to version 2.1. This means that the mobile devices are 

evolving towards meeting the optimal specifications for running Android 2.1 and 

beyond. 

Another big difference between Android 1.6 and 2.1 is the amount of heap memory 

each application is allowed to allocate in an instance of the Dalvik Java Virtual 

Machine. In Android 1.6 and older versions, this limit is set to 16 MB, but in Android 

2.1 and forward this limit is 24 MB. This difference, along with the optimizations from 

version 2.1, could be vital for biometric recognition systems, where image processing 

algorithms may require allocating much memory to process acquired images and 

signals. This makes version 2.1 a wiser choice than 1.6 because it will allow more 

flexibility to deal with the limitations of developing for a mobile device with limited 

resources. 

As for version 2.2, it has got further speed improvements provided by the platform, and 

also the possibility of allowing users to install applications to the expandable memory. 

However, these advantages are not significant enough to make it a better choice at the 

time of decision, because at the time of this decision there was a higher share of users 

running version 2.1 than 2.2 according to the data published on Android developer’s 

official website, with data collected during two weeks ending on 1 November, 2010, as 

shown below in Table 3 and Figure 10: 
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Platform API Level Distribution 

Android 2.2 (Froyo) 8 36.2% 

Android 2.1 (Eclair) 7 40.8% 

Android 1.6 (Donut) 4 15.0% 

Android 1.5 (Cupcake) 3 7.9% 
Table 3 – Android versions distribution table as of 1 November 2010 [31]. 

 

Figure 10 – Android versions distribution graph as of 1 November 2010 [31]. 

Another note of importance is the fact that a single Android application can target a 

whole range of Android versions as long as it uses calls from an Application 

Programming Interface (API) present in the targeted Android versions. Each version has 

an integer number that identifies it, called API Level. The Android APIs are typically 

incremental in their releases, meaning that the API available in Android 2.2 contains the 

calls provided by version 2.1. Through this, it is possible to develop an application that 

will target 2.1 and consequently 2.2, allowing the application to target a total of 77% of 

the Android users according to Table 3 previously shown, bearing in mind that that 

percentage will grow as users using older versions update their platform versions. 

Taking a second look at the versions in use, with the data published by Android 

Developers website collected for two weeks, ending on May 2, 2011 (see Table 4 and 

Figure 11), it is possible to see that, as initially predicted, the tendency is for users to 

update to the newest versions, and the versions previous to 2.1 start becoming obsolete. 

Platform API Level  Distribution 

Android 1.5 3 2.3% 

Android 1.6 4 3.0% 

Android 2.1 7 24.5% 

Android 2.2 8 65.9% 

Android 2.3 9 1.0% 

Android 2.3.3 10 3.0% 

Android 3.0 11 0.3% 
Table 4 – Android versions distribution table as of 2 May 2011 [31]. 
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Figure 11 – Android versions distribution graph as of 2 May 2011 [31]. 

With this, it becomes clear that the choice taken was the most appropriate because an 

application targeting Android 2.1 will also be targeting all versions after it, which 

means that the developed application will be targeting 94.7% of the market’s mobile 

phones. Since new devices keep coming with new versions of the Android OS and 

previous ones keep getting updated, according to the graph of the evolution (see Figure 

12), it is to expect that the number of devices running 1.6 and previous versions 

continues to decrease, increasing the percentage of targeted devices even further. 

 

Figure 12 – Android versions historical distribution graph from November 2011 to 2
nd

 May 2011 [31]. 

There are tools available in the community such as the Compatibility Test Suite (CTS) 

Framework for Android [32], provided by the Open Handset Alliance, and which allows 

for testing and tuning Android applications towards compatibility through multiple 

platform versions. 

The possibility of adapting the system to make a new implementation for other mobile 

platforms in the future, such as Java ME is also not completely limited by the 

specificities of Android’s Java, because regardless the fact the Android platform 
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imposes a specific architecture in an application and its Graphical User Interface (GUI), 

the core part of the application, regarding the image processing operations and security 

functionality is isolated from the rest in an abstract layer of its own, using Java libraries 

and operations that are mutually supported by Android’s Java and standard Java. Below, 

a set of the most relevant libraries supported by both platforms is shown: 

• java.io – File and stream Input/Output (I/O) 

• java.lang (except java.lang.management) – Language and exception support 

• java.math – Big numbers, rounding, precision 

• java.net – Network I/O, Uniform Resource Locators (URLs), sockets 

• java.nio – File and channel I/O 

• java.security – Authorization, certificates, public keys 

• java.sql – Database interfaces 

• java.text – Formatting, natural language, collation 

• java.util (also java.util.concurrent) – Lists, maps, sets, arrays, collections 

• javax.crypto – Ciphers, public keys 

• javax.net – Socket factories, Secure Socket Layer (SSL) 

• javax.security (except javax.security.auth.kerberos, javax.security.auth.spi, 

and javax.security.sasl) – General security frameworks 

• javax.sound – Music and sound effects 

• javax.sql (except javax.sql.rowset) – More database interfaces 

• javax.xml.parsers – Extensible Markup Language (XML) parsing 

• org.w3c.dom (but not sub-packages) – Document Object Model (DOM) nodes 

and elements 

• org.xml.sax – Simple API for XML 

3.1.2. Device 

The device choice was planned in July 2010. At this point, the official Google 

development phone known as Nexus One was becoming discontinued, and the new 

version of that phone was not yet available. After a technical specifications analysis of 

the mobile phones available on the market at that time and available for purchase, HTC 

Desire was the chosen device (see Figure 13). 
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Figure 13 – HTC Desire device. Front side on the left, and back side on the right of the figure. 

The device’s specifications are shown in Table 5 below: 

Attribute Specifications 

Default OS Android 2.1 

CPU Qualcomm Snapdragon QSD8250 1 GHz processor 

Memory 576 MB RAM; 512 MB ROM 

Camera 5 MP, 2592 x 1944 pixels, autofocus, LED flash 

Card Slot 4 GB (up to 32 GB) 

Extras Multi-touch input method; Accelerometer sensor 
Table 5 – HTC Desire device specifications summary. 

Although other devices could have been chosen, the choice taken and the relevance of 

the specifications presented in the previous table fulfill the following logic: 

• Heap limit – The fact that the device comes with Android 2.1 will allow the 

developed application to use a 24 MB heap instead of the 16 MB allocated for 

Android 1.6 applications and before, as well as to take advantage of improved 

performance optimizations that the Android OS has had from version 1.6 to 2.1. 

• Camera – This phone also possesses a 5 MP camera, which is typical for 

Android devices built for Android 2.1, and puts this phone in the average-phone 

situation for what concerns the camera. 

• CPU – The 1GHz CPU, 576 MB RAM and 512 MB Read-Only Memory 

(ROM) make it one of the best phones for processing experimentation in 

comparison to all the other considered devices available at the time of the 

planning and purchase. This way the development process was optimized for 

both speed and research. 
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• Extra Sensors – Multi-touch input and the accelerometer sensor are two extras 

which also allow the possibility of further experimentation at a later stage of the 

work, regarding the usage of additional biometrics, to further improve the 

system and its performance rates. 

• External Memory Card – Less important, but still worth mentioning, is the fact 

that the 4GB card included will allow for the testing of the system when 

installed both directly on the device, or in its memory card, in case the OS would 

be updated to Android 2.2, since that version allows for those two installation 

locations. 

3.1.3. Development Tools 

In order to develop the proposed application, along with its documentation and 

diagrams, a set of tools will be used for development, testing and optimization purposes: 

• Eclipse Integrated Development Environment (IDE) – Eclipse is a powerful 

tool developed in Java, with the goal of aiding the programmer in the task of 

developing the application. It has many plug-ins that can be integrated with it to 

add additional functionalities, and it also links together compilers and settings 

for the used languages and tools, making it easier to use them altogether, in a 

more efficient way during the development task. 

• Java Development Kit (JDK) – It includes a set of utilities that make it 

possible to develop software systems for the Java Platform, used by Android. It 

includes the compiler and a set of libraries. 

• Android Standard Development Kit (SDK) – Consists of the managing tool 

for the installed Android APIs, as well the Android Virtual Device (AVD) 

Manager tool, to manage virtual devices to use with the emulator and their 

hardware specifications. Additionally, it comes with a set of tools for the testing 

of application packages, optimization of code and other features. Each Android 

API also includes packages with classes specific for instrumentation and testing. 

• Android Development Tools (ADT) – It is a plugin for Eclipse, provided by 

Google and Android developers, that comes with a set of tools and functionality 

used in Android development, such as editors for specific file formats, special 

XML parsers using special templates specific to Android, an Android emulator 

for testing and debugging applications within a virtual environment, Dalvik 
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Debug Monitor Server (DDMS) where applications can be deeply traced and 

analyzed in terms of threads, calls, and heap memory used, and further tested by 

allowing the possibility to send signals to the virtual device, such as virtual 

phone calls, position coordinates, and various other useful functionality. 

The set of tools and corresponding versions used during development are summarized 

in the following table: 

Tool Version 

Eclipse IDE 3.5.2 

JDK JDK 6 Update 22 (Java SE) 

Android SDK revision 7 

Android API Android 2.1-update1, API Level 7, revision 2 

ADT & DDMS 0.9.9.v201009221407-60953 
Table 6 – Development tools and versions. 

3.1.4. Libraries and Possibilities 

The application being developed requires plenty of image processing algorithms already 

commonly used in other platforms, and as such, multiple alternatives were considered: 

• Use an existing image processing library for Android 

• Use an existing image processing library for Java, and use it within the Android 

environment 

• Use a C/C++ library within Android, by using the JNI and NDK 

• Use MATLAB Code Compiler (MCC) to compile MATLAB files into a C/C++ 

library 

• Use MATLAB Builder JA to generate Java wrapper classes with the MATLAB 

code to be used 

• Use virtualization tools to execute a MATLAB runtime within the Android 

environment 

• Create a new Android image processing library from scratch 

Regarding the first option, there is mostly one known image processing library 

specifically designed for Android, called Jon’s Java Imaging Library (JJIL), and which 

implements a vast amount of image processing algorithms. However, there are some 

problems with this library: 
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• The fact that it defines its own data structures based on a fairly redundant 

representation of the original matrix data from the images leads to huge matrices 

being passed in the constructor every time an image needs to be processed. 

