

Department of Information Science and Technology

Hand-based Biometric Recognition System for Mobile Devices

Luís Miguel dos Santos Serrano

Dissertation presented in partial fulfillment of the requirements for the degree of

Master of Science in Telecommunications and Informatics Engineering

Supervisor:

Prof. Doctor Luís Eduardo de Pinho Ducla Soares, Assistant Professor,

ISCTE-IUL

Co-supervisor:

Prof. Doctor Paulo Luís Serras Lobato Correia, Assistant Professor,

Instituto Superior Técnico

June, 2011

Department of Information Science and Technology

Hand-based Biometric Recognition System for Mobile Devices

Luís Miguel dos Santos Serrano

Dissertation presented in partial fulfillment of the requirements for the degree of

Master of Science in Telecommunications and Informatics Engineering

Supervisor:

Prof. Doctor Luís Eduardo de Pinho Ducla Soares, Assistant Professor,

ISCTE-IUL

Co-supervisor:

Prof. Doctor Paulo Luís Serras Lobato Correia, Assistant Professor,

Instituto Superior Técnico

June, 2011

«You cannot open a book without learning something.»

Confucius

Hand-Based Biometric Recognition System for Mobile Devices

i

Acknowledgements

I want to thank my supervisor, Prof. Dr. Luís Ducla Soares from ISCTE-IUL Lisbon

University Institute, and my co-supervisor, Prof. Dr. Paulo Lobato Correia from

Instituto Superior Técnico, for all their support, trust, encouragement and advice.

Without their help and availability, this work would not have been possible.

My thanks to all the colleagues in the Image Group from Instituto Superior Técnico, for

their time and friendship. In special, to Maurício Ramalho and Sanchit Singh for their

valuable help and patience, and for the good times that we spent. They made the

knowledge exchange not only faster, but more immersive, interesting and interactive.

I also want to thank my parents, my two sisters and all my family and friends for all

their support and cares, which have accompanied me throughout the development of

this work.

Finally, I would like to thank Instituto de Telecomunicações, for the financial support

that paid for the mobile device used in this dissertation.

Hand-Based Biometric Recognition System for Mobile Devices

ii

Hand-Based Biometric Recognition System for Mobile Devices

iii

Abstract

The usage of mobile devices such as smartphones has become a daily habit and need, as

a way of managing and accessing personal data on the go. This created the emergent

need to secure that data, which may contain not only contacts and messages, but also

online accounts, files, bank account information and other applications or services

which should be protected in case of device loss or theft. Biometrics have been an

increasingly adopted solution, allowing individual recognition based on biometric traits

(e.g., palmprint, voice, face, iris, signature), in a more practical and secure way, since

biometrics cannot be forgotten or lost and are intrinsically associated with each

individual. In this dissertation, a secure hand-based biometric recognition system is

proposed and implemented for the Android 2.1 mobile platform. The system makes use

of the camera present in Android devices (typically with a resolution of 5 Megapixel or

higher) and performs a pre-segmentation of the captured images in the device to help

the user optimize the data acquisition result. The data is then transferred over a secure

connection to a server which performs further image analysis and feature extraction on

the palmprint, using the Orthogonal Line Ordinal Features (OLOF) technique. A

system-specific template composed of the extracted features is then securely stored in a

database, with the help of a cryptographic hash function and an error correcting code

(ECC).

Key-words

Android, binary templates, cryptographic hash function, error correcting code (ECC),

hand-based, low-density parity-check (LDPC), mobile devices, Orthogonal Line

Ordinal Features (OLOF), palmprint, secure biometric recognition system.

Hand-Based Biometric Recognition System for Mobile Devices

iv

Hand-Based Biometric Recognition System for Mobile Devices

v

Resumo

A utilização de dispositivos móveis como smartphones tornou-se um hábito diário e

uma necessidade, como forma de gerir e aceder a informação pessoal a qualquer

momento. Isto criou uma necessidade emergente de tornar essa informação segura, que

pode conter não apenas contactos e mensagens, mas também contas online, ficheiros,

informação de contas bancárias, e outras aplicações ou serviços que devem estar

protegidos em caso de perda ou roubo do dispositivo. As biométricas têm sido uma

solução cada vez mais adoptada, permitindo reconhecimento individual baseado em

características biométricas (e.g. palma da mão, voz, cara, íris, assinatura), de forma mais

prática e segura, já que as biométricas não podem ser esquecidas ou perdidas e estão

intrinsecamente associadas a cada indivíduo. Nesta dissertação é proposto e

implementado um sistema seguro de reconhecimento biométrico baseado na mão para a

plataforma móvel Android 2.1. O sistema faz uso da câmera existente em dispositivos

Android (tipicamente com uma resolução de 5 Megapixel ou superior) e faz uma pre-

segmentação das imagens capturadas no dispositivo para ajudar o utilizador a optimizar

a aquisição de dados. Os dados são então transferidos numa ligação segura para um

servidor que continua a análise de imagem e faz a extracção de features da palma da

mão, utilizando a técnica Orthogonal Line Ordinal Features (OLOF). Uma template

específica do sistema e composta das features extraídas é então guardada na base de

dados de forma segura, com a ajuda de uma função de hash criptográfica e um código

corrector de erros (ECC).

Palavras-chave

Android, templates binários, função de hash criptográfica, código corrector de erros

(ECC), hand-based, código low-density parity-check (LDPC), dispositivos móveis,

Orthogonal Line Ordinal Features (OLOF), palma da mão, sistema de reconhecimento

biométrico seguro

Hand-Based Biometric Recognition System for Mobile Devices

vi

Hand-Based Biometric Recognition System for Mobile Devices

vii

Table of Contents

1. Introduction ... 1

2. Biometrics ... 5

2.1. Overview .. 5

2.2. Performance Measures ... 8

2.2.1. Accuracy ... 9

2.2.2. Time .. 11

2.2.3. Resources .. 12

2.3. Biometric Systems ... 12

2.4. Existing Mobile Phone Biometric Recognition Systems 17

3. Proposed Secure Biometric System .. 19

3.1. Target Platform, Device and Tools .. 19

3.1.1. Platform .. 19

3.1.2. Device ... 25

3.1.3. Development Tools ... 27

3.1.4. Libraries and Possibilities ... 28

3.2. System Architecture ... 32

3.2.1. Introduction ... 32

3.2.2. Application Scenarios ... 37

3.3. Implementation Details .. 39

3.3.1. Data acquisition and Pre-segmentation ... 41

3.3.2. Communication Interfaces and Protocol ... 45

3.3.3. Pre-processing ... 47

3.3.4. Feature Extraction ... 49

3.3.5. Error Correcting Code (ECC) ... 51

3.3.6. Hash Function ... 54

4. Results ... 57

Hand-Based Biometric Recognition System for Mobile Devices

viii

4.1. Test Conditions .. 57

4.2. Recognition Performance ... 59

4.3. Application Performance ... 64

4.4. Tradeoff .. 68

5. Developed Android Application ... 73

5.1. Introduction to the Android OS .. 73

5.2. Developed Software Structure ... 76

5.2.1. Android Application Optimization ... 78

6. Conclusions and Future Work .. 79

7. Bibliography ... 83

Hand-Based Biometric Recognition System for Mobile Devices

ix

List of Figures

Figure 1 – Android example lock pattern. .. 2

Figure 2 – Types of biometrics. (Adapted individual images from the Web). 7

Figure 3 – Illustrative FAR and FRR graph. .. 9

Figure 4 – Interpretative graph of FAR, FRR and Equal Error Rate (EER). 10

Figure 5 – ROC curve, relating FAR and FRR at different threshold values [4]. 11

Figure 6 – Main modules of a biometric recognition system. .. 12

Figure 7 – Attack points in a biometric system. ... 16

Figure 8 – Graph of the average time for platform mastery [30].................................... 21

Figure 9 – Graph of the average debug time required for each platform [30]. 21

Figure 10 – Android versions distribution graph as of 1 November 2010 [31]. 23

Figure 11 – Android versions distribution graph as of 2 May 2011 [31]. 24

Figure 12 – Android versions historical distribution graph from November 2011 to 2
nd

May 2011 [31]. ... 24

Figure 13 – HTC Desire device. Front side on the left, and back side on the right of the

figure. .. 26

Figure 14 – System architecture and programming languages overview. 31

Figure 15 – Proposed system architecture (simplified). ... 32

Figure 16 – Secure biometric system architecture. ... 34

Figure 17 – Top level system architecture overview. ... 35

Figure 18 – Example internet access methods. ... 36

Figure 19 – Combined system architecture. ... 36

Figure 20 – NFC usage scenarios. .. 38

Figure 21 – Human palm. ... 40

Figure 22 – Palmprint features [42]. ... 40

Figure 23 – Developed system's palmprint capture and pre-segmentation screen. 41

Figure 24 – Communication interfaces and type. ... 45

Figure 25 – Request message structure. .. 46

Figure 26 – Hand contour and reference points. Image was taken from [34]. 47

Figure 27 – Image preprocessing phases. (Images adapted from [4]). 48

Figure 28 – Identification and normalization of the ROI [4]. ... 49

Figure 29 – Block diagram of a typical ECC scenario. .. 51

Figure 30 – Block diagram of ECC contextualization in biometrics scenario. 52

Hand-Based Biometric Recognition System for Mobile Devices

x

Figure 31 – Example H matrix of a LDPC code [4]. .. 53

Figure 32 – Interpretation of non-sparce matrix H [4] (Adapted). 53

Figure 33 – Behavior of 7 LDPC codes when correcting 8128-bit messages with bit

error rates of around 27% [4]. ... 54

Figure 34 – Genuine and Impostor Distributions, and ROC curves for the three tested

databases, using 128×128 templates and the OLOF technique, with no shifts considered

during template matching. .. 60

Figure 35 – Genuine and Impostor Distributions, and ROC curves for the three tested

databases, using 128×128 templates and the OLOF technique, considering the original

template position and 4 shifts during template matching. .. 62

Figure 36 – Genuine and Impostor Distributions for the HTC database, using 128×128

templates with the OLOF technique, and considering downsampling factors of 1:2, 1:3,

1:4 and 1:5, without considering template shifts at matching stage. 69

Figure 37 – Android software stack [31]. ... 74

Figure 38 – Activity lifecycle [31]. ... 75

Figure 39 – Developed Android application use case UML diagram. 76

Figure 40 – Android application Graphical User Interface (GUI) screens. 77

Hand-Based Biometric Recognition System for Mobile Devices

xi

List of Tables

Table 1 – Comparison of the human and technical factors of seven popular biometric

modalities (Adapted from [9]). ... 7

Table 2 – Message Digest algorithm 5 (MD5) hash function example. 13

Table 3 – Android versions distribution table as of 1 November 2010 [31]. 23

Table 4 – Android versions distribution table as of 2 May 2011 [31]. 23

Table 5 – HTC Desire device specifications summary. .. 26

Table 6 – Development tools and versions. .. 28

Table 7 – Message types and codes. ... 46

Table 8 – Possible error IDs and their meanings. ... 46

Table 9 – OLOF filter parameters. .. 50

Table 10 – Databases' specifications and consequent binary templates and comparisons.

 .. 58

Table 11 – Intra- and Inter-class comparisons interpretation. .. 58

Table 12 – Decidability indexes for the three tested databases, considering no shifts and

considering 4 shifts in the template matching. ... 63

Table 13 – Application memory usage in starting activity. The units are expressed in

1024 bytes. N/A: Does not apply. ... 64

Table 14 – Application memory usage in image acquisition activity. The units are

expressed in 1024 bytes. N/A: Does not apply. .. 65

Table 15 – CPU and memory usages for each of the considered downsampling ratios at

data acquisition stage, when the hand image is captured and sent to the server. The units

are expressed in 1024 bytes. ... 66

Table 16 – Processing times for different stages of the verification process, for the

different considered downsampling ratios. The times are expressed in milliseconds. ... 67

Table 17 – Decidability indexes and considered image sizes for the various

downsampling ratios tested for the HTC database, considering no shifts in the template

matching. ... 70

Table 18 – Tradeoff between biometric recognition and computational performances. 1

KB = 1024 bytes. .. 71

Hand-Based Biometric Recognition System for Mobile Devices

xii

Hand-Based Biometric Recognition System for Mobile Devices

xiii

List of Acronyms

AAPT – Android Asset Packaging Tool

ADT – Android Development Tools

API – Application Programming Interface

ARE – Asymptotic Relative Efficiency

AVD – Android Virtual Device

CAGR – Compound Annual Growth Rate

CER – Crossover Error Rate

CPU – Central Processing Unit

CTS – Compatibility Test Suite

DDMS – Dalvik Debug Monitor Server

DNA – Deoxyribonucleic acid

DOM – Document Object Model

DVM – Dalvik Virtual Machine

ECC – Error Correcting Code

EER – Equal Error Rate

FAR – False Accept Rate

FEC – Forward Error Correction

FRR – False Reject Rate

FVB – Feature Vector Binarization

GPS – Global Positioning System

GSM – Global System for Mobile Communications

GUI – Graphical User Interface

I/O – Input/Output

ID – Identifier

IDE – Integrated Development Environment

ISO – International Standards Organization

JAI – Java Advanced Imaging

JDK – Java Development Kit

Hand-Based Biometric Recognition System for Mobile Devices

xiv

JJIL – Jon’s Java Imaging Library

JNI – Java Native Interface

JVM – Java Virtual Machine

Java ME – Java Micro Edition

Java SE – Java Standard Edition

LAN – Local Area Network

LDA – Linear Discriminant Analysis

LDPC – Low-Density Parity-Check

LED – Light-Emitting Diode

MCC – MATLAB Code Compiler

MD – Message Digest

NDK – Native Development Kit

NFC – Near Field Communications

OLOF – Orthogonal Line Ordinal Features

OS – Operating System

OpenCV – Open Computer Vision Library

PCA – Principal Component Analysis

PIN – Personal Identification Number

RAM – Random-Access Memory

RFID – Radio-Frequency Identification

RIM – Research in Motion

ROC – Receiver Operating Characteristic

ROI – Region of Interest

ROM – Read-Only Memory

SDK – Standard Development Kit

SHA – Secure Hash Algorithm

SMS – Short Message Service

SSL – Secure Socket Layer

UML – Unified Modeling Language

Hand-Based Biometric Recognition System for Mobile Devices

xv

URL – Uniform Resource Locator

XML – Extensible Markup Language

XOR – Bitwise Exclusive Disjunction

Hand-Based Biometric Recognition System for Mobile Devices

xvi

Hand-Based Biometric Recognition System for Mobile Devices

1

1. Introduction

In the modern world of 2011, with the increase in the density and complexity of

information networks, users need to deal with increasing numbers of accounts, logins

and other private data to interact with new products and services. With the evolution of

the mobile phones industry, these services have become reachable on the go, anywhere,

anytime, and with increasing demand, powdered by the increasing pace at which people

must access and deal with information in today’s society.

According to [1] it is estimated that the market of mobile phones will continue to

increase in the years to come, notably from 2011 to 2015, in both emerging and

developed markets around the world, sometimes with even higher penetration rates for

middle income countries. This increase will lead to a continuous boost in the amount of

available services and access to information and reveal emergent security and privacy

needs. Issues such as private data protection, online banking, access management,

identity authentication, and combinations of these, need to be addressed efficiently in

order to protect the user from the higher risk of theft and loss inherent to accessing such

application features through smaller devices such as mobile phones or tablet PCs.

Additionally, with the escalating computational power and inherent security threats, the

need for more efficient and secure authentication methods is necessary, and noticeable

in market studies such as “Global Biometric Forecast to 2012” [2] which states the

global biometrics market is anticipated to grow at a Compound Annual Growth Rate

(CAGR) of around 22% between 2011 and 2013.

Recent Nielsen studies in [3] dating from 3 March 2011, state that Android bears a 29%

market share in U.S., being ahead of Research in Motion (RIM) Blackberry (27%) and

Apple iOS (27%). The tendency is for this increase to continue, since the same study

refers that youth are giving preference to the Android OS over other mobile platforms.

Typically, mobile phones have a Personal Identification Number (PIN) or password to

protect their contents. In most Android versions a locking pattern is used (see Figure 1),

which basically consists of a sequence of movements through 9 dots that works as the

password but can easily be spotted because of the required finger movements.

Hand-Based Biometric Recognition System for Mobile Devices

2

Figure 1 – Android example lock pattern.

What is proposed in this dissertation is the usage of biometrics as an alternative, safer

method to protect mobile devices’ information.

In fact the developed application aims to fill a gap in the market by presenting a new

physical biometric alternative within the Android domain, which is the palmprint, and

which is more practical to use than the face, in devices that only possess one camera,

and much more practical than behavioral biometrics such as the signature, which is

difficult to express in Android devices since most are meant to be used with just the

fingers’ touch.

The main contributions of this dissertation are:

• The explorations on the possibilities and limitations regarding the usage of

biometric recognition software in the Android platform, and the reutilization of

code across different platforms.

• A new biometric recognition system adapted from [4] into the mobile devices

scenario and using a new technique for template creation.

• A system architecture friendly to mobile commerce applications and adaptable

to different devices’ specifications.

• A communication interface between Android Java and MATLAB, developed in

2 parts, one for each end of the connection used in the system.

