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ON THE GLOBAL UNIQUENESS FOR THE

EINSTEIN-MAXWELL-SCALAR FIELD SYSTEM WITH A

COSMOLOGICAL CONSTANT

PART 2. STRUCTURE OF THE SOLUTIONS AND STABILITY

OF THE CAUCHY HORIZON

JOÃO L. COSTA, PEDRO M. GIRÃO, JOSÉ NATÁRIO,
AND JORGE DRUMOND SILVA

Abstract

This paper is the second part of a trilogy dedicated to the following prob-
lem: given spherically symmetric characteristic initial data for the Einstein-
Maxwell-scalar field system with a cosmological constant Λ, with the data
on the outgoing initial null hypersurface given by a subextremal Reissner-
Nordström black hole event horizon, study the future extendibility of the
corresponding maximal globally hyperbolic development as a “suitably reg-
ular” Lorentzian manifold.

In the first paper of this sequence [4], we established well posedness of
the characteristic problem with general initial data.

In this second paper, we generalize the results of Dafermos [6] on the
stability of the radius function at the Cauchy horizon by including a cosmo-
logical constant. This requires a considerable deviation from the strategy
followed in [6], focusing on the level sets of the radius function instead of
the red-shift and blue-shift regions. We also present new results on the
global structure of the solution when the free data is not identically zero in
a neighborhood of the origin.

In the third and final paper [5], we will consider the issue of mass inflation
and extendibility of solutions beyond the Cauchy horizon.
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1. Introduction

This paper is the second part of a trilogy dedicated to the following prob-
lem: given spherically symmetric characteristic initial data for the Einstein-
Maxwell-scalar field system with a cosmological constant Λ, with the data
on the outgoing initial null hypersurface given by a subextremal Reissner-
Nordström black hole event horizon, and the remaining data otherwise free,
study the future extendibility of the corresponding maximal globally hy-
perbolic development as a “suitably regular” Lorentzian manifold. We are
motivated by the strong cosmic censorship conjecture and the question of
determinism in general relativity. As explained in detail in the Introduction
of Part 1, strong cosmic censorship is one of the most fundamental open
problems in general relativity (see the classic monographs [3, 10] and the
discussions in [1, 6, 9] for the general context of this problem). Although
significant developments have been achieved in the last five decades (from
the initial heuristic works [14, 15] to rigorous mathematical results [6–8]),
including some recent encouraging progress (see [9, 11, 13] and references
therein), a complete resolution of the conjecture at hand still seems out of
reach. Nonetheless, the spherically symmetric self-gravitating scalar field
model has provided considerable insight into the harder problem of vac-
uum collapse without symmetries [2]; this was explored in [12] to obtain the
first promising steps towards understanding the stability of Cauchy horizons
without symmetry assumptions.

In Part 1, we established the equivalence (under appropriate regularity
conditions for the initial data) between the Einstein equations (1)−(5) and
the system of first order PDE (14)−(23). We proved existence, uniqueness
and identified a breakdown criterion for solutions of this system (see Sec-
tion 2).

In the current paper we are concerned with the structure of the solutions
of the characteristic problem, and wish to address the question of existence
and stability of the Cauchy horizon when the initial data is as above. This
is intimately related to the issue of global uniqueness for the Einstein equa-
tions: it is the possibility of extension of solutions across this horizon that
leads to the breakdown of global uniqueness and, in case the phenomenon
persists for generic initial data, to the failure of the strong cosmic censorship
conjecture.
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As in [6], we introduce a certain generic element in the formulation of
our problem by perturbing a subextremal Reissner-Nordström black hole
(whose Cauchy horizon formation is archetypal) by arbitrary characteristic
data along the ingoing null direction. The study of the conditions under
which the solutions can be extended across the Cauchy horizon is left to
Part 3.

We take many ideas from [6] and [7] and build on these works. In par-
ticular, we borrow the following three very important techniques. (i) The
partition of the spacetime domain of the solution into four regions and the
construction of a carefully chosen spacelike curve to separate the last two.
(ii) The use of the Raychaudhuri equation in v to estimate ν

1−µ at a larger v

from its value at a smaller v. (iii) The use of BV estimates for the field.
Nonetheless, the introduction of a cosmological constant Λ causes a sig-

nificant difference that requires deviation from the original strategies devel-
oped in [6] and [7]. Moreover, we introduce some technical simplifications
and obtain sharper and more detailed estimates. These improvements will
be crucial for our arguments in Part 3.

Our approach therefore has three main departures from the one of Dafer-
mos:

i) First, due to the presence of the cosmological constant Λ, the curves of
constant shift, which are used in [6] and [7], are no longer necessarily
spacelike for Λ > 0 large. This forces us to find an alternative approach;
we have chosen to work with curves of constant r coordinate instead of
working with curves of constant shift, which turns out to be a simpler
approach. Furthermore, it allows us to treat the cases Λ < 0, Λ = 0
and Λ > 0 in a unified framework.

ii) Second, we show that the Bondi coordinates (r, v) are the ones most
adapted to estimating the growth of the fields as we progress away from
the event horizon. Our approach starts by controlling the field ζ

ν us-
ing (54). Although this is similar to (53), there is one distinction which
makes all the difference. It consists of the fact that in the double inte-
gral in (53) the field ζ

ν is multiplied by the function ν. When we pass
to Bondi coordinates this function disappears, making a simple applica-
tion of Gronwall’s inequality, such as the one we present, possible. This
would not work in the double null coordinate system (u, v).

iii) Third, our estimates are not subordinate to the division of the solution
spacetime into red shift, no shift and blue shift regions. Instead, we
consider the regions {r ≥ ř+}, {ř− ≤ r ≤ ř+} and {r ≤ ř−}, where ř+

is smaller than but sufficiently close to the radius r+ of the Reissner-
Nordström event horizon, and ř− is bigger than but sufficiently close to
the radius r− of the Reissner-Nordström Cauchy horizon. These may
be loosely thought of as red shift, no shift and blue shift regions of the
background Reissner-Nordström solution, even though the shift factor
is not small and indeed changes significantly from red to blue in the
intermediate region.

Our first objective is to obtain good upper bounds for −λ in the different
regions of spacetime. These will enable us to show that the radius function
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r is bounded below by a positive constant. However, good estimates for −ν
and the fields θ and ζ will also be essential in Part 3.

The main result of this paper is therefore

Theorem 1.1. Consider the characteristic initial value problem for the first
order system of PDE (14)−(23) with initial data (24)−(25) (so that {0} ×
[0, ∞[ is the event horizon of a subextremal Reissner-Nordström solution
with mass M > 0). Assume that ζ0 is continuous and ζ0(0) = 0. Then there
exists U > 0 such that the domain P of the (future) maximal development
contains [0, U ] × [0, ∞[. Moreover,

inf
[0,U ]×[0,∞[

r > 0,

the limit

r(u, ∞) := lim
v→∞

r(u, v)

exists for all u ∈ ]0, U ] and

lim
uց0

r(u, ∞) = r−.

So, under the hypotheses of Theorem 1.1, the argument in [7, Section 11],
shows that, as in the case when Λ = 0, the spacetime is extendible across
the Cauchy horizon with a C0 metric.

We also prove that only in the case of the Reissner-Nordström solution
does the curve {r = r−} coincide with the Cauchy horizon. As soon as the
initial data field is not identically zero, the curve {r = r−} is contained
in P (Theorem 8.1). This is an interesting geometrical condition and it is
conceptually relevant given the importance that we confer to the curves of
constant r. We also prove that, in contrast with what happens with the
Reissner-Nordström solution, the presence of any nonzero field immediately
causes the integral

∫∞
0 κ(u, v) dv to be finite for any u > 0 (Lemma 8.2). As

a consequence, the affine parameter of any outgoing null geodesic inside the
event horizon is finite at the Cauchy horizon (Corollary 8.3).

2. Framework and some results from Part 1

The spherically symmetric Einstein-Maxwell-scalar field system

with a cosmological constant. Consider a spherically symmetric space-
time with metric

g = −Ω2(u, v) dudv + r2(u, v) σS2 ,

where σS2 is the round metric on the 2-sphere. The Einstein-Maxwell-scalar
field system with a cosmological constant Λ and total electric charge 4πe
reduces to the following system of equations: the wave equation for r,

∂u∂vr =
Ω2

2

1

r2

(
e2

r
+

Λ

3
r3 − ̟

)
, (1)

the wave equation for φ,

∂u∂vφ = −
∂ur ∂vφ + ∂vr ∂uφ

r
, (2)



GLOBAL UNIQUENESS WITH A COSMOLOGICAL CONSTANT - PART 2 5

the Raychaudhuri equation in the u direction,

∂u

(
∂ur

Ω2

)
= −r

(∂uφ)2

Ω2
, (3)

the Raychaudhuri equation in the v direction,

∂v

(
∂vr

Ω2

)
= −r

(∂vφ)2

Ω2
, (4)

and the wave equation for ln Ω,

∂v∂u ln Ω = −∂uφ ∂vφ −
Ω2e2

2r4
+

Ω2

4r2
+

∂ur ∂vr

r2
. (5)

The first order system. Given r, φ and Ω, solutions of the Einstein
equations, let

ν := ∂ur (6)

λ := ∂vr, (7)

̟ :=
e2

2r
+

r

2
−

Λ

6
r3 +

2r

Ω2
νλ, (8)

µ :=
2̟

r
−

e2

r2
+

Λ

3
r2, (9)

θ := r∂vφ, (10)

ζ := r∂uφ (11)

and

κ :=
λ

1 − µ
. (12)

Notice that we may rewrite (8) as

Ω2 = −
4νλ

1 − µ
= −4νκ. (13)

The Einstein equations imply the first order system for (r, ν, λ, ̟, θ, ζ, κ)

∂ur = ν, (14)

∂vr = λ, (15)

∂uλ = νκ∂r(1 − µ), (16)

∂vν = νκ∂r(1 − µ), (17)

∂u̟ =
1

2
(1 − µ)

(
ζ

ν

)2

ν, (18)

∂v̟ =
1

2

θ2

κ
, (19)

∂uθ = −
ζλ

r
, (20)

∂vζ = −
θν

r
, (21)

∂uκ = κν
1

r

(
ζ

ν

)2

, (22)

with the restriction

λ = κ(1 − µ). (23)
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Under appropriate regularity conditions for the initial data, the system of
first order PDE (14)−(23) also implies the Einstein equations (1)−(5).

Initial data. In Part 1 we study well posedness of the first order system
for general initial data. In this paper we take the initial data on the out-
going null direction v to be the data on the event horizon of a subextremal
Reissner-Nordström solution with mass M . The initial data on the ingoing
null direction u is free. More precisely, we choose





r(u, 0) = r0(u) = r+ − u,
ν(u, 0) = ν0(u) = −1,
ζ(u, 0) = ζ0(u),

for u ∈ [0, U ], (24)





λ(0, v) = λ0(v) = 0,
̟(0, v) = ̟0(v) = M,
θ(0, v) = θ0(v) = 0,
κ(0, v) = κ0(v) = 1,

for v ∈ [0, ∞[. (25)

Here r+ > 0 is the radius of the event horizon. We assume ζ0 is continuous
and ζ0(0) = 0.

Well posedness of the first order system. Theorem 4.4 of Part 1, for
the initial data above, reads:

Theorem 2.1. The characteristic initial value problem (14)−(23), with ini-
tial conditions (24) and (25), where ζ0 is continuous and ζ0(0) = 0, has a
unique solution defined on a maximal past set P containing a neighborhood
of [0, U ] × {0} ∪ {0} × [0, ∞[.

Remark 2.2. Notice that the initial data (24) and (25) satisfies the regu-
larity condition (h4) in Part 1 (that is, ν0, λ0 and κ0 are C1). Therefore the
solution of the characteristic initial value problem (14)−(23) corresponds to
a classical solution of the Einstein equations (1)−(5).

Breakdown criterion. Theorem 5.4 of Part 1, for the initial data above,
reads:

Theorem 2.3. Suppose that (r, ν, λ, ̟, θ, ζ, κ) is the maximal solution of the
characteristic initial value problem (14)−(23), with initial conditions (24)
and (25). If (U ′, V ′) is a point on the boundary of P with 0 < U ′ < U and
V ′ > 0, then for all sequences (un, vn) in P converging to (U ′, V ′), we have

r(un, vn) → 0 and ̟(un, vn) → ∞.

