ISCTE £ IUL

University Institute of Lisbon

Departamento de Ciéncias e Tecnologias da Informacao

An Eclipse Plug-in for Metamodel Driven
Measurement

Pedro Janeiro Coimbra

A Dissertation presented in partial fulfilment of the Requirements for the Degree of

Master in Computer Science and Business Management

Supervisor:
Fernando Brito e Abreu, PhD, Associate Professor, DCTI/ISCTE-IUL

September, 2013

[This page was intentionally left blank]

Abstract

In this dissertation, we present a new plug-in for the Eclipse integrated development environ-
ment that calculates software quality metrics using a metamodel driven approach to software
measurement.

Metamodel driven measurement is a technique that surged with the popularization of
object-oriented systems and model-driven approaches to software design. It involves of in-
stantiating software designs according to a language metamodel and calculating metrics with
formalized queries over the obtained data.

Our objectives consisted of creating a new Eclipse plug-in to analyse software developed
in Java that, thanks to the metamodel driven approach, would allow users to easily define new
software metrics without having to change a single line of Java code. To achieve our goals,
we devised the Eclipse Java Metamodel, a new Java metamodel based on data provided by
Eclipse’s Java Development Tools and implemented it on a prototype Eclipse plug-in. We
have also formalized certain software metrics and an existing library for metrics extraction
called FLAME, as sets of queries over our developed metamodel using the Object Constraint
Language, which can be used directly on our prototype.

Keywords: Software Engineering; Software Measurement; Software Metrics, Metamodel
Driven Measurement; Java; Java Model; Eclipse IDE; Abstract Syntax Tree

il

Resumo

Nesta dissertagdo apresentamos uma nova extensao para o ambiente de desenvolvimento in-
tegrado Eclipse para o calculo de métricas de qualidade de software através da medi¢@o por
metamodelos.

Medicao por metamodelos é uma abordagem a medicao de software que surgiu com a
popularizacdo de sistemas orientados por objectos e design de software através de mode-
los. Esta técnica consiste em medir soffware através de defini¢des formalizadas de métricas
como queries sobre um metamodelo representativo da linguagem sobre a qual o software foi
conceptualizado ou desenvolvido.

Os nossos objectivos consistem em criar uma nova extensiao para Eclipse para analisar
software desenvolvido em Java que, gracas ao uso de metamodelos, permite a utilizadores
calcular novas métricas de software facilmente sem ter que programar uma unica linha de
codigo em Java. Para concretizar estes objectivos, desenvolvemos o Eclipse Java Metamodel,
um metamodelo da linguagem Java baseado nas Java Development Tools oferecidas pelo
Eclipse e implementdmos uma extensao prot6tipo. Também formalizdmos certas métricas de
software e uma biblioteca existente para o auxilio de cédlculo de métricas chamada FLAME,
como conjuntos de gueries sobre o metamodelo feitas com a Object Constraint Language,
que podem ser usadas directamente no nosso prototipo.

Palavras-chave: Engenharia de Software; Medicdo de Software; Métricas de Software;
Medicdo por Metamodelos; Java; Java Model; Eclipse IDE; Abstract Syntax Tree

il

Acknowledgements

Coming as a surprise to no one, work on this dissertation has been toiling, stressful and
exhaustive over my youthful and inexperienced self. And like many others, I feel like my
success was due to the help of those around me.

Firstly, I thank my supervisor. Throughout this year, often have I found myself lost or
uncertain of the quality of my work and just as often have I relied on his direction and as-
surance. [relied, perhaps too many times, on his knowledge of Software Engineering and
abilities as a researcher to aid my work.

Secondly, I must thank my family and closest friends, for their constant support and
understanding, during times I could give nothing in return.

Thirdly, I thank my MIG classmates, invaluable friends who egged me on and offered me
precious advice to help my work.

Finally, I must thank the marvels of modern digital entertainment. As the anxieties of
work creeped my mind ever closer to the fringes of sanity, occasional oases of relaxation
allowed to keep it focused and content.

v

[This page was intentionally left blank]

CONTENTS

. Introduction 2
1.1 Regarding terminology L 4

. Related Work 6
2.1 Introduction 6
2.2 Studies in M2DM and MDE-based measurement 6
2.3 Existing Eclipse metrics plug-ins L. 9
2.3.1 Open-source plug-inso 10

2.3.2 Commercial plug-ins 14

233 Other e 15

24 TheEclipse IDT e 16
2.5 USE: The UML-based Specification Environment 18

. The Eclipse Java Metamodel 20
3.1 Introduction 20
3.2 Metamodel presentationo 20
3.3 Reverse engineering information oL 26
3.4 Metaclass presentation 26
3.5 Methods and constraintso 35
3.5.1 Operations 35

3.5.2 Constraints 38

. OCL Applications of the EIMM 40
4.1 Introduction e e e 40
4.2 EJMMnavigation e e e e e 40
43 FLAMEforEIMM 41
4.4 Other Operations and Metrics, 43

. Eclipse Plug-in for M2DM 46
5.1 Introduction 46
5.2 Toolarchitecture 46
5.3 Toolpresentation e 47
5.4 Instantiation ProCess v ot e e e e e e e e e 49
5.4.1 Firstinstantiation phase oL 49

5.4.2 Second instantiationphase L. 50

543 Otherrules e 53

544 Instantiationclasses L L 53

5.5 Toolvalidation 54
5.5.1 TranSparencyo e e e 54

5.5.2 Extensibility 55

553 Scalability oo 55

554 ACCUTACY v i e 58

6. Conclusions and Future Work 62
6.1 Discussion 62

6.2 Futurework 63
Appendix 70
A. The Eclipse Java Metamodel Appendix 71
A.1 EJMM USE Specification 71

B. OCL Applications Appendix 87
B.1 FLAME for EJMM specification 87

C. Tool Architecture Appendix e 109
C.1 Common Meta-objects 109
C.2 Tool Scalability Validation, 113
C.3 Tool Accuracy Validation 119

vii

3.1
32
33
34

5.1
52
53
54

LIST OF FIGURES

Eclipse Java Metamodel - Java Project Structure 22
Eclipse Java Metamodel - Type Components 23
Eclipse Java Metamodel - Annotations 24
Eclipse Java Metamodel - Abstract Syntax Tree Components 25
Selecting the MD2M prototype view 48
The M2DM prototype viewo 49
Type quantity to projectsize plot 56