• To the best of the author’s knowledge, the first hand-based palmprint

recognition system developed for Android, as of June 2011. The system targets a

wide range of devices and works with the average hardware specifications.

Hand-Based Biometric Recognition System for Mobile Devices

3

• An important reference regarding performance results of hand-based palmprint

recognition on mobile phones and its feasibility in the Android 2.1 platform.

• System results for known databases but also for hand images from the mobile

phone. Since there is a lack for other databases with hand images acquired with

similar acquisition devices, these results are important for future biometric

recognition research for mobile devices.

This dissertation is structured as follows:

• Chapter 2 – State of the art regarding biometrics and biometric systems.

• Chapter 3 – The proposed secure biometric recognition system, explorations,

and implementation details.

• Chapter 4 – Results are presented, explored and discussed regarding the

system’s performance.

• Chapter 5 – The developed software is presented in terms of graphical user

interface and functionality.

• Chapter 6 – Conclusions and future work suggestions are discussed.

• Chapter 7 – The references used throughout the dissertation are listed.

Hand-Based Biometric Recognition System for Mobile Devices

4

Hand-Based Biometric Recognition System for Mobile Devices

5

2. Biometrics

2.1. Overview

A biometric trait is a measurable physiological or behavioral trait of an individual,

useable for recognition purposes through mathematical and statistical analysis methods

or image processing and pattern recognition. In order to be a biometric trait, the human

characteristic being considered must satisfy the following requirements [5] [6]:

• Universality: each person should have the characteristic.

• Distinctiveness/Uniqueness: any two individuals should be sufficiently

different in terms of the characteristic, for the metrics used.

• Permanence: the characteristic should be sufficiently invariant over a period of

time (e.g., it should resist aging, regenerate fast and to the original form if

injured).

• Collectability: the characteristic should be acquired and measured with

simplicity.

One of the many advantages of using biometrics is that the user will not have to

remember a password or a locking pattern, for he will be the key himself. This also

makes the system much more resistant to attacks because there is a much broader

spectrum of large possible inputs that can be the key and those complex inputs are

always the ones in use. Although in a textual password system a 512 characters

password can be used, typically a much smaller one is chosen for practical reasons, but

with biometrics, the complexity of the authentication input is always high. Additionally,

those inputs cannot be often perceived with bare eyes by the user’s surroundings, unless

recorded by a surrounding device, in which case the inputs can be replicated whether

text-based or biometric. The difference is in the fact that multi-biometric systems

require more inputs to be captured, and for a single biometric trait there is the need that

the acquisition fulfils some quality criteria harder to fulfill than to capture text-based

passwords or movement patterns such as the ones used in Android’s pattern lock.

In order for a biometric system to be successful after its deployment it is also important

that some additional issues are considered, both in terms of the biometric traits used and

the system’s architecture itself [5]:

Hand-Based Biometric Recognition System for Mobile Devices

6

• Performance: which depends on the accuracy of the system, on its speed, and

on the efficient usage of the available resources;

• Acceptability: which indicates the approval rate the target audience of the

system has;

• Circumvention: which reflects how easily the system can be fooled using

fraudulent methods.

In a mobile device application, with limited sensors, memory and processing capability,

it is difficult to achieve a good performance, which makes the optimization of the

system’s resources usage a vital need.

The lack of a controlled environment and the limitations of the average and generic

acquisition hardware of the device are also important barriers that need to be overcome

in order to achieve a good accuracy.

A vast number of characteristics have been used in biometric recognition systems (see

Figure 2), using different human traits [7] such as:

• Fingerprint – the pattern of ridges and valleys on the surface of a fingertip.

• Palmprint – the palms of the human hands contain the same type of tissue that

fingertips do, but in a larger area.

• Hand and finger geometry – shape and size of the hand, including the length

and width of the fingers.

• Iris – the texture of the colored membrane in the eye, responsible for controlling

the diameter and size of the pupil.

• Face – shape and position of facial attributes.

• Ear – the shape of the ear and the structure of the cartilaginous tissue.

• Deoxyribonucleic acid (D/A) – genetic data.

• Gait – the way one walks.

• Signature – the way a person signs their name.

• Keystroke – the way one types on a keyboard.

• Voice – acoustic spectrum of the voice.

• Mouse – acceleration and speed of mouse pointer movement, clicks frequency

and idle time [8].

Hand-Based Biometric Recognition System

Figure 2 – Types of biometric

Nowadays, most mobile phones come with a camera and with a gravity sensor, in

addition to the microphone, so the usage of biometric recognition systems that rely on

images of average resolution can be attempted (e

voice recognition or gait.

In the following table, multiple biometrics are compared according to the

prioritization of the requirements mentioned earlier, highlighting the qualities that make

palmprint a good biometric

Biometrics Fingerprint

Universality M

Uniqueness H

Permanence H

Collectability M

Performance H

Acceptability M

Circumvention M

Scalability H

Maturity H

Cost M

Table 1 – Comparison of the human and technical factors of seven popular biometric

from [9]).

Legend: H – High, M – Moderate, L

mobile palmprint domain through the colors green, yellow and red, which were assigned to the

characteristics of higher, moderate and lower importance respectively.

Based Biometric Recognition System for Mobile Devices

7

Types of biometrics. (Adapted individual images from the Web).

mobile phones come with a camera and with a gravity sensor, in

addition to the microphone, so the usage of biometric recognition systems that rely on

images of average resolution can be attempted (e.g., palmprint, face, ear, iris), as well as

In the following table, multiple biometrics are compared according to the

requirements mentioned earlier, highlighting the qualities that make

 trait for mobile biometric systems [9].

Fingerprint Face Hand Geo. Palmprint Iris Voice

H M M H M

L M H H

M M M H

H H H M M

L M H H

H M M L

H M L L

M L H H

M H L M M

L H M H

Comparison of the human and technical factors of seven popular biometric modalities

Moderate, L – Low. The biometric characteristics were prioritized for the

through the colors green, yellow and red, which were assigned to the

characteristics of higher, moderate and lower importance respectively.

for Mobile Devices

individual images from the Web).

mobile phones come with a camera and with a gravity sensor, in

addition to the microphone, so the usage of biometric recognition systems that rely on

g., palmprint, face, ear, iris), as well as

In the following table, multiple biometrics are compared according to the colored

requirements mentioned earlier, highlighting the qualities that make

Voice Signature

M L

L L

L L

M H

L L

H H

H H

L H

M M

L M

modalities (Adapted

Low. The biometric characteristics were prioritized for the

through the colors green, yellow and red, which were assigned to the

Hand-Based Biometric Recognition System for Mobile Devices

8

Alternative behavioral biometrics can be used, such as signature recognition or

keystroke patterns, but those are particularly ineffective in accuracy and acceptability in

Android mobile devices, due to the fact that such devices typically only support finger

touch interaction, which makes it difficult for proper signature or usage of virtual

keyboards.

When biometric systems use more than one biometric trait they are called multimodal

biometric systems and the acquired biometrics can be merged at different levels through

the usage of fusion techniques [7].

For systems performing identification on large databases, a linear search is necessary

since biometrics have no inherent natural order. For this reason, other techniques can

also be used, such as indexation of the database through biometric hash generation

techniques [10]. As discussed in [11], soft biometrics can be used to reduce search times

in large databases, and when using hand images, biometric traits such as hand geometry

can be used as soft biometrics for this purpose, without need for any additional

acquisition sensors [12].

Additionally, biometric systems may use continuous biometrics in order to keep the user

authenticated throughout his session, by continuously collecting biometric data of the

user in a passive way [13].

This is most useful with mobile phones since they are highly portable and very prone to

theft. It is possible that a genuine user could be authenticated in his mobile device when

the theft occurs, leaving the impostor user with both the device and full access to the

system.

2.2. Performance Measures

Whenever a measurement or capture is performed by a biometric system, it is processed

and converted into a feature vector or template, which is a representation of the

readings in a format supported by the system. This representation is typically different

for multiple measurements of the same user because of the noise introduced by capture

conditions, physical and physiological factors, so in order to compare them, a similarity

score must be computed between two measurements and a decision must be taken. A

threshold t is used to define the maximum differences between templates that is

considered to result in a successful authentication decision, or the equivalent correcting

Hand-Based Biometric Recognition System for Mobile Devices

9

power applied to different templates, in an attempt to correct acquisition noise and

making them equal.

Performance measures universally accepted are important to achieve system results with

significance, and to allow for different biometric systems to be compared.

2.2.1. Accuracy

Typically, a recognition system’s accuracy is measured through the False Accept Rate

(FAR) and the False Reject Rate (FRR) and there is a trade-off between both, due to

their inverse dependence with the threshold t, as we can see through their definition

(also see Figure 3):

• FAR – Corresponds to the probability with which an impostor successfully

accesses the system. This is the probability of the similarity score between an

impostor’s template and a genuine user’s template being greater than t.

• FRR – Corresponds to the probability with which a genuine user fails to access

the system. This is the probability of the similarity score between a captured

genuine template and the genuine template used for enrolment being smaller

than t.

Figure 3 – Illustrative FAR and FRR graph.

Source: http://www.tiresias.org/phoneability/accessible_biometrics_proceedings/images/mansfield_slide_9.jpg

Hand-Based Biometric Recognition System for Mobile Devices

10

The threshold t must be adjusted for each system, to ensure enough security with a low

FAR, but enough flexibility with a FRR not high enough that could make the

acquisition noise and variations become a problem for a genuine user.

The balance between FAR and FRR is illustrated in Figure 4, along with the Equal

Error Rate (EER) (or Crossover Error Rate (CER)), which is the rate at which FAR and

FRR are equal:

Figure 4 – Interpretative graph of FAR, FRR and Equal Error Rate (EER).

The Asymptotic Relative Efficiency (ARE) region is marked and represents the “best

possible” region of operation for a given loss function. This varies for each system,

since some systems need high FARs and lower FRRs for practical reasons, while others

require low FARs, to ensure that no impostor user enters the system. In Figure 4, the

ARE was defined as the region between the EER and EER+5%, above the threshold

value. The EER+5% was used as an example, and the considered region may change to

consider different EER limits and/or different thresholds, depending on the system’s

application domain and its security requisites.

The EER gives an idea about the sensitivity of the system to threshold adjustments, and

corresponds to the threshold of equilibrium between FAR and FRR. This point is not

necessarily the best operating point for the system, because some systems may require

high security, prioritizing FRR over FAR, and others may have speed and practical

needs, prioritizing FAR over FRR.

Source: http://2.bp.blogspot.com/_WovQZk-HYJw/TE0UALf-mbI/AAAAAAAAAAU/JvjkwDXG0Wo/s1600/31.JPG

Hand-Based Biometric Recognition System for Mobile Devices

11

Given the above discussion, it becomes useful to plot FAR against FRR in order to see

how the system performs at all the possible threshold values. This plot is called the

Receiver Operating Characteristic (ROC) curve (see Figure 5):

Figure 5 – ROC curve, relating FAR and FRR at different threshold values [4].

Another rate that is also useful and of important significance, especially in mobile

systems, is the Failure to Enroll Rate (FER or FTE), which is the rate at which attempts

to create a template are unsuccessful. This is mostly caused by insufficient quality of the

input data, and is more significant in less constrained capture environments, such as the

one considered for a mobile device usage scenario.

2.2.2. Time

The amount of time the system takes to perform its set of operations using a set of

techniques is also a performance measure of the system, but not necessarily of the

techniques themselves, for that depends on the way they are implemented and used

within the system.

This is most important in mobile applications where the computational power is limited

and the user should not be left waiting for the application to respond. In order to

guarantee the success and satisfaction of the users, and even to commercialize an

application in some markets, some requirements of responsiveness must be taken into

account.

Ideally, the fastest a system performs, the better, as long as it continues to satisfy the

other criteria such as security.

Hand-Based Biometric Recognition System for Mobile Devices

12

2.2.3. Resources

The resources the system uses to perform its set of operations is also a measure of the

system’s performance.

In mobile phone applications this is even more important because memory and

computational power are limited, and the application will also have to share those scarce

resources with other applications that run in the mobile device. By being more efficient,

the application will be faster and also ensure a longer lifespan of the battery’s charge of

the mobile device.

Ideally, the less the memory and Central Processing Unit (CPU) cycles used by the

application, the better, as long as it also does not interfere with the other criteria.

2.3. Biometric Systems

Biometric recognition systems perform the biometric recognition of individuals through

a set of 5 essential modules (see Figure 6):

• Data Acquisition – User interface module where the biometric trait is presented

and acquired by the system through sensors.

• Signal Processing – Signal processing module, including pre-processing tasks,

feature extraction and template creation.

• Database – Database where the templates or the results of other functions

applied to them, are stored for future comparisons.

• Matching – Module responsible for computing a similarity score based on the

post-processed acquired data and the data stored in database.

• Decision – Decision module which decides if access is granted or not, based on

a similarity score and a threshold value.

Figure 6 – Main modules of a biometric recognition system.

Hand-Based Biometric Recognition System for Mobile Devices

13

Based on the application scenario, a biometric system may operate in two modes:

• Verification Mode – The system validates a person’s identity, by performing a

one-to-one comparison between the stored data and the presented data for a

given identity, claimed by the user at authentication time. This claimed identity

may be, for example, a username, an email, a PIN, or a smartcard.

• Identification Mode – The system recognizes an individual without additional

information other than the biometric data, by finding the best match between the

presented data, and the data stored in database for each user. This way the

system performs a one-to-many comparison.

In either case, there is the need to store recognition-critical data in the database, but this

poses some serious security concerns. If the biometric template is stored, whether

encrypted or not, it may be stolen and eventually deciphered, resulting in identity theft.

To make this worse, the users have a limited set of biometrics, and are unable to

generate new ones. The need for data that must be stored for the system to work is

typically the weakest link in security for biometric authentication systems.

In the typical password based systems, this problem is addressed by using one-way hash

functions. Hash functions have the particularity of providing very different output

values (although with the same length) in most circumstances, even when the input

values are very similar, as shown below using MD5 as an example hash function, with

two similar input strings:

MD5

Input - P Output - H(P)

password 5f4dcc3b5aa765d61d8327deb882cf99

passwArd 769b6259c5c2ee6090b945826979e049

Table 2 – Message Digest algorithm 5 (MD5) hash function example.

Since they are one-way functions, those systems can allow the user to provide a

password �, hash it with a function �, resulting in �(�) which is then stored for future

comparisons, and cannot be reverted back into the original �. Upon authentication the

user provides �′, and �(��) is calculated for comparison with the stored �(�). If they

are equal, there is a high probability that �′ = � and the user is successfully

authenticated. Even though two different inputs may result in the same output of a hash

Hand-Based Biometric Recognition System for Mobile Devices

14

function due to the limited number of outputs, that typically never happens, because the

inputs for a given domain are also limited (e.g., passwords may not contain more than �

characters in a given system, or generated templates may not be larger than a specified

size).

However, in biometric systems, hash functions cannot be used as easily. The acquisition

noise makes two templates 	 and 	′ from the same user be typically slightly different,

resulting in �() ≠ �(�) most of the time.

In order to solve the secure biometrics template storage problem, biometric systems take

one of two approaches: usage of an Error Correcting Code (ECC); or the usage of

Encryption.

For ECC-based biometric systems, an Error Correcting Code (ECC) is used to calculate

and store the parity bits for a given template along with its hash, instead of storing the

template itself. In this way, when authentication is necessary, the stored parity bits are

used to “correct” the presented template. In this approach, acquisition noise is a concept

equivalent to user variability [14]. The desired correction power depends on each

application scenario, but the ideal is that templates from different users are not corrected

enough that they become the same, and templates from the same user are corrected

enough that the acquisition noise is eliminated, resulting in the same template. Since the

stored information consists of only the parity bits and the hash result of the template, it

is considered very difficult to recover the biometric based on the stored data. The

security of this approach is not provided by the difficulty of inverting the hash function

(since it is considered non-invertible), but by the number of the equally likely

biometrics which may match the stored data.

For encryption-based biometric systems, homomorphic encryption is applied to the

biometric, and authentication uses a protocol based on the homomorphic properties of

the used encryption, providing security and data privacy [15]. The logic behind this is

that portions of transferred messages reveal no important biometric information by

themselves, but when the other end of the connection receives the message, based on

those properties and in information the receiving entity knows, it can extract biometric

information from the received message. The computational security offered by this

approach is that of the cryptographic algorithms used and the used protocol.

Hand-Based Biometric Recognition System for Mobile Devices

15

Hybrid approaches can be taken, especially when the system works with a client-server

architecture, in which an encryption approach is necessary for the communication, and

the error correcting code approach can still be used as a means of storing biometric data

with transforms considered to be irreversible.

Regardless the approaches that are used, it is important to understand that biometric

systems can be the target of multiple security threats at various modules of their

architecture and processing stages [16] [17] [18]. In general, the attacks which can be

performed on a biometric recognition system can be summarized in four major types

[18]:

• Attacks at the User Interface – A spoof biometric trait is presented to the

system, allowing the attacker to intrude the system in the event it cannot

distinguish between the fake biometric trait, and a genuine one. Liveliness

detection is a possible solution to deal with this problem.

• Attacks at the Interface Between Modules – The information exchanged

between modules is intercepted by an attacker and manipulated with the goal of

triggering the system’s behavior desired by the attacker. Secure communication

channels and cryptography are ways to minimize the risk associated with these

attacks.