Reissner-Nordström solution. For comparison purposes, we notice that
the Reissner-Nordström solution (with a cosmological constant), obtained
from the initial data ζ0(u) = 0, corresponds to

λ = 1 − µ, (26)

ν = −
1 − µ

(1 − µ)( · , 0)
, (27)

̟ = ̟0, (28)

κ = 1, (29)

ζ = θ = 0. (30)
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3. Preliminaries on the analysis of the solution

We now take the initial data on the v axis to be the data on the event
horizon of a subextremal Reissner-Nordström solution with mass M > 0.
So, we choose initial data as in (24)−(25) with ζ0(0) = 0. Moreover, we
assume ζ0 to be continuous. Since in this case the function ̟0 is constant
equal to M , we also denote M by ̟0. In particular, when Λ < 0, which
corresponds to the Reissner-Nordström anti-de Sitter solution, and when
Λ = 0, which corresponds to the Reissner-Nordström solution, we assume
that

r 7→ (1 − µ)(r, ̟0) = 1 −
2̟0

r
+

e2

r2
−

Λ

3
r2

has two zeros r−(̟0) = r− < r+ = r+(̟0). When Λ > 0, which corresponds
to the Reissner-Nordström de Sitter solution, we assume that r 7→ (1 −
µ)(r, ̟0) has three zeros r−(̟0) = r− < r+ = r+(̟0) < rc = rc(̟0).

PSfrag replacements

Λ = 0

Λ < 0

Λ > 0

r0
r

1 − µ(r, ̟0)

r+r
−

rc

PSfrag replacements

Λ = 0

Λ < 0

Λ > 0

r0
r

1 − µ(r, ̟0)

r+r
−

rc

PSfrag replacements

Λ = 0

Λ < 0

Λ > 0

r0
r

1 − µ(r, ̟0)

r+r
−

rc

We define η to be the function

η =
e2

r
+

Λ

3
r3 − ̟.

The functions (r, ̟) 7→ η(r, ̟) and (r, ̟) 7→ (1 − µ)(r, ̟) are related by

η = −
r2

2
∂r(1 − µ). (31)

We define the function η0 : R+ → R by

η0(r) =
e2

r
+

Λ

3
r3 − ̟0.

We will repeatedly use the fact that η(r, ̟) ≤ η0(r) (see Lemma 3.1). If
Λ ≤ 0, then η′

0 < 0. So η0 is strictly decreasing and has precisely one zero.
The zero is located between r− and r+. If Λ > 0, then η′′

0 is positive, so η0

is strictly convex and has precisely two zeros: one zero is located between
r− and r+ and the other zero is located between r+ and rc. We denote by
r0 the zero of η0 between r− and r+ in both cases.
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PSfrag replacements

Λ = 0

Λ < 0

Λ > 0
η0

r0
r

r+

r
−

rc

PSfrag replacements

Λ = 0

Λ < 0
Λ > 0

η0

r0
r

r+

r
−

rc

PSfrag replacements

Λ = 0

Λ < 0

Λ > 0

η0

r0
r

r+

r
−

rc

According to (16), we have ∂uλ(0, 0) = −∂r(1 − µ)(r+, ̟0) < 0. Since
λ(0, 0) = 0, we may choose U small enough so that λ(u, 0) is negative for
u ∈ ]0, U ]. Again we denote by P the maximal past set where the solution
of the characteristic initial value problem is defined. In Part 1 we saw that
λ is negative on P \ {0} × [0, ∞[, and so, as κ is positive (from (22) and
(25)), then 1 − µ is negative on P \ {0} × [0, ∞[.

Using the above, we can thus particularize the result of Part 1 on signs
and monotonicities to the case where the initial data is (24) and (25) as
follows.

Lemma 3.1 (Sign and monotonicity). Suppose that (r, ν, λ, ̟, θ, ζ, κ) is the
maximal solution of the characteristic initial value problem (14)−(23), with
initial conditions (24) and (25). Then:

• κ is positive;
• ν is negative;
• λ is negative on P \ {0} × [0, ∞[;
• 1 − µ is negative on P \ {0} × [0, ∞[;
• r is decreasing with both u and v;
• ̟ is nondecreasing with both u and v.

Using (16) and (20), we obtain

∂u
θ

λ
= −

ζ

r
−

θ

λ

ν

1 − µ
∂r(1 − µ), (32)

and analogously, using (17) and (21),

∂v
ζ

ν
= −

θ

r
−

ζ

ν

λ

1 − µ
∂r(1 − µ). (33)

Given 0 < ř < r+, let us denote by Γř the level set of the radius function

Γř := {(u, v) ∈ P : r(u, v) = ř}.

If nonempty, Γř is a connected C1 spacelike curve, since both ν and λ are
negative on P \{0}× [0, ∞[. Using the Implicit Function Theorem, the facts
that r(0, v) = r+, r(u, 0) = r+ − u, the signs of ν and λ, and the breakdown
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criterion given in Theorem 2.3, one can show that Γř can be parametrized
by a C1 function

v 7→ (uř(v), v),

whose domain is [0, ∞[ if ř ≥ r+−U , or an interval of the form [vř(U), ∞[, for
some vř(U) > 0, if ř < r+ − U . Alternatively, Γř can also be parametrized
by a C1 function

u 7→ (u, vř(u)),

whose domain is always an interval of the form ]uř(∞), min{r+ − ř, U}], for
some uř(∞) ≥ 0 . We prove below that if ř > r−, then uř(∞) = 0.

PSf
ra

g
re

pl
ac

em
en

ts

vř(U)

(u
r
(v

),
ṽ)

u

v

ur
(v

)

U

Γř

Γ ř +

u

uř(∞)

v

(u, vř(u)) (uř(v), v)

To analyze the solution we partition the domain into four regions (see
figure below). We start by choosing ř− and ř+ such that r− < ř− < r0 <
ř+ < r+. In Section 4 we treat the region ř+ ≤ r ≤ r+. In Section 5 we
consider the region ř− ≤ r ≤ ř+. In Section 6 we treat the region where
(u, v) is such that

vř−(u) ≤ v ≤ (1 + β) vř−(u),

with β > 0 appropriately chosen (we will denote the curve v = (1+β) vř−(u)
by γ). Finally, in Section 7 we consider the region where (u, v) is such that

v ≥ (1 + β) vř−(u).

The reader should regard ř−, ř+ and β as fixed. Later, they will have to be
carefully chosen for our arguments to go through.
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PSf
ra

g
re

pl
ac

em
en

ts

u

v

Γř+

Γř
−

γ

U

The crucial step consists in estimating the fields θ
λ and ζ

ν . Once this is
done, the other estimates follow easily. By integrating (32) and (33), we
obtain

θ

λ
(u, v) =

θ

λ
(uř(v), v)e

−
∫ u

uř(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

−

∫ u

uř(v)

ζ

r
(ũ, v)e

−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū

dũ, (34)

ζ

ν
(u, v) =

ζ

ν
(u, vř(u))e

−
∫ v

vř(u)

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

−

∫ v

vř(u)

θ

r
(u, ṽ)e−

∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(u,v̄) dv̄ dṽ. (35)

Formula (34) is valid provided that uř(v) is defined and uř(v) ≤ u, since
the domain P is a past set; it also holds if we replace uř(v) by 0. Similarly,
formula (35) is valid provided that vř(u) is defined and vř(u) ≤ v; again it
holds if we replace vř(u) by 0.

4. The region J−(Γř+)

Recall that r0 < ř+ < r+. In this section, we treat the region ř+ ≤ r ≤ r+,

that is, J−(Γř+).∗ Our first goal is to estimate (42) for ζ
ν . This will allow

us to obtain the lower bound (43) for κ, which will then be used to improve
estimate (42) to (46). Finally, we successively bound θ

λ , θ, ̟, and use this
to prove that the domain of vř+( · ) is ]0, min{r+ − ř+, U}].

In this region, the solution with general ζ0 can then be considered as a
small perturbation of the Reissner-Nordström solution (26)−(30): ̟ is close
to ̟0, κ is close to 1 and ζ, θ are close to 0. Besides, the smaller U is, the
closer the approximation.

∗Throughout this paper we follow the usual notations for the causal structure of the
quotient Lorentzian manifold with coordinates (u, v) and time orientation such that ∂

∂u

and ∂
∂v

are future-pointing.
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Substituting (34) in (35) (with both uř(v) and vř(u) replaced by 0), we
get

ζ

ν
(u, v) =

ζ

ν
(u, 0)e−

∫ v

0

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ (36)

+

∫ v

0

θ

λ
(0, ṽ)e

−
∫ u

0

[
ν

1−µ
∂r(1−µ)

]
(ũ,ṽ) dũ

×

×
[(−λ)

r

]
(u, ṽ)e−

∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(u,v̄) dv̄ dṽ

+

∫ v

0

(∫ u

0

[ζ

ν

(−ν)

r

]
(ũ, ṽ)e−

∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,ṽ) dū dũ

)
×

×
[(−λ)

r

]
(u, ṽ)e−

∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(u,v̄) dv̄ dṽ.

We make the change of coordinates

(u, v) 7→ (r(u, v), v) ⇔ (r, v) 7→ (ur(v), v). (37)

The coordinates (r, v) are called Bondi coordinates. We denote by ζ̂
ν the

function ζ
ν written in these new coordinates, so that

ζ

ν
(u, v) =

ζ̂

ν
(r(u, v), v) ⇔

ζ̂

ν
(r, v) =

ζ

ν
(ur(v), v).

The same notation will be used for other functions. In the new coordinates,
(36) may be written

ζ̂

ν
(r, v) =

ζ

ν
(ur(v), 0)e−

∫ v

0

[
λ

1−µ
∂r(1−µ)

]
(ur(v),ṽ) dṽ (38)

+

∫ v

0

θ̂

λ
(r+, ṽ)e

∫ r+
r(ur(v),ṽ)

[
1

1̂−µ

̂∂r(1−µ)
]
(s̃,ṽ) ds̃

×

×
[(−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
e

−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(ur(v),v̄) dv̄

dṽ

+

∫ v

0

(∫ r+

r(ur(v),ṽ)

1

s̃

[ ζ̂

ν

]
(s̃, ṽ)e

∫ s̃

r(ur(v),ṽ)

[
1

1̂−µ
̂∂r(1−µ)

]
(s̄,ṽ) ds̄

ds̃

)
×

×
[(−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
e

−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(ur(v),v̄) dv̄

dṽ.
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PSf
ra
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pl
ac
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en

ts

ṽ

(ur(v), ṽ)

v

r+
−

s1

ur(v)

U

Γs 2

Γs 1

u

v

0

(ur(v), v)

We have θ(0, v) = 0 and, from (20), ∂uθ(0, v) = 0, whereas λ(0, v) = 0
and, from (16), ∂uλ(0, v) < 0. Writing

θ

λ
(u, v) =

∫ u
0 ∂uθ(ũ, v)dũ∫ u
0 ∂uλ(ũ, v)dũ

,

it is easy to show that the function θ
λ can be extended as a continuous

function to {0} × [0, ∞[, with θ
λ (0, v) = 0. Substituting this into (34) (again

with uř(v) replaced by 0) yields

θ

λ
(u, v) = −

∫ u

0

ζ

r
(ũ, v)e

−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū

dũ.

We can rewrite this in the new coordinates as

θ̂

λ
(r, v) =

∫ r+

r

1

s̃

[ ζ̂

ν

]
(s̃, v)e

∫ s̃

r

[
1

1̂−µ

̂∂r(1−µ)
]
(s̄,v) ds̄

ds̃. (39)

A key point is to bound the exponentials that appear in (38) and (39).
As we go on, this will be done several times in different ways.

Lemma 4.1. Assume that there exists α ≥ 0 such that, for 0 ≤ ṽ ≤ v, the
following bounds hold:

e
−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(ur(v),v̄) dv̄

≤ e−α(v−ṽ)

and

e

∫ s̃

r(ur(v),ṽ)

[
1

1̂−µ

̂∂r(1−µ)
]
(s̄,ṽ) ds̄

≤ 1.

Then (38) implies

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ e
(r+−r)2

rr+ max
u∈[0,ur(v)]

|ζ0|(u)e−αv . (40)
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Proof. Combining (38) with θ̂
λ(r+, v) ≡ 0 and the bounds on the exponen-

tials, we have

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ |ζ0|(ur(v))e−αv (41)

+

∫ v

0

∫ r+

r(ur(v),ṽ)

1

s̃

[ ζ̂

ν

]
(s̃, ṽ) ds̃ ×

×
[(−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
e−α(v−ṽ) dṽ.

For r ≤ s < r+, define

Zα
(r,v)(s) =





maxṽ∈[0,v]

{
eαṽ
∣∣∣ ζ̂

ν

∣∣∣(s, ṽ)

}
if r+ − ur(v) ≤ s < r+,

maxṽ∈[vs(ur(v)),v]

{
eαṽ
∣∣∣ ζ̂ν
∣∣∣(s, ṽ)

}
if r ≤ s ≤ r+ − ur(v).

Here the maximum is taken over the projection of J−(ur(v), v) ∩ Γs on the
v-axis (see the figure below).

PSf
ra

g
re

pl
ac

em
en

ts

vs2 (ur(v))

(ur(v), vs2 (ur(v)))

v

r+ − s1

ur(v)

U

Γs2

Γs1

u

v

0

(ur(v), v)
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Note that Zα
(r,v)(r) = eαv

∣∣ ζ̂
ν

∣∣(r, v). Inequality (41) implies

Zα
(r,v)(r) ≤ |ζ0|(ur(v))

+

∫ v

0

∫ r+

r(ur(v),ṽ)
Zα

(r,v)(s̃) ds̃
[(−λ)(ur(v), ṽ)

[r(ur(v), ṽ)]2

]
dṽ

≤ max
s∈[r,r+]

|ζ0|(us(v))

+

∫ r+

r
Zα

(r,v)(s̃) ds̃

∫ v

0

[(−λ)(ur(v), ṽ)

[r(ur(v), ṽ)]2

]
dṽ

≤ max
u∈[0,ur(v)]

|ζ0|(u) +
(1

r
−

1

r+ − ur(v)

) ∫ r+

r
Zα

(r,v)(s̃) ds̃.