• Since the image processing algorithms are defined in chain sequences, a whole 

set of objects needs to be created in order to achieve a specific image operation 

of a more complex nature. 

• The API for the image operations provided by the library does not offer the 

desired information about the operation and the way it is performed. There are 

also cases in which no descriptive information is provided by the API at all. 

• It is not clear how new image processing algorithms can be defined to extend the 

library, and in the event those are created they will be deeply linked to the 

library’s architecture. This will make them look less intuitive and less reusable 

in other libraries for other mobile platforms which could possibly have use for 

similar algorithms. 

For those reasons, the JJIL library was not used, as it could have been limiting in the 

long run, and it hides too many details about the way images are processed, while at the 

same time enforcing its own structure. 

The second alternative would be to use a Java image processing library such as Java 

Advanced Imaging (JAI). However, at the time this project was started, the source code 

for some of the most powerful libraries such as JAI was not available, and plenty of 

other projects hosted in Java websites were taking on hosting changes, which made 

some resources unavailable or at inconsistent states. The java.net website for 

community source projects has taken structural changes and not all the source code was 

available at the time it was considered. As seen in the project properties section of the 

java.net website for that project [33], “Jai-core is a subproject of Jai -- Placeholder, was 

started in January 2011 …”. 

As for the third option, C/C++ libraries could be converted and adapted, at the cost of 

losing the straight forward compatibility that Java would provide to all the Android 2.1 

and forward devices, since those libraries would have to be compiled for different and 

specific mobile phone processor models. Additionally, the performance boost is not 

guaranteed in the sense that each time there is a JNI call, much overhead is necessary, 

and long arguments need to be converted and passed by the Java Virtual Machine into 
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the C/C++ libraries. Another important thing to keep in mind is that debugging, which 

is already a difficult task in mobile environments becomes further difficult when mixing 

C/C++ code with the Java code used as the core of the environment’s applications. This 

would greatly reduce productivity. Also of notice is the fact that access to Bitmap 

buffers with some NDK versions is limited to Android 2.2 versions and beyond. 

The usage of libraries such as Open Computer Vision Library (OpenCV) were also 

considered for this purpose, but its conversion for use in Android is not direct since 

recent versions of OpenCV hold much functionality from C++ which is not compatible 

or convertible to the Java language. This would imply using old outdated OpenCV 

versions. A new version of OpenCV specific for use within Android started being 

developed in the beginning of January 2011, but it is still at a very early stage of 

development, with few examples available, limited functionality and little guarantees of 

reliability. 

The fourth option is similar, but would consist of converting MATLAB files into C/C++ 

files through MCC. However, the problem with this is that it can only be done easily to 

create executable files, assuming the target platform will hold a runtime version of 

MATLAB, which is not the case for the used mobile phone. The C/C++ compiler option 

produces code difficult to read and with plenty of gaps due to toolbox dependencies 

which would have to be introduced by hand. In addition, this solution poses the same 

problems than the one before since it would produce C/C++ code to be called from 

within a Java environment through JNI. 

The fifth option would be a solution if Android was a supported platform for MATLAB, 

which is not the case at the point of this decision. Although this option could be used to 

produce code for a web context, it was not used because this would result in less 

efficiency due to the additional interaction steps and protocol layers, as well as the 

necessary Java objects to handle the requests. If a web solution is adopted, it should be 

implemented directly in MATLAB, for a better performance. 

The sixth option would require the usage of virtualization tools, running a virtual 

machine with Windows or another platform MATLAB-compatible, in order to have its 

runtime running within, hence making it capable of executing MATLAB code. At the 

moment of this dissertation virtualization within the Android platform is still quite 

young and taking its first steps, which would make this a poor and limited choice, since 
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virtualization has still many issues to address before it matures in this platform and 

mobile platforms in general. 

The seventh and last considered alternative would be to develop an image processing 

library from scratch. This choice was taken temporarily in an attempt to gain insight 

both about the task’s complexity and also about image processing within Android, in 

order to better realize how available libraries achieve it in this platform. A simple image 

processing library was created, but the complexity required to implement the desired 

system would imply more time than what was available to complete the dissertation as a 

whole. 

For those reasons, a new architecture was considered for the system, with a client and 

the server, where the server runs in MATLAB and does the processing directly in this 

language, making use of Java within, for the communication interface (see Figure 14). 

 

Figure 14 – System architecture and programming languages overview. 

This way, the system was made possible, using an approach similar in concept to the 

fifth option previously explained, but with a higher efficiency and control, since instead 

of using computer-generated Java wrapper classes targeting a plain Java environment, 

Android Java classes were specifically developed. 

The existing MATLAB system architecture was changed, an interface layer for the 

communication was implemented, and an Android client was developed from scratch. A 

new feature extraction technique was used by the system in order to better adapt it to the 

mobile devices’ domain. 

In this chapter’s next section this architecture will be fully described in detail. 
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3.2. System Architecture 

3.2.1. Introduction 

The proposed system’s architecture is adapted from the biometric recognition system 

proposed by M. Ramalho in [4] and his developments over the system proposed by T. 

Sanches in [34]. The initial system architecture for this work is illustrated in Figure 15. 

The Feature Vector Binarization (FVB) module was removed, and a Pre-segmentation 

module was added to the system. 

 

Figure 15 – Proposed system architecture (simplified). 

The goal of the new pre-segmentation module is to provide feedback to the user of what 

the application perceives to be the user’s hand in each frame captured by the device’s 

camera, aiding in the data acquisition task and improving usability. This module is 

described in detail in section 3.3.1 Data acquisition and Pre-segmentation. 

In the enrolment stage, the input biometric data is acquired from the user, pre-

processed, and then the features are extracted. An ECC is then applied to the resulting 

template � holding the features or their representation, and the produced parity-check 

bits � are stored in the database, along with the result �(�) of a hash function � applied 

to that template �. The parity-check bits � will allow the correction of templates from 

future verification attempts, within correction boundaries that depend on each 

application’s scenario. 
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In the verification stage, the input biometric data presented to the system will result in a 

template �′ which will typically be different from � even for the same user, due to the 

acquisition noise and eventual natural changes in the user’s biometric trait itself. If the 

template �′ differs from the original template � in a value smaller than the correction 

power of the ECC, �′ will be corrected into the original template, and ��� = �, 

consequently resulting in �(�) = �(���). 

The template storage provided by this system is secure because the only information 

stored for each user is the pair (�, �(�)) containing the parity-check bits � which reveal 

little information about the original template �, and the hash function result �(�) which 

is computationally hard to invert even when knowing the hash function used. 

Since the ECC and hash functions use binary inputs, in [4] there is the need for the FVB 

module to be integrated in the system, to convert the real-valued templates returned by 

the feature extraction algorithm, either Principal Component Analysis (PCA) or Linear 

Discriminant Analysis (LDA), into fixed-length statistically independent binary values. 

However, in the proposed system such module is not necessary because the used 

Orthogonal Line Ordinal Features (OLOF) feature extraction algorithm originates 

templates already in binary, by extracting ordinal features from the palm, thus not 

requiring the post-quantization of the feature space with a total of 
 equiprobable 

intervals, and association of each quantization interval with a binary code. Each feature 

has its correspondent binary code concatenated with the previously coded features 

directly from OLOF, resulting in the binary feature vector output �. 

Additionally, as mentioned in [4], to meet the diversity and revocability requirements 

desirable in a biometric recognition system, a Bitwise Exclusive Disjunction (XOR) 

module is added which computes the result � = � ⊕ b, where � is a random set of bits, 

different for each user, and � is the binary feature vector that resulted from the feature 

extraction module. 

The complete system architecture is shown in Figure 16. 
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Figure 16 – Secure biometric system architecture. 

For this system, which is considered secure because � is randomly generated 

independently from the user’s biometric data, the set (�,�(�), �) is stored for each 

user. 

The system’s main modules are described below: 

• Data Acquisition – acquisition module where sensors capture the biometric 

characteristics relevant for the system. 

• Pre-segmentation – pre-segmentation module where the camera frames are 

processed and the application displays real-time detection of the hand. 

• Pre-processing – pre-processing module where the acquired image is aligned, 

transformed and improved, and the Region of Interest (ROI) is identified. 

• Feature Extraction – module where the features are extracted from the 

segmented image, and put together into a feature vector or template. 

• Error Correcting Code (ECC) – in the enrolment stage, parity-check bits � are 

extracted from the binary string �. In the verification stage, a correction of the �′ 
(noisy version of �) is attempted, with the previously stored partity-check bits. 

• XOR – provides the system with revocable templates. Performs the result � = � ⊕ b, which is the bitwise exclusive-or between a randomly generated 

binary value � and a binary feature vector �. 
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• Hash Function – Ensures the privacy of the stored biometric authentication 

information due to its irreversible properties. In the enrolment stage the hash 

result �(�) is stored in the database. In the verification stage, the result �(��) is 

compared to the hash value stored at enrolment stage. 

• Decision – Decides if the user is successfully verified based on the equation �(�) = �(��). 

As a consequence of the research and exploration mentioned in section 3.1.4 Libraries 

and Possibilities, the proposed top-level implementation architecture for the presented 

biometric recognition system as a whole assumes a Web architecture. The mobile phone 

device runs a client application in its Android platform, and communicates to a server 

implemented in MATLAB, using the TCP/IP protocol, as shown in the figure below: 

 

Figure 17 – Top level system architecture overview. 

This makes the need for a communication interface which is described in section 3.3.2 

Communication Interfaces and Protocol. Both the client and the server communicate 

through a software interface programmed in Java, making use of the java.net package, 

common in both Java SE and Android. The server code is developed in MATLAB but 

Java code is used directly within the MATLAB program, for the communication 

interface. 

The TCP/IP protocol ensures that the information shared between both parties is 

delivered in the correct order, allowing the implemented connection interfaces to follow 

a “protocol” of their own for the communication that will always be respected for what 

concerns the TCP connection used beneath. 

Additionally, security protocols such as SSL can be used over TCP/IP, to ensure the 

security of the communication and the system. If no certificates are to be used in the 

transactions, the usage of simple ciphered streams is equally possible over TCP/IP. 
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Since the Internet is used for the connection, the access method is transparent, meaning 

the device can use a nearby Wi-fi network, 3G, 4G or any other access method 

supported to connect to the Internet, to be able to use this system (see Figure 18). 