• Attacks on the Software Modules – The attacker changes and corrupts the

system’s behavior by changing the software’s code statically using for example

Trojan horses, or dynamically, by providing inputs for which the system’s

algorithms are not prepared, triggering different and unexpected behaviors in

the system.

• Attacks on the Template Database – The templates database is attacked,

compromising to some extent the users’ identities. Some problems associated

with this attack are the fact that: legitimate access can be denied by the deletion

of templates; templates can be stolen and worked outside of the system for the

creation of physical spoofs that originate equal templates; the templates can be

injected directly at the matching module; the templates can be used for tracking

of the user’s access to other systems; and in the event the template is not

encrypted or can be decrypted and provide a good regeneration of the original

biometric traits, the biometric identity of all the system’s users can be stolen and

compromised.

Hand-Based Biometric Recognition System for Mobile Devices

16

When looking at a biometric system’s architecture, more specific attack points can be

looked into, as shown in Figure 7:

Figure 7 – Attack points in a biometric system.

The red hexagons mark the attack points, which can be described as:

• Type 1 – Attack on the Data Acquisition Module – A denial of service can be

caused by destruction or corruption of the system’s sensors and/or data

acquisition components.

• Types 2, 4, 7, 8, 10 – Attack on the Communication Channel between

Modules – The attacker intercepts the communication channel between two

modules, being able to steal, alter, and/or inject channel information. In the

event data previously captured is sent again by the attacker, it is also known as a

Replay Attack.

• Type 3 – Attack on the Feature Extraction Module – A Trojan horse can be

used by the attacker to remotely control the module and send any desired

combination of values as input to the matching module.

• Type 5 – Attack on the Matcher Module – The module can be controlled

remotely with a Trojan horse, providing the possibility for the attacker to cause a

denial of service by forcing the matcher to produce poor scores always, or

providing access to the system to himself or to all, by producing high scores.

• Type 6 – Attack on the System’s Database – The attacker can access the

system’s database by either cracking an account or exploiting vulnerabilities in

����

����	
	�	��

������

�������	��
�������

������
�

����	���	��

���	��

� � � � �

�

�

�

���	
	��

�!

Hand-Based Biometric Recognition System for Mobile Devices

17

the database software and its provided management interfaces. Once inside, the

attacker can steal and compromise the templates of all the system’s users.

• Type 9 – Attack on the Application – The vulnerabilities in the final

application to which the biometric recognition system is attached to are explored

and exploited by the attacker. The fact that all software inevitably has bugs and

flaws provides room for an attacker to find them and use them to achieve his

impostor goals. Additionally, in the event that the application provides other

authentication methods as alternatives to biometrics, they can be used for this

attack instead.

Every module and each channel between modules is a possible point of attack, and as

such, security is an issue that must be addressed at its various levels, from the top view

of the application to each of the modules that compose it and the channels between

them. The weakest link in this path will typically be what compromises the system’s

security.

2.4. Existing Mobile Phone Biometric Recognition Systems

Many mobile biometric recognition systems work through the usage of a specific

acquisition device, which is connected to the mobile device in question, and provides a

way to capture the necessary biometrics within a favorable environment, and with

higher standards of quality in the captured data and consequent results, when compared

with systems that do not use specific attachable capturing devices.

In the context of mobile devices such as mobile phones, the usage of external biometrics

acquisition devices is not practical, and in some cases, not possible because if used for

user authentication to third party systems, these systems might not load enough

connectivity system settings and/or drivers necessary for the acquisition module and/or

the biometric recognition system as a whole, prior to authentication. For example,

before logging in to the mobile device, the operating system might not allow the

execution of applications which are not part of the OS’s core, or load the drivers and

ports necessary for the recognition of the external biometrics acquisition device.

The big challenge for biometric recognition systems in mobile phone devices is for

them to be capable of capturing biometric data with the typical acquisition sources

native to the devices, and managing to optimize the results and security obtained

through them.

Hand-Based Biometric Recognition System for Mobile Devices

18

There are some mobile phone biometric solutions available for most of the mobile

phone platforms available, but still many issues to address and evolution to undertake.

Those solutions typically make use of the iris [19] [20], the face [21], the voice [22] or a

combination of any of those.

For the chosen platform, Android, there are essentially three solutions known within the

community:

• BioWallet from Mobbeel [23] – which originally makes use of the user’s

signature for authentication and to allow access to private encrypted files stored

within the device.

• BioLock – which allows the user to access private data through iris scan, face

recognition, or the usage of a traditional text password. This software has been

in development for more than six months and is still in beta, being only available

to partners and/or press, upon request [24].

• CredentialME AppLock [25] – which performs applications protection

(lock/unlock access) based on face recognition.

Mobbeel also has software for other devices, which performs biometric recognition

through the iris, but according to forum discussions [26] on the possibility of porting it

for the Android mobile phones, Mobbeel staff mentions that the image acquisition from

the phones does not provide enough overall quality for an accurate iris scan.

The alternative used by Mobbeel is a good solution, but the fact that most Android

devices are operated with the user’s fingers, authenticating through a signature becomes

a rather impractical, inaccurate and cumbersome task.

BioLock’s software sounds promising, but the fact that the beta versions have remained

unreleased to the public, suggests that many issues are still arising and needing to be

addressed.

No systems using the palmprint were found for Android phones at the time of this

dissertation’s proposal.

For those reasons, and for the promising insight on the usage of the palmprint as a

recognition biometric with characteristics well-suited for a mobile phone environment,

the usage of this biometric trait was chosen and attempted.

Hand-Based Biometric Recognition System for Mobile Devices

19

3. Proposed Secure Biometric System

In this section the proposed secure biometric system will be presented, starting with the

planning of the target platform, device and tools, and proceeding to the internal system

architecture and implementation details.

3.1. Target Platform, Device and Tools

In order to develop a system for a platform, it is important to study and research the

available alternatives, their advantages and disadvantages and how they connect with

the goal of the work and the application.

Each mobile platform has got its specificities just like any OS, and each device has got

its own set of hardware, which will dictate its performance limitations but also the range

of sensors that will limit the biometric traits useable by the system. Additionally, the

tools to use will influence the productivity and the depth of detail and complexity that

can be faced at development time.

3.1.1. Platform

In order to create a biometric recognition system for a mobile device, the first choice to

make is to decide on the target platform, bearing in mind that this choice will have a

huge impact in the implementation, potential, adaptability and limitations of the

application to develop.

There are many mobile platforms available for development, such as Symbian,

Blackberry, Android, iOS (for iPhone), Windows Mobile, Palm, and various others,

including cross-platform choices such as Java Micro Edition (Java ME). Each platform

with their own set of tools and communities of developers, each with their pros and

cons.

At first thought, cross-platform choices would be the best way to go for a flexible

application, capable of running on multiple Operating Systems and consequently

targeting a wider range of mobile devices. However, Java ME is harder to understand,

less responsive and provides less Java Standard Edition (Java SE) support when

compared to Android [27].

Android was the taken choice for multiple reasons:

Hand-Based Biometric Recognition System for Mobile Devices

20

• Open source Operating System (OS) – Code available online, based on Linux,

and can be changed to make specific versions if necessary, extending possible

limitations and also making it adaptable to different types of hardware, including

customized hardware designed with specific purposes in mind. Additionally,

continuous updates are made available, providing a steady evolution of the OS;

• Java Programming Language – The applications that run on the OS use the

Java Dalvik Virtual Machine (DVM), which runs applications written using the

Java Programming language and making use of a specific set of android

libraries. This also reduces the learning curve for people experienced with the

Java Programming Language, which is the case for this dissertation;

• Computational efficiency – Java is a slow language by nature, because it is

interpreted, meaning that the code is compiled into class files which are then

read by virtual machines specific to each platform, which in turn “translates”

them into byte code to execute. However, it is also possible to optimize code

within the application by the usage of the Native Development Kit (NDK), and

Java Native Interface (JNI), which allow for the execution of C and C++ code

from within the Java application. Additionally, the Dalvik Virtual Machine used

within Android has got lots of optimizations to improve performance and

optimize the energy spent to translate and process the code. In [28], it is shown

that for simple algorithmic tasks, the implementations are almost as fast in Java

as they are in C/C++, as long as they are iterative. For recursive implementations

big improvements are achieved through the C/C++ language.

• Growing share of mobile phones – According to Gartner’s forecast from April

2011 in [29], Android will have a worldwide market share of around 38.5% in

2011, and is forecast to continue growing, reaching 49.2% in 2012.

• Supported by the Open Handset Alliance – Supported by a group of over 60

international device manufacturers and service carriers such as Telefonica,

Vodafone, T Mobile, and various others.

• Efficient Tools and Development – According to a study from Mobile

Developer Economics in 2010 [30], done with a universe containing both

beginners and experts from the various platforms, Android is the faster platform

to master, and the faster to debug, making it one of the best choices to develop

Hand-Based Biometric Recognition System for Mobile Devices

21

applications at a steady pace, and with time constraints regarding their delivery

(see Figure 8 and Figure 9).

• “Easily” Cross-Platform – Since applications developed for Android are

mostly written in the Java Programming Language, converting the application to

Java ME to make it cross-platform becomes easier, for most of the functional

and technical code remains the same. What changes is the set of core libraries

used, which imply an architecture change in the way the application works, to

respect the different lifecycles imposed by each platform.

Figure 8 – Graph of the average time for platform mastery [30].

Figure 9 – Graph of the average debug time required for each platform [30].

Hand-Based Biometric Recognition System for Mobile Devices

22

Upon deciding for the Android platform, it is important to choose which version of the

platform the application will target, bearing in mind that the versions have been

progressively improved and optimized with each release and that at the time of choosing

there were mostly devices with Android 1.6, 2.1 and 2.2 available in the market.

There is a difference between the hardware specifications of mobile phones that come

with the Android 1.6 (and previous versions) by default, and those that come with 2.1 or

newer versions. Typically, devices running 1.6 or older versions have slower CPUs, in

the range of 0.5 GHz and about 256 MB Random-Access Memory (RAM). There are

however some exceptions (such as Gigabyte GSmart G1305 Boston, also known as

Codfish), where the devices run Android 1.6 and have a CPU of 600 MHz, also

allowing the user to update to version 2.1. This means that the mobile devices are

evolving towards meeting the optimal specifications for running Android 2.1 and

beyond.

Another big difference between Android 1.6 and 2.1 is the amount of heap memory

each application is allowed to allocate in an instance of the Dalvik Java Virtual

Machine. In Android 1.6 and older versions, this limit is set to 16 MB, but in Android

2.1 and forward this limit is 24 MB. This difference, along with the optimizations from

version 2.1, could be vital for biometric recognition systems, where image processing

algorithms may require allocating much memory to process acquired images and

signals. This makes version 2.1 a wiser choice than 1.6 because it will allow more

flexibility to deal with the limitations of developing for a mobile device with limited

resources.

As for version 2.2, it has got further speed improvements provided by the platform, and

also the possibility of allowing users to install applications to the expandable memory.

However, these advantages are not significant enough to make it a better choice at the

time of decision, because at the time of this decision there was a higher share of users

running version 2.1 than 2.2 according to the data published on Android developer’s

official website, with data collected during two weeks ending on 1 November, 2010, as

shown below in Table 3 and Figure 10:

Hand-Based Biometric Recognition System for Mobile Devices

23

Platform API Level Distribution

Android 2.2 (Froyo) 8 36.2%

Android 2.1 (Eclair) 7 40.8%

Android 1.6 (Donut) 4 15.0%

Android 1.5 (Cupcake) 3 7.9%
Table 3 – Android versions distribution table as of 1 November 2010 [31].

Figure 10 – Android versions distribution graph as of 1 November 2010 [31].

Another note of importance is the fact that a single Android application can target a

whole range of Android versions as long as it uses calls from an Application

Programming Interface (API) present in the targeted Android versions. Each version has

an integer number that identifies it, called API Level. The Android APIs are typically

incremental in their releases, meaning that the API available in Android 2.2 contains the

calls provided by version 2.1. Through this, it is possible to develop an application that

will target 2.1 and consequently 2.2, allowing the application to target a total of 77% of

the Android users according to Table 3 previously shown, bearing in mind that that

percentage will grow as users using older versions update their platform versions.

Taking a second look at the versions in use, with the data published by Android

Developers website collected for two weeks, ending on May 2, 2011 (see Table 4 and

Figure 11), it is possible to see that, as initially predicted, the tendency is for users to

update to the newest versions, and the versions previous to 2.1 start becoming obsolete.

Platform API Level Distribution

Android 1.5 3 2.3%

Android 1.6 4 3.0%

Android 2.1 7 24.5%

Android 2.2 8 65.9%

Android 2.3 9 1.0%

Android 2.3.3 10 3.0%

Android 3.0 11 0.3%
Table 4 – Android versions distribution table as of 2 May 2011 [31].

Hand-Based Biometric Recognition System for Mobile Devices

24

Figure 11 – Android versions distribution graph as of 2 May 2011 [31].

With this, it becomes clear that the choice taken was the most appropriate because an

application targeting Android 2.1 will also be targeting all versions after it, which

means that the developed application will be targeting 94.7% of the market’s mobile

phones. Since new devices keep coming with new versions of the Android OS and

previous ones keep getting updated, according to the graph of the evolution (see Figure

12), it is to expect that the number of devices running 1.6 and previous versions

continues to decrease, increasing the percentage of targeted devices even further.

Figure 12 – Android versions historical distribution graph from November 2011 to 2
nd

 May 2011 [31].

There are tools available in the community such as the Compatibility Test Suite (CTS)

Framework for Android [32], provided by the Open Handset Alliance, and which allows

for testing and tuning Android applications towards compatibility through multiple

platform versions.

The possibility of adapting the system to make a new implementation for other mobile

platforms in the future, such as Java ME is also not completely limited by the

specificities of Android’s Java, because regardless the fact the Android platform

Hand-Based Biometric Recognition System for Mobile Devices

25

imposes a specific architecture in an application and its Graphical User Interface (GUI),

the core part of the application, regarding the image processing operations and security

functionality is isolated from the rest in an abstract layer of its own, using Java libraries

and operations that are mutually supported by Android’s Java and standard Java. Below,

a set of the most relevant libraries supported by both platforms is shown:

• java.io – File and stream Input/Output (I/O)

• java.lang (except java.lang.management) – Language and exception support

• java.math – Big numbers, rounding, precision

• java.net – Network I/O, Uniform Resource Locators (URLs), sockets

• java.nio – File and channel I/O

• java.security – Authorization, certificates, public keys

• java.sql – Database interfaces

• java.text – Formatting, natural language, collation

• java.util (also java.util.concurrent) – Lists, maps, sets, arrays, collections

• javax.crypto – Ciphers, public keys

• javax.net – Socket factories, Secure Socket Layer (SSL)

• javax.security (except javax.security.auth.kerberos, javax.security.auth.spi,

and javax.security.sasl) – General security frameworks

• javax.sound – Music and sound effects

• javax.sql (except javax.sql.rowset) – More database interfaces

• javax.xml.parsers – Extensible Markup Language (XML) parsing

• org.w3c.dom (but not sub-packages) – Document Object Model (DOM) nodes

and elements

• org.xml.sax – Simple API for XML

3.1.2. Device

The device choice was planned in July 2010. At this point, the official Google

development phone known as Nexus One was becoming discontinued, and the new

version of that phone was not yet available. After a technical specifications analysis of

the mobile phones available on the market at that time and available for purchase, HTC

Desire was the chosen device (see Figure 13).

Hand-Based Biometric Recognition System for Mobile Devices

26

Figure 13 – HTC Desire device. Front side on the left, and back side on the right of the figure.

The device’s specifications are shown in Table 5 below:

Attribute Specifications

Default OS Android 2.1

CPU Qualcomm Snapdragon QSD8250 1 GHz processor

Memory 576 MB RAM; 512 MB ROM

Camera 5 MP, 2592 x 1944 pixels, autofocus, LED flash

Card Slot 4 GB (up to 32 GB)

Extras Multi-touch input method; Accelerometer sensor
Table 5 – HTC Desire device specifications summary.

Although other devices could have been chosen, the choice taken and the relevance of

the specifications presented in the previous table fulfill the following logic:

• Heap limit – The fact that the device comes with Android 2.1 will allow the

developed application to use a 24 MB heap instead of the 16 MB allocated for

Android 1.6 applications and before, as well as to take advantage of improved

performance optimizations that the Android OS has had from version 1.6 to 2.1.

• Camera – This phone also possesses a 5 MP camera, which is typical for

Android devices built for Android 2.1, and puts this phone in the average-phone

situation for what concerns the camera.

• CPU – The 1GHz CPU, 576 MB RAM and 512 MB Read-Only Memory

(ROM) make it one of the best phones for processing experimentation in

comparison to all the other considered devices available at the time of the

planning and purchase. This way the development process was optimized for

both speed and research.

Hand-Based Biometric Recognition System for Mobile Devices

27

• Extra Sensors – Multi-touch input and the accelerometer sensor are two extras

which also allow the possibility of further experimentation at a later stage of the

work, regarding the usage of additional biometrics, to further improve the

system and its performance rates.