We still consider r ≤ s < r+. Let ṽ ∈ [0, v] if r+ − ur(v) ≤ s < r+, and
ṽ ∈ [vs(ur(v)), v] if r ≤ s ≤ r+ −ur(v). In this way (us(ṽ), ṽ) ∈ J−(ur(v), v).
In the same way one can show that

eαṽ
∣∣∣
ζ̂

ν

∣∣∣(s, ṽ) ≤ max
u∈[0,us(v)]

|ζ0|(u) +
(1

s
−

1

r+ − us(v)

) ∫ r+

s
Zα

(r,v)(s̃) ds̃

because J−(us(ṽ), ṽ) ∩ Γs̃ ⊂ J−(ur(v), v) ∩ Γs̃, for s ≤ s̃ < r+, and so
Zα

(s,ṽ)(s̃) ≤ Zα
(r,v)(s̃). Since us(v) ≤ ur(v) for r ≤ s < r+, we have

Zα
(r,v)(s) ≤ max

u∈[0,ur(v)]
|ζ0|(u) +

(1

r
−

1

r+

) ∫ r+

s
Zα

(r,v)(s̃) ds̃.

Using Gronwall’s inequality, we get

Zα
(r,v)(r) ≤ e

(r+−r)2

rr+ max
u∈[0,ur(v)]

|ζ0|(u).

This establishes (40). �

Lemma 4.2. Let r0 ≤ r < r+ and v > 0. Then

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ e
(r+−r)2

rr+ max
u∈[0,ur(v)]

|ζ0|(u). (42)

Proof. We bound the exponentials in (38). From (31), the definition of η
and ̟ ≥ ̟0,

−∂r(1 − µ) =
2η

r2
≤

2η0

r2
= −∂r(1 − µ)(r, ̟0) ≤ 0.

Therefore in the region J−(Γr0) the exponentials are bounded by 1. Ap-
plying Lemma 4.1 with α = 0 we obtain (40) with α = 0, which is pre-
cisely (42). �

According to (42), the function ζ
ν is bounded in the region J−(Γr0), say

by δ̂. From (22),

κ(u, v) = e
∫ u

0

(
ζ2

rν

)
(ũ,v) dũ

≥ eδ̂2
∫ u

0
( ν

r
)(ũ,v) dũ

≥

(
r0

r+

)δ̂2

. (43)
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We recall from Part 1 that equations (15), (17), (19) and (23) imply

∂v

(
1 − µ

ν

)
= −

θ2

νrκ
, (44)

which is the Raychaudhuri equation in the v direction. We also recall that
the integrated form of (18) is

̟(u, v) = ̟0(v)e−
∫ u

0

(
ζ2

rν

)
(u′,v) du′

+

∫ u

0
e−
∫ u

s

ζ2

rν
(u′,v) du′

(
1

2

(
1 +

e2

r2
−

Λ

3
r2

)
ζ2

ν

)
(s, v) ds. (45)

These will be used in the proof of the following result.

Proposition 4.3. Let r0 < ř+ ≤ r < r+ and v > 0. Then there exists
α > 0 (given by (50) below) such that

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ e
(r+−r)2

rr+ max
u∈[0,ur(v)]

|ζ0|(u)e−αv , (46)

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ Ĉr max
u∈[0,ur(v)]

|ζ0|(u)e−αv , (47)

|θ̂|(r, v) ≤ C max
u∈[0,ur(v)]

|ζ0|(u)e−αv . (48)

For (u, v) ∈ J−(Γř+), and U sufficiently small, we have

̟0 ≤ ̟(u, v) ≤ ̟0 + C

(
sup

ũ∈[0,u]
|ζ0|(ũ)

)2

. (49)

Moreover, the curve Γř+ intersects every line of constant u provided that
0 < u ≤ min{r+ − ř+, U}. Therefore, uř+(∞) = 0.

Proof. In J−(Γř+), we have ∂r(1−µ)(r, ̟0) ≥ minr∈[ř+,r+] ∂r(1−µ)(r, ̟0) >
0 and

−
λ

1 − µ
∂r(1 − µ) ≤ −κ ∂r(1 − µ)(r, ̟0)

≤ − inf
J−(Γř+

)
κ × ∂r(1 − µ)(r, ̟0)

≤ −
( ř+

r+

)δ̂2

min
r∈[ř+,r+]

∂r(1 − µ)(r, ̟0)

=: −α < 0, (50)

where we have used (43) (with ř+ instead of r0). Thus, we can improve the
bounds on the exponentials in (38) that involve integrals in v as follows:

e
−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(ur(v),v̄) dv̄

≤ e−α(v−ṽ).

Since
1

1̂ − µ
̂∂r(1 − µ) ≤ 0,

as before, we have

e

∫ s̃

r(ur(v),ṽ)

[
1

1̂−µ
̂∂r(1−µ)

]
(s̄,ṽ) ds̄

≤ 1.
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We apply Lemma 4.1 again, this time with a positive α, to get (46).
Now we may use (39) and (46) to obtain

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ e
(r+−r)2

rr+ ln
(r+

r

)
max

u∈[0,ur(v)]
|ζ0|(u)e−αv

= Ĉr max
u∈[0,ur(v)]

|ζ0|(u)e−αv .

In order to bound ̟ in J−(Γř+), we note that

−

∫ u

0

(
ζ2

rν

)
(ũ, v) dũ ≤ C2

(
sup

ũ∈[0,u]
|ζ0|(ũ)

)2

ln

(
r+

ř+

)
,

∣∣∣∣∣1 +
e2

r2
−

Λ

3
r2

∣∣∣∣∣ ≤ 1 +
e2

ř2
+

+
|Λ|

3
r2

+

and

−

∫ u

0
ν(ũ, v) dũ = r+ − r(u, v) ≤ r+ − ř+.

From (45), we conclude that

̟(u, v) ≤ ̟0eC(supũ∈[0,u] |ζ0|(ũ))
2

+ C

(
sup

ũ∈[0,u]
|ζ0|(ũ)

)2

.

Inequality (49) follows from ex ≤ 1 + 2x, for small x, since ζ0 is continuous
and ζ0(0) = 0.

Given that κ ≤ 1, we have (1 − µ) ≤ λ. Moreover, since ̟ is bounded in
the region J−(Γř+), 1 − µ is bounded from below, and so λ is also bounded
from below. Hence (47) implies (48).

Let 0 < u ≤ min{r+ − ř+, U}. We claim that

sup
{
v ∈ [0, ∞[: (u, v) ∈ J−(Γř+)

}
< ∞. (51)

To see this, first note that (17) shows that v 7→ ν(u, v) is decreasing in
J−(Γř+), as ∂r(1 − µ) ≥ 0 for r0 ≤ r ≤ r+ (recall that η(r, ̟) ≤ η0(r)).
Then (44) shows v 7→ (1 − µ)(u, v) is also decreasing in J−(Γř+). Thus, as
long as v is such that (u, v) ∈ J−(Γř+), we have (1−µ)(u, v) ≤ (1−µ)(u, 0) <
0. Combining the previous inequalities with (43), we get

λ(u, v) ≤

(
ř+

r+

)δ̂2

(1 − µ)(u, 0) < 0.

Finally, if (51) did not hold for a given u, we would have

r(u, v) = r(u, 0) +

∫ v

0
λ(u, v′) dv′

≤ r(u, 0) +

(
ř+

r+

)δ̂2

(1 − µ)(u, 0) v → −∞,

as v → ∞, which is a contradiction. This establishes the claim. �
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5. The region J−(Γř−) ∩ J+(Γř+)

In this section, we treat the region ř− ≤ r ≤ ř+. Recall that we assume
that r− < ř− < r0 < ř+ < r+. By decreasing ř−, if necessary, we will also
assume that

− (1 − µ)(ř−, ̟0) ≤ −(1 − µ)(ř+, ̟0). (52)

In Subsection (5.1), we obtain estimates (55) and (56) for ζ
ν and θ

λ , which
will allow us to obtain the lower bound (66) for κ, the upper bound (67)
for ̟, and to prove that the domain of vř−( · ) is ]0, min{r+ − ř−, U}]. In
Subsection (5.2), we obtain upper and lower bounds for λ and ν, as well as
more information about the region ř− ≤ r ≤ ř+. In Subsection (5.3), we

use the results from the previous subsection to improve the estimates on ζ
ν

and θ
λ to (86) and (91). We also obtain the bound (92) for θ.

As in the previous section, the solution with general ζ0 is qualitatively still
a small perturbation of the Reissner-Nordström solution (26)−(30): ̟, κ, ζ
and θ remain close to ̟0, 1 and 0, respectively. Moreover, λ is bounded from
below by a negative constant, and away from zero by a constant depending
on ř+ and ř−, as is also the case in the Reissner-Nordström solution (see
equation (26)). Likewise, ν has a similar behavior to its Reissner-Nordström
counterpart (see equation (27)): when multiplied by u, ν behaves essentially
like λ.

5.1. First estimates. By reducing U > 0, if necessary, we can assume
U ≤ r+ − ř+. We turn our attention to the region J−(Γř−) ∩ J+(Γř+).
Substituting (34) in (35) with ř = ř+, we get

ζ

ν
(u, v) =

ζ

ν
(u, vř+(u))e

−
∫ v

vř+
(u)

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

(53)

+

∫ v

vř+
(u)

θ

λ
(uř+(ṽ), ṽ)e

−
∫ u

uř+
(ṽ)

[
ν

1−µ
∂r(1−µ)

]
(ũ,ṽ) dũ

×

×
[(−λ)

r

]
(u, ṽ)e

−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(u,v̄) dv̄

dṽ

+

∫ v

vř+
(u)

(∫ u

uř+
(ṽ)

[ζ

ν

(−ν)

r

]
(ũ, ṽ)e

−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,ṽ) dū

dũ

)
×

×
[(−λ)

r

]
(u, ṽ)e

−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(u,v̄) dv̄

dṽ.
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We make the change of coordinates (37). Then, (53) may be written

ζ̂

ν
(r, v) =

ζ̂

ν
(ř+, vř+(ur(v)))e

−
∫ v

vř+
(ur(v))

[
λ

1−µ
∂r(1−µ)

]
(ur(v),ṽ) dṽ

(54)

+

∫ v

vř+
(ur(v))

θ̂

λ
(ř+, ṽ)e

∫ ř+
r(ur(v),ṽ)

[
1

1̂−µ
̂∂r(1−µ)

]
(s̃,ṽ) ds̃

×

×
[(−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
e

−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(ur(v),v̄) dv̄

dṽ

+

∫ v

vř+
(ur(v))

(∫ ř+

r(ur(v),ṽ)

[ ζ̂

ν

1

s̃

]
(s̃, ṽ)e

∫ s̃

r(ur(v),ṽ)

[
1

1̂−µ
̂∂r(1−µ)

]
(s̄,ṽ) ds̄

ds̃

)
×

×
[(−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
e

−
∫ v

ṽ

[
λ

1−µ
∂r(1−µ)

]
(ur(v),v̄) dv̄

dṽ.

For (r, v) such that (ur(v), v) ∈ J−(Γř−)∩J+(Γř+), vř+(ur(v)) is well defined
because U ≤ r+ − ř+.

PSf
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pl
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ts

ṽ

(ur(v), ṽ)

vř+
(ur(v))

v

r+
−

s1

ur(v)

U = r+ − ř+

Γ ř

Γs

Γř+

u

v

0

(ur(v), v)

Lemma 5.1. Let ř− ≤ r ≤ ř+. Then

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ C̃ max
u∈[0,ur(v)]

|ζ0|(u), (55)

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ C max
u∈[0,ur(v)]

|ζ0|(u). (56)

Proof. From (52) we have

(1 − µ)(r, ̟) ≤ (1 − µ)(r, ̟0)

≤ max {(1 − µ)(ř−, ̟0), (1 − µ)(ř+, ̟0)} (57)

= (1 − µ)(ř−, ̟0)
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and

∂r(1 − µ)

1 − µ
=

2η/r2

−(1 − µ)
≤

2η0/r2

−(1 − µ)
≤

2η0(ř−)/ř2
−

−(1 − µ)

≤
2η0(ř−)/ř2

−

−(1 − µ)(r, ̟0)
≤

2η0(ř−)/ř2
−

−(1 − µ)(ř−, ̟0)
=: cř− .