Instantiation duration to projectsizeplot 58

5.1
5.2
5.3
54

LIST OF TABLES

Scalability tests: project Sizeso 55
Scalability tests summary 57
M2DM to Eclipse Metrics comparison: initial results 59

M2DM to Eclipse Metrics comparison: final results

1. INTRODUCTION

Software quality has long been a subject of much research in the area of software engineer-
ing. From the need of applying quantitative research over software, a new field of study, of
software metrics and measurement, arose.

Over the last four decades, this research on software measurement resulted in not only
software metrics such as McCabe’s cyclomatic complexity [1], the Chidamber and Kemerer
metrics [2] and Abreu’s MOOD?2 set [3] for object-oriented systems, that have been applied
to asses software quality characteristics such as a system’s overall reliability [4], but also
several measurement techniques.

With the popularization of object-oriented software and model-driven engineering (or
MDE, for short) for software development, several approaches to measurement equally took
a model-driven perspective. Prevalent especially in the last decade and a half, several stud-
ies detailing model-driven approaches to software measurement and respective tools applying
such techniques have been presented. Within these studies, the term “meta-model”, or “meta-
model”, was often found [3, 5, 6, 7, 8], referring to the model defining the structure of the
language in which a system is constructed, as opposed to the structure of the system itself -
which in turn can be viewed as the “instantiation” of the metamodel. The term “metamodel-
driven measurement”, commonly and hereinafter referred to as M2DM, was coined by Abreu
[3] for the specific act of using metamodels to describe both the systems to be measured
and the metrics themselves. Several other studies, using techniques similar or equivalent to
M2DM were also proposed, but often used other naming. Authors often claimed several ad-
vantages for these metamodel-driven approaches, such as achieving easier and more exact
metrics formalizations [3, 6], providing easier opportunities to measure systems constructed
with different but similar languages or add new metrics to measurement tools [5], or simply
to take away the complex code or compiler perspective into a more readable model-oriented
logic [7]. These advantages were achieved not only because of the construction of formal
metamodels, but also because of the use of specific languages that can query the said meta-
models, such as the Structured Query Language, SQL [5], XQuery [9] or, more commonly,
the Object Constraint Language, OCL [3, 6, 10, 7, 8]. The full findings of M2DM and such

1. Introduction 3

similar studies can be found in section 2.2 of the following chapter.

Unfortunately, despite several studies detailing accompanying tools for software mea-
surement, few have become or stayed available online at the time of this writing. In fact,
we recognized a certain vacuum regarding existing MD2M tools. From this vacuum, we
identified the need for a new research effort in this area.

According to the "Transparent Language Popularity Index” available online and perma-
nently updated [11], Java is the most widely used object-oriented programming language
with circa 20% of the market share of all programming languages. Meanwhile, Eclipse [12]
is the second most widely used IDE globally and by far the first used by open source com-
munities. With the popularity of Eclipse, several plug-ins capable of metrics extraction have
been developed and made available in the Eclipse Marketplace [13], making use of the IDE’s
own project and code interpreting tools - the Eclipse Java Development Tools [14] (or JDT,
for short). These plug-ins offer extensive measuring and reporting capabilities, but none have
yet implemented the M2DM approach to metrics definition, and the advantages that come
with it. Yet, the tools the JDT offer can be easily be utilized to aid our own research - and
two of them in particular: the Java Model (from here on referred to as EJM) and the Abstract
Syntax Tree (commonly referred to as AST).

We started the development of a M2DM plug-in for Eclipse, borrowing from the JDT
to create a new Java metamodel and project-crawling mechanisms to instantiate it with data
representative of a Java project to analyse. In the future, we aim to implement our developed
M2DM tools for Java into existing plug-ins, making use of their established interface and
reporting capabilities - namely, the popular open-source Eclipse metrics plug-in by Frank
Sauer [15].

The contributions of this dissertation consist of the work completed to this date of this
M2DM project: the resulting Java meta-model created from JDT components, the method of
transforming a Java project in Eclipse into a meta-model instance and the first functioning
metrics plug-in prototype capable of M2DM functionalities.

This document has been organized as follows: Chapter 2 explores the current situation
regarding M2DM and MDE-based metrics research, as well as provides an overview of ex-
isting Eclipse plug-ins capable of metrics extraction and an introduction to the tools used to
aid the development of our goal plug-in, including the JDT itself. In chapter 3, we present
the Eclipse Java Metamodel (hereinafter referred to as EJMM) and detail several aspects of
its structure, components and origins. Then, in chapter 4, we provide examples of the use of
the developed EJMM with a series of OCL functions that traverse the metamodel to extract

metrics or aid metrics extraction. Next, in chapter 5, we provide an overview of the developed

1. Introduction 4

prototype. We describe its architecture, the chosen rules pertaining to the EJMM instantiation
and the validation methods for the tool. Finally, we draw some conclusions on chapter 6 and

forecast future work.