• External Memory Card – Less important, but still worth mentioning, is the fact

that the 4GB card included will allow for the testing of the system when

installed both directly on the device, or in its memory card, in case the OS would

be updated to Android 2.2, since that version allows for those two installation

locations.

3.1.3. Development Tools

In order to develop the proposed application, along with its documentation and

diagrams, a set of tools will be used for development, testing and optimization purposes:

• Eclipse Integrated Development Environment (IDE) – Eclipse is a powerful

tool developed in Java, with the goal of aiding the programmer in the task of

developing the application. It has many plug-ins that can be integrated with it to

add additional functionalities, and it also links together compilers and settings

for the used languages and tools, making it easier to use them altogether, in a

more efficient way during the development task.

• Java Development Kit (JDK) – It includes a set of utilities that make it

possible to develop software systems for the Java Platform, used by Android. It

includes the compiler and a set of libraries.

• Android Standard Development Kit (SDK) – Consists of the managing tool

for the installed Android APIs, as well the Android Virtual Device (AVD)

Manager tool, to manage virtual devices to use with the emulator and their

hardware specifications. Additionally, it comes with a set of tools for the testing

of application packages, optimization of code and other features. Each Android

API also includes packages with classes specific for instrumentation and testing.

• Android Development Tools (ADT) – It is a plugin for Eclipse, provided by

Google and Android developers, that comes with a set of tools and functionality

used in Android development, such as editors for specific file formats, special

XML parsers using special templates specific to Android, an Android emulator

for testing and debugging applications within a virtual environment, Dalvik

Hand-Based Biometric Recognition System for Mobile Devices

28

Debug Monitor Server (DDMS) where applications can be deeply traced and

analyzed in terms of threads, calls, and heap memory used, and further tested by

allowing the possibility to send signals to the virtual device, such as virtual

phone calls, position coordinates, and various other useful functionality.

The set of tools and corresponding versions used during development are summarized

in the following table:

Tool Version

Eclipse IDE 3.5.2

JDK JDK 6 Update 22 (Java SE)

Android SDK revision 7

Android API Android 2.1-update1, API Level 7, revision 2

ADT & DDMS 0.9.9.v201009221407-60953
Table 6 – Development tools and versions.

3.1.4. Libraries and Possibilities

The application being developed requires plenty of image processing algorithms already

commonly used in other platforms, and as such, multiple alternatives were considered:

• Use an existing image processing library for Android

• Use an existing image processing library for Java, and use it within the Android

environment

• Use a C/C++ library within Android, by using the JNI and NDK

• Use MATLAB Code Compiler (MCC) to compile MATLAB files into a C/C++

library

• Use MATLAB Builder JA to generate Java wrapper classes with the MATLAB

code to be used

• Use virtualization tools to execute a MATLAB runtime within the Android

environment

• Create a new Android image processing library from scratch

Regarding the first option, there is mostly one known image processing library

specifically designed for Android, called Jon’s Java Imaging Library (JJIL), and which

implements a vast amount of image processing algorithms. However, there are some

problems with this library:

Hand-Based Biometric Recognition System for Mobile Devices

29

• The fact that it defines its own data structures based on a fairly redundant

representation of the original matrix data from the images leads to huge matrices

being passed in the constructor every time an image needs to be processed.

• Since the image processing algorithms are defined in chain sequences, a whole

set of objects needs to be created in order to achieve a specific image operation

of a more complex nature.

• The API for the image operations provided by the library does not offer the

desired information about the operation and the way it is performed. There are

also cases in which no descriptive information is provided by the API at all.

• It is not clear how new image processing algorithms can be defined to extend the

library, and in the event those are created they will be deeply linked to the

library’s architecture. This will make them look less intuitive and less reusable

in other libraries for other mobile platforms which could possibly have use for

similar algorithms.

For those reasons, the JJIL library was not used, as it could have been limiting in the

long run, and it hides too many details about the way images are processed, while at the

same time enforcing its own structure.

The second alternative would be to use a Java image processing library such as Java

Advanced Imaging (JAI). However, at the time this project was started, the source code

for some of the most powerful libraries such as JAI was not available, and plenty of

other projects hosted in Java websites were taking on hosting changes, which made

some resources unavailable or at inconsistent states. The java.net website for

community source projects has taken structural changes and not all the source code was

available at the time it was considered. As seen in the project properties section of the

java.net website for that project [33], “Jai-core is a subproject of Jai -- Placeholder, was

started in January 2011 …”.

As for the third option, C/C++ libraries could be converted and adapted, at the cost of

losing the straight forward compatibility that Java would provide to all the Android 2.1

and forward devices, since those libraries would have to be compiled for different and

specific mobile phone processor models. Additionally, the performance boost is not

guaranteed in the sense that each time there is a JNI call, much overhead is necessary,

and long arguments need to be converted and passed by the Java Virtual Machine into

Hand-Based Biometric Recognition System for Mobile Devices

30

the C/C++ libraries. Another important thing to keep in mind is that debugging, which

is already a difficult task in mobile environments becomes further difficult when mixing

C/C++ code with the Java code used as the core of the environment’s applications. This

would greatly reduce productivity. Also of notice is the fact that access to Bitmap

buffers with some NDK versions is limited to Android 2.2 versions and beyond.

The usage of libraries such as Open Computer Vision Library (OpenCV) were also

considered for this purpose, but its conversion for use in Android is not direct since

recent versions of OpenCV hold much functionality from C++ which is not compatible

or convertible to the Java language. This would imply using old outdated OpenCV

versions. A new version of OpenCV specific for use within Android started being

developed in the beginning of January 2011, but it is still at a very early stage of

development, with few examples available, limited functionality and little guarantees of

reliability.

The fourth option is similar, but would consist of converting MATLAB files into C/C++

files through MCC. However, the problem with this is that it can only be done easily to

create executable files, assuming the target platform will hold a runtime version of

MATLAB, which is not the case for the used mobile phone. The C/C++ compiler option

produces code difficult to read and with plenty of gaps due to toolbox dependencies

which would have to be introduced by hand. In addition, this solution poses the same

problems than the one before since it would produce C/C++ code to be called from

within a Java environment through JNI.

The fifth option would be a solution if Android was a supported platform for MATLAB,

which is not the case at the point of this decision. Although this option could be used to

produce code for a web context, it was not used because this would result in less

efficiency due to the additional interaction steps and protocol layers, as well as the

necessary Java objects to handle the requests. If a web solution is adopted, it should be

implemented directly in MATLAB, for a better performance.

The sixth option would require the usage of virtualization tools, running a virtual

machine with Windows or another platform MATLAB-compatible, in order to have its

runtime running within, hence making it capable of executing MATLAB code. At the

moment of this dissertation virtualization within the Android platform is still quite

young and taking its first steps, which would make this a poor and limited choice, since

Hand-Based Biometric Recognition System for Mobile Devices

31

virtualization has still many issues to address before it matures in this platform and

mobile platforms in general.

The seventh and last considered alternative would be to develop an image processing

library from scratch. This choice was taken temporarily in an attempt to gain insight

both about the task’s complexity and also about image processing within Android, in

order to better realize how available libraries achieve it in this platform. A simple image

processing library was created, but the complexity required to implement the desired

system would imply more time than what was available to complete the dissertation as a

whole.

For those reasons, a new architecture was considered for the system, with a client and

the server, where the server runs in MATLAB and does the processing directly in this

language, making use of Java within, for the communication interface (see Figure 14).

Figure 14 – System architecture and programming languages overview.

This way, the system was made possible, using an approach similar in concept to the

fifth option previously explained, but with a higher efficiency and control, since instead

of using computer-generated Java wrapper classes targeting a plain Java environment,

Android Java classes were specifically developed.

The existing MATLAB system architecture was changed, an interface layer for the

communication was implemented, and an Android client was developed from scratch. A

new feature extraction technique was used by the system in order to better adapt it to the

mobile devices’ domain.

In this chapter’s next section this architecture will be fully described in detail.

Hand-Based Biometric Recognition System for Mobile Devices

32

3.2. System Architecture

3.2.1. Introduction

The proposed system’s architecture is adapted from the biometric recognition system

proposed by M. Ramalho in [4] and his developments over the system proposed by T.

Sanches in [34]. The initial system architecture for this work is illustrated in Figure 15.

The Feature Vector Binarization (FVB) module was removed, and a Pre-segmentation

module was added to the system.

Figure 15 – Proposed system architecture (simplified).

The goal of the new pre-segmentation module is to provide feedback to the user of what

the application perceives to be the user’s hand in each frame captured by the device’s

camera, aiding in the data acquisition task and improving usability. This module is

described in detail in section 3.3.1 Data acquisition and Pre-segmentation.

In the enrolment stage, the input biometric data is acquired from the user, pre-

processed, and then the features are extracted. An ECC is then applied to the resulting

template � holding the features or their representation, and the produced parity-check

bits � are stored in the database, along with the result �(�) of a hash function � applied

to that template �. The parity-check bits � will allow the correction of templates from

future verification attempts, within correction boundaries that depend on each

application’s scenario.

������
�

����

����	
	�	��

"��#

�����

	�$

������

�������	��

%&�' (

%&�))'*

+�
,-
��

.��	/	�0

1�,-
��

��� .��	/	�0

�22

%�
�

����	��

�

��������� 3�4

56�$�

7�$6����0

56�$�

������

.�����

�

����

"��	�8 �	�

�

����

����	
	�	��

"��#

�����

	�$

������

�������	��
�22

%�
�

����	��

%

	��
�
�
�
�� 3�4

56�$�

7�$6����0

56�$�

������

.�����

��

������

"��	�8 �	�

�

���

"��#

�$6�����	��

"��#

�$6�����	��

3�4

56�$�

3�4

56�$�

Hand-Based Biometric Recognition System for Mobile Devices

33

In the verification stage, the input biometric data presented to the system will result in a

template �′ which will typically be different from � even for the same user, due to the

acquisition noise and eventual natural changes in the user’s biometric trait itself. If the

template �′ differs from the original template � in a value smaller than the correction

power of the ECC, �′ will be corrected into the original template, and ��� = �,

consequently resulting in �(�) = �(���).

The template storage provided by this system is secure because the only information

stored for each user is the pair (�, �(�)) containing the parity-check bits � which reveal

little information about the original template �, and the hash function result �(�) which

is computationally hard to invert even when knowing the hash function used.

Since the ECC and hash functions use binary inputs, in [4] there is the need for the FVB

module to be integrated in the system, to convert the real-valued templates returned by

the feature extraction algorithm, either Principal Component Analysis (PCA) or Linear

Discriminant Analysis (LDA), into fixed-length statistically independent binary values.

However, in the proposed system such module is not necessary because the used

Orthogonal Line Ordinal Features (OLOF) feature extraction algorithm originates

templates already in binary, by extracting ordinal features from the palm, thus not

requiring the post-quantization of the feature space with a total of
 equiprobable

intervals, and association of each quantization interval with a binary code. Each feature

has its correspondent binary code concatenated with the previously coded features

directly from OLOF, resulting in the binary feature vector output �.

Additionally, as mentioned in [4], to meet the diversity and revocability requirements

desirable in a biometric recognition system, a Bitwise Exclusive Disjunction (XOR)

module is added which computes the result � = � ⊕ b, where � is a random set of bits,

different for each user, and � is the binary feature vector that resulted from the feature

extraction module.

The complete system architecture is shown in Figure 16.

Hand-Based Biometric Recognition System for Mobile Devices

34

Figure 16 – Secure biometric system architecture.

For this system, which is considered secure because � is randomly generated

independently from the user’s biometric data, the set (�,�(�), �) is stored for each

user.

The system’s main modules are described below:

• Data Acquisition – acquisition module where sensors capture the biometric

characteristics relevant for the system.

• Pre-segmentation – pre-segmentation module where the camera frames are

processed and the application displays real-time detection of the hand.

• Pre-processing – pre-processing module where the acquired image is aligned,

transformed and improved, and the Region of Interest (ROI) is identified.

• Feature Extraction – module where the features are extracted from the

segmented image, and put together into a feature vector or template.

• Error Correcting Code (ECC) – in the enrolment stage, parity-check bits � are

extracted from the binary string �. In the verification stage, a correction of the �′
(noisy version of �) is attempted, with the previously stored partity-check bits.

• XOR – provides the system with revocable templates. Performs the result � = � ⊕ b, which is the bitwise exclusive-or between a randomly generated

binary value � and a binary feature vector �.

Hand-Based Biometric Recognition System for Mobile Devices

35

• Hash Function – Ensures the privacy of the stored biometric authentication

information due to its irreversible properties. In the enrolment stage the hash

result �(�) is stored in the database. In the verification stage, the result �(��) is

compared to the hash value stored at enrolment stage.

• Decision – Decides if the user is successfully verified based on the equation �(�) = �(��).

As a consequence of the research and exploration mentioned in section 3.1.4 Libraries

and Possibilities, the proposed top-level implementation architecture for the presented

biometric recognition system as a whole assumes a Web architecture. The mobile phone

device runs a client application in its Android platform, and communicates to a server

implemented in MATLAB, using the TCP/IP protocol, as shown in the figure below:

Figure 17 – Top level system architecture overview.

This makes the need for a communication interface which is described in section 3.3.2

Communication Interfaces and Protocol. Both the client and the server communicate

through a software interface programmed in Java, making use of the java.net package,

common in both Java SE and Android. The server code is developed in MATLAB but

Java code is used directly within the MATLAB program, for the communication

interface.

The TCP/IP protocol ensures that the information shared between both parties is

delivered in the correct order, allowing the implemented connection interfaces to follow

a “protocol” of their own for the communication that will always be respected for what

concerns the TCP connection used beneath.

Additionally, security protocols such as SSL can be used over TCP/IP, to ensure the

security of the communication and the system. If no certificates are to be used in the

transactions, the usage of simple ciphered streams is equally possible over TCP/IP.

Hand-Based Biometric Recognition System for Mobile Devices

36

Since the Internet is used for the connection, the access method is transparent, meaning

the device can use a nearby Wi-fi network, 3G, 4G or any other access method

supported to connect to the Internet, to be able to use this system (see Figure 18).

Figure 18 – Example internet access methods.

Combining the system architecture with the top level architecture that was chosen, we

obtain Figure 19, shown below, where the role of the mobile device client and the server

are explicit, along with the need for a communication interface between them. The pre-

processing module in the mobile device client side is highly adaptable to the

computational power and resources of the device.

Figure 19 – Combined system architecture.

7�����

���	�� "����

5�������

3�����

9�
� 7���	�� &97'

2�6�����

���	�� "����

:7�,-�;7,<;�

���	�� "����

�
�
�
�
�
�

�

�

�
�
�

��
��
�
�

�
�

Hand-Based Biometric Recognition System for Mobile Devices

37

Since the platforms used by the mobile device and the server are different, two different

communication interfaces were built, one for each end of the connection, and a

communication protocol was defined.

3.2.2. Application Scenarios

The developed system implements biometric recognition authentication based on the

palmprint, for mobile devices, in the web context.

The system is generic enough that it works as a login system, as a means to get access

and manage secure items, or to perform any arbitrary operations in a secure way.

For these reasons, the system can be connected to a vast range of applications and

services. Some possible examples are as follows:

• /ear Field Communications (/FC) Commerce – The users could buy items

with their mobile phone and use the developed biometric recognition system as a

way to authenticate themselves and ensure that the holder of the mobile phone is

genuine, validating the purchase. An example of this is a project by the name of

Isis [35], whose goal is to build a mobile commerce network capable of allowing

users to make purchases through smartphones. The NFC chip, which is an

integrated circuit capable of transmitting and reading data for short distances (up

to some meters), has three major uses: can work as a payment card; as an

interface for a peer-to-peer connection; or as a reader of NFC-compatible tags

[36], such as Radio-Frequency Identification (RFID) tags, which are thin

integrated circuits capable of storing and transmitting information, and that can

be easily attached or embedded to other objects.

• Passwords management – Many password management services exist, that

keep multiple accounts and passwords, having the user remember one single

password to access them. The palmprint could be used as that master password,

providing additional security in such an application, especially for the mobile

phones domain. Online password managers such as Clipperz could be used [37],

but with the possibility of using palmprint as authentication method, with mobile

devices.

• File storage – In the same way, palmprint in such a system can be used as the

means of securing access to an online file storage service such as Dropbox [38].

Hand-Based Biometric Recognition System for Mobile Devices

38

• Phone security application – The system could be used in a similar way as to

those of security applications available for mobile phones, which lock

applications, trigger alarms and perform other actions in case of a detected

security breach. This system could perform such but through the usage of the

palmprint for authentication. An example of an application like this but which

works with textual passwords is Lookout Mobile Security [39].

In Figure 20, a wide range of NFC technology usage examples in daily life situations

are illustrated. Biometrics, and the proposed palmprint system could be present as part

of any or all of them. Additional examples of NFC potential are mentioned in the

Official NFC Forum in [40].

Figure 20 – NFC usage scenarios.

There are innumerous other applications possible with which the developed system

could be used. Basically, everything with a log-in prompt, or module related with user

authentication can be empowered by the usage of the proposed system.

Source: http://theresultspeople.com/wp-content/uploads/trp-english//dayinthelife-mobile.jpg

Hand-Based Biometric Recognition System for Mobile Devices

39

The detailed description of the system’s components can be found in the next section

and the corresponding subsections. To isolate the graphical aspects and software view

of the application from the system’s architecture, aspects regarding the Android

developed application’s graphical user interface and functionality are described later on,

in chapter 6 of this dissertation.