(For the second inequality, see the graph of η0 in Section 3.) Each of the
five exponentials in (54) is bounded by

ecř−
(ř+−ř−) =: C. (58)

Hence, for (r, v) such that (ur(v), v) ∈ J−(Γř−)∩J+(Γř+), we have from (54)

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ C
∣∣∣
ζ̂

ν

∣∣∣(ř+, vř+(ur(v))) (59)

+C2
∫ v

vř+
(ur(v))

∣∣∣
θ̂

λ

∣∣∣(ř+, ṽ)
[ (−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
dṽ

+C2
∫ v

vř+
(ur(v))

∫ ř+

r(ur(v),ṽ)

∣∣∣
ζ̂

ν

∣∣∣(s̃, ṽ) ds̃
[ (−λ)(ur(v), ṽ)

[r(ur(v), ṽ)]2

]
dṽ.

For r ≤ s ≤ ř+, define

Z(r,v)(s) = max
ṽ∈[vs(ur(v)),v]

∣∣∣
ζ̂

ν

∣∣∣(s, ṽ) (60)

and

T(r,v)(ř+) = max
ṽ∈[vř+

(ur(v)),v]

∣∣∣
θ̂

λ

∣∣∣(ř+, ṽ). (61)

PSf
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vs(ur(v))

(ur(v), vs(ur(v)))

v

r+
−

s1

ur(v)

U = r+ − ř+

Γ ř

Γs

Γř+

u

v

0

(ur(v), v)



GLOBAL UNIQUENESS WITH A COSMOLOGICAL CONSTANT - PART 2 20

Recall that [vs(ur(v)), v] is the projection of J−(ur(v), v) ∩ Γs on the v-axis.

Note that Z(r,v)(r) =
∣∣ ζ̂
ν

∣∣(r, v). Inequality (59) implies

Z(r,v)(r) ≤ CZ(r,v)(ř+)

+C2
∫ v

vř+
(ur(v))

T(r,v)(ř+)
[(−λ)(ur(v), ṽ)

r(ur(v), ṽ)

]
dṽ

+C2
∫ v

vř+
(ur(v))

∫ ř+

r(ur(v),ṽ)
Z(r,v)(s̃) ds̃

[(−λ)(ur(v), ṽ)

[r(ur(v), ṽ)]2

]
dṽ

≤ CZ(r,v)(ř+) + C2 ln
( ř+

r

)
T(r,v)(ř+) + C2

(1

r
−

1

ř+

) ∫ ř+

r
Z(r,v)(s̃) ds̃.

Again consider r ≤ s ≤ ř+ and let ṽ ∈ [vs(ur(v)), v], so that (us(ṽ), ṽ) ∈
J−(ur(v), v) ∩ J+(Γř+). In the same way one can show that

∣∣∣
ζ̂

ν

∣∣∣(s, ṽ) ≤ CZ(r,v)(ř+)+C2 ln
( ř+

s

)
T(r,v)(ř+)+C2

(1

s
−

1

ř+

) ∫ ř+

s
Z(r,v)(s̃) ds̃,

because J−(us(ṽ), ṽ) ∩ Γř+ ⊂ J−(ur(v), v) ∩ Γř+ . Therefore,

Z(r,v)(s) ≤ CZ(r,v)(ř+)+C2 ln
( ř+

r

)
T(r,v)(ř+)+C2

(1

r
−

1

ř+

) ∫ ř+

s
Z(r,v)(s̃) ds̃.

Using Gronwall’s inequality, we get

Z(r,v)(r) ≤ C
[
Z(r,v)(ř+) + C ln

( ř+

r

)
T(r,v)(ř+)

]
e

C2(ř+−r)2

rř+ . (62)

To bound Z(r,v) and T(r,v), it is convenient at this point to use (42) and

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ Ĉr max
u∈[0,ur(v)]

|ζ0|(u) (63)

(valid for ř+ ≤ r < r+), in spite of having the better estimates (46)
and (47). Indeed, if these better estimates are used, the improvement is just

e−αvř+
(ur(v)) (that is, an exponential factor computed over Γř+ for the same

value of u); to turn this into an exponential decay in v we must first obtain
a more accurate control of the various quantities in the region ř− ≤ r ≤ ř+.
Applying first the definition (60) and then (42), we have

Z(r,v)(ř+) = max
ṽ∈[vř+

(ur(v)),v]

∣∣∣
ζ̂

ν

∣∣∣(ř+, ṽ)

≤ e
(r+−ř+)2

ř+r+ max
ṽ∈[vř+

(ur(v)),v]
max

u∈[0,uř+
(ṽ)]

|ζ0|(u)

≤ e
(r+−ř+)2

ř+r+ max
u∈[0,ur(v)]

|ζ0|(u), (64)

because uř+(ṽ) ≤ ur(v). Applying first the definition (61) and then (63), we
have

T(r,v)(ř+) ≤ e
(r+−ř+)2

ř+r+ ln
(r+

ř+

)
max

ṽ∈[vř+
(ur(v)),v]

max
u∈[0,uř+

(ṽ)]
|ζ0|(u)

≤ Ĉř+ max
u∈[0,ur(v)]

|ζ0|(u). (65)
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We use (64) and (65) in (62). This yields (55).
Finally, writing (34) in the (r, v) coordinates (with ř = ř+) gives

θ̂

λ
(r, v) =

θ̂

λ
(ř+, v)e

∫ ř+
r

[
1

1̂−µ

̂∂r(1−µ)
]
(s̃,v) ds̃

+

∫ ř+

r

[ ζ̂

ν

1

s̃

]
(s̃, v)e

∫ s̃

r

[
1

1̂−µ
̂∂r(1−µ)

]
(s̄,v) ds̄

ds̃.

The exponentials are bounded by the constant C in (58). We use the esti-
mates (63) and (55) to obtain

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ C
∣∣∣
θ̂

λ

∣∣∣(ř+, v) + C

∫ ř+

r

[∣∣∣
ζ̂

ν

∣∣∣
1

s̃

]
(s̃, v) ds̃

≤ CĈř+ max
u∈[0,uř+

(v)]
|ζ0|(u)

+CC̃ ln
( ř+

r

)
max

u∈[0,ur(v)]
|ζ0|(u)

= C max
u∈[0,ur(v)]

|ζ0|(u),

which is (56). �

According to (42) and (55), the function ζ
ν is bounded in the region

J−(Γř−), let us say by δ̂. Arguing as in the deduction of (43), we obtain

κ(u, v) ≥

(
ř−

r+

)δ̂2

. (66)

Lemma 5.2. For (u, v) ∈ J−(Γř−), and U ≤ r+ − ř+ sufficiently small, we
have

̟0 ≤ ̟(u, v) ≤ ̟0 + C

(
sup

ũ∈[0,u]
|ζ0|(ũ)

)2

. (67)

The curve Γř− intersects every line of constant u. Therefore, uř−(∞) = 0.

Proof. The proof of (67) is identical to the proof of (49).
Because ̟ is bounded, the function 1 − µ is bounded below in J−(Γř−).

Also, by (57), the function 1 − µ is bounded above in J−(Γř−) ∩ J+(Γř+) by
(1 − µ)(ř−, ̟0).

We claim that for each 0 < u ≤ U

sup
{
v ∈ [0, ∞[ : (u, v) ∈ J−(Γř−)

}
< ∞. (68)

The proof is similar to the proof of (51): since κ is bounded below by a
positive constant and 1 − µ is bounded above by a negative constant, λ
is bounded above by a negative constant in J−(Γř−) ∩ J+(Γř+), say −cλ.
Then, as long as (u, v) belongs to J−(Γř−), we have the upper bound for
r(u, v) given by

r(u, v) ≤ r+ − u − cλv,

since 0 < u ≤ U ≤ r+ − ř+). Finally, if (68) did not hold for a given u, we
would have r(u, v) → −∞ as v → ∞, which is a contradiction. This proves
the claim. �
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5.2. Estimates for ν, λ and the region J−(Γř−) ∩ J+(Γř+).

Lemma 5.3. In the region J−(Γř−) ∩ J+(Γř+), we have the following esti-
mates from above and from below on λ and ν:

− C̃ ≤ λ ≤ −c̃ (69)

and

−
C̃

u
≤ ν ≤ −

c̃

u
, (70)

where the constants c̃ and C̃ depend on ř+ and ř−.
Furthermore, if 0 < δ < r+ − r0 and (u, v) ∈ Γr+−δ then

− C ∂r(1 − µ)(r+, ̟0) δ ≤ λ(u, v) ≤ −c ∂r(1 − µ)(r+, ̟0) δ (71)

and

− C
δ

u
≤ ν(u, v) ≤ −c

δ

u
, (72)

where the constants 0 < c < 1 < C may be chosen independently of δ. Given
ε > 0 then 1 − ε < c < 1 and 1 < C < 1 + ε for small enough δ.

Proof. From (22) we obtain (the Raychaudhuri equation)

∂u

(
λ

1 − µ

)
=

λ

1 − µ

(
ζ

ν

)2 ν

r
,

and from (44) we obtain (the Raychaudhuri equation)

∂v

(
ν

1 − µ

)
=

ν

1 − µ

(
θ

λ

)2 λ

r
. (73)

Let δ̂ > 0. By decreasing U , if necessary, using (46), (47), (55) and (56),

we have
∣∣ θ

λ

∣∣ < δ̂ and
∣∣ ζ

ν

∣∣ < δ̂ in J−(Γř−). Since
∫ u

0
ν
r (ũ, v) dũ = ln

(
r(u,v)

r+

)
,

∫ v
0

λ
r (u, ṽ) dṽ = ln

(
r(u,v)
r+−u

)
, ř−

r+
≤ r(u,v)

r+
≤ 1 and ř−

r+
≤ r(u,v)

r+−u ≤ 1, for (u, v) ∈

J−(Γř−) we have
( ř−

r+

)δ̂2

≤ e
∫ u

0

(
( ζ

ν
)2 ν

r

)
(ũ,v) dũ ≤ 1, (74)

( ř−

r+

)δ̂2

≤ e
∫ v

0

(
( θ

λ
)2 λ

r

)
(u,ṽ) dṽ ≤ 1. (75)

So, integrating the Raychaudhuri equations, we get

( ř−

r+

)δ̂2

=
( ř−

r+

)δ̂2 λ

1 − µ
(0, v) ≤

λ

1 − µ
(u, v) ≤

λ

1 − µ
(0, v) = 1 (76)

(as κ(0, v) = 1), and

−
( ř−

r+

)δ̂2 1

1 − µ
(u, 0) ≤

ν

1 − µ
(u, v) ≤

ν

1 − µ
(u, 0) = −

1

1 − µ
(u, 0). (77)

To bound (1 − µ)(u, 0), using (16) and (22), we compute

∂u(1 − µ) = ∂u

(λ

κ

)
= ν∂r(1 − µ) − (1 − µ)

ν

r

( ζ

ν

)2
. (78)

At the point (u, v) = (0, 0) this yields

∂u(1 − µ)(0, 0) = −∂r(1 − µ)(r+, ̟0).
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Fix 0 < ε < 1. Since the function u 7→ (1 − µ)(u, 0) is C1, by decreasing U
if necessary, we have

−
∂r(1 − µ)(r+, ̟0)

1 − ε
< ∂u(1 − µ)(u, 0) < −

∂r(1 − µ)(r+, ̟0)

1 + ε

for 0 ≤ u ≤ U , and so

−
∂r(1 − µ)(r+, ̟0)

1 − ε
u < (1 − µ)(u, 0) < −

∂r(1 − µ)(r+, ̟0)

1 + ε
u.

Using these inequalities in (77) immediately gives

( ř−

r+

)δ̂2 1 − ε

∂r(1 − µ)(r+, ̟0) u
≤

ν

1 − µ
(u, v) ≤

1 + ε

∂r(1 − µ)(r+, ̟0) u
. (79)

To obtain bounds on λ and ν from (76) and (79), recall that, in accordance
with (57), in the region J−(Γř−) ∩ J+(Γř+) the function 1 − µ is bounded
above by a negative constant. On the other hand, the bounds we obtained
earlier on ̟ in J−(Γř−) imply that 1 − µ is bounded below in J−(Γř−). In

summary, there exist c and C such that

−C ≤ 1 − µ ≤ −c.

Therefore, from (76) and (79), in the region J−(Γř−)∩ J+(Γř+), we get (69)
and (70):

−C ≤ λ ≤ −c
( ř−

r+

)δ̂2

,

−C
1 + ε

∂r(1 − µ)(r+, ̟0)

1

u
≤ ν ≤ −c

( ř−

r+

)δ̂2 1 − ε

∂r(1 − µ)(r+, ̟0)

1

u
.

By decreasing c and increasing C, if necessary, we can guarantee (69) and (70)
hold, without having to further decrease U .

Now suppose that (u, v) ∈ Γr+−δ. Then

(1 − µ)(u, v) = (1 − µ)(r+ − δ, ̟)

≤ (1 − µ)(r+ − δ, ̟0)

≤ −
∂r(1 − µ)(r+, ̟0)

1 + ε
δ, (80)

where ε is any fixed positive number, provided that δ is sufficiently small.
If δ is not small, then (80) also holds but with 1 + ε replaced by a larger
constant.