1.1 Regarding terminology

Since this dissertation aims to create a representation of the Java language as described by
the existing JDT, there will be several cases of having different concepts with the same term
in the following text. For instance, a Java statement in code is represented by the Statement
class of the JDT which in turn is reflected by a Statement metaclass in the EIMM. The dif-
ference is that a statement, non-capitalized and non-italicized, refers to a generic occurrence
of a statement in code (and much like statements, the same can be said of packages, types,
methods, etc.) as opposed to its abstract representation as a Java class in the JDT or as a
metaclass in the EJIMM, in which case they are capitalized in the same way they are declared
in code or in the metamodel and italicized. Still, JDT component names and EJMM compo-
nent names may conflict, in which case the concepts of “class” - or in some cases, “interface”
- and “metaclass” will help to differentiate what the text refers to. For instance, a “metaclass”
refers to a class of the metamodel, a class to represent all classes. Thus, components of the
JDT are specific Java classes or interfaces and are called as such when mentioned in text
to aid comprehension. In some cases, JDT components are accompanied by the package in

which they can be found.

1. Introduction

[This page was intentionally left blank]

2. RELATED WORK

2.1 Introduction

Development of model-driven metrics tools has been the subject of much research for over a
decade. In this chapter we will describe related work on tools that have some similarities to
our proposed metrics plug-in, while highlighting the key differences between them. Then, we
will review the state of the art regarding existing Eclipse metrics plug-ins that can be found
online. Finally, we will present a brief overview of the tools chosen to help create a M2DM
plug-in, such as the Eclipse Java Development Tools, and the UML-based Specification En-

vironment.

2.2 Studies in M2DM and MDE-based measurement

M2DM studies originated as a natural progression from previous studies on software met-
rics formalization. Abreu first employed M2DM techniques to formalize the MOOD2 met-
rics over the GOODLY design language metamodel [3] using OCL. Since then, the use
of OCL for M2DM has been popularized within the QUASAR research group. First ef-
forts consisted of formalizing MOOD?2 [6, 16] and MOOSE [10] metrics extraction for the
UML metamodel, but over the following years, M2DM practices were used for more spe-
cific goals. This includes studies such as a means to formalize quality metrics for object-
relational database schemas using OCL over SQL ontologies [17], to introduce quantitative
approaches to component-based design by formalizing metrics for component-based systems
over extended versions of the CORBA Components Metamodel and UML metamodel [18],
to define OCL metrics over the System Definition Model for IT infrastructure evaluation
[19], to compare modularity between aspect-oriented and object-oriented designs [20] over
the QUASAR-developed PIMETA metamodel and to define complexity metrics for process
models over the BPMN metamodel [21].

Regarding studies on for metrics calculation tools, Java Metrics Reporter (JMR) [23]

was a pioneer software in its use of a Java Model to calculate metrics. In their paper, the

2. Related Work 7

authors present a newly-developed Java Model much akin to the EJM supplied by the Eclipse
JDT, sharing even a similar hierarchical structure and the existence of a single node class
from which all Java elements inherit (in this case, called JElement). Extensions to the Java
Model and implementation of further metrics calculation capabilities would be done through
typical OO subclassing of the JMR Java Model. Though this approach is stated to be much
simpler to handling directly with parser logic, it would still entail more programming (and
building) work than by using the OCL-based metrics paradigm [3, 16, 10, 7]. This technique
of handling a Java Model for data extraction is similar to what is commonly found in existing
Eclipse metrics plug-ins, such as Frank Sauer’s metrics tool [15], using EJM-supplied data.
The JMR would be a considerable alternative to the Eclipse Java Development Tools for the
construction of a M2DM tool, but unfortunately, at the time of writing, we have not been able
to find it available online.

The Extensible Metrics toolBench for Empirical Research (EMBER) was introduced
in [5]. Unlike the JMR, it used a metrics approach much more similar to the OCL-based
paradigm. It used a database schema to represent a metamodel aimed at OO languages such
as C++ and Java, parsed software to load the database and SQL queries were used to cal-
culate metrics. This method is analogous to our own attempt at metamodel representation
through UML, loading through the USE tool and then using OCL statements to calculate
metrics. However, since the database schema aims to be fitting for several OO languages, it
is much simpler than the EJMM proposed in this article. This simplicity certainly allows the
tool to have a larger breadth in terms of languages supported, but does not offer the detail
that our proposed EJMM provides for Java. One example is considering annotations used
and type parameters. Another, more metrics-focused example is recording the statements
of a method, allowing, for instance, to calculate the weighted methods per class [2] using
McCabe’s cyclomatic complexity metric [1] to determine the complexity of each method.

The Jade Bird Object Oriented Metrics Tool (JBOOMT) [24] also takes a model-based
approach to calculate metrics of C++ software. In this case, however, the MDE approach
involves creating metrics models rather than using metamodels to represent the software’s
model language and extracting data from their instantiation. JBOOMT thus requires a dif-
ferent model for each metric, storing software data and metrics calculations. This approach
allowed their authors to create hierarchies among metrics, such as aggregated metrics or as-
sociation between related measures. For instance, having a method’s cyclomatic complexity
[1] being a factor to determine the software’s overall complexity. To further illustrate such
relations between metrics, authors introduce the concepts of “internal attributes” like the

method’s complexity and “external attributes” as software-wide measures such as complex-

2. Related Work 8

ity or flexibility.

Antoniol et al. [7] proposed a tool that navigates Java AST objects using OCL expres-
sions. The authors use a metamodel based on the JavaCC compiling rules and exemplify its
functionalities by formalizing a small set of software metrics. All in all, the purpose and
method of their tool is essentially the same as ours, though using a different metamodel with
different capabilities. Their presented AST metamodel retains a node tree structure, whereas
our current EJMM aims to capture more directly a Java project’s structure (despite internally,
the EJM and Eclipse AST also having similar node tree structures). Furthermore, since the
metamodel presented by Antoniol et al. comprises only the AST, it can only represent the
code of a software system; from the class declaration to its contents, leaving out the soft-
ware’s overall structure and composition, such as folders and packages. With the lack of
visibility of interactions between modules, structural analysis might become difficult.