3.3. Implementation Details

The system was adapted from the secure biometric recognition system proposed in [4]

but with the mobile phone devices scenario in mind.

In the newly developed system, a Web architecture is proposed, with an Android

application developed for the data acquisition and pre-segmentation on the client’s end,

and the rest of the biometric system’s logic (pre-processing, feature extraction, database

and matching) on the server side. Two communication interfaces were built for both

ends of the connection involved in the proposed architecture.

The system uses the pre-processing algorithm that is described in detail in [4]. The

system proposed in this dissertation is meant for mobile devices and has algorithmic

changes and consequent internal architecture changes that rely on that fact, and the fact

that a different technique called Orthogonal Line Ordinal Features (OLOF), proposed in

[41], was used for the template creation. The resulting templates are better adapted to

the mobile domain and come already in a binary format, removing the need for the

Feature Vector Binarization module.

Another novelty about this system, besides the different feature extraction algorithm, is

the pre-segmentation module that runs as part of the Android application in the client

side. This module’s goal is to allow the application to provide feedback to the user of

what it perceives to be the hand to be acquired. In this way, only good candidate images

for the authentication are sent to the server, consequently reducing the number of failed

tries of authentication for a genuine user, and reducing the data volume sent to the

server. If less energy is necessary for the pre-segmentation than for the authentication

messages that would otherwise need to be sent to the server, then this also results in a

longer lifespan of the device’s battery charge. Also of importance is that, since the

segmentation is still performed at the server later on, the pre-segmentation performed by

the device can be easily adapted to fit its computational power and resources.

Hand-Based Biometric Recognition System for Mobile Devices

40

For the mobile phones scenario, the quality of the captured images is often limited and

highly noisy for some usage environments, resulting in very inconstant and

unpredictable backgrounds, high illumination differences, and other issues that may

affect the system. For these reasons, and in order to simplify the issues to be dealt with,

the initial version of the proposed system is unimodal and solely makes use of the

palmprint (see Figure 21 and Figure 22).

Figure 21 – Human palm.

Figure 22 – Palmprint features [42].

Source: http://www.pollsb.com/photos/o/325808-hand_palm.jpg

Hand-Based Biometric Recognition System for Mobile Devices

41

The palmprint is feature-rich (see Figure 22) and has got a set of qualities that make it

preferential for the developed system and in particular, for mobile device environments:

• Fairly large area, which means more features can be acquired.

• Stable throughout life, and less likely to be damaged than a fingerprint [42].

• Low resolution images still allow achieving a good system performance with

less resources usage, and reducing the noise introduced at data acquisition by

small amounts of dirt or grease [4].

• More difficult to trick than hand or finger geometry, according to A. Kumar et

al. in [43].

Furthermore, the fact that the base system used for this dissertation’s developments

achieves good recognition results with a ROI of 16×16 pixels, makes it an ideal starting

point for the mobile phones scenario, as stated earlier in this dissertation.

3.3.1. Data acquisition and Pre-segmentation

The data acquisition is performed by the mobile device, using the Android Client

application that was developed.

The application provides a palmprint capture screen (see Figure 23), where the user’s

palmprint is acquired and then transferred to the server over a secure connection.

Figure 23 – Developed system's palmprint capture and pre-segmentation screen.

Hand-Based Biometric Recognition System for Mobile Devices

42

In the specific case for this work, the HTC Desire mobile phone was used, so the image

is acquired through its 5 MP camera, and converted internally to the JPEG format, using

a factor of quality 100. The autofocus and Light-Emitting Diode (LED) flash also

automatically adjust to improve the photo result, as they would in a casual photo

scenario.

This client guides the user through the enrolment and verification processes as well as

the management of secure items. The application itself will be further explained in

chapter 5 Developed Android Application, in terms of graphical user interface and

functionality.

In order to give the user an idea of what the application perceives to be the user’s hand,

a pre-segmentation is performed in the device, in the same screen, as shown in Figure

23. This pre-segmentation can make use of simple algorithms, adaptable to the device’s

processing complexity, and its purpose is to provide some feedback from the application

towards to user in order to prevent the task of messaging the server with an input image

that could initially be considered ineffective for authentication.

The pre-segmentation performed in the device, is independent from the segmentation

performed on the server, which is where complex algorithms can be used and where

their results will have an impact on the obtained data and its accuracy.

Upon entering this window, the images continuously captured by the camera (frames)

are processed by an algorithm adequate to the used device. For the HTC Desire device

which was used, the proposed algorithm consists of performing a basic contour

detection based on a Sobel filter.

The orientation of the application window for this screen was set as landscape, which

means that this activity works in a horizontal mode and that any output messages are

displayed in a horizontal mode, unlike for the rest of the screens of the developed

Android application. This had to be developed this way because Android has had

multiple different ways of changing camera orientation through the various API

versions, as seen in [44] and specific devices can impose limitations to this based on

their version of the Android OS source code [45]. Although the official Android

documentation does not make it explicit that video objects will only display the video

and coordinates system in an appropriate way, this issue has been mentioned in websites

Hand-Based Biometric Recognition System for Mobile Devices

43

such as Adobe in [46] where it is said: “On devices that can change the screen

orientation, such as mobile phones, a Video object attached to the camera will only

show upright video in a landscape-aspect orientation. Thus, mobile apps should use a

landscape orientation when displaying video and should not auto-rotate”. Even though

this sentence was mentioned in the Adobe Integrated Runtime (Adobe AIR) and Action

Script 3.0 domain, the experimental code explorations performed proved that this is

correct even for plain Java Android applications running in the Android 2.1 platform.

Another factor that improves the quality of the image frames being captured by the

camera, and consequently the quality of the pre-segmentation and feedback of the data

acquisition to the user is the lighting. For this reason, when there is insufficient

environment light, the usage of the mobile phone’s LED light should be turned ON

while the camera resource is on use by the application. However, the Android OS

source code from specific devices also imposes limitations to this, which can only be

surpassed by changing the OS source code. Also important of notice is the fact that the

getSupportedFlashModes() from the camera API relies on the OS version, and does not

always return values actually supported, on all devices. Equally relevant is the fact that

for different devices, the same modes can work in different ways, as discussed by users

in various forums such as in [47].

For the HTC Desire device which was used in this dissertation, the

getSupportedFlashModes() method provides the correct supported flash modes, which

are “on”, “off” and “auto”. In “on” mode, the LED is only activated for a brief instant,

when taking a snapshot, and this behavior cannot be altered. In order to keep it

constantly ON while the camera resource is on use, the “torch” mode would be

necessary. For this reason, even when using the LED for the image acquisition, this

resource cannot be used to improve the feedback from the application to the user during

the data acquisition’s pre-segmentation. However, this does not limit the usability and

utility of this resource, because it can be used to improve the image quality of the actual

captured images which are in turn sent to the server for the authentication goal.

The Camera API for Android has also proved to have some issues as of API 2.1. For

example, the original Camera app that comes with the device’s Android OS is capable

of saving images with some additional information, such as the International Standards

Organization (ISO) speed and camera model, and a similar way of saving an image

Hand-Based Biometric Recognition System for Mobile Devices

44

could not be achieved by an application using the Camera API, even upon inspection of

the code used for the default Camera application (available in [48]), because for its

parameters, it makes use of native routines which are linked to the Android OS. Also,

the default Camera application that comes with the device provides interfaces that only

allow to launch it and use photos acquired by it, but not to check which parameters it

uses nor copy them so that they can be used directly in another application from the

mobile phone. Moreover, since the Android OS parameters and the Camera API seem to

be partially connected in ways that sometimes go beyond what is considered by the API,

sometimes changing the camera parameters leads to unexpected results such as for

example the distortion of the acquired images [49], or other types of unexpected

behavior. The behavior of the default Android Camera application and API also

depends on the device and its Android OS specific tweaks for other types of simple

tasks, such as the actions taken when a photo is acquired. In some devices, it is added to

the phone’s photo gallery while in others it is not [50], and there is no way to change

this at the applications layer, because the root of the behavior is in the source code of

the system itself.

Another important and problematic issue related with the Android Camera code is the

fact that the native Android code inherent to the Android 2.1 OS version comes with a

memory management inefficiency, as described in [51]. This inefficiency is due to the

fact that a new memory buffer is allocated each time a new frame is captured by the

camera. This results in huge chunks of memory being freed and allocated, which

consequently forces the Java garbage collector to act very often. The Java garbage’s

collector slows down applications when it executes and within the Android platform the

slowdowns are even worse due to the platform’s architecture and specificities, and

makes applications stop responding periodically in this case. In [51], a solution for this

problem is presented, which consists of recompiling the OS’s source code by

performing a change in it. The advantage of this solution is that it works for any

Android version, including not only 2.1 but also previous versions of Android. The

problem is that it requires the customization of the OS, and the impact of the changes

will not affect users that have the default versions of the OS.

In the Android Google Code Group an issue was open for this buffer allocation problem

(Issue 2794) in [52]. Apparently the problem is fixed in version 2.2, and there is a way

to access the new 2.2 APIs in 2.1 but which was not intended for use, since it requires

Hand-Based Biometric Recognition System for Mobile Devices

45

the usage of code reflection (this is, code that browses over other code at runtime and

executes it) and in some cases might make the device slower or lead to unexpected

behaviors. This alternative way is described in [53].

In Android (and specifically in Android 2.1), the correct way to perform drawing over

the camera’s preview image is to have a View object over the SurfaceView object

where the camera preview is shown. The View object to draw on has access to the data

perceived by the camera in each frame, and can draw appropriately over the camera’s

preview. However, this means that the internally stored frame image must be replaced

by a new one with each frame, which results in a cycle of a huge memory allocation

followed by memory freed. Since Android’s Java garbage collector stops the application

briefly, every time it performs actions, this means that the frames processing will

inevitably make the application “gulp” between frames, even though this does not affect

the overall functionality. As previously mentioned, this problem cannot be solved at the

application layer because its root is the source code for the camera hardware from the

OS itself. Hopefully in future versions of Android, this issue will be addressed,

providing much more effective processing related with camera frames and greatly

improving user experience for applications like the one developed.

3.3.2. Communication Interfaces and Protocol

The communication between the client and the server is done using TCP/IP.

In order for this communication to be possible, two communication interfaces were

developed for each of the communicating applications (the client, and the server). The

client sends request messages to the server, who answers with a message type specific

to the request sent (see Figure 24).

Figure 24 – Communication interfaces and type.

The need for an interface is necessary not only to define and enforce specific message

types and sequences, but also because the data transferred individually must be read and

interpreted in the same way, common to both parties involved. In this case, Java objects

and primitive types are used in the communication, and both interfaces developed make

Hand-Based Biometric Recognition System for Mobile Devices

46

use of the java.net package for a common starting point for the communication, since

those resources are available and compatible in both Java from Android, and plain Java

available from within the MATLAB environment. The request messages consist of an

integer with the message type code, an integer with the length of the data portion of the

message, and the data itself, as shown in Figure 25 below. In Java, each integer uses 32

bits.

For each request type, a response message is replied by the server, with relevant data for

the request type sent. In Table 7 below, the different message types is shown.

Message code Message Type

1 Enrollment Request

2 Authentication Request

3 Delete Request (Remove user registration)

Table 7 – Message types and codes.

For each request, the integer with the size of the acquired palmprint image, and the

image itself, are sent to the server, in order to authenticate the user individually for the

operation being performed. The response includes an error identifier (ID) which has a

value and meaning as shown in Table 8:

Error ID Meaning

-2 Authentication Failure (but no problems with the input image)

-1 Generic program error

0 No error (Success)

1 Image size is too small

2 No objects found in image

3 Arm region is not contiguous

4 Arm region too big

5 Invalid peaks

6 Invalid valleys

7 Finger points not in correct order

8 Fingers too close together

9 Finger set does not correspond to left nor right hand

Table 8 – Possible error IDs and their meanings.

Message Type Data length Data

Figure 25 – Request message structure.

Hand-Based Biometric Recognition System for Mobile Devices

47

Any error ID received by the client will trigger an appropriate informative message to

the user, informing about the success of the operation (if error ID = 0), or explaining the

problem with the acquired image, in an attempt to help the user correct it in the next

log-in attempt. In the used convention, negative error IDs are related with top-level

errors, while positive error IDs are related with detailed image processing errors.

In the event the communication itself fails and the server cannot be reached, the

application provides the appropriate warnings to the user.

The fact that Java streams are used as part of the implementation of the communication

channel allows for the use of ciphered streams and/or the SSL protocol as means of

making the data transferred private and secure.

3.3.3. Pre-processing

After the image data has been acquired and sent to the authentication server, it is pre-

processed in the same way as in the initial system developed by M. Ramalho in [4], in

order to achieve the segmented hand from the background along with the hand contour

and reference points that will be used in the following processing stage (see Figure 26).

Figure 26 – Hand contour and reference points. Image was taken from [34].

The pre-processing stage consists of image adjustment, segmentation, hand contour

tracing, and reference points extraction.

These steps are illustrated and summarized in Figure 27, shown below.

Hand-Based Biometric Recognition System for Mobile Devices

48

Figure 27 – Image preprocessing phases. (Images adapted from [4]).

In the image adjustment step the image is converted to grayscale, resized so that no

dimension exceeds 256 pixels, and filtered for the noise, smoothness of small variance

areas and preservation of the edges.

After the previous step is complete, the image is segmented into foreground and

background, and the Otsu’s method [54] is applied, choosing a threshold value that

minimizes the intra-class variance of the output binary image. The hand region is

selected using this automatic global histogram thresholding technique, and the

background objects are eliminated through an algorithm based on morphological

reconstruction [55], leaving a single big-length object in the image, which is considered

to be the hand.

The next step is the hand contour tracing, which is performed using a popular algorithm

[56]. A random starting point is chosen in the input image’s hand boundary and all

subsequent adjoining boundary points are searched for in a clockwise or counter-

clockwise direction.

Finally, the reference points are obtained through the usage of two combined techniques

which identify the fingertips and finger-webs (tissue between fingers):

• Radial distance to a fixed point [57], [58] – Computes the Euclidean distance

between the hand contour pixels and the fixed middle point of the region where

the wrist crosses the image’s edge.

56�$�

�0=�
�6���
7�$6�����	��

%��0 �������

����	�$

3�/������

��	��

�������	��

Hand-Based Biometric Recognition System for Mobile Devices

49

• Countour curvegram [57] – Analyzes the profile of the contour’s curvature

(contour curvegram), which can be constructed using the Difference-of-slopes

technique [58].

Additional reference points are obtained by discovering for the thumb, index and pinkie

fingers, which contour point has an Euclidean distance to the fingertip equal to the

Euclidean distance between the fingertip and the finger-web.

The region of interest will be identified in the next module, based on the reference

points extracted.

3.3.4. Feature Extraction

In the feature extraction module, the region of interest is identified in the pre-processed

image through the previously obtained reference points, by drawing a line segment

between the finger-web and the additional reference points in the pinkie and index

fingers (see Figure 28). The middle points of those line segments are used as vertices

for the definition of the square that marks the ROI.

Figure 28 – Identification and normalization of the ROI [4].

As seen in Figure 28, the ROI square then needs to be rotated to a vertical position,

resized, and converted to grayscale so that extracted features can be accurately

compared to other samples.

The supported ROI size is 128×128. Although the system proposed in [4] is capable of

handling smaller sizes, down to 16×16 meaning smaller computation effort and there

are results in [34] that claim the system performs better at 16×16, the change to a

mobile phones scenario makes need for more accuracy, given the reduction in

environment constrains at the moment of image acquisition. For these reasons, the

Hand-Based Biometric Recognition System for Mobile Devices

50

128×128 size is used along with a different technique called Orthogonal Line Ordinal

Features suggested in [41], instead of the Principal Component Analysis or Linear

Discriminant Analysis used in the non-mobile existing system in [4].

While PCA and LDA are statistical analysis methods, OLOF performs the template

generation based on ordinal features, which consist on a set of characteristics from the

palm. OLOF compares two elongated line-like image regions orthogonal in orientation

and generates a bit feature code which is concatenated with the code of the previous

region. A palmprint pattern is represented by a set of thousands of ordinal feature codes

relative to the multiple regions considered.

OLOF consists of three Gaussian filters which can be described by the following

equations:

��(�) = �(�, �, �) − ���, �, � + � 2� � (1)

�(�, �, �) = ��� − !("#"$)%&'()(*#*$) '+,(-. /0 − 1#("#"$) '+,()(*#*$) %&'(-2 304 (2)

where, for each 2D Gaussian filter, θ is the orientation, δ78and δ9 are the horizontal and

vertical scales respectively. For each pixel in the palmprint’s ROI, filtering is performed

with three orientations, OF(0), OF(π 6?), OF(π 3?), to obtain three bit sets of ordinal

codes, based on the sign of the filtering results. The filter parameters are shown in Table

9.

 Filter Values

Filter Size (pixels) 35x35

Centre (xB,8yB) (17, 17)

Horizontal Scale (δ7) 9

Vertical Scale (δ9) 3

Table 9 – OLOF filter parameters.