 

Figure 18 – Example internet access methods. 

Combining the system architecture with the top level architecture that was chosen, we 

obtain Figure 19, shown below, where the role of the mobile device client and the server 

are explicit, along with the need for a communication interface between them. The pre-

processing module in the mobile device client side is highly adaptable to the 

computational power and resources of the device. 

 

Figure 19 – Combined system architecture. 
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Since the platforms used by the mobile device and the server are different, two different 

communication interfaces were built, one for each end of the connection, and a 

communication protocol was defined. 

3.2.2. Application Scenarios 

The developed system implements biometric recognition authentication based on the 

palmprint, for mobile devices, in the web context. 

The system is generic enough that it works as a login system, as a means to get access 

and manage secure items, or to perform any arbitrary operations in a secure way. 

For these reasons, the system can be connected to a vast range of applications and 

services. Some possible examples are as follows: 

• /ear Field Communications (/FC) Commerce – The users could buy items 

with their mobile phone and use the developed biometric recognition system as a 

way to authenticate themselves and ensure that the holder of the mobile phone is 

genuine, validating the purchase. An example of this is a project by the name of 

Isis [35], whose goal is to build a mobile commerce network capable of allowing 

users to make purchases through smartphones. The NFC chip, which is an 

integrated circuit capable of transmitting and reading data for short distances (up 

to some meters), has three major uses: can work as a payment card; as an 

interface for a peer-to-peer connection; or as a reader of NFC-compatible tags 

[36], such as Radio-Frequency Identification (RFID) tags, which are thin 

integrated circuits capable of storing and transmitting information, and that can 

be easily attached or embedded to other objects. 

• Passwords management – Many password management services exist, that 

keep multiple accounts and passwords, having the user remember one single 

password to access them. The palmprint could be used as that master password, 

providing additional security in such an application, especially for the mobile 

phones domain. Online password managers such as Clipperz could be used [37], 

but with the possibility of using palmprint as authentication method, with mobile 

devices. 

• File storage – In the same way, palmprint in such a system can be used as the 

means of securing access to an online file storage service such as Dropbox [38]. 
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• Phone security application – The system could be used in a similar way as to 

those of security applications available for mobile phones, which lock 

applications, trigger alarms and perform other actions in case of a detected 

security breach. This system could perform such but through the usage of the 

palmprint for authentication. An example of an application like this but which 

works with textual passwords is Lookout Mobile Security [39]. 

In Figure 20, a wide range of NFC technology usage examples in daily life situations 

are illustrated. Biometrics, and the proposed palmprint system could be present as part 

of any or all of them. Additional examples of NFC potential are mentioned in the 

Official NFC Forum in [40]. 

 

Figure 20 – NFC usage scenarios. 

 

There are innumerous other applications possible with which the developed system 

could be used. Basically, everything with a log-in prompt, or module related with user 

authentication can be empowered by the usage of the proposed system. 

Source: http://theresultspeople.com/wp-content/uploads/trp-english//dayinthelife-mobile.jpg 
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The detailed description of the system’s components can be found in the next section 

and the corresponding subsections. To isolate the graphical aspects and software view 

of the application from the system’s architecture, aspects regarding the Android 

developed application’s graphical user interface and functionality are described later on, 

in chapter 6 of this dissertation. 

3.3. Implementation Details 

The system was adapted from the secure biometric recognition system proposed in [4] 

but with the mobile phone devices scenario in mind. 

In the newly developed system, a Web architecture is proposed, with an Android 

application developed for the data acquisition and pre-segmentation on the client’s end, 

and the rest of the biometric system’s logic (pre-processing, feature extraction, database 

and matching) on the server side. Two communication interfaces were built for both 

ends of the connection involved in the proposed architecture. 

The system uses the pre-processing algorithm that is described in detail in [4]. The 

system proposed in this dissertation is meant for mobile devices and has algorithmic 

changes and consequent internal architecture changes that rely on that fact, and the fact 

that a different technique called Orthogonal Line Ordinal Features (OLOF), proposed in 

[41], was used for the template creation. The resulting templates are better adapted to 

the mobile domain and come already in a binary format, removing the need for the 

Feature Vector Binarization module. 

Another novelty about this system, besides the different feature extraction algorithm, is 

the pre-segmentation module that runs as part of the Android application in the client 

side. This module’s goal is to allow the application to provide feedback to the user of 

what it perceives to be the hand to be acquired. In this way, only good candidate images 

for the authentication are sent to the server, consequently reducing the number of failed 

tries of authentication for a genuine user, and reducing the data volume sent to the 

server. If less energy is necessary for the pre-segmentation than for the authentication 

messages that would otherwise need to be sent to the server, then this also results in a 

longer lifespan of the device’s battery charge. Also of importance is that, since the 

segmentation is still performed at the server later on, the pre-segmentation performed by 

the device can be easily adapted to fit its computational power and resources. 
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For the mobile phones scenario, the quality of the captured images is often limited and 

highly noisy for some usage environments, resulting in very inconstant and 

unpredictable backgrounds, high illumination differences, and other issues that may 

affect the system. For these reasons, and in order to simplify the issues to be dealt with, 

the initial version of the proposed system is unimodal and solely makes use of the 

palmprint (see Figure 21 and Figure 22). 

 

Figure 21 – Human palm. 

 

 

Figure 22 – Palmprint features [42]. 

Source: http://www.pollsb.com/photos/o/325808-hand_palm.jpg 
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The palmprint is feature-rich (see Figure 22) and has got a set of qualities that make it 

preferential for the developed system and in particular, for mobile device environments: 

• Fairly large area, which means more features can be acquired. 

• Stable throughout life, and less likely to be damaged than a fingerprint [42]. 

• Low resolution images still allow achieving a good system performance with 

less resources usage, and reducing the noise introduced at data acquisition by 

small amounts of dirt or grease [4]. 

• More difficult to trick than hand or finger geometry, according to A. Kumar et 

al. in [43]. 

Furthermore, the fact that the base system used for this dissertation’s developments 

achieves good recognition results with a ROI of 16×16 pixels, makes it an ideal starting 

point for the mobile phones scenario, as stated earlier in this dissertation. 

3.3.1. Data acquisition and Pre-segmentation 

The data acquisition is performed by the mobile device, using the Android Client 

application that was developed. 

The application provides a palmprint capture screen (see Figure 23), where the user’s 

palmprint is acquired and then transferred to the server over a secure connection. 

 

Figure 23 – Developed system's palmprint capture and pre-segmentation screen. 
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In the specific case for this work, the HTC Desire mobile phone was used, so the image 

is acquired through its 5 MP camera, and converted internally to the JPEG format, using 

a factor of quality 100. The autofocus and Light-Emitting Diode (LED) flash also 

automatically adjust to improve the photo result, as they would in a casual photo 

scenario. 

This client guides the user through the enrolment and verification processes as well as 

the management of secure items. The application itself will be further explained in 

chapter 5 Developed Android Application, in terms of graphical user interface and 

functionality. 

In order to give the user an idea of what the application perceives to be the user’s hand, 

a pre-segmentation is performed in the device, in the same screen, as shown in Figure 

23. This pre-segmentation can make use of simple algorithms, adaptable to the device’s 

processing complexity, and its purpose is to provide some feedback from the application 

towards to user in order to prevent the task of messaging the server with an input image 

that could initially be considered ineffective for authentication. 

The pre-segmentation performed in the device, is independent from the segmentation 

performed on the server, which is where complex algorithms can be used and where 

their results will have an impact on the obtained data and its accuracy. 

Upon entering this window, the images continuously captured by the camera (frames) 

are processed by an algorithm adequate to the used device. For the HTC Desire device 

which was used, the proposed algorithm consists of performing a basic contour 

detection based on a Sobel filter. 

The orientation of the application window for this screen was set as landscape, which 

means that this activity works in a horizontal mode and that any output messages are 

displayed in a horizontal mode, unlike for the rest of the screens of the developed 

Android application. This had to be developed this way because Android has had 

multiple different ways of changing camera orientation through the various API 

versions, as seen in [44] and specific devices can impose limitations to this based on 

their version of the Android OS source code [45]. Although the official Android 

documentation does not make it explicit that video objects will only display the video 

and coordinates system in an appropriate way, this issue has been mentioned in websites 
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such as Adobe in [46] where it is said: “On devices that can change the screen 

orientation, such as mobile phones, a Video object attached to the camera will only 

show upright video in a landscape-aspect orientation. Thus, mobile apps should use a 

landscape orientation when displaying video and should not auto-rotate”. Even though 

this sentence was mentioned in the Adobe Integrated Runtime (Adobe AIR) and Action 

Script 3.0 domain, the experimental code explorations performed proved that this is 

correct even for plain Java Android applications running in the Android 2.1 platform. 

Another factor that improves the quality of the image frames being captured by the 

camera, and consequently the quality of the pre-segmentation and feedback of the data 

acquisition to the user is the lighting. For this reason, when there is insufficient 

environment light, the usage of the mobile phone’s LED light should be turned ON 

while the camera resource is on use by the application. However, the Android OS 

source code from specific devices also imposes limitations to this, which can only be 

surpassed by changing the OS source code. Also important of notice is the fact that the 

getSupportedFlashModes() from the camera API relies on the OS version, and does not 

always return values actually supported, on all devices. Equally relevant is the fact that 

for different devices, the same modes can work in different ways, as discussed by users 

in various forums such as in [47]. 

For the HTC Desire device which was used in this dissertation, the 

getSupportedFlashModes() method provides the correct supported flash modes, which 

are “on”, “off” and “auto”. In “on” mode, the LED is only activated for a brief instant, 

when taking a snapshot, and this behavior cannot be altered. In order to keep it 

constantly ON while the camera resource is on use, the “torch” mode would be 

necessary. For this reason, even when using the LED for the image acquisition, this 

resource cannot be used to improve the feedback from the application to the user during 

the data acquisition’s pre-segmentation. However, this does not limit the usability and 

utility of this resource, because it can be used to improve the image quality of the actual 

captured images which are in turn sent to the server for the authentication goal. 