Using again (78),

(1 − µ)(u, v) = −

∫ u

0
e−
∫ u

ũ

(
ν
r

(
ζ
ν

)2)
(ū,v) dū

(2ν

r2
η
)
(ũ, v) dũ.

We take into account that

e−
∫ u

ũ

(
ν
r

(
ζ

ν

)2)
(ū,v) dū ≤

( r+

r+ − δ

)δ̂2
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and

−
2ν

r2
η ≥ 2ν

(
−

e2

r3
−

Λ

3
r +

̟0

r2

)
+ 2ν

δ̃

r2

= ν∂r(1 − µ)(r, ̟0) + 2ν
δ̃

r2

provided U is chosen small enough so that ̟ ≤ ̟0 + δ̃ in J−(Γr+−δ). We
get

(1 − µ)(u, v) ≥
( r+

r+ − δ

)δ̂2
(

(1 − µ)(r+ − δ, ̟0) −
2δ̃δ

r+(r+ − δ)

)

≥ −
( r+

r+ − δ

)δ̂2
(

∂r(1 − µ)(r+, ̟0)

1 − ε
+

4δ̃

r2
+

)
δ, (81)

where 0 < ε < 1, provided δ is sufficiently small. We notice that in the case
under consideration the integration is done between r+ and r+ − δ and so

the left hand sides of (74) and (75) can be improved to
( r+−δ

r+

)δ̂2

. Estimates

(76), (80) and (81) yield, for δ̂ ≤ 1,

−
( r+

r+ − δ

)(∂r(1 − µ)(r+, ̟0)

1 − ε
+

4δ̃

r2
+

)
δ ≤ λ (82)

≤ −
(r+ − δ

r+

)∂r(1 − µ)(r+, ̟0)

1 + ε
δ,

whereas estimates (79), (80) and (81) yield, again for δ̂ ≤ 1,

−
( r+

r+ − δ

)(1 + ε

1 − ε
+

4δ̃(1 + ε)

r2
+∂r(1 − µ)(r+, ̟0)

)
δ

u
≤ ν (83)

≤ −
(r+ − δ

r+

)1 − ε

1 + ε

δ

u
.

Estimates (71) and (72) are established. Note that u ≤ δ when (u, v) ∈
Γr+−δ. Since

c = c(δ, ε, δ̃) = c(δ, ε(U, δ), δ̃(U)) = c(δ, ε(U(δ), δ), δ̃(U(δ))),

and analogously for C, we see that c and C can be chosen arbitrarily close
to one, provided that δ is sufficiently small. �

Lemma 5.4. Let ε > 0. If δ is sufficiently small, then for any point (u, v) ∈
Γr+−δ we have

δ e−[∂r(1−µ)(r+,̟0)+ε] v ≤ u ≤ δ e−[∂r(1−µ)(r+,̟0)−ε] v. (84)

For any point (u, v) ∈ J−(Γř−) ∩ J+(Γr+−δ) we have

δ e−[∂r(1−µ)(r+,̟0)+ε] v ≤ u ≤ δ e
r+
c̃ e−[∂r(1−µ)(r+ ,̟0)−ε] v. (85)

Proof. Obviously, we have

r(ur+−δ(v), v) = r+ − δ.
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Since r is C1 and ν does not vanish, v 7→ ur+−δ(v) is C1. Differentiating
both sides of the last equality with respect to v we obtain

u′
r+−δ(v) = −

λ(ur+−δ(v), v)

ν(ur+−δ(v), v)
.

Using (71) and (72), we have

−
C

c
∂r(1−µ)(r+, ̟0)ur+−δ(v) ≤ u′

r+−δ(v) ≤ −
c

C
∂r(1−µ)(r+, ̟0)ur+−δ(v).

Integrating the last inequalities between 0 and v, as ur+−δ(0) = δ, we have

δe− C
c

∂r(1−µ)(r+ ,̟0)v ≤ ur+−δ(v) ≤ δe− c
C

∂r(1−µ)(r+,̟0)v.

This proves (84).
Let (u, v) ∈ J−(Γř−)∩J+(Γr+−δ). Integrating (70) between ur+−δ(v) and

u, we get

1 ≤
u

ur+−δ(v)
≤ e

r+
c̃ .

Combining vr+−δ(u) ≤ v with the first inequality in (84) applied at the point
(u, vr+−δ(u)),

u ≥ δ e−[∂r(1−µ)(r+ ,̟0)+ε] vr+−δ(u)

≥ δ e−[∂r(1−µ)(r+ ,̟0)+ε] v,

and combining u ≤ e
r+
c̃ ur+−δ(v) with the second inequality in (84) applied

at the point (ur+−δ(v), v),

u ≤ e
r+
c̃ ur+−δ(v) ≤ δ e

r+
c̃ e−[∂r(1−µ)(r+,̟0)−ε] v.

�

5.3. Improved estimates.

Lemma 5.5. Let ř− ≤ r ≤ ř+. Then

∣∣∣
ζ̂

ν

∣∣∣(r, v) ≤ C̃ř− max
u∈[0,ur(v)]

|ζ0|(u)e−αv . (86)

Proof. Applying first the definition (60) and then (46),

Z(r,v)(ř+) = max
ṽ∈[vř+

(ur(v)),v]

∣∣∣
ζ̂

ν

∣∣∣(ř+, ṽ)

≤ e
(r+−ř+)2

ř+r+ max
ṽ∈[vř+

(ur(v)),v]
max

u∈[0,uř+
(ṽ)]

|ζ0|(u)e−αṽ

≤ e
(r+−ř+)2

ř+r+ max
u∈[0,uř+

(vř+
(ur(v)))]

|ζ0|(u)e−αvř+
(ur(v))

= e
(r+−ř+)2

ř+r+ max
u∈[0,ur(v)]

|ζ0|(u)e−αvř+
(ur(v)) (87)

because uř+(ṽ) ≥ uř+(v). Integrating (69) between vř+(ur(v)) and v, we get

v − vř+(ur(v)) ≤ ř+−r
c̃ =: cr,ř+ ≤ cř−,ř+. (88)
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This allows us to continue the estimate (87), to obtain

Z(r,v)(ř+) ≤ e
(r+−ř+)2

ř+r+ eαcř−,ř+ max
u∈[0,ur(v)]

|ζ0|(u)e−αv . (89)

Applying first the definition (61) and then (47), and repeating the compu-
tations that lead to (87) and (88),

T(r,v)(ř+) ≤ e
(r+−ř+)2

ř+r+ ln
(r+

ř+

)
max

ṽ∈[vř+
(ur(v)),v]

max
u∈[0,uř+

(ṽ)]
|ζ0|(u)e−αṽ

≤ e
(r+−ř+)2

ř+r+ eαcř−,ř+ ln
(r+

ř+

)
max

u∈[0,ur(v)]
|ζ0|(u)e−αv (90)

We use (89) and (90) in (62). This yields (86). �

Lemma 5.6. Let ř− ≤ r ≤ ř+. Then

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ C max
u∈[0,ur(v)]

|ζ0|(u)e−αv , (91)

|θ̂|(r, v) ≤ Č max
u∈[0,ur(v)]

|ζ0|(u)e−αv . (92)

Proof. Just like inequality (56) was obtained from (63) (that is, (47) with
α = 0) and (55), inequality (91) will be obtained from (47) and (86). Writ-
ing (34) in the (r, v) coordinates,

θ̂

λ
(r, v) =

θ̂

λ
(ř+, v)e

∫ ř+
r

[
1

1̂−µ
̂∂r(1−µ)

]
(s̃,v) ds̃

+

∫ ř+

r

[ ζ̂

ν

1

s̃

]
(s̃, v)e

∫ s̃

r

[
1

1̂−µ

̂∂r(1−µ)
]
(s̄,v) ds̄

ds̃.

The exponentials are bounded by the constant C in (58). We use the esti-
mates (47) and (86) to obtain

∣∣∣
θ̂

λ

∣∣∣(r, v) ≤ C
∣∣∣
θ̂

λ

∣∣∣(ř+, v) + C

∫ ř+

r

[∣∣∣
ζ̂

ν

∣∣∣
1

s̃

]
(s̃, v) ds̃

≤ CĈř+ max
u∈[0,uř+

(v)]
|ζ0|(u)e−αv

+CC̃ř− ln
( ř+

r

)
max

u∈[0,ur(v)]
|ζ0|(u)e−αv

= C max
u∈[0,ur(v)]

|ζ0|(u)e−αv .

Using (69), the function λ is bounded from below in J−(Γř−) ∩ J+(Γř+).
Hence (91) implies (92). �

Remark 5.7. For use in Part 3, we observe that (47) and (91) imply

lim
(u,v)→(0,∞)

(u, v) ∈ J−(Γř
−

)

∣∣∣
θ

λ

∣∣∣(u, v) = 0. (93)
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6. The region J−(γ) ∩ J+(Γř−)

In this section, we define a curve γ to the future of Γř− . Our first aim is to
obtain the bounds in Corollary 6.2, r(u, v) ≥ r− − ε

2 and ̟(u, v) ≤ ̟0 + ε
2 ,

for (u, v) ∈ J−(γ) ∩ J+(Γř−) with u ≤ Uε. In the process, we will bound∫ u
uř−

(v)

[∣∣ ζ
ν

∣∣|ζ|
]
(ũ, v) dũ (this is inequality (102)). Then we will obtain a lower

bound on κ, as well as upper and lower bounds on λ and ν. Therefore this
region, where r may already be below r−, is still a small perturbation of the
Reissner-Nordström solution.

We choose a positive number†

0 < β < 1
2

(√
1 − 8∂r(1−µ)(r+ ,̟0)

∂r(1−µ)(r− ,̟0) − 1

)
, (94)

and define γ = γř−,β to be the curve parametrized by

u 7→
(
u, (1 + β) vř−(u)), (95)

for u ∈ [0, U ]. Since the curve Γř− is spacelike, so is γ (u 7→ vř−(u) is strictly
decreasing).

Lemma 6.1. For each β satisfying (94) there exist r− < ř− < r0 and 0 <
ε0 < r− for which, whenever ř− and ε are chosen satisfying r− < ř− ≤ ř−

and 0 < ε ≤ ε0, the following holds: there exists Uε (depending on ř− and
ε) such that if (u, v) ∈ J−(γ) ∩ J+(Γř−), with 0 < u ≤ Uε, and

r(u, v) ≥ r− − ε, (96)

then

r(u, v) ≥ r− − ε
2 and ̟(u, v) ≤ ̟0 + ε

2 . (97)

Corollary 6.2. Suppose that β is given satisfying (94), and let ř− and ε0

be as in the previous lemma. Fix r− < ř− ≤ ř− and 0 < ε < ε0. If
(u, v) ∈ J−(γ) ∩ J+(Γř−) with 0 < u ≤ Uε, then

r(u, v) ≥ r− − ε
2 and ̟(u, v) ≤ ̟0 + ε

2 . (98)

Proof. On Γř− we have r = ř− > r− > r− − ε
2 . Suppose that there exists

a point (u, v) ∈ J−(γ) ∩ J+(Γř−), with 0 < u ≤ Uε, such that r(u, v) <
r− − ε

2 . Then there exists a point (ũ, v), with 0 < ũ < u ≤ Uε, such that
r− − ε ≤ r(ũ, v) < r− − ε

2 . The point (ũ, v) belongs to J−(γ) ∩ J+(Γř−).
Applying Lemma 6.1 at the point (ũ, v), we reach a contradiction. The rest
of the argument is immediate. �

Proof of Lemma 6.1. Let (u, v) ∈ J−(γ) ∩ J+(Γř−) such that (96) holds.
Because of the monotonicity properties of r,

min
J−(u,v)∩J+(Γř−

)
r ≥ r− − ε.

According to Proposition 13.2 of [7] (this result depends only on equations
(20) and (21), and so does not depend on the presence of Λ), there exists a

†We always have −∂r(1 − µ)(r−, ̟0) > ∂r(1 − µ)(r+, ̟0) (see Appendix A of Part 3).
So, in particular, we may choose β = −

∂r(1−µ)(r+,̟0)

∂r(1−µ)(r
−

,̟0)
.
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constant C (depending on r− − ε0) such that

∫ v

vř−
(u)

|θ|(u, ṽ) dṽ +

∫ u

uř−
(v)

|ζ|(ũ, v) dũ (99)

≤ C

(∫ v

vř−
(u)

|θ|(uř−(v), ṽ) dṽ +

∫ u

uř−
(v)

|ζ|(ũ, vř−(u)) dũ

)
.