In order to reduce the complexity of the decoding process in the LDPC ECC block, the

filtered 128×128 images relative to each filter are reduced to a 32×32 image. At the end

of the process, the results from the three filters are concatenated resulting in a binary

template of size 3×32×32.

PCA and LDA make use of an average palmprint in order to project each user’s

palmprint in a template globally efficient for the system, but which becomes less

Hand-Based Biometric Recognition System for Mobile Devices

51

efficient as new palmprints are added, and makes the update of the average hand a

computationally intensive process since it will require the recomputation of all the

generated templates. This recomputation might not even be possible in secure systems

since they don’t save the initial feature vector that was used as one of PCA/LDA’s

inputs. The fact that the proposed system uses OLOF eliminates this problem and makes

each template independent from the system’s average palm for a given time, while at

the same time benefiting from the number of users registered in the database.

The normalized ROI is turned into a vector of luminance values, which is used as the

input for OLOF. OLOF codes the ordinal features into a binary feature vector or

template, which can be stored on the templates database of a non-secure system, or, in

this case, be applied an Error Correcting Code (ECC) and be discarded for security

reasons, after its hash has been stored along with the parity-check bits.

3.3.5. Error Correcting Code (ECC)

Error Correcting Codes are often used in network communications, where messages

transferred between different parties suffer errors through the used transmission

channels. In those scenarios it is often necessary to provide the possibility for the

involved parties to perform the correction of the messages received in order to prevent

retransmissions that might overload the network or to make the received data as useable

as possible in the least amount of time.

The message recovery mechanism consists of adding some redundant information to the

original message, in order to allow its correction on the receiver side, as long as the

corrupted information is smaller than the redundancy can correct for. This process is

called Forward Error Correction (FEC) and is illustrated in Figure 29.

Figure 29 – Block diagram of a typical ECC scenario.

In systematic ECCs, a D-bit message E is encoded to a codeword F of G bits where G > D. The codeword F is composed by the original message and G − D parity-check

bits that will allow for the message recovery attempt on the receiving end of the

Hand-Based Biometric Recognition System for Mobile Devices

52

connection, by the decoder. Due to noise in the channel and transmission errors, it is

possible that the codeword F suffers some changes and F′ is received. The goal is that

the received F′ can be corrected and decoded so that E� = E.

In biometric systems, the channel block represents the acquisition noise that will change

the data perceived by the data acquisition module. For the biometric reality, the scenario

is better described as shown in Figure 30.

Figure 30 – Block diagram of ECC contextualization in biometrics scenario.

An image I is presented to the system, but due to the acquisition noise, which is

different for each acquisition attempt, a different image I′ is perceived by the system.

This means that in one attempt, a message E′ will be generated by the data acquisition

module, resulting in a codeword F′ of length G = � + D where � is the number of parity-

check bits generated for the message. In a second attempt, the perceived image will be

different, resulting in a different message and a different codeword F′′, which will have

to be corrected to F′ in order for the user to be recognized. This correction must not be

too powerful that a different impostor user with a different initial image I can be

corrected into having the genuine user’s palmprint template.

The code used by the ECC module is the Low-Density Parity-Check (LDPC) code.

LDPC codes (also known as Gallager codes) are characterized by a binary sparse parity-

check matrix � whose rows represent parity-checks on the code’s codewords. A E × G

parity-check matrix has E parity-check equations that can involve G codeword bits.

Hand-Based Biometric Recognition System for Mobile Devices

53

In Figure 31, an example of a regular LDPC code characterized by 10 parity equations

and 3 ones per column is illustrated.

Figure 31 – Example H matrix of a LDPC code [4].

To the left of the dashed line are the message bits, and to the right are the parity-check

bits. For explanation purposes, those concepts are integrated with a non-sparse smaller

matrix illustrated in Figure 32.

Figure 32 – Interpretation of non-sparce matrix H [4] (Adapted).

A codeword of 7 bits is generated based on a message of 4, satisfying the equations of

the matrix’s rows. That is, the sum of the bits in the codeword for each position that has

got a 1 in the matrix, must be 0. This is the principle used for the generation of the

parity-check bits, and for the usage of the parity-check bits in the correction.

For a codeword F = KFL8F08FM8FN8FO8FP8FQR and the matrix illustrated in Figure 32, the

resulting parity-check equations are:

Information Protection

Hand-Based Biometric Recognition System for Mobile Devices

54

F. �T = 0 U VFL ⊕ F0 ⊕ FM ⊕ FO = 0FL ⊕ F0 ⊕ FN ⊕ FP = 0FL ⊕ FM ⊕ FN ⊕ FQ = 0W U VFL ⊕ F0 ⊕ FM = FOFL ⊕ F0 ⊕ FN = FPFL ⊕ FM ⊕ FN = FQ W (3)

A LDPC code was used for the ECC module because it is presented in the initial system

proposed in [4] and LDPC possesses a set of properties that make it equally interesting

in a mobile domain, namely the high granularity that can be achieved by varying the

number of parity bits used (see Figure 33). This way, the correction power can be

adjusted according to the desired correction performance for specific applications and

contexts.

Figure 33 – Behavior of 7 LDPC codes when correcting 8128-bit messages with bit error rates of around

27% [4].

In biometric systems the goal of the LDPC code is to correct binary strings enough that

the acquisition noise of a user is eliminated, allowing the authentication to the system,

but not enough binary strings that an impostor’s template is “corrected” into the genuine

user’s template.

3.3.6. Hash Function

Hash functions are irreversible functions that produce a fixed-length summary (also

known as digest) output, based on a given input. With additional requirements, they can

Hand-Based Biometric Recognition System for Mobile Devices

55

be used to protect integrity of information or to provide digital signatures and

certificates.

A given hash function � must satisfy the following conditions:

• �’s algorithm must be publicly known and not require additional input data than

the one whose digest is sought.

• �(�) must be easy to compute.

• The function must be one-way, meaning that given a hash function � and an

output �, it is difficult to find a � that satisfies �(�) = �, and given � and �(�)

it is difficult to find a message �′ ≠ � that satisfies �(�′) = �(�).

As previously mentioned, one-way hash functions are widely used in security for

message digests and digital signatures. Some of the most commonly used hash functions

are from the Message Digest (MD) family and Secure Hash Algorithm (SHA) family,

namely MD2, MD5, SHA-256, SHA-384 and SHA-512 [59]. With the advances in

processors and computational power, new more sophisticated hash functions have

started to emerge, that seek to differentiate themselves from the others and broaden the

horizons of cryptography, such as the RadioGatún hash function suggested in [60] and

[61].

For the hash module, the SHA-512 hash function was chosen for its high security

characteristics and for producing the largest output (512 bits) in its family.

Hand-Based Biometric Recognition System for Mobile Devices

56

Hand-Based Biometric Recognition System for Mobile Devices

57

4. Results

This chapter discusses the results of the tests performed with the proposed biometric

recognition system. The system’s performance was tested in terms of commonly used

and widely accepted biometric performance measures, as well as in terms of

computational efficiency and the tradeoff between both.

4.1. Test Conditions

The proposed system was tested with both online and offline tests:

• Online tests – The online tests correspond to tests in the presence of a human

user, using the mobile application like a user would in a real scenario. These

tests were used to obtain results concerning the computational performance of

the developed Android application and the communication interface between it

and the server, as well as to assure the system works as a whole.

• Offline tests – The offline tests correspond to tests using a database of hand

images. In this case, the tests were run only on server side, with the goal of

testing the system’s performance in terms of standard performance measures

from the Biometrics domain, such as FAR, FRR and ROC.

Three hand databases were used for the performed offline tests: the UST Hand Image

Database, available on request from the Hong Kong University of Science and

Technology [62]; the GPDS hand database available on request from Grupo de

Procesado Digital de Señales [63]; and a HTC database that was created as part of this

dissertation. Each user’s hand as a separate user. The databases’ specifications are

summarized in Table 10, along with other information relevant for the tests and

obtainable results:

Database UST GPDS HTC

/umber of users 217 75 5

Images per user hand 10 10 10

Total images 4340 1500 100

Considered users 434 150 10

Acquisition Device

Olympus C-3020Z

digital camera (labeled

as C-3100Z in Japan)

Scanner
HTC Desire

Camera

Hand-Based Biometric Recognition System for Mobile Devices

58

Image Resolution 1280×960 1021×1403 1552×2592

Example Image

Training/Test images 2170 750 50

Train Binary Templates 434 150 10

Test Binary Templates 2170 750 50

Intra-class comparisons 2170 750 50

Inter-class comparisons 941780 112500 500

Table 10 – Databases' specifications and consequent binary templates and comparisons.

All the databases are divided into a training set and a test set. The training set is

composed of 5 images of each user used for the enrolment, and the training set another

5, used for verification attempts. The system’s performance is tested by comparing each

verification binary template (that resulted from the test set) with the stored enrolment

binary templates (that resulted from the training set) from the same user (intra-class

variations) and from each of the other users (inter-class variations). One single binary

template is created from each 5 training samples, so the number of train binary

templates is the number of considered users.

After this process is repeated, comparing all the test binary templates with the training

ones, the results of match or non-match can be interpreted as shown in Table 11.

 Match /on-Match

Intra-class comparison Correct Accept False Reject

Inter-class comparison False Accept Correct Reject

Table 11 – Intra- and Inter-class comparisons interpretation.

The False Accept Rate and False Reject Rate can then be calculated as:

�XY = Z[\]^_8`a8bcde^8fgg^hieZ[\]^_8`a8jki^_#gdcee8g`\hc_je`ke × 100% (4)

�YY = Z[\]^_8`a8bcde^8n^o^gieZ[\]^_8`a8jki_c#gdcee8g`\hc_je`ke × 100% (5)

Hand-Based Biometric Recognition System for Mobile Devices

59

The online simulation was done with the HTC Desire connected to the server through a

Local Area Network (LAN), using a wireless connection to connect to a Linksys

WAG200G router.

The server side simulation environment was developed using Matlab® along with the

toolboxes: Image Processing Toolbox™, Signal Processing Toolbox™,

Communications Toolbox™ and Curve Fitting Toolbox™. The MATLAB server

application was run in a computer with a Dual-Core 2.2GHz processor and 3 GB RAM.

4.2. Recognition Performance

The biometric recognition system’s performance was evaluated through standard

commonly used metrics, such as the FAR and FRR rates, using offline tests. These rates

measure the number of impostor users who manage to successfully authenticate, and the

number of genuine users who fail to authenticate to the system, respectively,

consequently measuring the system’s accuracy. Those are the two situations represented

in Table 11, in the third row of the second column, and in the second row of the third

column, respectively. The other situations expressed in the table represent cases in

which the system performs correctly.

Additionally, the EER rate was used. This rate is the rate at which FAR and FRR are

equal, and corresponds to a measure of the system’s sensitivity balance. A low EER

means that it is possible to get a good (small value) FAR and FRR simultaneously,

which means that with a balanced approach, of no tradeoff between FAR and FRR, the

system performs incorrectly in a small amount of cases. However, the EER is not

necessarily the system’s operating point, because depending on the application scenario,

it might be reasonable to allow for higher FARs in order to get lower FRRs (such as in

critical security systems, where impostor users are simply unacceptable), or decrease

FARs at the cost of increased FRRs for practical and usability reasons (such as in a

system for public transports, where the flow of people is more desirable than a crowd

continuously attempting to get access).

The system’s performance was tested for ROIs of 128×128 pixels, using the OLOF

technique for the extraction of the ordinal features and creation of the templates. The

genuine and impostor distributions obtained for the three tested databases are shown in

Figure 34, along with the respective ROC curves. These distributions were obtained

performing single comparisons between templates, without any shifts.

Hand-Based Biometric Recognition System for Mobile Devices

60

The ROC curves are perfect corners for all the databases (which means EER = 0), with

the exception of the UST database, in which there is a small slope resultant from the

small interception present in its genuine and impostor distributions, as shown in its

ROC graph zoom, where EER is roughly 0.21%. For the GPDS and HTC databases

there is no overlapping of the distributions. The distributions are apart in all situations,

and closer distributions were obtained for the databases with a higher number of users.

UST Database

GPDS Database

HTC Database

Figure 34 – Genuine and Impostor Distributions, and ROC curves for the three tested databases, using

128×128 templates and the OLOF technique, with no shifts considered during template matching.

Hand-Based Biometric Recognition System for Mobile Devices

61

Although the HTC database has a small number of considered users (10), the distance

between both the genuine and impostor distributions for this database is good and the

highest among all the tested databases, which suggests the proposed system and the

OLOF technique, are suited for biometric recognition with the mobile phone’s camera.

The results show a good system biometric recognition performance for all the tested

databases, but additional techniques can still be added and considered, such as shifting

the templates in various directions as an attempt to improve matching results. This

analysis makes sense because the databases used to obtain results contain a small subset

of all the palmprints that exist. In a working system broadly adopted and vastly used,

the amount of users processed can be bigger than the number of users considered in the

used databases.

Following the interest to improve the results, the distributions were then recalculated

along with the ROC curves, but this time considering both the original template position

and 4 shifts (to the left, right, upwards and downwards) of the templates for the

matching. The shift with the best score is the one considered, consequently improving

the individual matching scores, since small differences natural to different acquisition

samples are less likely to result in score differences in this situation. Since the shifts are

considered when comparing an authenticating user’s template with a stored template

before it is possible to know if the user is a genuine or an impostor, it is probable that

the system’s performance results will be improved, but it is also possible that the shifts

may downgrade the system’s performance. The obtained results are shown in Figure 35.

Hand-Based Biometric Recognition System for Mobile Devices

62

Considering template shifts during the matching process is an attempt to improve the

recognition performance not just for the considered databases, which were already

providing good results, but for a generality of other databases and working systems.

This would desirably result in genuine and impostor distributions further away from

each other. However, this did not have a positive impact on all the tested databases. For

UST Database

GPDS Database

HTC Database

Figure 35 – Genuine and Impostor Distributions, and ROC curves for the three tested databases, using

128×128 templates and the OLOF technique, considering the original template position and 4 shifts

during template matching.

Hand-Based Biometric Recognition System for Mobile Devices

63

the UST Database, this results in an improvement of the ROC curve, since the

overlapping between both distributions has been diminished, resulting in a thinner ROC

slope and an EER of about 0.1%. For the GPDS and HTC databases, the shifts approach

resulted in slightly closer distributions, but did not result in a downgrade big enough to

change the ROC curves, which already were a perfect corner in the previous approach.

Since an authenticating user’s template is compared with the stored templates

considering multiple shifts, it will improve the scores of genuine users, but also may

improve the scores of impostor users.

It is possible to quantify the distance between the genuine and impostor distributions, by

using the decidability index as suggested in [64]. This index is proportional to the

distance between the genuine and impostor distributions, is independent from the actual

threshold used by the system, and can be calculated as:

p� = qrstu#rvwxq
yzstu{ |zvwx{

{
 (6)

Where }~^k and }j\h are the mean of the genuine and impostors distributions

respectively, and �~^k and �j\h are the standard deviations of these distributions, in

same order.

For both scenarios previously described, considering solely the original template

orientation, and then considering also shifts in 4 directions, the obtained decidability

indexes are presented in Table 12.

 UST GPDS HTC

Without shifts 7.6226 7.9245 11.8169

With 4 shifts 9.0013 7.8448 10.8896

Table 12 – Decidability indexes for the three tested databases, considering no shifts and considering 4

shifts in the template matching.

The results’ changes provided by the shifts approach previously seen in the distribution

graphs is confirmed for all the databases. For the UST database this results in a

performance boost, which is translated into an increase of the index, while for the

GPDS and HTC databases, the index suffers a slight decrease, which reflects the small

performance downgrade this approach introduces.

Hand-Based Biometric Recognition System for Mobile Devices

64

4.3. Application Performance

The developed application should be tested in terms of processing time/speed, CPU

usage, and memory usage, using online tests.

In Android 2.1, each Android Java application is limited to a budget of 24 MB of heap

size in the DVM instance that executes it. This means that when dealing with resources

such as images, which often need to be manipulated internally, for compression,

uncompression and processing, the budget of 24 MB can easily become smaller than it

is for other types of applications. If we add to that the memory used by the application

itself and its other resources and objects, it becomes understandable that exceeding this

budget is quite easy in signal processing applications.

Downsampling acquired and manipulated images is a practice often used in Android

applications to deal with this issue, and should continue to be since newer devices are

possessing better cameras with higher resolutions, which will generate higher amounts

of information. For this reason, it is important to understand how does the

downsampling of the acquired image affects the application performance according to

computational standards (discussed in this section), and how it affects the biometric

recognition performance (discussed in section 4.4 Tradeoff).

The sum of the native heap size (heap of the java virtual machine running the

application) with the Dalvik heap size (heap of the java application) must never exceed

the maximum heap budget of 24 MB, or the application will terminate with an out of

memory exception.

The used heap sizes were calculated for the first activity of the application, in order to

get an idea of the memory used by the visual and interactive components. These results

are presented as an average of 10 executions in Table 13, and the obtained CPU usage

relative to the components’ initialization was 19%.

 /ative Heap Dalvik Heap Total Limit

Size 5480 3783 9263 24576

Allocated 5478 3149 8627 N/A

Free 1 634 635 N/A

Table 13 – Application memory usage in starting activity. The units are expressed in 1024 bytes. N/A:

Does not apply.