Still, the work of Antoniol et al. is clearly a precursor to our own, and the use of OCL
reveals another advantage of the inherent portability, as the metrics defined in these authors’
paper can easily be applied to our EIMM with little effort.

The Design-Metrics Crawler [9] was a proposed tool to measure software designs spec-
ified in XMI files. Aiming to support UML diagrams and MOF-based software design lan-
guages, the DM Crawler used the XQuery language to formalize and calculate metrics. Un-
like a language meant to define constraints such as OCL, the authors claim that XQuery’s
queries would be more appropriate for execution and would allow the definition of more
complex metrics more easily since it is possible to define variables and control flow. While
the first version of OCL had some limitations regarding those aspects, OCL2 has removed
those limitations. We found no evidence that this tool could be used with Java.

The Metrino tool [25] is a metrics tool that aimed to measure any software devised in
any Domain Specific Language with metamodels based on the Meta Object Facility, using
OCL for the definition of domain rules. OCL is also used for the definition and calculation
of metrics, under OMG’s Software Metrics Meta-model. Currently, it is available online and
affiliated with the ModelBus tool [26]. Their authors claim that Metrino can be used for UML
models, as well as for any Domain Specific Modeling Language (DSL) based on MOF, but
not for Java.

Finally, McQuillan [8], also aiming to achieve a MDE approach to software measurement,
created a MOF-compliant metamodel for metrics extraction for Java and UML models. Met-
rics formalization took the form of OCL expressions over the metrics metamodel. To test and
implement this technique, the author claims to have developed the Defining Metrics at the

Meta-Level (AMML) tool, capable of measuring Java programs. Unfortunately this seems to

2. Related Work 9

have been a research prototype only, for academic purposes, since it is not available online

for evaluation.

2.3 Existing Eclipse metrics plug-ins

Currently, there are several plug-ins for the Eclipse IDE that support software metrics extrac-
tion. In this section, we will present a few existing plug-ins that can be found on the Eclipse
Marketplace [13] and the Yoxos marketplace [27], as well as Frank Sauer’s [15] plug-in.
Using the sites’ respective search engines, we used the keyword “metrics” and selected plug-
ins that offered software metrics extraction capabilities. Our main interests when testing
these plug-ins were which metrics they supported and their extension capabilities. Although
the open-source solutions provided a way to extend their metrics calculation capabilities by
changing their source code, we found that no tool provided a front-end solution to incorporate

new software metrics.

2. Related Work 10

2.3.1 Open-source plug-ins

Name: Eclipse Metrics plugin 1.3.6

By: Frank Sauer et al.

Project site: http://metrics.sourceforge.net/

License: CPL

Last update: 2005-07-08 (plug-in); 2013-04-24 (site)

Downloads: 99.533 total from last plug-in update until 2013-09-05; 11.728
total from 2012-09-05 to 2013-09-05; 774 total from 2013-08-05
to 2013-09-05

Description: Frank Sauer’s plug-in, though having nearly a decade of age, is

still one of the more proven and popular options regarding open-
source metrics plug-ins for Eclipse. Though there is a separate
continued version [28], Sauer’s still has a fairly active commu-
nity, going so far as to having community-created patches as re-
cent as November 2012. The plug-in itself offers a simple inter-
face and reporting capabilities with which users can define op-
timal ranges and issue warnings for certain metrics, as well as
being able to export calculated metrics to XML files. Being one
of the most popular, this plug-in was our first choice for a target
in which to implement M2DM features.

Metrics supported:

Abstractness; Afferent Coupling; Cyclomatic Complexity;
Depth of Inheritance Tree; Efferent Coupling; Instability; Lack
of Cohesion of Methods; Method Lines of Code; Nested Block
Depth; Normalized Distance; Number of Attributes; Number of
Children; Number of Classes; Number of Interfaces; Number
of Methods; Number of Overridden Methods; Number of Pack-
ages; Number of Parameters; Number of Static Attributes; Num-
ber of Static Methods; Specialization Index; Total Lines of Code;
Weighted Methods per Class;

Extension capabilities:

Requires the editing of the plugin.xml file to declare new metrics
(name, abbreviation, level and propagation settings and calcula-
tor) and extension of a Calculator class to define how the metrics
are calculated.

2. Related Work 11

Name:

Eclipse Metrics plugin (Continued) 1.3.8

By:

Guillaume Boissier et al.

Marketplace site:

http://marketplace.eclipse.org/content/
eclipse-metrics-plugin-continued

Project site:

http://metrics2.sourceforge.net/

License: CPL
Last update: 2010-07-30 (plug-in); 2013-04-24 (site)
Downloads: 6.185 total from last plug-in update until 2013-09-05; 2.598 total

from 2012-09-05 to 2013-09-05; 216 total from 2013-08-05 to
2013-09-05

Marketplace installs:

0 from 2012-10 to 2013-09

Description:

Continuation from Frank Sauer’s plug-in led by Guillaume
Boissier. Though from a user perspective, the plug-in functions
very much the same, its source code has been fairly revamped and
improved, including in the way metrics are calculated. Though
it is an update to its widespread predecessor, it does not enjoy
as much popularity, and in result, visibility. As far as targets for
M2DM implementation, Boissier’s version has become as much
of an alternative as Sauer’s and though our current choice has
been unaltered, it might easily change if any issues surface dur-
ing the time of implementation.

Metrics supported:

Abstractness; Afferent Coupling; Cyclomatic Complexity;
Depth of Inheritance Tree; Efferent Coupling; Instability; Lack
of Cohesion of Methods; Method Lines of Code; Nested Block
Depth; Normalized Distance; Number of Attributes; Number of
Children; Number of Classes; Number of Interfaces; Number
of Methods; Number of Overridden Methods; Number of Pack-
ages; Number of Parameters; Number of Static Attributes; Num-
ber of Static Methods; Specialization Index; Total Lines of Code;
Weighted Methods per Class;

Extension capabilities:

Extension to calculate new metrics is done the same way as in
version 1.3.6.