The Camera API for Android has also proved to have some issues as of API 2.1. For 

example, the original Camera app that comes with the device’s Android OS is capable 

of saving images with some additional information, such as the International Standards 

Organization (ISO) speed and camera model, and a similar way of saving an image 
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could not be achieved by an application using the Camera API, even upon inspection of 

the code used for the default Camera application (available in [48]), because for its 

parameters, it makes use of native routines which are linked to the Android OS. Also, 

the default Camera application that comes with the device provides interfaces that only 

allow to launch it and use photos acquired by it, but not to check which parameters it 

uses nor copy them so that they can be used directly in another application from the 

mobile phone. Moreover, since the Android OS parameters and the Camera API seem to 

be partially connected in ways that sometimes go beyond what is considered by the API, 

sometimes changing the camera parameters leads to unexpected results such as for 

example the distortion of the acquired images [49], or other types of unexpected 

behavior. The behavior of the default Android Camera application and API also 

depends on the device and its Android OS specific tweaks for other types of simple 

tasks, such as the actions taken when a photo is acquired. In some devices, it is added to 

the phone’s photo gallery while in others it is not [50], and there is no way to change 

this at the applications layer, because the root of the behavior is in the source code of 

the system itself. 

Another important and problematic issue related with the Android Camera code is the 

fact that the native Android code inherent to the Android 2.1 OS version comes with a 

memory management inefficiency, as described in [51]. This inefficiency is due to the 

fact that a new memory buffer is allocated each time a new frame is captured by the 

camera. This results in huge chunks of memory being freed and allocated, which 

consequently forces the Java garbage collector to act very often. The Java garbage’s 

collector slows down applications when it executes and within the Android platform the 

slowdowns are even worse due to the platform’s architecture and specificities, and 

makes applications stop responding periodically in this case. In [51], a solution for this 

problem is presented, which consists of recompiling the OS’s source code by 

performing a change in it. The advantage of this solution is that it works for any 

Android version, including not only 2.1 but also previous versions of Android. The 

problem is that it requires the customization of the OS, and the impact of the changes 

will not affect users that have the default versions of the OS. 

In the Android Google Code Group an issue was open for this buffer allocation problem 

(Issue 2794) in [52]. Apparently the problem is fixed in version 2.2, and there is a way 

to access the new 2.2 APIs in 2.1 but which was not intended for use, since it requires 
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the usage of code reflection (this is, code that browses over other code at runtime and 

executes it) and in some cases might make the device slower or lead to unexpected 

behaviors. This alternative way is described in [53]. 

In Android (and specifically in Android 2.1), the correct way to perform drawing over 

the camera’s preview image is to have a View object over the SurfaceView object 

where the camera preview is shown. The View object to draw on has access to the data 

perceived by the camera in each frame, and can draw appropriately over the camera’s 

preview. However, this means that the internally stored frame image must be replaced 

by a new one with each frame, which results in a cycle of a huge memory allocation 

followed by memory freed. Since Android’s Java garbage collector stops the application 

briefly, every time it performs actions, this means that the frames processing will 

inevitably make the application “gulp” between frames, even though this does not affect 

the overall functionality. As previously mentioned, this problem cannot be solved at the 

application layer because its root is the source code for the camera hardware from the 

OS itself. Hopefully in future versions of Android, this issue will be addressed, 

providing much more effective processing related with camera frames and greatly 

improving user experience for applications like the one developed. 

3.3.2. Communication Interfaces and Protocol 

The communication between the client and the server is done using TCP/IP. 

In order for this communication to be possible, two communication interfaces were 

developed for each of the communicating applications (the client, and the server). The 

client sends request messages to the server, who answers with a message type specific 

to the request sent (see Figure 24). 

 

Figure 24 – Communication interfaces and type. 

The need for an interface is necessary not only to define and enforce specific message 

types and sequences, but also because the data transferred individually must be read and 

interpreted in the same way, common to both parties involved. In this case, Java objects 

and primitive types are used in the communication, and both interfaces developed make 
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use of the java.net package for a common starting point for the communication, since 

those resources are available and compatible in both Java from Android, and plain Java 

available from within the MATLAB environment. The request messages consist of an 

integer with the message type code, an integer with the length of the data portion of the 

message, and the data itself, as shown in Figure 25 below. In Java, each integer uses 32 

bits. 

 

For each request type, a response message is replied by the server, with relevant data for 

the request type sent. In Table 7 below, the different message types is shown. 

Message code Message Type 

1 Enrollment Request 

2 Authentication Request 

3 Delete Request (Remove user registration) 

Table 7 – Message types and codes. 

For each request, the integer with the size of the acquired palmprint image, and the 

image itself, are sent to the server, in order to authenticate the user individually for the 

operation being performed. The response includes an error identifier (ID) which has a 

value and meaning as shown in Table 8: 

Error ID Meaning 

-2 Authentication Failure (but no problems with the input image) 

-1 Generic program error 

0 No error (Success) 

1 Image size is too small 

2 No objects found in image 

3 Arm region is not contiguous 

4 Arm region too big 

5 Invalid peaks 

6 Invalid valleys 

7 Finger points not in correct order 

8 Fingers too close together 

9 Finger set does not correspond to left nor right hand 

Table 8 – Possible error IDs and their meanings. 

Message Type Data length Data 

Figure 25 – Request message structure. 
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Any error ID received by the client will trigger an appropriate informative message to 

the user, informing about the success of the operation (if error ID = 0), or explaining the 

problem with the acquired image, in an attempt to help the user correct it in the next 

log-in attempt. In the used convention, negative error IDs are related with top-level 

errors, while positive error IDs are related with detailed image processing errors. 

In the event the communication itself fails and the server cannot be reached, the 

application provides the appropriate warnings to the user. 

The fact that Java streams are used as part of the implementation of the communication 

channel allows for the use of ciphered streams and/or the SSL protocol as means of 

making the data transferred private and secure. 

3.3.3. Pre-processing 

After the image data has been acquired and sent to the authentication server, it is pre-

processed in the same way as in the initial system developed by M. Ramalho in [4], in 

order to achieve the segmented hand from the background along with the hand contour 

and reference points that will be used in the following processing stage (see Figure 26). 

 

Figure 26 – Hand contour and reference points. Image was taken from [34]. 

The pre-processing stage consists of image adjustment, segmentation, hand contour 

tracing, and reference points extraction. 

These steps are illustrated and summarized in Figure 27, shown below. 
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Figure 27 – Image preprocessing phases. (Images adapted from [4]). 

In the image adjustment step the image is converted to grayscale, resized so that no 

dimension exceeds 256 pixels, and filtered for the noise, smoothness of small variance 

areas and preservation of the edges. 

After the previous step is complete, the image is segmented into foreground and 

background, and the Otsu’s method [54] is applied, choosing a threshold value that 

minimizes the intra-class variance of the output binary image. The hand region is 

selected using this automatic global histogram thresholding technique, and the 

background objects are eliminated through an algorithm based on morphological 

reconstruction [55], leaving a single big-length object in the image, which is considered 

to be the hand. 

The next step is the hand contour tracing, which is performed using a popular algorithm 

[56]. A random starting point is chosen in the input image’s hand boundary and all 

subsequent adjoining boundary points are searched for in a clockwise or counter-

clockwise direction. 

Finally, the reference points are obtained through the usage of two combined techniques 

which identify the fingertips and finger-webs (tissue between fingers): 

• Radial distance to a fixed point [57], [58] – Computes the Euclidean distance 

between the hand contour pixels and the fixed middle point of the region where 

the wrist crosses the image’s edge. 
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• Countour curvegram [57] – Analyzes the profile of the contour’s curvature 

(contour curvegram), which can be constructed using the Difference-of-slopes 

technique [58]. 

Additional reference points are obtained by discovering for the thumb, index and pinkie 

fingers, which contour point has an Euclidean distance to the fingertip equal to the 

Euclidean distance between the fingertip and the finger-web. 

The region of interest will be identified in the next module, based on the reference 

points extracted. 

3.3.4. Feature Extraction 

In the feature extraction module, the region of interest is identified in the pre-processed 

image through the previously obtained reference points, by drawing a line segment 

between the finger-web and the additional reference points in the pinkie and index 

fingers (see Figure 28). The middle points of those line segments are used as vertices 

for the definition of the square that marks the ROI. 

 

Figure 28 – Identification and normalization of the ROI [4]. 

As seen in Figure 28, the ROI square then needs to be rotated to a vertical position, 

resized, and converted to grayscale so that extracted features can be accurately 

compared to other samples. 

The supported ROI size is 128×128. Although the system proposed in [4] is capable of 

handling smaller sizes, down to 16×16 meaning smaller computation effort and there 

are results in [34] that claim the system performs better at 16×16, the change to a 

mobile phones scenario makes need for more accuracy, given the reduction in 

environment constrains at the moment of image acquisition. For these reasons, the 
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128×128 size is used along with a different technique called Orthogonal Line Ordinal 

Features  suggested in [41], instead of the Principal Component Analysis or Linear 

Discriminant Analysis used in the non-mobile existing system in [4]. 

While PCA and LDA are statistical analysis methods, OLOF performs the template 

generation based on ordinal features, which consist on a set of characteristics from the 

palm. OLOF compares two elongated line-like image regions orthogonal in orientation 

and generates a bit feature code which is concatenated with the code of the previous 

region. A palmprint pattern is represented by a set of thousands of ordinal feature codes 

relative to the multiple regions considered. 

OLOF consists of three Gaussian filters which can be described by the following 

equations: 

��(�) = �(�, �, �) − ���, �, � + � 2� �  (1) 

�(�, �, �) = ���  − !("#"$ )%&'()(*#*$) '+,(-. /0 − 1#("#"$) '+,()(*#*$) %&'(-2 304  (2) 

where, for each 2D Gaussian filter, θ is the orientation, δ78and δ9 are the horizontal and 

vertical scales respectively. For each pixel in the palmprint’s ROI, filtering is performed 

with three orientations, OF(0), OF(π 6? ), OF(π 3? ), to obtain three bit sets of ordinal 

codes, based on the sign of the filtering results. The filter parameters are shown in Table 

9. 

 Filter Values 

Filter Size (pixels) 35x35 

Centre (xB,8yB) (17, 17) 

Horizontal Scale (δ7) 9 

Vertical Scale (δ9) 3 

Table 9 – OLOF filter parameters. 

In order to reduce the complexity of the decoding process in the LDPC ECC block, the 

filtered 128×128 images relative to each filter are reduced to a 32×32 image. At the end 

of the process, the results from the three filters are concatenated resulting in a binary 

template of size 3×32×32. 