Hand-Based Biometric Recognition System for Mobile Devices

65

There is a difference of 1 unit between the free native heap and the subtraction of the

allocated heap to the native heap size, due to the implementation of this heap in the

Android architecture. This difference may be of even greater differences for the native

heap at calls in other activities or stages of the processing, and is verifiable through

Linux kernel functions. The free heap size is not too important because when more

memory is necessary than the available free memory in the heap, it expands. The most

important is the 24 MB limit of the heap size, which must always be respected.

Regarding the image acquisition activity, the CPU usage took an average of 71%, and

the respective memory information is shown in Table 14.

 /ative Heap Dalvik Heap Total Limit

Size 7752 9351 17103 24576

Allocated 6163 8621 14784 N/A

Free 84 730 814 N/A

Table 14 – Application memory usage in image acquisition activity. The units are expressed in 1024

bytes. N/A: Does not apply.

For the image acquisition activity, the memory and CPU usages are superior because

the captured image frames are continuously processed to provide feedback to the user.

The pre-segmentation of those frames is also suboptimal due to the limitations inherent

to a correct usage of the Android APIs, as previously explained in section 3.3.1 Data

acquisition and Pre-segmentation. As a consequence of the multiple memory allocations

necessary between the pre-segmentation between processed camera frames explained in

the same section, the time it takes for a pre-segmentation to complete is of 2.418

seconds. The actual pre-segmentation perceived by the user has a significant delay due

to the high CPU usage and the stacking up of pre-segmented images which need to be

drawn on the screen, as well as the refreshment of the application components involved.

The computational performance was then measured for the final stage of the data

acquisition module, in which the actual photo is taken and sent to the server for

processing and for a resulting response (error ID), indicating the success or error cause

of the operation. For this analysis, the memory and CPU usages were obtained for the

different considered sampling ratios. The 1:1 ratio was not considered in this phase

because the application can only work with 1:2 and superior downsampling ratios in

order to respect the 24 MB heap budget. The results were obtained for verification

attempts, and are presented in Table 15.

Hand-Based Biometric Recognition System for Mobile Devices

66

Downsampling Ratios 1:2 1:3 1:4 1:5

CPU Usage 17% 27% 43% 21%

/ative Heap Size 9152 9056 7728 8028

Dalvik Heap Size 10887 11591 9351 10887

Total Heap Size 20039 20647 17079 18915

/ative Heap Allocated 7738 7652 5943 6173

Dalvik Heap Allocated 4971 6640 5436 5515

Total Heap Allocated 12709 14292 11379 11688

/ative Heap Free 149 147 84 126

Dalvik Heap Free 5916 4951 3915 5372

Total Heap Free 6065 5098 3999 5498

Table 15 – CPU and memory usages for each of the considered downsampling ratios at data acquisition

stage, when the hand image is captured and sent to the server. The units are expressed in 1024 bytes.

The CPU usage is smaller in this phase because no camera frames are continuously

being pre-segmented. All the processor has to do is execute the code relative to

establishing the connection, sending the image to the server, and reading an errorID

code.

The results obtained for the CPU seem inconsistent, but this is explained because the

CPU usage logging needs to be done through a separate thread, so that the CPU usage

of the application while it is active is considered. According to the principles of most

Operating Systems, this thread can execute and calculate the CPU usage of the

application at different places of the actual program, generating different results, as

previously shown.

The memory usage results are equally inconsistent. The Android platform relies on a

Linux kernel, and in the principles that unused memory is wasted memory. For this

reason, the heap sizes and allocation sizes do not necessarily refer to memory which is

absolute necessary by the program, but may also include much memory which is

already ready to be freed but is not, for optimization purposes. Equally important is the

fact that since huge amounts of memory are being allocated and freed (specially for

what concerns the image files manipulated within the program), this provides room for

huge deviations in the result of the memory inspection commands, at this stage of the

application. Although in Android the Java garbage collector can be called, it adds

additional delay to the application and still does not assure that all memory that can be

freed is actually released. For all those reasons, it is not possible to get accurate memory

Hand-Based Biometric Recognition System for Mobile Devices

67

results within the Android platform. The obtained results, suggest that the

downsampling ratio of 1:4 brings considerable memory gains in comparison with the

1:2 and 1:3 ratios, although the accuracy of these results is limited by the factors

previously described.

The processing times were then calculated for all the considered downsampling ratios.

The results are shown in Table 16.

Client side (Device) 1:2 1:3 1:4 1:5

Connection establishment 11 15 24 17

Bitmap – Allocation 454 484 84 86

Bitmap – Send 914 1058 325 486

Bitmap – Total 1368 1542 409 572

Reading response 8524 8044 7583 7856

Time to Authenticate 9901 9593 7998 8433

Server side

Process Image time 794 876 331 344

Process Request time 9830 9500 7982 8347

Table 16 – Processing times for different stages of the verification process, for the different considered

downsampling ratios. The times are expressed in milliseconds.

For the processing times, the results also show some inconsistency, at least between the

1:2 and 1:3 sampling ratios, and between the 1:4 and 1:5 sampling ratios. One of the

reasons for these discrepancies is the fact that the huge chunks of memory involved in

the allocation and freeing of the memory, results in multiple calls to the garbage

collector, which, as previously mentioned, does not act in a completely linear and

predictable way. This means that random calls to the garbage collector happen, adding

random delays to the processing times, at random places in the program, which are

different for each execution. To make this worse, the fact that some stacks of the pre-

segmentation images are still waiting to be processed after the pre-segmentation has

been stopped, the memory associated with them can apply be freed at also random times

throughout the execution of the communication phase (sending the image data, and

getting the response). For these reasons, the processing times between the different

downsampling ratios, and between different execution attempts for a given ratio may

result in very different results. According to the obtained results, there seems to be an

overall gain, especially in bitmap allocation and sending times, when using the 1:4

downsampling ratio, in comparison to 1:2 or 1:3.

Hand-Based Biometric Recognition System for Mobile Devices

68

The time to establish the connection is the smallest, followed by the time for the bitmap

memory allocation time, and finally the time to send the bitmap. The time to read the

response is the biggest on client side, since it requires not only the usage of the

communication channel, but also the wait for the server to process the sent input

images. The time to process the images seems roughly similar with the time necessary

to send the bitmap, but there is no connection between both, since the time to send

depends also on the network architecture and factors external to the system, in addition

to the factors that influence both, such as the image size. In all the downsampling cases,

the time to authenticate is bigger than the time the server takes to process the request,

since the client needs to wait for the response to arrive and be processed. The time to

process the image on server side consists of the preprocessing only. The time necessary

to pre-process the images (Process Image time, in the table) is relatively small when

compared to the OLOF template generation time, and the time necessary to look up the

appropriate user data and perform the matching. It is that time that adds up to the image

processing and results in the final process request time mentioned in the table.

The results obtained in this section, regarding the computational performance of the

application, suggest that the downsampling ratio of 1:4 brings considerable gains over

1:2 and 1:3. Between 1:4 and 1:5, the difference is not as clear. These results should

however be considered as rough estimations, due to the inherent uncertainty and

randomness associated with the Android platform and many of the Operating Systems

and Java Virtual Machines’ logics and optimizations which results in nonlinear system

execution trees for different execution attempts. This problem is not only from Android,

but takes a huge impact in this platform due to its common roots with Linux.

4.4. Tradeoff

Previously, the system’s recognition performance was tested, and its computational

performance was measured in terms of speed, memory, and CPU, along with the impact

of image downsampling in the computational measures. In this section, the impact of

the downsampling in the recognition performance will be studied, with the goal of

understanding the tradeoff between the computational efficiency and the recognition

performance.

In order to achieve results regarding the impact of the downsampling of the hand

images used for recognition, the considered downsampling intervals will be between 1:2

Hand-Based Biometric Recognition System for Mobile Devices

69

(0.50 reduction factor) and the highest value that does not generate recognition errors in

the contours used for the palmprint recognition with the considered database’s images.

For the UST and GPDS databases, a downsampling of 1:2 (0.50 reduction factor) results

in errors in contour detection. For this reason, the downsampling was not possible for

those databases.

For the HTC database, downsamplings of 1:2, 1:3, 1:4, and 1:5 were tested, considering

no shifts for the resulting templates, to avoid the unpredictable gains in genuine and

impostor scores previously observed. For a downsampling ratio of 1:6 or higher, no

recognition is achieved due to errors in contour detection. The genuine and impostor

distribution results are shown in Figure 36. Since there is no overlap between

distributions in any situation, the ROC curves are a perfect corner for all considered

downsampling ratios.

As seen in the graphs from Figure 36, with the downsampling, the genuine and impostor

distributions change their shape slightly, as well as the distances between them. In order

HTC – Downsampling 1:2 HTC – Downsampling 1:3

HTC – Downsampling 1:5 HTC – Downsampling 1:4

Figure 36 – Genuine and Impostor Distributions for the HTC database, using 128×128 templates with the

OLOF technique, and considering downsampling factors of 1:2, 1:3, 1:4 and 1:5, without considering

template shifts at matching stage.

Hand-Based Biometric Recognition System for Mobile Devices

70

to better quantity and understand these distances, the decidability index d’ was

calculated for each downsampling case, and presented in Table 17, along with the

scenario with no downsampling (1:1).

Downsampling Ratio Hand Image Size Decidability Index d’

1:1 = 1 1552×2592 11.8169

1:2 = 0.50 776×1296 12.0880

1:3 = 0.333… 518×864 12.7323

1:4 = 0.25 388×648 12.0359

1:5 = 0.2 311×519 10.7592

Table 17 – Decidability indexes and considered image sizes for the various downsampling ratios tested

for the HTC database, considering no shifts in the template matching.

As seen in Table 17, the decidability indexes increase for downsampling ratios of 1:2

and 1:3, meaning that the genuine and impostor distributions get further apart,

improving the system’s recognition performance. This may happen due to the small size

of the considered database. For a downsampling ratio of 1:4, the decidability index

starts to decrease in comparison to the ratio of 1:3, but is still superior to the original

ratio of 1:1. For a downsampling ratio of 1:5, the recognition performance starts to

decrease a lot, as both distributions start to approach each other, due to lack of quality in

the considered hand images. For ratios of 1:6 and superior, this decrease of quality is so

intense that the image processing algorithms fail to process the input hand images

correctly.

Downsampling the acquired images may become a problem in systems which work in

identification mode, and with many users registered. For the proposed system, the

verification should still work with recognition performance results using a

downsampling ratio of 1:2, which results in an image of 776×1296, which is not too

different from the 1280×960 images in the UST database or the 1021×1403 ones in the

GPDS database. Since the same approach was taken in all databases, capturing images

of the whole hand, it is fairly safe to assume that in a huge mobile phone images

database, the downsampling ratio of 1:2 would not affect the system’s recognition

performance significantly.

In order to study the tradeoff between the system’s recognition performance and

computational performance, these results were compared with the computational

measures taken in section 4.3 Application Performance, with the goal of understanding

Hand-Based Biometric Recognition System for Mobile Devices

71

which downsampling ratio should be used to get the best out of both performance

domains, without neglecting either. The most relevant results from the different

calculated performance measures are summarized and presented in Table 18. Since the

achieved results possess considerable deviations, the resulting conclusions and

observations should be taken with care.

Downsampling Ratio 1:2 1:3 1:4 1:5

Decidability Index d’ 12.0880 12.7323 12.0359 10.7592

Time to Authenticate (ms) 9901 9593 7998 8433

Total Heap Allocated (KB) 12709 14292 11379 11688

Table 18 – Tradeoff between biometric recognition and computational performances. 1 KB = 1024 bytes.

Any of the downsampling ratios provide better decidability indexes than the original 1:1

ratio with a d’ of 11.8169, except for the ratio of 1:5. The time necessary for

authentication seems to get a substantial gain at the ratio of 1:4, and the total allocated

heap seems to be smaller for this ratio as well, but with a smaller difference than the one

obtained for the time to authenticate. Combining these results, the best downsampling

ratios for the system to operate with are the 1:3 ratio, if privileging recognition

performance over computational performance, or the 1:4 ratio, if giving priority to

computational efficiency over recognition results. Ultimately, since worse recognition

results may result in more attempts to log in, the bigger decidability index could be, in a

way, considered the decisive factor, indicating in this case that the system should

operate at the 1:3 downsampling ratio.

As explained throughout this analysis, the considered HTC database is fairly small, and

the platform issues mentioned result in a reasonable degree of inaccuracy in the time

and memory measurements taken. These conclusions should be handled with care,

taking this into account.

Hand-Based Biometric Recognition System for Mobile Devices

72

Hand-Based Biometric Recognition System for Mobile Devices

73

5. Developed Android Application

5.1. Introduction to the Android OS

Android is a software stack for mobile devices that includes an operating system based

on the 2.6 Linux kernel, middleware to provide additional facilities for other software,

and a set of key applications such as email clients, calendar, Short Message Service

(SMS) management, maps, browser, contacts and others.

In order to develop applications for the Android platform, it is necessary to use the

Android Standard Development Kit (SDK), which provides a set of tools and APIs to

develop Android Applications using the Java Programming Language.

This mobile platform offers the following features [31]:

• Application framework enabling reuse and replacement of components

• Dalvik Virtual Machine (DVM) optimized for mobile devices

• Integrated browser based on the open source WebKit engine

• Optimized graphics powered by a custom 2D graphics library; 3D graphics

based on the OpenGL ES 1.0 specification (hardware acceleration optional)

• SQLite for structured data storage

• Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)

• Global System for Mobile Communications (GSM) Telephony (hardware

dependent)

• Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

• Camera, Global Positioning System (GPS), compass, and accelerometer

(hardware dependent)

• Rich development environment including a device emulator, tools for

debugging, memory and performance profiling, and a plugin for the Eclipse

IDE, which is recommended for development

The main difference between Android and other Mobile Platforms is the fact that is it

Open Source, meaning that the operating system is available and can be edited, and it is

also possible to create applications that use any of the available APIs, without the

developer entities having to pay for those APIs or their usage.

Hand-Based Biometric Recognition System for Mobile Devices

74

With this open nature, this platform has become very attractive for the industry of both

hardware manufacturers and software developers, both for software companies and

individual software developers, and also both for commercial purposes and research or

entertainment. Android is a project continuously evolving, supported by the Open

Handset Alliance.

Android’s Architecture is based on layers as seen in the following image:

Figure 37 – Android software stack [31].

The Linux Kernel provides an abstraction layer between the hardware and the software

stack and is used for core system services, the libraries are a set of C/C++ libraries used

by the Android system, and exposed to developers through the application framework,

which allows developers to use and reuse services and components, and to make new

content also available to use by yet other applications.

In Android, the runtime of applications works in a similar way as the Java Virtual

Machine (JVM) does in machines with platforms such as Linux, Windows or Mac OS.

When an Android Application is launched, a new instance of Dalvik Virtual Machine

(DVM) is started in a separate process, and executes the code related to that Android

Application. Android uses the included “dx” tool to turn Java compiled class files into

Hand-Based Biometric Recognition System

Dalvik Executable (.dex) files, optimized for minimal memory footprint. The DVM is

register-based and runs those files.

Android applications are written using the Java programming language. After the code

is compiled along with other data and resources needed by the

Asset Packaging Tool (AAPT

(.apk). The code in an .apk file is one application, and is used to distribute and install

the application in mobile devices.

Unlike typical Java applications, Android applications do not have a single entry point,

because they reuse components from the Android library, which possess specific

lifecycles. This becomes clear when looking at the lifecycle of one of the principal

component of the Android architecture: the Activity class (see

Based Biometric Recognition System for Mobile Devices

75

Dalvik Executable (.dex) files, optimized for minimal memory footprint. The DVM is

based and runs those files.

Android applications are written using the Java programming language. After the code

is compiled along with other data and resources needed by the application

AAPT) is used to bundle it all into an Android package

(.apk). The code in an .apk file is one application, and is used to distribute and install

the application in mobile devices.

Unlike typical Java applications, Android applications do not have a single entry point,

euse components from the Android library, which possess specific

. This becomes clear when looking at the lifecycle of one of the principal

component of the Android architecture: the Activity class (see Figure 38

Figure 38 – Activity lifecycle [31].

for Mobile Devices

Dalvik Executable (.dex) files, optimized for minimal memory footprint. The DVM is

Android applications are written using the Java programming language. After the code

application, the Android

to an Android package file

(.apk). The code in an .apk file is one application, and is used to distribute and install

Unlike typical Java applications, Android applications do not have a single entry point,

euse components from the Android library, which possess specific

. This becomes clear when looking at the lifecycle of one of the principal

38).

Hand-Based Biometric Recognition System for Mobile Devices

76

One of the important tasks to perform in those methods is saving the activity’s state, so

that the appropriate actions are taken by the application in the event that OS calls are

performed, either by the automatic choice of the Android OS, or by user actions, such as

sending one activity to background, exiting an activity, or performing other actions that

might relate with those methods, such as changing device orientation or opening a

physical keyboard (in case the device has one).

In Android, applications may also use the XML language to define graphical user

interfaces independently from the code. The use of C/C++ code libraries is equally

possible through the NDK.

5.2. Developed Software Structure

The developed Android application targets the Android 2.1 version and is intended to

work in all devices using that version and more recent versions of the Android OS. The

software was tested using the HTC Desire device.