2. Related Work 12

Name:

Eclipse Metrics 3.12.0

By:

Lance Walton/State of Flow

Marketplace site:

http://marketplace.eclipse.org/content/
eclipse-metrics

Project site:

http://eclipse-metrics.sourceforge.net/

License: CPL
Last update: 2011-04-10 (plug-in); 2013-05-02 (site)
Downloads: 8.313 total from last plug-in update until 2013-09-05; 3.891 total

from 2012-09-05 to 2013-09-05; 345 total from 2013-08-05 to
2013-09-05

Marketplace installs:

5.264 from 2012-10 to 2013-09

Description:

This plug-in offers more extensive exporting capabilities com-
pared to Frank Sauer’s, including XML, HTML and CSV ex-
porting, as well as integration with Eclipse’s Problems view to
issue warnings regarding certain metrics. However, though open-
source, extending it to support more metrics is a more difficult
task, due to its lack of documentation on the matter.

Metrics supported:

Cyclomatic Complexity; Efferent Couplings; Feature Envy;
Lack of Cohesion in Methods (Chidamber & Kemerer,
Henderson-Sellers, Pairwise Field Irrelation and Total Correla-
tion); Lines of Code in Method; Number of Classes; Number of
Fields; Number of Levels; Number of Locals in Scope; Num-
ber of Packages; Number of Parameters; Number of Statements;
Total Lines of Code; Weighted Methods Per Class;

Extension capabilities:

Requires the creation of new calculator classes. Current plug-
in contains several abstract calculator classes for specific data
extraction tasks (for instance, inspecting an AST).

2. Related Work 13

Name:

Project Usus 0.7.2

By:

Stefan Schuerle et al.

Marketplace site:

http://marketplace.eclipse.org/content/
project—-usus

Project site:

http://www.projectusus.org; http://github.com/usus/
usus-plugins (source code only)

License: EPL

Last update: 2013-01-27

Downloads: 35 total from plug-in release until 2013-09-06

Marketplace installs: 222 from 2012-10 to 2013-09

Description: Project Usus is a set of Eclipse plug-ins to facilitate project mon-

itoring, calculating metrics, identifying “hotspots” that deserve
more attention and creating graphs for module dependencies,
among other functionalities.

Metrics supported:

Average Component Dependency; Class Size; Cyclomatic Com-
plexity; Lack of Cohesion of Classes; Method Length; Mud-
holes; Number of Fields (non-static, non-final and public) ; Pack-
age Size; Packages with Cyclic Dependencies; Unreferenced
Classes;

Extension capabilities:

Features an extension collector to join user-created extension
points to the Project Usus environment. Includes abstract classes
and interfaces to structure how new calculators present their met-
rics data.

Name:

Java Metrics 0.9.4

By:

Devon Carew

Marketplace site:

http://yoxos.eclipsesource.com/yoxos/node/org.
dcarew. javancss.feature.feature.group

Project site:

http://code.google.com/p/
eclipse-plugin-potpourri/

License: Apache License 2.0

Last update: 2010-06-22

Downloads: N/A

Description: As of now, this is a simple plug-in that calculates a small selec-

tion of metrics on a project level.

Metrics supported:

Cyclomatic Complexity; Non-Commenting Source Statements;
Number of Files; Number of Packages; Total File Size

Extension capabilities:

N/A

2. Related Work 14

2.3.2 Commercial plug-ins

Name:

inCode Helium 2.0.1

By:

Intooitus

Marketplace site:

http://marketplace.eclipse.org/content/incode-helium

Project site:

http://www.intooitus.com/products/incode

License:

Commercial (Free trial available)

Description:

Plug-in version of inFusion (see subsection 2.3.3). Although reduced
in functionality compared to its stand-alone version, it still retains
several of its features, including metrics calculation. Overall, inCode
Helium is a tool with extensive graphical capabilities to aid detection
of design flaws in code.

Metrics supported:

Average Function Weight; Access to Local Data; Average Method
Weight; Access to Foreign Data; Base-class Overriding Ratio; Base-
class Usage Ratio; Capsules Providing Foreign Data; Class Weight;
Cyclomatic Number; Depth of Inheritance Tree; Dispersion Ratio;
Fan-In; Fan-Out; Foreign Data Providers; Height of Inheritance Tree;
Incoming Coupling Dispersion for an Operation; Incoming Cou-
pling Dispersion for an Operation; Locality of Data Accesses; Loose
Capsule Cohesion; Lines of Code; Lines of Comments; Maximum
Nesting Level; Number of Added Services; Number of Attributes;
Number of Abstract Classes; Number of Accessor Methods; Num-
ber of Abstract Methods; Number of Accessed Variables; Number of
Classes; Number of Children; Number of Global Functions; Num-
ber of Global Variables; Number of Incoming Calls; Number of Lo-
cal Variables; Number of Methods; Number of Modules; Number of
Outgoing Calls; Number of Packages; Number of Parameters; Num-
ber of Protected Attributes; Number of Protected Attributes; Num-
ber of Public Attributes; Number of Public Methods; Number of
Overriding Methods; Outgoing Coupling Dispersion for an Opera-
tion; Outgoing Coupling Intensity for an Operation; Outgoing De-
pendency on Delegators; Percentage of Newly Added Services; Tight
Capsule Cohesion; Weighted Operation Count;

2. Related Work 15

Name:

STAN - Structure Analysis for Java 2.1.1

By:

Odysseus Software GmbH

Marketplace site:

http://marketplace.eclipse.org/content/
stan-structure-analysis-java

Project site:

http://standj.com/

License: Free for non-commercial use
Last update: 2013-06-26
Downloads: N/A

Marketplace installs:

597 from 2012-10 to 2013-09

Description:

STAN is a general tool for analysing a project’s structure, showing
module composition and couplings, as well as calculating distances
and pollution. Furthermore, it has a dedicated metrics view show-
ing several different software metrics. STAN is available as both
an Eclipse plug-in or as a stand-alone application.