PCA and LDA make use of an average palmprint in order to project each user’s 

palmprint in a template globally efficient for the system, but which becomes less 
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efficient as new palmprints are added, and makes the update of the average hand a 

computationally intensive process since it will require the recomputation of all the 

generated templates. This recomputation might not even be possible in secure systems 

since they don’t save the initial feature vector that was used as one of PCA/LDA’s 

inputs. The fact that the proposed system uses OLOF eliminates this problem and makes 

each template independent from the system’s average palm for a given time, while at 

the same time benefiting from the number of users registered in the database. 

The normalized ROI is turned into a vector of luminance values, which is used as the 

input for OLOF. OLOF codes the ordinal features into a binary feature vector or 

template, which can be stored on the templates database of a non-secure system, or, in 

this case, be applied an Error Correcting Code (ECC) and be discarded for security 

reasons, after its hash has been stored along with the parity-check bits. 

3.3.5. Error Correcting Code (ECC) 

Error Correcting Codes are often used in network communications, where messages 

transferred between different parties suffer errors through the used transmission 

channels. In those scenarios it is often necessary to provide the possibility for the 

involved parties to perform the correction of the messages received in order to prevent 

retransmissions that might overload the network or to make the received data as useable 

as possible in the least amount of time. 

The message recovery mechanism consists of adding some redundant information to the 

original message, in order to allow its correction on the receiver side, as long as the 

corrupted information is smaller than the redundancy can correct for. This process is 

called Forward Error Correction (FEC) and is illustrated in Figure 29. 

 

Figure 29 – Block diagram of a typical ECC scenario. 

In systematic ECCs, a D-bit message E is encoded to a codeword F of G bits where G > D. The codeword F is composed by the original message and G − D parity-check 

bits that will allow for the message recovery attempt on the receiving end of the 
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connection, by the decoder. Due to noise in the channel and transmission errors, it is 

possible that the codeword F suffers some changes and F′ is received. The goal is that 

the received F′ can be corrected and decoded so that E� = E. 

In biometric systems, the channel block represents the acquisition noise that will change 

the data perceived by the data acquisition module. For the biometric reality, the scenario 

is better described as shown in Figure 30. 

 

Figure 30 – Block diagram of ECC contextualization in biometrics scenario. 

An image I is presented to the system, but due to the acquisition noise, which is 

different for each acquisition attempt, a different image I′ is perceived by the system. 

This means that in one attempt, a message E′ will be generated by the data acquisition 

module, resulting in a codeword F′ of length G = � + D where � is the number of parity-

check bits generated for the message. In a second attempt, the perceived image will be 

different, resulting in a different message and a different codeword F′′, which will have 

to be corrected to F′ in order for the user to be recognized. This correction must not be 

too powerful that a different impostor user with a different initial image I can be 

corrected into having the genuine user’s palmprint template. 

The code used by the ECC module is the Low-Density Parity-Check (LDPC) code. 

LDPC codes (also known as Gallager codes) are characterized by a binary sparse parity-

check matrix � whose rows represent parity-checks on the code’s codewords. A E × G 

parity-check matrix has E parity-check equations that can involve G codeword bits. 
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In Figure 31, an example of a regular LDPC code characterized by 10 parity equations 

and 3 ones per column is illustrated. 

 

Figure 31 – Example H matrix of a LDPC code [4]. 

To the left of the dashed line are the message bits, and to the right are the parity-check 

bits. For explanation purposes, those concepts are integrated with a non-sparse smaller 

matrix illustrated in Figure 32. 

 

 

Figure 32 – Interpretation of non-sparce matrix H [4] (Adapted). 

A codeword of 7 bits is generated based on a message of 4, satisfying the equations of 

the matrix’s rows. That is, the sum of the bits in the codeword for each position that has 

got a 1 in the matrix, must be 0. This is the principle used for the generation of the 

parity-check bits, and for the usage of the parity-check bits in the correction. 

For a codeword F = KFL8F08FM8FN8FO8FP8FQR and the matrix illustrated in Figure 32, the 

resulting parity-check equations are: 

Information Protection 
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F. �T = 0 U VFL ⊕ F0 ⊕ FM ⊕ FO = 0FL ⊕ F0 ⊕ FN ⊕ FP = 0FL ⊕ FM ⊕ FN ⊕ FQ = 0W U VFL ⊕ F0 ⊕ FM = FOFL ⊕ F0 ⊕ FN = FPFL ⊕ FM ⊕ FN = FQ W  (3) 

A LDPC code was used for the ECC module because it is presented in the initial system 

proposed in [4] and LDPC possesses a set of properties that make it equally interesting 

in a mobile domain, namely the high granularity that can be achieved by varying the 

number of parity bits used (see Figure 33). This way, the correction power can be 

adjusted according to the desired correction performance for specific applications and 

contexts. 

 

Figure 33 – Behavior of 7 LDPC codes when correcting 8128-bit messages with bit error rates of around 

27% [4]. 

In biometric systems the goal of the LDPC code is to correct binary strings enough that 

the acquisition noise of a user is eliminated, allowing the authentication to the system, 

but not enough binary strings that an impostor’s template is “corrected” into the genuine 

user’s template. 

3.3.6. Hash Function 

Hash functions are irreversible functions that produce a fixed-length summary (also 

known as digest) output, based on a given input. With additional requirements, they can 
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be used to protect integrity of information or to provide digital signatures and 

certificates. 

A given hash function � must satisfy the following conditions: 

• �’s algorithm must be publicly known and not require additional input data than 

the one whose digest is sought. 

• �(�) must be easy to compute. 

• The function must be one-way, meaning that given a hash function � and an 

output �, it is difficult to find a � that satisfies �(�) = �, and given � and �(�) 

it is difficult to find a message �′ ≠ � that satisfies �(�′) = �(�). 

As previously mentioned, one-way hash functions are widely used in security for 

message digests and digital signatures. Some of the most commonly used hash functions 

are from the Message Digest (MD) family and Secure Hash Algorithm (SHA) family, 

namely MD2, MD5, SHA-256, SHA-384 and SHA-512 [59]. With the advances in 

processors and computational power, new more sophisticated hash functions have 

started to emerge, that seek to differentiate themselves from the others and broaden the 

horizons of cryptography, such as the RadioGatún hash function suggested in [60] and 

[61]. 

For the hash module, the SHA-512 hash function was chosen for its high security 

characteristics and for producing the largest output (512 bits) in its family. 
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4. Results 

This chapter discusses the results of the tests performed with the proposed biometric 

recognition system. The system’s performance was tested in terms of commonly used 

and widely accepted biometric performance measures, as well as in terms of 

computational efficiency and the tradeoff between both. 

4.1. Test Conditions 

The proposed system was tested with both online and offline tests: 

• Online tests – The online tests correspond to tests in the presence of a human 

user, using the mobile application like a user would in a real scenario. These 

tests were used to obtain results concerning the computational performance of 

the developed Android application and the communication interface between it 

and the server, as well as to assure the system works as a whole. 

• Offline tests – The offline tests correspond to tests using a database of hand 

images. In this case, the tests were run only on server side, with the goal of 

testing the system’s performance in terms of standard performance measures 

from the Biometrics domain, such as FAR, FRR and ROC. 

Three hand databases were used for the performed offline tests: the UST Hand Image 

Database, available on request from the Hong Kong University of Science and 

Technology [62]; the GPDS hand database available on request from Grupo de 

Procesado Digital de Señales [63]; and a HTC database that was created as part of this 

dissertation. Each user’s hand as a separate user. The databases’ specifications are 

summarized in Table 10, along with other information relevant for the tests and 

obtainable results: 

Database UST GPDS HTC 

/umber of users 217 75 5 

Images per user hand 10 10 10 

Total images 4340 1500 100 

Considered users 434 150 10 

Acquisition Device 

Olympus C-3020Z 

digital camera (labeled 

as C-3100Z in Japan) 

Scanner 
HTC Desire 

Camera 



Hand-Based Biometric Recognition System for Mobile Devices 

 

58 

 

Image Resolution 1280×960 1021×1403 1552×2592 

Example Image 

  
 

Training/Test images 2170 750 50 

Train Binary Templates 434 150 10 

Test Binary Templates 2170 750 50 

Intra-class comparisons 2170 750 50 

Inter-class comparisons 941780 112500 500 

Table 10 – Databases' specifications and consequent binary templates and comparisons. 

All the databases are divided into a training set and a test set. The training set is 

composed of 5 images of each user used for the enrolment, and the training set another 

5, used for verification attempts. The system’s performance is tested by comparing each 

verification binary template (that resulted from the test set) with the stored enrolment 

binary templates (that resulted from the training set) from the same user (intra-class 

variations) and from each of the other users (inter-class variations). One single binary 

template is created from each 5 training samples, so the number of train binary 

templates is the number of considered users. 

After this process is repeated, comparing all the test binary templates with the training 

ones, the results of match or non-match can be interpreted as shown in Table 11. 

 Match /on-Match 

Intra-class comparison Correct Accept False Reject 

Inter-class comparison False Accept Correct Reject 

Table 11 – Intra- and Inter-class comparisons interpretation. 

The False Accept Rate and False Reject Rate can then be calculated as: 

�XY = Z[\]^_8`a8bcde^8fgg^hieZ[\]^_8`a8jki^_#gdcee8g`\hc_je`ke × 100%  (4) 

�YY = Z[\]^_8`a8bcde^8n^o^gieZ[\]^_8`a8jki_c#gdcee8g`\hc_je`ke × 100%  (5) 
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The online simulation was done with the HTC Desire connected to the server through a 

Local Area Network (LAN), using a wireless connection to connect to a Linksys 

WAG200G router. 

The server side simulation environment was developed using Matlab® along with the 

toolboxes: Image Processing Toolbox™, Signal Processing Toolbox™, 

Communications Toolbox™ and Curve Fitting Toolbox™. The MATLAB server 

application was run in a computer with a Dual-Core 2.2GHz processor and 3 GB RAM. 

4.2. Recognition Performance 

The biometric recognition system’s performance was evaluated through standard 

commonly used metrics, such as the FAR and FRR rates, using offline tests. These rates 

measure the number of impostor users who manage to successfully authenticate, and the 

number of genuine users who fail to authenticate to the system, respectively, 

consequently measuring the system’s accuracy. Those are the two situations represented 

in Table 11, in the third row of the second column, and in the second row of the third 

column, respectively. The other situations expressed in the table represent cases in 

which the system performs correctly. 