PSf
ra

g
re

pl
ac

em
en

ts

vř
−

(u)

(u
r
(v

),
vs 2

(u
r
(v

))
)

vΓř
−

ur
(v

)

U

u

u

uř
−

(v)

v

(u, v)

The first integral on the right hand side of (99) can be estimated us-
ing (48), (92) and (95):

∫ v

vř−
(u)

|θ|(uř−(v), ṽ) dṽ ≤ C sup
[0,u]

|ζ0|

∫ v

vř−
(u)

e−αṽ dṽ

≤ C sup
[0,u]

|ζ0|e−αvř−
(u)βvř−(u)

≤ C sup
[0,u]

|ζ0|e− α
1+β

vβv

≤ C̃ sup
[0,u]

|ζ0|e
− α

1+β+ v
,

where we have used vř−(u) = vγ(u)
1+β ≥ v

1+β and vř−(u) ≤ v, and denoted by

β+ a fixed number strictly greater than β. The second integral on the right
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hand side of (99) can be estimated using (46), (86) and (95):

∫ u

uř−
(v)

|ζ|(ũ, vř−(u)) dũ =

∫ u

uř−
(v)

∣∣∣
ζ

ν

∣∣∣(−ν)(ũ, vř−(u)) dũ

≤ C(r+ − ř−) sup
[0,u]

|ζ0|e−αvř−
(u)

≤ C̃ sup
[0,u]

|ζ0|e− α
1+β

v.

These lead to the following estimate for the left hand side of (99):
∫ v

vř−
(u)

|θ|(u, ṽ) dṽ +

∫ u

uř−
(v)

|ζ|(ũ, v) dũ ≤ C sup
[0,u]

|ζ0|e
− α

1+β+ v
. (100)

In order to use (35), note that, using η(r, ̟) ≤ η0(r),

e
−
∫ v

vř−
(u)

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

≤ e−∂r(1−µ)(r−−ε0,̟0)βvř−
(u)

≤ e−∂r(1−µ)(r−−ε0,̟0)βv .

Thus,

∣∣∣
ζ

ν

∣∣∣(u, v) ≤
∣∣∣
ζ

ν

∣∣∣(u, vř−(u))e
−
∫ v

vř−
(u)

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

+

∫ v

vř−
(u)

|θ|

r
(u, v̄)e

−
∫ v

v̄

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

dv̄

≤ C sup
[0,u]

|ζ0|e−αvř−
(u)e−∂r(1−µ)(r−−ε0,̟0)βv

+
e−∂r(1−µ)(r−−ε0,̟0)βv

r− − ε0

∫ v

vř−
(u)

|θ|(u, v̄) dv̄

≤ C sup
[0,u]

|ζ0|e− α
1+β

ve−∂r(1−µ)(r−−ε0,̟0)βv

+
e−∂r(1−µ)(r−−ε0,̟0)βv

r− − ε0
C sup

[0,u]
|ζ0|e

− α

1+β+ v

≤ C sup
[0,u]

|ζ0|e
−
(

α

1+β+ +∂r(1−µ)(r−−ε0,̟0)β
)

v
. (101)

Clearly, the right hand side of the last inequality also bounds maxũ∈[uř−
(v),u]

∣∣ ζ
ν

∣∣(ũ, v).

In order to bound ̟(u, v), note that

∫ u

uř−
(v)

[∣∣∣
ζ

ν

∣∣∣|ζ|
]
(ũ, v) dũ

≤ C sup
[0,u]

|ζ0|e
−

(
α

1+β+ +∂r(1−µ)(r−−ε0,̟0)β

)
v
∫ u

uř−
(v)

|ζ|(ũ, v) dũ

≤ C
(
sup
[0,u]

|ζ0|
)2

e
−

(
2α

1+β+ +∂r(1−µ)(r−−ε0,̟0)β

)
v
. (102)



GLOBAL UNIQUENESS WITH A COSMOLOGICAL CONSTANT - PART 2 30

Using (45) and the last estimate, we get

̟(u, v) ≤ ̟(uř−(v), v)e
1

r−−ε0

∫ u

uř−
(v)

[∣∣ ζ

ν

∣∣|ζ|
]
(ũ,v) dũ

+C

∫ u

uř−
(v)

e
1

r−−ε0

∫ u

s

[∣∣ ζ

ν

∣∣|ζ|
]
(ũ,v) dũ

[∣∣∣
ζ

ν

∣∣∣|ζ|
]
(s, v) ds

≤ ̟(uř−(v), v)eC
(

sup[0,u] |ζ0|
)2

e
−

(
2α

1+β+
+∂r(1−µ)(r−−ε0,̟0)β

)
v

+CeC
(
sup[0,u] |ζ0|

)2
e

−

(
2α

1+β+
+∂r(1−µ)(r−−ε0,̟0)β

)
v

×

×
(
sup
[0,u]

|ζ0|
)2

e
−

(
2α

1+β+ +∂r(1−µ)(r−−ε0,̟0)β

)
v
.

Let δ > 0. Using the definition of α in (50), the constant in the exponent

2α

1 + β + δ
+ ∂r(1 − µ)(r− − ε0, ̟0)β (103)

is positive for

β < 1
2

(√
(1 + δ)2 − 8

(
ř+
r+

)δ̂2
minr∈[ř+,r+] ∂r(1−µ)(r,̟0)

∂r(1−µ)(r−−ε0,̟0) − (1 + δ)

)
. (104)

Now, the right hand side tends to

1
2

(√
1 − 8∂r(1−µ)(r+,̟0)

∂r(1−µ)(r− ,̟0) − 1

)

as (ř+, ε0, δ) → (r+, 0, 0). So, if β satisfies (94), we may choose ř+, ε0 and δ
such that (104) holds. Having done this, equations (67) and (85) now imply
that for each 0 < ε̄ < ε0 there exists Ūε̄ > 0 such that

̟(u, v) ≤ ̟0 + ε̄
2 ,

provided that u ≤ Ūε̄. Since 1−µ is nonpositive and 1−µ = (1−µ)(r, ̟0)−
2(̟−̟0)

r , we have

(1 − µ)(r(u, v), ̟0) ≤ 2(̟(u,v)−̟0)
r ≤ ε̄

r−−ε0
.

Hence, by inspection of the graph of (1 − µ)(r, ̟0), there exists ε̄0 such
that for 0 < ε̄ ≤ ε̄0, we have r(u, v) > r− − ε

2 provided that u ≤ Ūε̄. For

0 < u ≤ Uε := min{Ūε̄0 , Ūε}, both inequalities (97) hold. �

Remark 6.3. Given ε > 0, we may choose U sufficiently small so that if
(u, v) ∈ J−(γ) ∩ J+(Γř−), then

κ(u, v) ≥ 1 − ε. (105)

This is a consequence of (66) and (102), since r is bounded away from zero.

Consider the reference subextremal Reissner-Nordström black hole with
renormalized mass ̟0, charge parameter e and cosmological constant Λ.
The next remark will turn out to be crucial in Part 3.
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Remark 6.4. Suppose that there exist positive constants C and s such that
|ζ0(u)| ≤ Cus. Then, instead of choosing β according to (94), in Lemma 6.1
we may choose

0 < β < 1
2

(√
1 − 8 (1+s)∂r(1−µ)(r+ ,̟0)

∂r(1−µ)(r− ,̟0) − 1

)
. (106)

Proof. Let (u, v) ∈ J−(γ) ∩ J+(Γř−). According to (85), we have

u ≤ Ce−[∂r(1−µ)(r+,̟0)−ε]vř−
(u)

≤ Ce
−[∂r(1−µ)(r+,̟0)−ε] v

1+β

≤ Ce
−∂r(1−µ)(r+,̟0) v

1+β+ . (107)

Thus, the exponent in the upper bound for ̟ in (103) may be replaced by

2s∂r(1 − µ)(r+, ̟0)

1 + β + δ
+

2α

1 + β + δ
+ ∂r(1 − µ)(r− − ε0, ̟0)β.

This is positive for

β < 1
2

(√
(1 + δ)2 − 8

[(
ř+
r+

)δ̂2
+s] minr∈[ř+,r+] ∂r(1−µ)(r,̟0)

∂r(1−µ)(r−−ε0,̟0) − (1 + δ)

)
. (108)

Given β satisfying (106), we can guarantee that it satisfies the condition
above by choosing (ř+, ε0, δ) sufficiently close to (r+, 0, 0). �

Corollary 6.5. If, for example, |ζ0|(u) ≤ e−1/u2
, then instead of choosing

β according to (94), in Lemma 6.1 we may choose any positive β.

Lemma 6.6. Suppose that β is given satisfying (94). Choose ř− and ε0 as
in the statement of Lemma 6.1. Let γ be the curve parametrized by (95).
Let also δ > 0, β− < β and β+ > β. There exist constants, c̃, C̃, c and C,
such that for (u, v) ∈ γ, with 0 < u ≤ Uε0 , we have

c̃e
(1+δ)∂r(1−µ)(r−−ε0,̟0) β

1+β
v

(109)

≤ −λ(u, v) ≤

C̃e
(1−δ)∂r(1−µ)(ř− ,̟0) β

1+β
v

(110)

and

cu
−

1+β+

1+β−

∂r (1−µ)(r
−

−ε0,̟0)

∂r(1−µ)(r+ ,̟0)
β −1

≤ −ν(u, v) ≤

Cu
−

1+β−

1+β+

∂r (1−µ)(ř
−

,̟0)

∂r (1−µ)(r+ ,̟0)
β −1

. (111)

Proof. Let us first outline the proof. According to (16) and (17),

− λ(u, v) = −λ(uř−(v), v)e

∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

, (112)

−ν(u, v) = −ν(u, vř−(u))e

∫ v

vř−
(u)

[
κ∂r(1−µ)

]
(u,ṽ) dṽ

. (113)

In this region we cannot proceed as was done in the previous section because
we cannot guarantee 1 − µ is bounded away from zero. The idea now is to
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use these two equations to estimate λ and ν. For this we need to obtain
lower and upper bounds for

∫ u

uř−
(v)

ν

1 − µ
(ũ, v) dũ (114)

and ∫ v

vř−
(u)

κ(u, ṽ) dṽ, (115)

when (u, v) ∈ J−(γ)∩ J+(Γř−). The estimates for (115), and thus for ν, are
easy to obtain. We estimate (114) by comparing it with

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−(ũ)) dũ. (116)

Using (73), we see that (114) is bounded above by (116). We can also bound
(114) from below by (116), divided by 1 + ε, once we show that

e

∫ v

vř−
(ū)

[∣∣ θ
λ

∣∣ |θ|
r

]
(ū,ṽ) dṽ

≤ 1 + ε.

The estimates for θ
λ are obtained via (34) and via upper estimates for (114).

To bound (116) we use the fact that the integrals of ν and λ along Γř−

coincide.
We start the proof by differentiating the equation

r(ũ, vř−(ũ)) = ř−

with respect to ũ, obtaining

ν(ũ, vř−(ũ)) + λ(ũ, vř−(ũ))v′
ř−

(ũ) = 0. (117)

For (u, v) ∈ J+(Γř−), integrating (117) between uř−(v) and u, we get
∫ u

uř−
(v)

ν(ũ, vř−(ũ)) dũ +

∫ u

uř−
(v)

λ(ũ, vř−(ũ))v′
ř−

(ũ) dũ = 0.

By making the change of variables ṽ = vř−(ũ), this last equation can be
rewritten as

∫ u

uř−
(v)

ν(ũ, vř−(ũ)) dũ −

∫ v

vř−
(u)

λ(uř−(ṽ), ṽ) dṽ = 0, (118)

as vř−(uř−(v)) = v and dṽ
dũ = v′

ř−
(ũ).

We may bound the integral of λ along Γř− in terms of the integral of κ
along Γř− in the following way:

− max
Γř−

(1 − µ)

∫ v

vř−
(u)

κ(uř−(ṽ), ṽ) dṽ (119)

≤ −

∫ v

vř−
(u)

λ(uř−(ṽ), ṽ) dṽ ≤

− min
Γř−

(1 − µ)

∫ v

vř−
(u)

κ(uř−(ṽ), ṽ) dṽ. (120)
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Analogously, we may bound the integral of ν along Γř− in terms of the
integral of ν

1−µ along Γř− in the following way:

− max
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−(ũ)) dũ (121)

≤ −

∫ u

uř−
(v)

ν(ũ, vř−(ũ)) dũ ≤

− min
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−(ũ)) dũ. (122)

Let now (u, v) ∈ J−(γ) ∩ J+(Γř−). Using successively (73), (121), (118)
and (120), we get

∫ u

uř−
(v)

ν

1 − µ
(ũ, v) dũ

≤

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−(ũ)) dũ

≤ 1
− maxΓř

−

(1−µ)

∫ u

uř−
(v)

−ν(ũ, vř−(ũ)) dũ

= 1
− maxΓř

−

(1−µ)

∫ v

vř−
(u)

−λ(uř−(ṽ), ṽ) dṽ

≤
minΓř

−

(1−µ)

maxΓř
−

(1−µ)

∫ v

vř−
(u)

κ(uř−(ṽ), ṽ) dṽ (123)

≤
minΓř

−

(1−µ)

maxΓř
−

(1−µ)
βvř−(u) (124)

≤
minΓř

−

(1−µ)

maxΓř
−

(1−µ)
βv.