Metrics supported:

Abstractness; Afferent Coupling; Average Absolute Distance; Av-
erage Component Dependency between Libraries, between Pack-
ages and between Units; Coupling between Objects; Cyclomatic
Complexity; Depth of Inheritance Tree; Distance; Efferent Cou-
pling; Estimated Lines of Code; Fat for Library Dependencies,
Package Dependencies and Class Dependencies; Fat; Instability;
Lack of Cohesion in Methods; Number of Children; Number of
Fields; Number of Instructions; Number of Libraries; Number
of Member Classes; Number of Methods; Number of Packages;
Number of Top Level Classes (Units); Response for a Class; Tan-
gled for Library Dependencies and Package Dependencies; Tan-
gled; Weighted Methods per Class;

2.3.3 Other

The following tools have not been thoroughly tested due to assorted difficulties.

2. Related Work 16

Name:

inFusion Hydrogen 1.7

By:

Intooitus

Marketplace site:

http://marketplace.eclipse.org/content/
infusion-hydrogen

Project site:

http://www.intooitus.com/products/infusion

License: Commercial (Free trial available)

Description: inFusion Hydrogen is actually not a plug-in for Eclipse, but instead a
stand-alone application using the Eclipse framework and with its own
page in the Eclipse Marketplace.

Notes: Due to compatibility issues, we have not been able to test this applica-
tion in time for publication.

Name: Scertify ™Professional 1.10

By: Tocea

Marketplace site:

http://marketplace.eclipse.org/node/626557

Project site:

http://tocea.com/shop/professional-edition/
scertify-professional-edition

License: Commercial (Free trial available)

Notes: Due to incompatibility issues, we have unfortunately not been able to
test this tool in time for publication.

Name: IntoJ Suite

By: intoJ Team, University of Hagen

Marketplace site:

http://yoxos.eclipsesource.com/yoxos/node/org.intolJ.
suite.feature.feature.group

Project site:

http://wiki.fernuni-hagen.de/intoj/index.php/

Hauptseite
License: CPL
Notes: Since the IntoJ Suite wasn’t available for installation in time for pub-

lication, we have unfortunately not been able to test its metrics calcu-
lation capabilities.

2.4 The Eclipse JIDT

The Eclipse Java Development Tools, or JDT [14], are a series of plug-ins for Eclipse that

provide developers access to several functions commonly associated with an IDE, such as

code interpretation and Java project building. Several of the previously mentioned metrics

2. Related Work 17

plug-ins make use of the JDT to extract the data required to calculate software metrics. In our
M2DM plug-in, the usefulness of the JDT is two-fold: first, it provides a series of components
from which to base the construction of a Java metamodel, and second, it provides ways to
turn Java projects into abstract data as instances of the metamodel.

From the JDT, two components were of special interest to the construction of the EJMM:
the Java Model (EJM) and the Java Abstract Syntax Tree (AST).

The EJM, defined by a series of interfaces located in the org.eclipse. jdt.core, of-
fers a representation of a Java project and all its components, such as its folders, packages,
compilation units, etc. Though it also provides a vision of a compilation unit’s or class file’s
contents, such as its enclosed types and the type’s members, it does not offer a full view of
the Java code contained.

The AST, on the other hand, provides tools to analyse a block of source code and construct
an abstract representation of it. It is contained in the org.eclipse. jdt.core.dom package
as a series of classes representing different types of statements supported by the Java language
(e.g. type declaration statement, field declaration statement, method invocation or comments
in code).

Both the AST and the EJM have tree structures where nodes are connected to each other
by hierarchical, parent-child, links. For the AST, all classes inherit from the ASTNode class.
As for the EJM, all the interfaces inherit from the base IJavaElement interface. This means
that traversing their trees can be done in a top-down approach, beginning from a single node
that is parent to all other nodes.

In sum, the great advantage of using both the AST and the EJM in conjunction is the
fact that they provide complementary views of a system. Whereas the EJM can present the
structure and hierarchy of files of a Java project, the AST provides the structure and contents
of the actual code. Thus, they both were our source of inspiration while designing the EIMM.
However, it should be noted that the EJMM, although including representative metaclasses
for ASTNode and lJavaElement, is not meant to inherit the tree structure of the AST and
EJM functionally. Therefore, there are no generic parent-child connections in the EIMM,
just unique meta-associations between specific metaclasses.

Specific information regarding how the EJM and AST were used to form the EIMM can
be found in chapter 3 and further information on how the JDT was used by the M2DM plug-in
to instantiate the EJMM can be found in chapter 5, section 5.4.

2. Related Work 18

2.5 USE: The UML-based Specification Environment

Developed in the University of Bremen, the UML-based Specification Environment (USE,
for short), is a Java, open-source tool that allows the creation of UML class models and in-
stantiate them with objects to create a simulated system state [29] [30]. Adding to these
functionalities, USE allows the use of the Object Constraint Language (OCL) [31] - a lan-
guage specified by the Object Management Group (OMG) to complement UML diagrams
with textual descriptions of a system’s constraints - to declare both constraints of a model as
well as use the language for querying model instances. Furthermore, USE also allows the
definition of model operations using OCL as well.

This powerful solution was our choice to provide an environment where the EJMM could
be declared, instantiated with concrete data and inspected. Being open-source and developed
in Java, this means that our M2DM plug-in can also easily handle USE objects with little
intermediation.