Additionally, the EER rate was used. This rate is the rate at which FAR and FRR are 

equal, and corresponds to a measure of the system’s sensitivity balance. A low EER 

means that it is possible to get a good (small value) FAR and FRR simultaneously, 

which means that with a balanced approach, of no tradeoff between FAR and FRR, the 

system performs incorrectly in a small amount of cases. However, the EER is not 

necessarily the system’s operating point, because depending on the application scenario, 

it might be reasonable to allow for higher FARs in order to get lower FRRs (such as in 

critical security systems, where impostor users are simply unacceptable), or decrease 

FARs at the cost of increased FRRs for practical and usability reasons (such as in a 

system for public transports, where the flow of people is more desirable than a crowd 

continuously attempting to get access). 

The system’s performance was tested for ROIs of 128×128 pixels, using the OLOF 

technique for the extraction of the ordinal features and creation of the templates. The 

genuine and impostor distributions obtained for the three tested databases are shown in 

Figure 34, along with the respective ROC curves. These distributions were obtained 

performing single comparisons between templates, without any shifts. 
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The ROC curves are perfect corners for all the databases (which means EER = 0), with 

the exception of the UST database, in which there is a small slope resultant from the 

small interception present in its genuine and impostor distributions, as shown in its 

ROC graph zoom, where EER is roughly 0.21%. For the GPDS and HTC databases 

there is no overlapping of the distributions. The distributions are apart in all situations, 

and closer distributions were obtained for the databases with a higher number of users. 

UST Database 

GPDS Database 

HTC Database 

Figure 34 – Genuine and Impostor Distributions, and ROC curves for the three tested databases, using 

128×128 templates and the OLOF technique, with no shifts considered during template matching. 



Hand-Based Biometric Recognition System for Mobile Devices 

 

61 

 

Although the HTC database has a small number of considered users (10), the distance 

between both the genuine and impostor distributions for this database is good and the 

highest among all the tested databases, which suggests the proposed system and the 

OLOF technique, are suited for biometric recognition with the mobile phone’s camera. 

The results show a good system biometric recognition performance for all the tested 

databases, but additional techniques can still be added and considered, such as shifting 

the templates in various directions as an attempt to improve matching results. This 

analysis makes sense because the databases used to obtain results contain a small subset 

of all the palmprints that exist. In a working system broadly adopted and vastly used, 

the amount of users processed can be bigger than the number of users considered in the 

used databases. 

Following the interest to improve the results, the distributions were then recalculated 

along with the ROC curves, but this time considering both the original template position 

and 4 shifts (to the left, right, upwards and downwards) of the templates for the 

matching. The shift with the best score is the one considered, consequently improving 

the individual matching scores, since small differences natural to different acquisition 

samples are less likely to result in score differences in this situation. Since the shifts are 

considered when comparing an authenticating user’s template with a stored template 

before it is possible to know if the user is a genuine or an impostor, it is probable that 

the system’s performance results will be improved, but it is also possible that the shifts 

may downgrade the system’s performance. The obtained results are shown in Figure 35. 
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Considering template shifts during the matching process is an attempt to improve the 

recognition performance not just for the considered databases, which were already 

providing good results, but for a generality of other databases and working systems. 

This would desirably result in genuine and impostor distributions further away from 

each other. However, this did not have a positive impact on all the tested databases. For 

UST Database 

GPDS Database 

HTC Database 

Figure 35 – Genuine and Impostor Distributions, and ROC curves for the three tested databases, using 

128×128 templates and the OLOF technique, considering the original template position and 4 shifts 

during template matching. 



Hand-Based Biometric Recognition System for Mobile Devices 

 

63 

 

the UST Database, this results in an improvement of the ROC curve, since the 

overlapping between both distributions has been diminished, resulting in a thinner ROC 

slope and an EER of about 0.1%. For the GPDS and HTC databases, the shifts approach 

resulted in slightly closer distributions, but did not result in a downgrade big enough to 

change the ROC curves, which already were a perfect corner in the previous approach. 

Since an authenticating user’s template is compared with the stored templates 

considering multiple shifts, it will improve the scores of genuine users, but also may 

improve the scores of impostor users. 

It is possible to quantify the distance between the genuine and impostor distributions, by 

using the decidability index as suggested in [64]. This index is proportional to the 

distance between the genuine and impostor distributions, is independent from the actual 

threshold used by the system, and can be calculated as: 

p� = qrstu#rvwxq
yzstu{ |zvwx{

{
  (6) 

Where }~^k and }j\h are the mean of the genuine and impostors distributions 

respectively, and �~^k and �j\h are the standard deviations of these distributions, in 

same order. 

For both scenarios previously described, considering solely the original template 

orientation, and then considering also shifts in 4 directions, the obtained decidability 

indexes are presented in Table 12. 

 UST GPDS HTC 

Without shifts 7.6226 7.9245 11.8169 

With 4 shifts 9.0013 7.8448 10.8896 

Table 12 – Decidability indexes for the three tested databases, considering no shifts and considering 4 

shifts in the template matching. 

The results’ changes provided by the shifts approach previously seen in the distribution 

graphs is confirmed for all the databases. For the UST database this results in a 

performance boost, which is translated into an increase of the index, while for the 

GPDS and HTC databases, the index suffers a slight decrease, which reflects the small 

performance downgrade this approach introduces. 
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4.3. Application Performance 

The developed application should be tested in terms of processing time/speed, CPU 

usage, and memory usage, using online tests. 

In Android 2.1, each Android Java application is limited to a budget of 24 MB of heap 

size in the DVM instance that executes it. This means that when dealing with resources 

such as images, which often need to be manipulated internally, for compression, 

uncompression and processing, the budget of 24 MB can easily become smaller than it 

is for other types of applications. If we add to that the memory used by the application 

itself and its other resources and objects, it becomes understandable that exceeding this 

budget is quite easy in signal processing applications. 

Downsampling acquired and manipulated images is a practice often used in Android 

applications to deal with this issue, and should continue to be since newer devices are 

possessing better cameras with higher resolutions, which will generate higher amounts 

of information. For this reason, it is important to understand how does the 

downsampling of the acquired image affects the application performance according to 

computational standards (discussed in this section), and how it affects the biometric 

recognition performance (discussed in section 4.4 Tradeoff). 

The sum of the native heap size (heap of the java virtual machine running the 

application) with the Dalvik heap size (heap of the java application) must never exceed 

the maximum heap budget of 24 MB, or the application will terminate with an out of 

memory exception. 

The used heap sizes were calculated for the first activity of the application, in order to 

get an idea of the memory used by the visual and interactive components. These results 

are presented as an average of 10 executions in Table 13, and the obtained CPU usage 

relative to the components’ initialization was 19%. 

 /ative Heap Dalvik Heap Total Limit 

Size 5480 3783 9263 24576 

Allocated 5478 3149 8627 N/A 

Free 1 634 635 N/A 

Table 13 – Application memory usage in starting activity. The units are expressed in 1024 bytes. N/A: 

Does not apply. 
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There is a difference of 1 unit between the free native heap and the subtraction of the 

allocated heap to the native heap size, due to the implementation of this heap in the 

Android architecture. This difference may be of even greater differences for the native 

heap at calls in other activities or stages of the processing, and is verifiable through 

Linux kernel functions. The free heap size is not too important because when more 

memory is necessary than the available free memory in the heap, it expands. The most 

important is the 24 MB limit of the heap size, which must always be respected. 

Regarding the image acquisition activity, the CPU usage took an average of 71%, and 

the respective memory information is shown in Table 14. 

 /ative Heap Dalvik Heap Total Limit 

Size 7752 9351 17103 24576 

Allocated 6163 8621 14784 N/A 

Free 84 730 814 N/A 

Table 14 – Application memory usage in image acquisition activity. The units are expressed in 1024 

bytes. N/A: Does not apply. 

For the image acquisition activity, the memory and CPU usages are superior because 

the captured image frames are continuously processed to provide feedback to the user. 

The pre-segmentation of those frames is also suboptimal due to the limitations inherent 

to a correct usage of the Android APIs, as previously explained in section 3.3.1 Data 

acquisition and Pre-segmentation. As a consequence of the multiple memory allocations 

necessary between the pre-segmentation between processed camera frames explained in 

the same section, the time it takes for a pre-segmentation to complete is of 2.418 

seconds. The actual pre-segmentation perceived by the user has a significant delay due 

to the high CPU usage and the stacking up of pre-segmented images which need to be 

drawn on the screen, as well as the refreshment of the application components involved. 

The computational performance was then measured for the final stage of the data 

acquisition module, in which the actual photo is taken and sent to the server for 

processing and for a resulting response (error ID), indicating the success or error cause 

of the operation. For this analysis, the memory and CPU usages were obtained for the 

different considered sampling ratios. The 1:1 ratio was not considered in this phase 

because the application can only work with 1:2 and superior downsampling ratios in 

order to respect the 24 MB heap budget. The results were obtained for verification 

attempts, and are presented in Table 15. 
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Downsampling Ratios 1:2 1:3 1:4 1:5 

CPU Usage 17% 27% 43% 21% 

/ative Heap Size 9152 9056 7728 8028 

Dalvik Heap Size 10887 11591 9351 10887 

Total Heap Size 20039 20647 17079 18915 

/ative Heap Allocated 7738 7652 5943 6173 

Dalvik Heap Allocated 4971 6640 5436 5515 

Total Heap Allocated 12709 14292 11379 11688 

/ative Heap Free 149 147 84 126 

Dalvik Heap Free 5916 4951 3915 5372 

Total Heap Free 6065 5098 3999 5498 

Table 15 – CPU and memory usages for each of the considered downsampling ratios at data acquisition 

stage, when the hand image is captured and sent to the server. The units are expressed in 1024 bytes. 

The CPU usage is smaller in this phase because no camera frames are continuously 

being pre-segmented. All the processor has to do is execute the code relative to 

establishing the connection, sending the image to the server, and reading an errorID 

code. 

The results obtained for the CPU seem inconsistent, but this is explained because the 

CPU usage logging needs to be done through a separate thread, so that the CPU usage 

of the application while it is active is considered. According to the principles of most 

Operating Systems, this thread can execute and calculate the CPU usage of the 

application at different places of the actual program, generating different results, as 

previously shown. 