We can now bound the field θ
λ for (u, v) ∈ J−(γ) ∩ J+(Γř−). Using (34),

∣∣∣
θ

λ

∣∣∣(u, v) ≤
∣∣∣
θ

λ

∣∣∣(uř−(v), v)e
−
∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

+

∫ u

uř−
(v)

|ζ|

r
(ū, v)e

−
∫ u

ū

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

dū. (125)

We can bound the exponentials in (125) by

e−
∫ u

ū

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ e−∂r(1−µ)(r−−ε0,̟0)
∫ u

ū

[
ν

1−µ

]
(ũ,v) dũ

≤ e
−∂r(1−µ)(r−−ε0,̟0)

∫ u

uř−
(v)

[
ν

1−µ

]
(ũ,v) dũ

≤ e
−∂r(1−µ)(r−−ε0,̟0)

minΓř
−

(1−µ)

maxΓř
−

(1−µ)
βv

.
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Combining this inequality with (91), (98) and (100), leads to

∣∣∣
θ

λ

∣∣∣(u, v) ≤

(
C sup

[0,u]
|ζ0|e−αv + C sup

[0,u]
|ζ0|e

− α

1+β+ v

)
×

×e
−∂r(1−µ)(r−−ε0,̟0)

minΓř
−

(1−µ)

maxΓř
−

(1−µ)
βv

≤ C sup
[0,u]

|ζ0|e
−

(
α

1+β+ +∂r(1−µ)(r−−ε0,̟0)
minΓř

−

(1−µ)

maxΓř
−

(1−µ)
β

)
v

.(126)

We consider the two possible cases. Suppose first that the exponent in (126)
is nonpositive. Then, from (100) we get

∫ v

vř−
(u)

[∣∣∣
θ

λ

∣∣∣|θ|
]
(u, ṽ) dṽ ≤ C

∫ v

vř−
(u)

|θ|(u, ṽ) dṽ

≤ C sup
[0,u]

|ζ0|e
− α

1+β+ v
.

Suppose now the exponent in (126) is positive. Using (126) and (100) again,
∫ v

vř−
(u)

[∣∣∣
θ

λ

∣∣∣|θ|
]
(u, ṽ) dṽ

≤ C sup
[0,u]

|ζ0|e
−

(
α

1+β+ +∂r(1−µ)(r−−ε0,̟0)
minΓř

−

(1−µ)

maxΓř
−

(1−µ)
β

)
v ∫ v

vř−
(u)

|θ|(u, ṽ) dṽ

≤ C(sup
[0,u]

|ζ0|)2e
−

(
2α

1+β+ +∂r(1−µ)(r−−ε0,̟0)
minΓř

−

(1−µ)

maxΓř
−

(1−µ)
β

)
v

.

Therefore, in either case, given ε > 0 we may choose U sufficiently small so
that if (u, v) ∈ J−(γ) ∩ J+(Γř−), then

e
1

r−−ε0

∫ v

vř−
(ū)

[∣∣ θ
λ

∣∣|θ|
]
(ū,ṽ) dṽ

≤ 1 + ε, (127)

for ū ∈ [uř−(v), u].
Next we use (73), (121), (122) and (127). We may bound the integral of

ν along Γř− in terms of the integral of ν
1−µ on the segment

[
uř−(v), u

]
× {v}

in the following way:

− max
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, v) dũ (128)

≤ − max
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−(ũ)) dũ

≤ −

∫ u

uř−
(v)

ν(ũ, vř−(ũ)) dũ ≤

− min
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−(ũ)) dũ ≤

−(1 + ε) min
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, v) dũ. (129)
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Now we consider (u, v) ∈ γ. In (124) we obtained an upper bound for∫ u
uř−

(v)
ν

1−µ(ũ, v) dũ. Now we use (129) to obtain a lower bound for this

quantity. Applying successively (129), (118), (119), and (105),

∫ u

uř−
(v)

ν

1 − µ
(ũ, v) dũ

≥ 1
−(1+ε) minΓř

−

(1−µ)

∫ u

uř−
(v)

−ν(ũ, vř−(ũ)) dũ

= 1
−(1+ε) minΓř

−

(1−µ)

∫ v

vř−
(u)

−λ(uř−(ṽ), ṽ) dṽ

≥
maxΓř

−

(1−µ)

(1+ε) minΓř
−

(1−µ)

∫ v

vř−
(u)

κ(uř−(ṽ), ṽ) dṽ (130)

≥
(1−ε) maxΓř

−

(1−µ)

(1+ε) minΓř
−

(1−µ)
βvř−(u)

= (1−ε)

(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

β
1+β v.

Thus,

e

∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ e

[
max

J−(γ)∩J+(Γř−
) ∂r(1−µ)

] ∫ u

uř−
(v)

ν
1−µ

(ũ,v) dũ

≤ e

[
max

J−(γ)∩J+(Γř−
) ∂r(1−µ)

]
(1−ε)
(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

β
1+β

v

≤ e

[
∂r(1−µ)(ř− ,̟0)+maxJ−(γ)∩J+(Γř−

)
2(̟−̟0)

r2

]
(1−ε)
(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

β
1+β

v

≤ e

[
∂r(1−µ)(ř− ,̟0)+ ε

(r
−

−ε0)2

]
(1−ε)

(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

β
1+β

v
. (131)

On the other hand, using (124),

e

∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≥ e

[
min

J−(γ)∩J+(Γř−
) ∂r(1−µ)

] ∫ u

uř−
(v)

ν
1−µ

(ũ,v) dũ

≥ e

[
minJ−(γ)∩J+(Γř−

) ∂r(1−µ)
] minΓř

−

(1−µ)

maxΓř
−

(1−µ)

β

1+β
v

≥ e
∂r(1−µ)(r−−ε0,̟0)

minΓř
−

(1−µ)

maxΓř
−

(1−µ)

β
1+β

v
. (132)

We continue assuming (u, v) ∈ γ. Taking into account (69), estimate
(131) allows us to obtain an upper bound for −λ(u, v),

−λ(u, v) = −λ(uř−(v), v)e

∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ Ce
(1−ε)
(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

[
∂r(1−µ)(ř− ,̟0)+ ε

(r
−

−ε0)2

]
β

1+β
v

≤ C̃e
(1−δ)∂r(1−µ)(ř− ,̟0) β

1+β
v
,
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and estimate (132) allows us to obtain a lower bound for −λ(u, v),

−λ(u, v) = −λ(uř−(v), v)e

∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≥ ce

minΓř
−

(1−µ)

maxΓř
−

(1−µ)
∂r(1 − µ)(r

−
− ε0, ̟0) β

1+β
v

≥ c̃e(1+δ)∂r(1−µ)(r−−ε0,̟0) β

1+β
v.

Next, we turn to the estimates on ν. Let, again, (u, v) ∈ γ. Using (105),

(1 − ε) β
1+β v ≤

∫ v

vř−
(u)

κ(u, ṽ) dṽ ≤ β
1+β v.

These two inequalities imply

e

∫ v

vř−
(u)

[κ∂r(1−µ)](u,ṽ) dṽ

≤ e

[
max

J−(γ)∩J+(Γř−
) ∂r(1−µ)

] ∫ v

vř−
(u)

κ(u,ṽ) dṽ

≤ e
(1−ε)

[
∂r(1−µ)(ř− ,̟0)+ ε

(r
−

−ε0)2

]
β

1+β
v

(133)

and

e

∫ v

vř−
(u)

[κ∂r(1−µ)](u,ṽ) dṽ

≥ e

[
minJ−(γ)∩J+(Γř−

) ∂r(1−µ)
] ∫ v

vř−
(u)

κ(u,ṽ) dṽ

≥ e∂r(1−µ)(r−−ε0,̟0) β
1+β

v. (134)

We note that according to (85) we have

ce
−∂r(1−µ)(r+ ,̟0) v

1+β− (135)

≤ ce−[∂r(1−µ)(r+ ,̟0)+ε̃] v
1+β

= ce−[∂r(1−µ)(r+ ,̟0)+ε̃]vř−
(u)

≤ u ≤

Ce−[∂r(1−µ)(r+ ,̟0)−ε̃]vř−
(u) =

Ce−[∂r(1−µ)(r+ ,̟0)−ε̃] v
1+β ≤

Ce
−∂r(1−µ)(r+,̟0) v

1+β+ , (136)

as (u, v) ∈ γ. (The bound (136) is actually valid in J−(γ) ∩ J+(Γř−),
see (107).) Recalling (113) and (70), and using (133) and (135),

−ν(u, v) = −ν(u, vř−(u))e

∫ v

vř−
(u)

[κ∂r(1−µ)](u,ṽ) dṽ

≤
C

u
e

(1−ε)
[
∂r(1−µ)(ř− ,̟0)+ ε

(r
−

−ε0)2

]
β

1+β
v

≤
C

u
e

∂r(1−µ)(ř− ,̟0) β

1+β+ v

≤ Cu
−

1+β−

1+β+

∂r(1−µ)(ř
−

,̟0)

∂r (1−µ)(r+,̟0)
β −1

,
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whereas using (134) and (136),

−ν(u, v) = −ν(u, vř−(u))e

∫ v

vř−
(u)

[κ∂r(1−µ)](u,ṽ) dṽ

≥
c

u
e∂r(1−µ)(r−−ε0,̟0) β

1+β
v

≥ cu
−

1+β+

1+β−

∂r(1−µ)(r
−

−ε0,̟0)

∂r(1−µ)(r+ ,̟0)
β −1

.

�

Remark 6.7. Since −∂r(1 − µ)(r−, ̟0) > ∂r(1 − µ)(r+, ̟0) (see Appen-
dix A of Part 3), we can make our choice of β and other parameters (ř−,
ε0, U) so that

− 1+β−

1+β+
∂r(1−µ)(ř− ,̟0)
∂r(1−µ)(r+,̟0)β − 1 > 0

and

− 1+β+

1+β−
∂r(1−µ)(r−−ε0,̟0)

∂r(1−µ)(r+,̟0) β − 1 > 0.

Having done so, for (u, v) on the curve γ, we obtain

cus2 ≤ −ν(u, v) ≤ Cus1,

with 0 < s1 < s2.

7. The region J+(γ)

Using (112) and (113), we wish to obtain upper bounds for −λ and for
−ν in the future of γ while r is greater than or equal to r− − ε. To do
so, we partition this set into two regions, one where the mass is close to
̟0 and another one where the mass is not close to ̟0. In the former case

∂r(1 − µ) < 0 and in the latter case ∂r(1−µ)
1−µ is bounded. This information is

used to bound the exponentials that appear in (112) and (113).
Here the solution with general ζ0 departs qualitatively from the Reissner-

Nordström solution (26)−(30), but the radius function remains bounded
away from zero, and approaches r− as u → 0. This shows that the existence
of a Cauchy horizon is a stable property when ζ0 is perturbed away from
zero.

Lemma 7.1. Let 0 < ε0 < r−. There exists 0 < ε ≤ ε0 such that for
(u, v) ∈ {r > r− − ε} ∩ J+(γ) we have

− λ(u, v) ≤ Ce
(1−δ)∂r(1−µ)(ř− ,̟0) β

1+β
v
, (137)

−ν(u, v) ≤ Cu
−

1+β−

1+β+

∂r (1−µ)(ř
−

,̟0)

∂r (1−µ)(r+ ,̟0)
β −1

. (138)

Proof. We recall that on γ the function r is bounded above by ř− and that

η = η0 + ̟0 − ̟.

The minimum of η0 in the interval [r− − ε0, ř−] is positive, since η0(ř−) > 0.
If

̟ < ̟0 + min
r∈[r−−ε0,ř−]

η0(r) (139)

then clearly

η > 0. (140)
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On the other hand, if

̟ ≥ ̟0 + min
r∈[r−−ε0,ř−]

η0(r) (141)

then, for r ∈ [r− − ε, ř−],

(1 − µ)(r, ̟) ≤ (1 − µ)(r, ̟0) −
2 minr∈[r−−ε0,ř−] η0(r)

ř−
,

where we used

(1 − µ)(r, ̟) = (1 − µ)(r, ̟0) +
2(̟0 − ̟)

r
.

Choosing 0 < ε ≤ ε0 such that

max
r∈[r−−ε,ř−]

(1 − µ)(r, ̟0) ≤
minr∈[r−−ε0,ř−] η0(r)

ř−

we have

(1 − µ)(r, ̟) ≤ −
minr∈[r−−ε0,ř−] η0(r)

ř−
< 0. (142)

In case (139) we have (recall (31))

ν

1 − µ
∂r(1 − µ) < 0 and

λ

1 − µ
∂r(1 − µ) < 0.

In case (141), the absolute value of

−
1

1 − µ
∂r(1 − µ)

is bounded, say by C. Indeed, this is a consequence of two facts: (i) the
denominators 1 − µ and r are bounded away from zero (we recall η also has
a denominator equal to r); (ii) the equality

lim
̟→+∞

−
1

1 − µ
∂r(1 − µ) =

1

r
. (143)

We define

Πv =

{
u ∈ ]0, U ] : (u, v) ∈ {r > r− − ε} ∩ J+(γ)

and ̟(u, v) < ̟0 + min
r∈[r−−ε0,ř−]

η0(r)

}
,

Πv =

{
u ∈ ]0, U ] : (u, v) ∈ {r > r− − ε} ∩ J+(γ)

and ̟(u, v) ≥ ̟0 + min
r∈[r−−ε0,ř−]

η0(r)

}
,

Π̃u =

{
v ∈ ]0, ∞[ : (u, v) ∈ {r > r− − ε} ∩ J+(γ)

and ̟(u, v) < ̟0 + min
r∈[r−−ε0,ř−]

η0(r)

}
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and

Π̃u =

{
v ∈ ]0, ∞[ : (u, v) ∈ {r > r− − ε} ∩ J+(γ)

and ̟(u, v) ≥ ̟0 + min
r∈[r−−ε0,ř−]

η0(r)

}
.