Despite the available graphical capabilities, USE class models must be declared textually.
Embedded in the model components description, it is possible to define operation bodies and
to declare OCL constraints (class invariants, as well as pre and post-conditions on operations).
Furthermore, there is a possibility of incremental loading of model files, each being extended
by the next. What this means is that although the EJMM could be defined within a single
file, extensions could be made to add operations to respective metaclasses and expand their
functionality. This would allow for users to be able to define their own metrics-calculating
operations for specific metaclasses in separate files, load them in the M2DM tool and then
query for their returned values. This simple method is the one that would substantiate the
aforementioned advantages of M2DM regarding to the ease of adding new metrics.

To facilitate our integration of USE capabilities, we made use of a facade component
interface named J-USE, produced within the QUASAR group [32], that provides a Java API
for USE services.

2. Related Work

19

[This page was intentionally left blank]

3. THE ECLIPSE JAVA METAMODEL

3.1 Introduction

The EJMM was obtained by reverse engineering and composing two Eclipse JDT compo-
nents: the Eclipse Java Model (from now on referred to as EJM) and the Eclipse Abstract
Syntax Tree (or AST for short). The EJM contains several interfaces that provide a vision
over a Java project’s structure under a tree architecture. The AST, on the other hand, deals
with parsed source code. It allows the analysis of a source code file represented also as a
tree, down to each statement and expression that compose the methods of a class [14, 33].
Although the EJM already provides a fairly complete vision of the software’s structure (in-
cluding, for instance, which classes are declared, as well as their fields and methods), the
AST provides the minutia of a software application that can only be found within the code
itself. The two components complement each other to create a highly detailed Java meta-
model. However, the EJMM does not employ the EJM’s and the AST’s tree structures. In-
stead, we have opted for a simpler and more direct representation of a Java project, with
meta-associations connecting specific metaclasses that would be otherwise represented as
connected nodes of a tree. The node metaclasses remain, but purely as a means to generalize
different metaclasses and to distribute the information they contain.

In this chapter, we will present only the most notable aspects regarding the EJIMM specifi-
cation. For the full EJMM specification, as a USE specification file, please refer to Appendix
A.l.

3.2 Metamodel presentation

In this section, we will present the EJIMM in its current form, as a set of class diagrams.
Figure 3.1, represents the basic structure of a Java project and its hierarchical structure, in-
cluding type inheritance and interface implementations. All the metaclasses present in Fig.
3.1 inherit, directly or indirectly, from the base JavaElement metaclass. The latter represents

any node of a Java project tree, confers it a name (equal to the name declared in the source

3. The Eclipse Java Metamodel 21

code) and a unique identifier. Also included in this diagram are the three enumerations used
by the metamodel: visibility types, Java types and package fragment root types. The first
determines the visibility of an element, such as whether a method is public, private, protected
or has default visibility (the default is the containing package and is applicable when the vis-
ibility keyword is omitted). The Java types enumeration serves to identify different kinds of
a Type meta-object (Java class, interface, annotation type or enumeration). Package fragment
roots can be folders or archives and the latter can be either .jar files or .zip files.

Figure 3.2 shows the contents of the Type metaclass, such as fields, methods, static ini-
tializers and type parameters. These components are referred to as members in the EJM and
such is reflected by the abstract metaclass Member from which they inherit. The LocalVari-
able metaclass is a special case - since a local variable can only be located in one place, the
meta-associations between it and either Method or Initializer are mutually exclusive. In terms
of instantiation, this means that only one of these meta-associations would be defined. The
attributes arrayDimensions and returnTypeArrayDimensions determine the number of array
dimensions a LocalVariable, Field or a Method’s returnType has.

Figure 3.3 focuses on presenting another component of the EJM - annotations. These are
attached to Annotatable meta-objects, such as local variable declarations, Java members or
package declarations. Since we do not include package declarations in the EIMM, to repre-
sent package declaration annotations, we have instead made CompilationUnit an Annotatable
metaclass, meta-associations between it and Annotations represent the package declaration
annotations. Besides the occurrences of annotations in code, the metamodel also registers
which class declares the annotation in question and the parameter values of each occurrence
(currently under the form of strings as a generalized measure to deal with different field types)
and the annotation class field that each value refers to.

In the final diagram (Fig. 3.4), the AST metaclasses are depicted. Inheriting from a base
ASTNode metaclass, only comments and statements have been chosen to be included in the
EJMM. Comments are directly linked to compilation units through a single meta-association.
Statements can take several forms, but only Block statements are meta-associated to initializ-
ers or methods. Much like local variables, the Block’s meta-associations are mutually exclu-
sive - it can only be associated with either an Initializer or a Method, or none at all.

All other statement types can only be found as aggregate parts of blocks, directly, or as
part of other statements within the aggregation. Furthermore, there are extra meta-associations
to represent dependencies between a Statement and a Type (typeDependencies), Field (field-
sAccessed) or Method (methodsCalled). The latter represents the types, fields and methods

that are used or invoked and used by the expressions that compose the statement in question.

3. The Eclipse Java Metamodel

22

==enumeration== -
VisihilityType JavaElermeant “eenumeration==
=l b FackageFragmentRootType
Default name : String
Folder
Fuhlic handleldentifier : String Jar
Frivate 7%)
Frotected Zip
==enumeration==
JavaType
JavaProject Prirmitive
- _ ClassType
1 javaProject EnumType
InterfaceType
packageFragmentRoots| 0. AnnotationType
FackageFragmentRoaot

packageFragmentRoofType

. PackageFragmentRoofType

packageFragmentRoot| 0.1

0.+ |packageFraoments

FPackageFragment

getFragmentadndChildrend) | Set(PackageFragment)

1 packageFragment

o typeRoots

TypaRoot

ClassFile typeRoot

CompilationUnit

implementedBy

k)
n.x [¥Pes

Type

0.x

0.x

implements)

wisibility : VisibilityType
javaType JavaType
isFinal : Boolean
ishbstract: Boolean
isStrictfp : Boolean

nests
0.*

isSynthetic : Boalean
isDeprecated : Boalean

getilliMestedTypes : Set(Type)