The memory usage results are equally inconsistent. The Android platform relies on a 

Linux kernel, and in the principles that unused memory is wasted memory. For this 

reason, the heap sizes and allocation sizes do not necessarily refer to memory which is 

absolute necessary by the program, but may also include much memory which is 

already ready to be freed but is not, for optimization purposes. Equally important is the 

fact that since huge amounts of memory are being allocated and freed (specially for 

what concerns the image files manipulated within the program), this provides room for 

huge deviations in the result of the memory inspection commands, at this stage of the 

application. Although in Android the Java garbage collector can be called, it adds 

additional delay to the application and still does not assure that all memory that can be 

freed is actually released. For all those reasons, it is not possible to get accurate memory 
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results within the Android platform. The obtained results, suggest that the 

downsampling ratio of 1:4 brings considerable memory gains in comparison with the 

1:2 and 1:3 ratios, although the accuracy of these results is limited by the factors 

previously described. 

The processing times were then calculated for all the considered downsampling ratios. 

The results are shown in Table 16. 

Client side (Device) 1:2 1:3 1:4 1:5 

Connection establishment 11 15 24 17 

Bitmap – Allocation 454 484 84 86 

Bitmap – Send 914 1058 325 486 

Bitmap – Total 1368 1542 409 572 

Reading response 8524 8044 7583 7856 

Time to Authenticate 9901 9593 7998 8433 

Server side     

Process Image time 794 876 331 344 

Process Request time 9830 9500 7982 8347 

Table 16 – Processing times for different stages of the verification process, for the different considered 

downsampling ratios. The times are expressed in milliseconds. 

For the processing times, the results also show some inconsistency, at least between the 

1:2 and 1:3 sampling ratios, and between the 1:4 and 1:5 sampling ratios. One of the 

reasons for these discrepancies is the fact that the huge chunks of memory involved in 

the allocation and freeing of the memory, results in multiple calls to the garbage 

collector, which, as previously mentioned, does not act in a completely linear and 

predictable way. This means that random calls to the garbage collector happen, adding 

random delays to the processing times, at random places in the program, which are 

different for each execution. To make this worse, the fact that some stacks of the pre-

segmentation images are still waiting to be processed after the pre-segmentation has 

been stopped, the memory associated with them can apply be freed at also random times 

throughout the execution of the communication phase (sending the image data, and 

getting the response). For these reasons, the processing times between the different 

downsampling ratios, and between different execution attempts for a given ratio may 

result in very different results. According to the obtained results, there seems to be an 

overall gain, especially in bitmap allocation and sending times, when using the 1:4 

downsampling ratio, in comparison to 1:2 or 1:3. 
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The time to establish the connection is the smallest, followed by the time for the bitmap 

memory allocation time, and finally the time to send the bitmap. The time to read the 

response is the biggest on client side, since it requires not only the usage of the 

communication channel, but also the wait for the server to process the sent input 

images. The time to process the images seems roughly similar with the time necessary 

to send the bitmap, but there is no connection between both, since the time to send 

depends also on the network architecture and factors external to the system, in addition 

to the factors that influence both, such as the image size. In all the downsampling cases, 

the time to authenticate is bigger than the time the server takes to process the request, 

since the client needs to wait for the response to arrive and be processed. The time to 

process the image on server side consists of the preprocessing only. The time necessary 

to pre-process the images (Process Image time, in the table) is relatively small when 

compared to the OLOF template generation time, and the time necessary to look up the 

appropriate user data and perform the matching. It is that time that adds up to the image 

processing and results in the final process request time mentioned in the table. 

The results obtained in this section, regarding the computational performance of the 

application, suggest that the downsampling ratio of 1:4 brings considerable gains over 

1:2 and 1:3. Between 1:4 and 1:5, the difference is not as clear. These results should 

however be considered as rough estimations, due to the inherent uncertainty and 

randomness associated with the Android platform and many of the Operating Systems 

and Java Virtual Machines’ logics and optimizations which results in nonlinear system 

execution trees for different execution attempts. This problem is not only from Android, 

but takes a huge impact in this platform due to its common roots with Linux. 

4.4. Tradeoff 

Previously, the system’s recognition performance was tested, and its computational 

performance was measured in terms of speed, memory, and CPU, along with the impact 

of image downsampling in the computational measures. In this section, the impact of 

the downsampling in the recognition performance will be studied, with the goal of 

understanding the tradeoff between the computational efficiency and the recognition 

performance. 

In order to achieve results regarding the impact of the downsampling of the hand 

images used for recognition, the considered downsampling intervals will be between 1:2 
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(0.50 reduction factor) and the highest value that does not generate recognition errors in 

the contours used for the palmprint recognition with the considered database’s images. 

For the UST and GPDS databases, a downsampling of 1:2 (0.50 reduction factor) results 

in errors in contour detection. For this reason, the downsampling was not possible for 

those databases. 

For the HTC database, downsamplings of 1:2, 1:3, 1:4, and 1:5 were tested, considering 

no shifts for the resulting templates, to avoid the unpredictable gains in genuine and 

impostor scores previously observed. For a downsampling ratio of 1:6 or higher, no 

recognition is achieved due to errors in contour detection. The genuine and impostor 

distribution results are shown in Figure 36. Since there is no overlap between 

distributions in any situation, the ROC curves are a perfect corner for all considered 

downsampling ratios. 

 

 

As seen in the graphs from Figure 36, with the downsampling, the genuine and impostor 

distributions change their shape slightly, as well as the distances between them. In order 

HTC – Downsampling 1:2 HTC – Downsampling 1:3 

HTC – Downsampling 1:5 HTC – Downsampling 1:4 

Figure 36 – Genuine and Impostor Distributions for the HTC database, using 128×128 templates with the 

OLOF technique, and considering downsampling factors of 1:2, 1:3, 1:4 and 1:5, without considering 

template shifts at matching stage. 
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to better quantity and understand these distances, the decidability index d’ was 

calculated for each downsampling case, and presented in Table 17, along with the 

scenario with no downsampling (1:1). 

Downsampling Ratio Hand Image Size Decidability Index d’ 

1:1 = 1 1552×2592 11.8169 

1:2 = 0.50 776×1296 12.0880 

1:3 = 0.333… 518×864 12.7323 

1:4 = 0.25 388×648 12.0359 

1:5 = 0.2 311×519 10.7592 

Table 17 – Decidability indexes and considered image sizes for the various downsampling ratios tested 

for the HTC database, considering no shifts in the template matching. 

As seen in Table 17, the decidability indexes increase for downsampling ratios of 1:2 

and 1:3, meaning that the genuine and impostor distributions get further apart, 

improving the system’s recognition performance. This may happen due to the small size 

of the considered database. For a downsampling ratio of 1:4, the decidability index 

starts to decrease in comparison to the ratio of 1:3, but is still superior to the original 

ratio of 1:1. For a downsampling ratio of 1:5, the recognition performance starts to 

decrease a lot, as both distributions start to approach each other, due to lack of quality in 

the considered hand images. For ratios of 1:6 and superior, this decrease of quality is so 

intense that the image processing algorithms fail to process the input hand images 

correctly. 

Downsampling the acquired images may become a problem in systems which work in 

identification mode, and with many users registered. For the proposed system, the 

verification should still work with recognition performance results using a 

downsampling ratio of 1:2, which results in an image of 776×1296, which is not too 

different from the 1280×960 images in the UST database or the 1021×1403 ones in the 

GPDS database. Since the same approach was taken in all databases, capturing images 

of the whole hand, it is fairly safe to assume that in a huge mobile phone images 

database, the downsampling ratio of 1:2 would not affect the system’s recognition 

performance significantly. 

In order to study the tradeoff between the system’s recognition performance and 

computational performance, these results were compared with the computational 

measures taken in section 4.3 Application Performance, with the goal of understanding 
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which downsampling ratio should be used to get the best out of both performance 

domains, without neglecting either. The most relevant results from the different 

calculated performance measures are summarized and presented in Table 18. Since the 

achieved results possess considerable deviations, the resulting conclusions and 

observations should be taken with care. 

Downsampling Ratio 1:2 1:3 1:4 1:5 

Decidability Index d’ 12.0880 12.7323 12.0359 10.7592 

Time to Authenticate (ms) 9901 9593 7998 8433 

Total Heap Allocated (KB) 12709 14292 11379 11688 

Table 18 – Tradeoff between biometric recognition and computational performances. 1 KB = 1024 bytes. 

Any of the downsampling ratios provide better decidability indexes than the original 1:1 

ratio with a d’ of 11.8169, except for the ratio of 1:5. The time necessary for 

authentication seems to get a substantial gain at the ratio of 1:4, and the total allocated 

heap seems to be smaller for this ratio as well, but with a smaller difference than the one 

obtained for the time to authenticate. Combining these results, the best downsampling 

ratios for the system to operate with are the 1:3 ratio, if privileging recognition 

performance over computational performance, or the 1:4 ratio, if giving priority to 

computational efficiency over recognition results. Ultimately, since worse recognition 

results may result in more attempts to log in, the bigger decidability index could be, in a 

way, considered the decisive factor, indicating in this case that the system should 

operate at the 1:3 downsampling ratio. 

As explained throughout this analysis, the considered HTC database is fairly small, and 

the platform issues mentioned result in a reasonable degree of inaccuracy in the time 

and memory measurements taken. These conclusions should be handled with care, 

taking this into account. 

  



Hand-Based Biometric Recognition System for Mobile Devices 

 

72 

 

  



Hand-Based Biometric Recognition System for Mobile Devices 

 

73 

 

5. Developed Android Application 

5.1. Introduction to the Android OS 

Android is a software stack for mobile devices that includes an operating system based 

on the 2.6 Linux kernel, middleware to provide additional facilities for other software, 

and a set of key applications such as email clients, calendar, Short Message Service 

(SMS) management, maps, browser, contacts and others. 

In order to develop applications for the Android platform, it is necessary to use the 

Android Standard Development Kit (SDK), which provides a set of tools and APIs to 

develop Android Applications using the Java Programming Language. 