In order to estimate λ, we observe that

e

∫ u

uγ (v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

= e

∫
ũ∈[uγ(v),u]∩Πv

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

×e

∫
ũ∈[uγ(v),u]∩Πv

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ 1 × e
C
∫

ũ∈[uγ(v),u]∩Πv(−ν)(ũ,v) dũ

≤ 1 × eC(ř−−(r−−ε)) =: Ĉ.

Similarly, to estimate ν we note that

e

∫ v

vγ (u)

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

= e

∫
ṽ∈[vγ(u),v]∩Π̃u

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

×e

∫
ṽ∈[vγ (u),v]∩Π̃u

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

≤ 1 × e
C
∫

ṽ∈[vγ(u),v]∩Π̃u(−λ)(u,ṽ) dṽ

≤ 1 × eC(ř−−(r−−ε)) = Ĉ.

In conclusion, let (u, v) ∈ {r > r− − ε} ∩ J+(Γř−). Using (112) and (110),
we have

− λ(u, v) = −λ(uγ(v), v)e

∫ u

uγ(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

(144)

≤ ĈC̃e(1−δ)∂r(1−µ)(ř− ,̟0) β
1+β

v.

Similarly, using (113) and (111), we have

−ν(u, v) = −ν(u, vγ(u))e

∫ v

vγ (u)

[
λ

1−µ
∂r(1−µ)

]
(u,ṽ) dṽ

≤ ĈCu
−

1+β−

1+β+

∂r(1−µ)(ř
−

,̟0)

∂r(1−µ)(r+ ,̟0)
β −1

.

�

Lemma 7.2. Let δ > 0. There exists Ũδ such that for (u, v) ∈ J+(γ) with
u < Ũδ, we have

r(u, v) > r− − δ.

Proof. We denote by ε the value of ε that is provided in Lemma 7.1. Let
δ > 0. Without loss of generality, we assume that δ is less than or equal to
ε. Choose the value of ε in Corollary 6.2 equal to δ. This determines an Uε

as in the statement of that corollary. Let (u, v) ∈ J+(γ) with u ≤ Uε. Then

r(u, vγ(u)) ≥ r− −
δ

2
and r(uγ(v), v) ≥ r− −

δ

2

because uγ(v) ≤ u. Here

u 7→ (u, vγ(u)) and v 7→ (uγ(v), v)
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are parameterizations of the spacelike curve γ. Integrating (138), we obtain

−

∫ u

uγ(v)

∂r

∂u
(s, v) ds ≤

∫ u

uγ(v)
Csp−1 ds, (145)

for a positive p. This estimate is valid for (u, v) ∈ {r > r− − ε} ∩ J+(γ). It
yields

r(u, v) ≥ r(uγ(v), v) −
C

p
(up − (uγ(v))p)

≥ r− −
δ

2
−

C

p
up > r− − δ, (146)

provided u < min
{

Uε,
p

√
δp
2C

}
=: Ũδ. Since δ is less than or equal to ε and

γ ⊂ {r > r− − ε}, if (u, v) ∈ J+(γ) and u < Ũδ, then (u, v) ∈ {r > r− − ε}
and the estimate (145) does indeed apply.

Alternatively, we can obtain (146) integrating (137):

−

∫ v

vγ(u)

∂r

∂v
(u, s) ds ≤

∫ v

vγ(u)
Ce−qs ds,

for a positive q. This yields

r(u, v) ≥ r(u, vγ(u)) −
C

q

(
e−qvγ(u) − e−qv

)

≥ r− −
δ

2
−

C

q
e−qvγ(u)

≥ r− −
δ

2
− C̃uq̃,

for a positive q̃, according to (135). For u < min
{

Uε, q̃

√
δ

2C̃

}
we obtain, once

more,

r(u, v) > r− − δ.

�

Corollary 7.3. If δ < r− then P contains [0, Ũδ ] × [0, ∞[. Moreover, esti-
mates (137) and (138) hold on J+(γ).

Due to the monotonicity of r(u, · ) for each fixed u, we may define

r(u, ∞) = lim
v→∞

r(u, v).

As r(u2, v) < r(u1, v) for u2 > u1, we have that r( · , ∞) is nonincreasing.

Corollary 7.4. We have

lim
uց0

r(u, ∞) = r−. (147)

The previous two corollaries prove Theorem 1.1. The argument in [7,
Section 11], shows that, as in the case when Λ = 0, the spacetime is then
extendible across the Cauchy horizon with C0 metric.
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8. Two effects of any nonzero field

This section contains two results concerning the structure of the solutions
with general ζ0. Theorem 8.1 asserts that only in the case of the Reissner-
Nordström solution does the curve Γr− coincide with the Cauchy horizon:
if the field ζ0 is not identically zero, then the curve Γr− is contained in P.

Lemma 8.2 states that, in contrast with what happens with the Reissner-
Nordström solution, and perhaps unexpectedly, the presence of a nonzero
field immediately causes the integral

∫∞
0 κ(u, v) dv to be finite for any u > 0.

This implies that the affine parameter of any outgoing null geodesic inside
the event horizon is finite at the Cauchy horizon.

For each u > 0, we define

̟(u, ∞) = lim
vր+∞

̟(u, v).

This limit exists, and u 7→ ̟(u, ∞) is an increasing function.

Theorem 8.1. Suppose that there exists a positive sequence (un) converging
to 0 such that ζ0(un) 6= 0. Then r(u, ∞) < r− for all u ∈ ]0, U ].

Proof. The proof is by contradiction. Assume that r(ū, ∞) = r− for some
ū ∈ ]0, U ]. Then r(u, ∞) = r− for all u ∈ ]0, ū]. Let 0 < δ < u ≤ ū. Clearly,

r(u, v) = r(δ, v) +

∫ u

δ
ν(s, v) ds.

Fatou’s Lemma implies that

lim inf
v→∞

∫ u

δ
−ν(s, v) ds ≥

∫ u

δ
lim inf

v→∞
−ν(s, v) ds.

So,

r− = lim
v→∞

r(u, v) = lim
v→∞

r(δ, v) − lim
v→∞

∫ u

δ
−ν(s, v) ds

= r− − lim inf
v→∞

∫ u

δ
−ν(s, v) ds

≤ r− −

∫ u

δ
lim inf
v→∞

−ν(s, v) ds. (148)

Since δ is arbitrary, this inequality implies that lim infv→∞ −ν(u, v) is equal
to zero for almost all u ∈ ]0, ū]. However, we will now show that, under the
hypothesis on ζ0, lim infv→∞ −ν(u, v) cannot be zero for any positive u if
r(u, ∞) ≡ r−.

First, assume that ̟(u, ∞) = ∞ for a certain u. Then, using (143),

lim
v→∞

∂r(1 − µ)

1 − µ
(u, v) = −

1

r−
< 0.

We may choose V = V (u) > 0 such that ∂r(1−µ)
1−µ (u, v) < 0 for v > V .

Integrating (17), for v > V ,

−ν(u, v) = −ν(u, V )e
∫ v

V

[
∂r(1−µ)

1−µ
λ
]
(u,ṽ) dṽ

≥ −ν(u, V ) > 0.

Thus, for such a u, it is impossible for lim infv→∞ −ν(u, v) to be equal to
zero.
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Now assume ̟(u, ∞) < ∞. The hypothesis on ζ0 and (18) imply that
̟(u, 0) > ̟0 for each u > 0, and so ̟(u, ∞) > ̟0 for each u > 0. Then,

(1 − µ)(u, ∞) = (1 − µ)(r−, ̟(u, ∞)) < (1 − µ)(r−, ̟0) = 0.

We may choose V = V (u) > 0 such that −(1 − µ)(u, v) ≥ C(u) > 0 for
v > V . Hence, integrating (19), for v > V ,

̟(u, v) = ̟(u, V ) +
1

2

∫ v

V

[
−(1 − µ)

θ2

−λ

]
(u, v) dv

≥ ̟(u, V ) +
C(u)

2

∫ v

V

[ θ2

−λ

]
(u, v) dv

Since ̟(u, ∞) < ∞, letting v tend to +∞, we conclude
∫ ∞

V

[ θ2

−λ

]
(u, v) dv < ∞.

Finally, integrating (73) starting from V , we see that ν(u,∞)
(1−µ)(u,∞) > 0. Since

(1 − µ)(u, ∞) < 0, once again we conclude that lim infv→∞ −ν(u, v) =
−ν(u, ∞) > 0. �

Lemma 8.2. Suppose that there exists a positive sequence (un) converging
to 0 such that ζ0(un) 6= 0. Then

∫ ∞

0
κ(u, v) dv < ∞ for all u > 0. (149)

Proof. We claim that for some decreasing sequence (un) converging to 0,

(1 − µ)(un, ∞) < 0.

To prove our claim, we consider three cases.
Case 1. If ̟(u, ∞) = ∞ for each u > 0 then (1 − µ)(u, ∞) = −∞.
Case 2. If limuց0 ̟(u, ∞) > ̟0 then, using Corollary 7.4,

lim
uց0

(1 − µ)(u, ∞) = (1 − µ)(r−, lim
uց0

̟(u, ∞)) < (1 − µ)(r−, ̟0) = 0.

Case 3. Suppose that limuց0 ̟(u, ∞) = ̟0. For sufficiently small u and
(u, v) ∈ J+(Γř−), we have

η(u, v) ≥ 0

(see (140)). So, we may define ν(u, ∞) = limvր+∞ ν(u, v). By Lebesgue’s
Monotone Convergence Theorem, we have

r(u, ∞) = r(δ, ∞) +

∫ u

δ
ν(s, ∞) ds. (150)

Note that different convergence theorems have to be used in (148) and (150).
If ν(u, ∞) were zero almost everywhere, then r(u, ∞) would be a constant.
If the constant were r− we would be contradicting Theorem 8.1. If the
constant were smaller than r− we would be contradicting Lemma 7.2. We
conclude there must exist a sequence un ց 0 such that ν(un, ∞) < 0.
Integrating (73), we get

ν(u, ∞)

(1 − µ)(u, ∞)
≤

ν(u, 0)

(1 − µ)(u, 0)
< ∞.

Therefore, (1 − µ)(un, ∞) < 0. This proves our claim.
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For any fixed index n, there exists a vn such that

(1 − µ)(un, v) <
1

2
(1 − µ)(un, ∞) =: −

1

cn
,

for v ≥ vn. It follows that

κ(un, v) ≤ cn(−λ(un, v)), for v ≥ vn.

Using the estimate (137) for −λ, we have
∫ ∞

vn

κ(un, v) dv < ∞.

Hence
∫∞

0 κ(un, v) dv < ∞. Recalling that u 7→ κ(u, v) is nonincreasing, we
get (149). �

Corollary 8.3. Let u > 0. Consider an outgoing null geodesic t 7→ (u, v(t))
for (M, g), with g given by

g = −Ω2(u, v) dudv + r2(u, v) σS2 .

Then v−1(∞) < ∞, i.e. the affine parameter is finite at the Cauchy horizon.

Proof. The function v( · ) satisfies

v̈ + Γv
vv(u, v) v̇2 = 0, (151)

where the Christoffel symbol Γv
vv is given by

Γv
vv = ∂v ln Ω2.

So, we may rewrite (151) as

v̈

v̇
= −∂t(ln Ω2)(u, v).

We integrate both sides of this equation to obtain

ln v̇ + ln c = − ln Ω2(u, v),

with c > 0, or
dt

dv
= c Ω2(u, v).

Integrating both sides of the previous equation once again, the affine pa-
rameter t is given by

t = v−1(0) + c

∫ v

0
Ω2(u, v̄) dv̄ = v−1(0) − 4c

∫ v

0
(νκ)(u, v̄) dv̄.

If ζ0 vanishes in a neighborhood of the origin, the solution corresponds
to the Reissner-Nordström solution. The function κ is identically 1 and,
using (73), ν

1−µ = C(u), with C(u) a positive function of u. Thus, ν =

C(u)(1 − µ) = C(u)λ and
∫ ∞

0
Ω2(u, v̄) dv̄ = −4cC(u)

∫ ∞

0
λ(u, v̄) dv̄ = 4cC(u)(r+ − u − r−) < ∞.

On the other hand, suppose that there exists a positive sequence (un)
converging to 0 such that ζ0(un) 6= 0. Then, since ν is continuous, it satisfies
the bound (138) for large v, and (149) holds. So we also have

∫ ∞

0
Ω2(u, v̄) dv̄ < ∞.

�
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