As previously mentioned in this work, the Android application works as the data

acquisition and pre-segmentation modules of the system, but also provides functionality

for the user. Below, in Figure 39 the possible user actions are presented in a use case

Unified Modeling Language (UML) diagram.

Figure 39 – Developed Android application use case UML diagram.

The application’s graphical user interface screens, related with the presented use cases

are shown in Figure 40.

-���$	
����0 -
��

����� ��0��	�8

3�$	
����0 -
��

������ ��0��	�8

<�$ 	�

<�$ >��

����$� 7�����0

5��6
,"��/��6 ;���
���	��

2���$� -
��

"��/������

Hand-Based Biometric Recognition System for Mobile Devices

77

User Registration Enrol Modality

Enrol Palmprint Manage Secure Items Palmprint Acquisition

Login with Modality Settings About

User Data Form

Figure 40 – Android application Graphical User Interface (GUI) screens.

Hand-Based Biometric Recognition System for Mobile Devices

78

5.2.1. Android Application Optimization

The Android client developed was designed with the performance recommendations

from Android Developers website (the official Android Website) in mind [31].

The developed Android application was recompiled using the zipalign tool, which

optimizes Android application (.apk) files, considerably reducing the amount of RAM

and allocations necessary through execution, by pre-aligning uncompressed data (in

terms of the .apk file) on 4-byte boundaries.

Hand-Based Biometric Recognition System for Mobile Devices

79

6. Conclusions and Future Work

A secure biometric recognition system for Android mobile devices was presented and

proposed in this dissertation. The Android platform and its specificities were explored

and reported, along with other issues that arose throughout the planning and

implementation.

The Android 2.1 platform is limited in terms of memory efficiency for camera image

capture according to the official Camera API for that platform’s version. Although this

issue is solved in newer versions of Android, it is also possible to fix it in version 2.1 by

using code reflection to iterate over the available API functions, and access hidden

functions which are not documented for Android 2.1, but solve the performance

limitations of the original API, allowing this platform to be used for signal processing

tasks that rely in the device’s camera.

Regarding the memory measures taken, the Android API provides ways for an

application to have an idea of the memory that is still available, and for the application

to be alerted when the system’s memory budget is close to depletion. However, accurate

measurements of memory become a difficult task since Android relies in the same

principles as Linux, and manages memory in a different way than the typical in

Windows systems. The system considers free memory as wasted memory, and does not

rush to free allocated memory, since it may still be of use at a later time. Memory is

only freed when necessary, or, following the principles of Java’s memory management

scheme, randomly, when the garbage collector is called by the system. In the event it is

called, it may or may not free the memory, based on system decidability factors beyond

the context of the developer’s Android Java program.

The measurements regarding the CPU usage are accurate for a program with a fairly

linear execution behavior through time, and with small peaks of activity, but inaccurate

for high peaks of activity, since a Thread needs to be launched in parallel with the

program’s execution, and the measurement(s) may take place at very different

situations, depending if they happen before the activity peak, during (and if during, in

which stage they happen), or after. This problem is not specific to Android.

The processing times are greatly influenced by the garbage collector calls, which, for

memory intensive applications such as the proposed system and its correspondent

Hand-Based Biometric Recognition System for Mobile Devices

80

Android client application, result in some random noise in the time results. This is not

an Android issue as well, and may happen in any platform, but is aggravated in this case

due to the fact that the Java Virtual Machine provides noticeable slowdowns when the

garbage collector is called, and also due to the fact that the pre-segmentation delay

resulting from the huge memory allocations, results in some delayed garbage collector

calls right before the connection stage of the developed application.

These issues are being continuously improved and optimized in newer versions of

Android, and this platform has proved fast and productive, being capable of handling

research projects such as this dissertation, while providing the tools and background to

make it a working application, deployable in devices and brought to a vast audience,

with compatibility between multiple Android platform versions, consequently making it

marketable and profitable. The proposed system was successfully implemented and

works, fulfilling all those requirements and expectations.

The OLOF technique has proved very effective at providing good biometric recognition

results for all the tested databases even with relatively high downsampling factors. This

makes it very suitable for the mobile devices domain.

Regarding the biometric recognition performance, the HTC database built considers full

hand images like the other databases considered (UST and GPDS), for comparison

purposes. The downsampling ratio of 1:2 for the HTC database results in images of

776×1296, which are relatively similar with the 1280×960 images from the UST

database or the 1021×1403 images in the GPDS database. This gives some certainity

that a downsampling rate of 1:2 will not decrease the system’s performance in a

noticeable way, and will probably give good performance boosts in both recognition

performance (as seen by the decidability indexes) and overall computational

performance.

Considering template shifts during template matching may greatly improve biometric

recognition performance results, as seen for the UST database, but may also cause slight

performance downgrades as seen for the GDPS and HTC databases. This may happen

because since the comparison of the authenticating template with the stored templates

considers the shift that produces the best score, the impostor shifts that generate the best

score for each comparison are also considered.

Hand-Based Biometric Recognition System for Mobile Devices

81

In the future, a bigger database of palmprints must be created using the HTC Desire

camera, in order to provide more accurate and statistically significant results.

Additionally, the LDPC must be used with proper probability estimations, as suggested

in [12], so that the results of the secure system can be properly studied. Other biometric

traits from the hand, such as hand geometry and finger geometry, should also be taken

into account to improve recognition performance.

The system needs to be tested and improved for more unconstrained environments,

where the acquired images can be highly noisy in terms of light exposure, shadows and

background irregularities. The usage of existing techniques of background subtraction,

and adaptation to the mobile devices scenario must be taken as an important step to

improve the system’s usability in a real scenario, where the user should be capable of

performing authentication to the system at any time and condition.

Regarding the communication between server and client, more secure approaches can

be taken besides the proposed usage of a ciphered channel or SSL and certificates. The

usage of security schemes based on functions with homomorphic properties should be

explored and implemented as a mean to further improve the security of the

communication and the privacy of the transferred data.

The evolution of the Android platform and of open source libraries that start to create

branches for Android (such as OpenCV), along with the improvements in virtualization

tools, and MATLAB support for mobile devices, are important factors that in a near

future might be able to allow for all of the processing to be done in the client side (in the

mobile device). However, the client-server architecture and its studies are equally

useful, especially when considering applications that involve financial transactions,

such as NFC Commerce, where the server side is necessary and might equally want to

validate and perform the biometric authentications as a security policy.

Hand-Based Biometric Recognition System for Mobile Devices

82

Hand-Based Biometric Recognition System for Mobile Devices

83

7. Bibliography

[1] Going Global Means Going Mobile in Emerging Markets -

http://blog.nielsen.com/nielsenwire/global/going-global-means-going-mobile-in-

emerging-markets/

[2] Global Biometric Forecast to 2012 - http://www.marketwire.com/press-

release/Global-Biometric-Market-to-Grow-22-Annually-Between-2011-2013-

1322339.htm

[3] NielsenWire - Who is Winning the U.S. Smartphone Battle? -

http://blog.nielsen.com/nielsenwire/online_mobile/who-is-winning-the-u-s-smartphone-

battle/

[4] M. Ramalho, “Secure Palmprint Verification System”, M.Sc. Dissertation, Instituto

Superior Técnico (IST), Lisbon, 2010.

[5] A. K. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biometric Recognition”.

IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 4-20,

Jan., 2004.

[6] A. Pocovnicu, “Biometric Security for Cell Phones”. Informatica Economică, vol.

13, no. 1, pp. 57-63, 2009.

[7] A. Mishra, “Multimodal Biometrics it is: Need for Future Systems”. International

Journal of Computer Applications (0975 – 8887), vol. 3, no. 4, pp. 28-29, Jun., 2010.

[8] E. Zavadskas, A. Kaklauskas, M. Seniut, G. Dzemyda, S. Ivanikovas, V. Stankevic,

C. Simkevicius, and A. Jaruševicius, “Web-based Biometric Mouse Intelligent System

for Analysis of Emotional State and Labour Productivity”. Proc. of the 25th

International Symposium on Automation and Robotics in Construction (ISARC), pp.

26-29, Jun., 2008.

[9] N. Paveši, S. Ribari , and D. Ribari, “Personal authentication using hand-geometry

and palmprint features – the state of the art”. Proc. of Workshop on Biometrics,

Cambridge, United Kingdom, Aug. 22, 2004.

[10] C. Rathgeb and A. Uhl, “Iris-Biometric Hash Generation for Biometric Database

Indexing”. Proc. of the 20th International Conference on Pattern Recognition (ICPR),

Instanbul, Turkey, pp. 2848-2851, Aug. 23-25, 2010.

[11] C. Roberts, “Biometric Attack Vectors and Defences”. Computers & Security, vol.

26, no. 1, pp. 14-25, Feb., 2007.

[12] M. Ramalho, L.D. Soares and P.L. Correia, “Distributed Source Coding for

Securing a Hand-based Biometric Recognition System”. Proc. of the 18
th

 International

Conference on Image Processing (ICIP), Brussels, Belgium, Sep. 11-14, 2011.

[13] K. Niinuma, P. Unsang, and A.K. Jain, “Soft Biometric Traits for Continuous User

Authentication”. IEEE Transactions on Information Forensics and Security, Volume 5,

Issue 4, pp. 771-780, Nov. 15, 2010.

Hand-Based Biometric Recognition System for Mobile Devices

84

[14] S.Z. Li and A.K. Jain, “Encyclopedia of Biometrics”, Springer, Volume 2, p. 97,

2009.

[15] S.D. Rane, W. Sun and A. Vetro, “Secure distortion computation among untrusting

parties using homomorphic encryption”. Proc. of the 16th IEEE International

Conference on Image Processing (ICIP), Cairo, Egypt, pp. 1485-1488, Nov. 7-10, 2009.

[16] A. Adler, “Biometric System Security”. Handbook of Biometrics, Springer, ch. 19,

pp. 381-402, 2008.

[17] M. Kaur, S. Sofat and D. Saraswat, “Template and Database Security in Biometrics

Systems: A Challenging Task”. International Journal of Computer Applications (IJCA),

vol. 4, no. 5, pp. 1-5, Jul., 2010.

[18] A.K. Jain, K. Nandakumar, and A. Nagar, “Biometric Template Security”.

EURASIP Journal on Advances in Signal Processing, Jan., 2008.

[19] B.J. Kang and K.R. Park, “A new multi-unit iris authentication based on quality

assessment and score level fusion for mobile phones”. Machine Vision and

Applications, Springer, vol. 21, no. 4, pp. 541-553, 2009.

[20] D.S. Jeong, H. Park, K.R. Park and J. Kim, “Iris Recognition in Mobile Phone

Based on Adaptive Gabor Filter”. Proc. of International Conference on Biometrics

(ICB), pp. 457-463, 2006.

[21] P. Abeni, M. Baltatu, and R. D'Alessandro, "NIS03-4: Implementing Biometrics-

Based Authentication for Mobile Devices". Proc. of Global Telecommunications

Conference (GLOBECOM), 2006.

[22] L. Shen, N. Zheng, S. Zheng and W. Li, “Secure mobile services by face and

speech based personal authentication”. Proc. of International Conference on Intelligent

Computing and Intelligent Systems (ICIS), Xiamen, China, pp. 97-100, Oct., 2010.

[23] BioWallet Signature from Mobbeel Official Website -

http://www.mobbeel.com/products/biowallet/overview/

[24] BioLock App Review at Bright Hub - http://www.brighthub.com/mobile/google-

android/reviews/105400.aspx

[25] Animetrics - CredentialME AppLock - http://www.animetrics.com/android/

[26] Biowallet Forum Discussion - http://androidforums.com/android-

applications/4063-biowallet.html

[27] S. Hashimi, S. Komatineni and D. MacLean, “Pro Android 2”, Apress, 2010.

[28] M. Gargenta, “Using NDK for Performance - Dalvik Versus Native”, 2010 -

http://marakana.com/forums/android/examples/96.html

[29] Gartner's Worldwide OS Market Evolution and Forecast -

http://www.gartner.com/it/page.jsp?id=1622614

[30] A. Constantinou, E. Camilleri and M. Kapetanakis, “Making sense of a fragmented

world: Mobile Developer Economics 2010 and Beyond”, VisionMobile, pp. 32; 52,

2010.

Hand-Based Biometric Recognition System for Mobile Devices

85

[31] Android Developer's Official Website - http://developer.android.com/

[32] Android Compatibility Test Suite (CTS) Framework User Manual -

http://static.googleusercontent.com/external_content/untrusted_dlcp/source.android.com

/pt-PT//compatibility/android-cts-manual-r4.pdf

[33] Java Advanced Imaging Core Project Website - http://java.net/projects/jai-core

[34] T. Sanches, “Hand Surface Biometrics for Personal Recognition”, M.Sc.

Dissertation, Instituto Superior Técnico (IST), Lisbon, 2008.

[35] Telematics News - Mobile commerce network for NFC payments -

http://telematicsnews.info/2010/11/19/us-network-operators-create-mobile-commerce-

network-for-nfc-payments_n112/

[36] C. Morris, “NFC: Enabling Mobile Payments, the Internet of Things, and the Next

Wave of Applications”. BostInnovation, 2010.

http://bostinnovation.com/2010/12/14/nfc-enabling-mobile-payments-the-internet-of-

things-and-the-next-wave-of-applications/

[37] Clipperz Online Password Manager - http://www.clipperz.com/

[38] Dropbox - http://www.dropbox.com/

[39] Android Market - Lookout Mobile Security App -

https://market.android.com/details?id=com.lookout&feature=search_result

[40] Official NFC Forum - http://www.nfc-forum.org/aboutnfc/ecosystem/

[41] Z. Sun, T. Tan, Y. Wang, and S.Z. Li, “Ordinal Palmprint Represention for

Personal Identification”. Proc. of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05), San Diego, California, USA, pp.

279-284, Jun., 2005.

[42] D.D. Zhang, “Palmprint Authentication”. Kluwer Academic Publishers, 2004.

[43] A. Kumar, D.C.M. Wong, H.C. Shen and A.K. Jain, “Personal Verification using

Palmprint and Hand Geometry Biometric”. Proc. of the 4th International Conference on

Audio- and Video-Based Biometric Person Authentication, Guildford, United Kingdom,

pp. 668-678, 2003.

[44] Stack Overflow Android Camera Orientation -

http://stackoverflow.com/questions/4645960/how-to-set-android-camera-orientation-

properly

[45] Android Google Group - Camera preview only works on landscape mode issue -

http://code.google.com/p/android/issues/detail?id=1193#c42.

[46] Adobe AIR Camera Documentation -

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/Camer

a.html

[47] Stack Overflow - Android LED Camera behavior -

http://stackoverflow.com/questions/5017455/how-to-use-camera-flash-led-as-torch-on-

a-samsung-galaxy-tab

Hand-Based Biometric Recognition System for Mobile Devices

86

[48] Android default Camera app source code -

http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/

2.1_r2/android/hardware/Camera.java

[49] Stack Overflow - Android picture distorted -

http://stackoverflow.com/questions/5540981/picture-distorted-with-camera-and-

getoptimalpreviewsize.

[50] Stack Overflow - Camera photos added to gallery depending on device -

http://stackoverflow.com/questions/5221704/camera-intent-activity-avoid-saving-to-

gallery.

[51] Things about Stuff Blog - Goodbye garbage collector

http://nhenze.net/?p=349#comments

[52] Android Google Code Group Issue 2794 -

http://code.google.com/p/android/issues/detail?id=2794

[53] Ivomania Mobile World Blog -

http://superivomania.blogspot.com/2010/05/android-camera-performance-new-

options.html

[54] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms”. IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.

[55] P. Soille, “Morphological Image Analysis: Principles and Applications”. Springer-

Verlag, pp. 173-174, 1999.

[56] L. Shapiro and G. Stockman, “Computer Vision”. Prentice Hall, 2001.

[57] E. Konukoğlu, E. Yörük, J. Darbon and B. Sankur, “Shape-Based Hand

Recognition”. IEEE Transactions on Image Processing, vol. 15, no. 7, pp. 1803-1815,

Jul., 2006.

[58] C. Lin, T. Chuang and K. Fan, “Palmprint Verification using Hierarchical

Decomposition”. Pattern Recognition, vol. 38, no. 12, pp. 2639-2652, Dec., 2005.

[59] N. Ferguson and B. Schneier, “Practical Cryptography”. John Wiley & Sons, 2003.

[60] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Functions”. Ecrypt

Hash Workshop, 2007.

[61] RadioGatún Hash Website - http://radiogatun.noekeon.org/

[62] “UST Hand Image Database, Department of Computer Science, The Hong Kong

University of Science and Technology. (Provided by Dr. Helen Shen)”.

[63] M. A. Ferrer, A. Morales, C. M. Travieso, J. B. Alonso, “Low Cost Multimodal

Biometric Identification System based on Hand Geometry, Palm and Finger Textures”.

Proc. of the 41st Annual IEEE International Carnahan Conference on Security

Technology, ISBN: 1-4244-1129-7, Ottawa, Canada, pp. 52-58, Oct. 8-11, 2007.

[64] J. Daugman, “How Iris Recognition Works”. IEEE Transactions on Circuits and

Systems for Video Technology, vol. 14, no. 1, pp. 21-30, Jan., 2004.