This mobile platform offers the following features [31]: 

• Application framework enabling reuse and replacement of components 

• Dalvik Virtual Machine (DVM) optimized for mobile devices 

• Integrated browser based on the open source WebKit engine  

• Optimized graphics powered by a custom 2D graphics library; 3D graphics 

based on the OpenGL ES 1.0 specification (hardware acceleration optional) 

• SQLite for structured data storage 

• Media support for common audio, video, and still image formats (MPEG4, 

H.264, MP3, AAC, AMR, JPG, PNG, GIF) 

• Global System for Mobile Communications (GSM) Telephony (hardware 

dependent) 

• Bluetooth, EDGE, 3G, and WiFi (hardware dependent) 

• Camera, Global Positioning System (GPS), compass, and accelerometer 

(hardware dependent) 

• Rich development environment including a device emulator, tools for 

debugging, memory and performance profiling, and a plugin for the Eclipse 

IDE, which is recommended for development 

The main difference between Android and other Mobile Platforms is the fact that is it 

Open Source, meaning that the operating system is available and can be edited, and it is 

also possible to create applications that use any of the available APIs, without the 

developer entities having to pay for those APIs or their usage. 
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With this open nature, this platform has become very attractive for the industry of both 

hardware manufacturers and software developers, both for software companies and 

individual software developers, and also both for commercial purposes and research or 

entertainment. Android is a project continuously evolving, supported by the Open 

Handset Alliance. 

Android’s Architecture is based on layers as seen in the following image: 

 

Figure 37 – Android software stack [31]. 

The Linux Kernel provides an abstraction layer between the hardware and the software 

stack and is used for core system services, the libraries are a set of C/C++ libraries used 

by the Android system, and exposed to developers through the application framework, 

which allows developers to use and reuse services and components, and to make new 

content also available to use by yet other applications. 

In Android, the runtime of applications works in a similar way as the Java Virtual 

Machine (JVM) does in machines with platforms such as Linux, Windows or Mac OS. 

When an Android Application is launched, a new instance of Dalvik Virtual Machine 

(DVM) is started in a separate process, and executes the code related to that Android 

Application. Android uses the included “dx” tool to turn Java compiled class files into 
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Dalvik Executable (.dex) files, optimized for minimal memory footprint. The DVM is 

register-based and runs those files.

Android applications are written using the Java programming language. After the code 

is compiled along with other data and resources needed by the 

Asset Packaging Tool (AAPT

(.apk). The code in an .apk file is one application, and is used to distribute and install 

the application in mobile devices.

Unlike typical Java applications, Android applications do not have a single entry point, 

because they reuse components from the Android library, which possess specific 

lifecycles. This becomes clear when looking at the lifecycle of one of the principal 

component of the Android architecture: the Activity class (see

Based Biometric Recognition System for Mobile Devices

75 

Dalvik Executable (.dex) files, optimized for minimal memory footprint. The DVM is 

based and runs those files. 

Android applications are written using the Java programming language. After the code 

is compiled along with other data and resources needed by the application

AAPT) is used to bundle it all into an Android package

(.apk). The code in an .apk file is one application, and is used to distribute and install 

the application in mobile devices. 

Unlike typical Java applications, Android applications do not have a single entry point, 

euse components from the Android library, which possess specific 

. This becomes clear when looking at the lifecycle of one of the principal 

component of the Android architecture: the Activity class (see Figure 38

Figure 38 –  Activity lifecycle [31]. 

for Mobile Devices 

Dalvik Executable (.dex) files, optimized for minimal memory footprint. The DVM is 

Android applications are written using the Java programming language. After the code 

application, the Android 

to an Android package file 

(.apk). The code in an .apk file is one application, and is used to distribute and install 

Unlike typical Java applications, Android applications do not have a single entry point, 

euse components from the Android library, which possess specific 

. This becomes clear when looking at the lifecycle of one of the principal 

38). 
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One of the important tasks to perform in those methods is saving the activity’s state, so 

that the appropriate actions are taken by the application in the event that OS calls are 

performed, either by the automatic choice of the Android OS, or by user actions, such as 

sending one activity to background, exiting an activity, or performing other actions that 

might relate with those methods, such as changing device orientation or opening a 

physical keyboard (in case the device has one). 

In Android, applications may also use the XML language to define graphical user 

interfaces independently from the code. The use of C/C++ code libraries is equally 

possible through the NDK. 

5.2. Developed Software Structure 

The developed Android application targets the Android 2.1 version and is intended to 

work in all devices using that version and more recent versions of the Android OS. The 

software was tested using the HTC Desire device. 

As previously mentioned in this work, the Android application works as the data 

acquisition and pre-segmentation modules of the system, but also provides functionality 

for the user. Below, in Figure 39 the possible user actions are presented in a use case 

Unified Modeling Language (UML) diagram. 

 

Figure 39 – Developed Android application use case UML diagram. 

The application’s graphical user interface screens, related with the presented use cases 

are shown in Figure 40. 
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User Registration Enrol Modality 

Enrol Palmprint Manage Secure Items Palmprint Acquisition 

Login with Modality Settings About 

User Data Form 

Figure 40 – Android application Graphical User Interface (GUI) screens. 
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5.2.1. Android Application Optimization 

The Android client developed was designed with the performance recommendations 

from Android Developers website (the official Android Website) in mind [31].  

The developed Android application was recompiled using the zipalign tool, which 

optimizes Android application (.apk) files, considerably reducing the amount of RAM 

and allocations necessary through execution, by pre-aligning uncompressed data (in 

terms of the .apk file) on 4-byte boundaries. 
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6. Conclusions and Future Work 

A secure biometric recognition system for Android mobile devices was presented and 

proposed in this dissertation. The Android platform and its specificities were explored 

and reported, along with other issues that arose throughout the planning and 

implementation. 

The Android 2.1 platform is limited in terms of memory efficiency for camera image 

capture according to the official Camera API for that platform’s version. Although this 

issue is solved in newer versions of Android, it is also possible to fix it in version 2.1 by 

using code reflection to iterate over the available API functions, and access hidden 

functions which are not documented for Android 2.1, but solve the performance 

limitations of the original API, allowing this platform to be used for signal processing 

tasks that rely in the device’s camera. 

Regarding the memory measures taken, the Android API provides ways for an 

application to have an idea of the memory that is still available, and for the application 

to be alerted when the system’s memory budget is close to depletion. However, accurate 

measurements of memory become a difficult task since Android relies in the same 

principles as Linux, and manages memory in a different way than the typical in 

Windows systems. The system considers free memory as wasted memory, and does not 

rush to free allocated memory, since it may still be of use at a later time. Memory is 

only freed when necessary, or, following the principles of Java’s memory management 

scheme, randomly, when the garbage collector is called by the system. In the event it is 

called, it may or may not free the memory, based on system decidability factors beyond 

the context of the developer’s Android Java program. 

The measurements regarding the CPU usage are accurate for a program with a fairly 

linear execution behavior through time, and with small peaks of activity, but inaccurate 

for high peaks of activity, since a Thread needs to be launched in parallel with the 

program’s execution, and the measurement(s) may take place at very different 

situations, depending if they happen before the activity peak, during (and if during, in 

which stage they happen), or after. This problem is not specific to Android. 

The processing times are greatly influenced by the garbage collector calls, which, for 

memory intensive applications such as the proposed system and its correspondent 



Hand-Based Biometric Recognition System for Mobile Devices 

 

80 

 

Android client application, result in some random noise in the time results. This is not 

an Android issue as well, and may happen in any platform, but is aggravated in this case 

due to the fact that the Java Virtual Machine provides noticeable slowdowns when the 

garbage collector is called, and also due to the fact that the pre-segmentation delay 

resulting from the huge memory allocations, results in some delayed garbage collector 

calls right before the connection stage of the developed application. 

These issues are being continuously improved and optimized in newer versions of 

Android, and this platform has proved fast and productive, being capable of handling 

research projects such as this dissertation, while providing the tools and background to 

make it a working application, deployable in devices and brought to a vast audience, 

with compatibility between multiple Android platform versions, consequently making it 

marketable and profitable. The proposed system was successfully implemented and 

works, fulfilling all those requirements and expectations. 

The OLOF technique has proved very effective at providing good biometric recognition 

results for all the tested databases even with relatively high downsampling factors. This 

makes it very suitable for the mobile devices domain. 

Regarding the biometric recognition performance, the HTC database built considers full 

hand images like the other databases considered (UST and GPDS), for comparison 

purposes. The downsampling ratio of 1:2 for the HTC database results in images of 

776×1296, which are relatively similar with the 1280×960 images from the UST 

database or the 1021×1403 images in the GPDS database. This gives some certainity 

that a downsampling rate of 1:2 will not decrease the system’s performance in a 

noticeable way, and will probably give good performance boosts in both recognition 

performance (as seen by the decidability indexes) and overall computational 

performance. 

Considering template shifts during template matching may greatly improve biometric 

recognition performance results, as seen for the UST database, but may also cause slight 

performance downgrades as seen for the GDPS and HTC databases. This may happen 

because since the comparison of the authenticating template with the stored templates 

considers the shift that produces the best score, the impostor shifts that generate the best 

score for each comparison are also considered. 
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In the future, a bigger database of palmprints must be created using the HTC Desire 

camera, in order to provide more accurate and statistically significant results. 

Additionally, the LDPC must be used with proper probability estimations, as suggested 

in [12], so that the results of the secure system can be properly studied. Other biometric 

traits from the hand, such as hand geometry and finger geometry, should also be taken 

into account to improve recognition performance. 

The system needs to be tested and improved for more unconstrained environments, 

where the acquired images can be highly noisy in terms of light exposure, shadows and 

background irregularities. The usage of existing techniques of background subtraction, 

and adaptation to the mobile devices scenario must be taken as an important step to 

improve the system’s usability in a real scenario, where the user should be capable of 

performing authentication to the system at any time and condition. 

Regarding the communication between server and client, more secure approaches can 

be taken besides the proposed usage of a ciphered channel or SSL and certificates. The 

usage of security schemes based on functions with homomorphic properties should be 

explored and implemented as a mean to further improve the security of the 

communication and the privacy of the transferred data.  

The evolution of the Android platform and of open source libraries that start to create 

branches for Android (such as OpenCV), along with the improvements in virtualization 

tools, and MATLAB support for mobile devices, are important factors that in a near 

future might be able to allow for all of the processing to be done in the client side (in the 

mobile device). However, the client-server architecture and its studies are equally 

useful, especially when considering applications that involve financial transactions, 

such as NFC Commerce, where the server side is necessary and might equally want to 

validate and perform the biometric authentications as a security policy. 
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