0.1

getFulllnterfaceTreed : Set{Type)
getFullinheritanceTreel | Set(Type)
getAllEnclosingTypes : Set(Type)

extended

By| g = 0 extends

nestedin

Fig. 3.1: Eclipse Java Metamodel - Java Project Structure

3. The Eclipse Java Metamodel

23

JavaElement

narme : String
handleldentifier ; String

T

Member
0.* typeParameters {ordered}
TypeParameter I
Field
0..* boundsin o 9
- fieldType | fieldsWithType : Stri
)] pounds type VR WJ* k.eyf..S.tnng_ .
localvariahlesiWithType tpe I1 0.* [wisikility : VisibilityType
LacalVariable 0.* 1 Tyme l. izStatic : Boolean
arrayDimensions : Integer 0.* [throwes 0.1 1 0. |isFinal - Boolean
¥ -neg 0. 1 h type retumnjpe type fields |isvolatile : Boolean
localvariables| Parameters localvariables tine 1 isTransient: Boolean
= 0x isSynthetic | Boolean
{ordered} isDeprecated : Boolean
throwinaiethods returningMethods arrayDimensions : Integer
0.*
(XOR} o+ [methods s
————————————— Method
ke : String
method shortkey : String
visibility : VisibilityType
isConstructor : Boolean
01 0.1 |isStatic : Boalean
o .{grdgred} . parameterLocation |isFinal : Boolean
inilializer initializérs 0. is8ynchronized : Boolean

Initializer

gethllStatements () © OrderedSet{Statement)

isMative : Boolean

isAhstract: Boolean

isStrictp - Boolean

isSynthetic : Boolean

isDeprecated : Boolean

isBridge : Boolean

hasVarargs . Boolean
returnTypeArrayDimensions : Integer

getallStatements(| OrderedSet(Statement)

Fig. 3.2: Eclipse Java Metamodel - Type Components

3. The Eclipse Java Metamodel 24

JavaElarment

name : String
handleldentifier : String

T

0* Annotation 1

1
Annotatabie -
shnotatable | anotations [lineMumber : Inte9er [3qnotation

[g+ |annotationsUsed values| g *
‘analVariable ‘ | CompilationUnit | Member Annaotationialue
walue : String

fieldWalues| g »
1| tvme
* . 1
Initializer | Type ! 0. Fleﬂi
type fields field
1 0=
fieldType figldstWith Type

Fig. 3.3: Eclipse Java Metamodel - Annotations

The field startPosition of the ASTNode metaclass indicates the first character byte of the piece
of code that a node represents within the entire block of code from which the AST was gen-
erated (thus, when analyzing the code of a compilation unit, the startPosition indicates the
location of the node in the source file). The length attribute indicates the size of the piece of
code in bytes. The Statement metaclass also contains a conditionalOperatorCount attribute.
This attribute was specifically created for metrics extraction - it represents the number of
conditional expressions contained in the statement plus the number of conditional operators
used by the expressions contained in the statement (specifically, ”and” operators, ”or” oper-
ators and conditional expressions), to aid calculating a method’s cyclomatic complexity [1].
It was included in the EJMM and not as an extension due to the necessity of capturing new
information during the moment the metamodel is instantiated.

Operations declared in the metamodel metaclasses are purely auxiliary, aiming to aid the
definition of OCL statements. They are recursive operations that return all the hierarchical
children or parents of a given meta-object (for instance all the statements contained in a block,

or all the components of a type’s superclass hierarchy).

3. The Eclipse Java Metamodel

25

n.x
Type
gwpeDependencies o.x

0.

typeDeclared

ASTNode

startPosition : Integer
length : Integer

T

Compilationlinit

Field

dependees Staternent
conditionalOperatorCount ; Integer dependees
- 0.
g getStatermentAndChildren() | SetiStaternent)
dependees 7%

AsgerStatement
fieldsAccessed

——

statements
{ordered} 0.7

Constructorinvocation

EreakStatement

optionalLabel : String

|
| SuperConstructarinvacation |

I
DaoStaterment

hody : Staterment

ContinueStatement

optionalLabel : String

EmptyStatement

—

ForStatement

body : Staternent

ExpressionStaterment

ElockComement

Javadoc

comment: String

methodsCalled

EnhancedFarStaterment

body : Staterment

——

LaheledStaternent

hody : Staterment

If5taterment

thenStatement : Statement
optionalElseStaternent | Statement

ReturnStatement

ThrowStatement

SwitchStaterment

SwitchCase

statements ; Set(Statement)

izDefault: Boolean

WhileStaterment

body : Staterment

TryStaterment

Synchronized Staternent

body : Block

hody : Black

optionalFinallyBody : Block
catchClauses : Set{CatchClause)

01

TypeDeclarationStaternent |

declarationStaternentl

YariableDeclarationStatement

0.1

declarationStaternent

localvariahlesDeclared

CatchClause

catchClause .=

1

body : Black

Localvariable

oA exceptionyariable

Fig. 3.4: Eclipse Java Metamodel - Abstract Syntax Tree Components

3. The Eclipse Java Metamodel 26

3.3 Reverse engineering information

As previously stated, the EJMM is the result of reverse engineering the EJM and AST pro-
vided by the Eclipse JDT. Metaclasses that inherit from the JavaElement metaclass have their
origins in homonymous interfaces of the EJM package (org. eclipse. jdt. core). Meta-
classes that inherit from the ASTNode metaclass have their origins in homonymous classes
of the AST package (org. eclipse. jdt. core. dom). Thus, it is safe to say that meta-
classes are representations of the EJM and AST interfaces and classes. The exception is the
AnnotationValue metaclass, which is built from the values obtained through the IAnnotation
interface. A complete overview of the metaclass origins can be found in the following section.

Meta-associations are representations of getters found in the metaclasses’ origin. A spe-
cial case was found in the relation between PackageFragmentRoot and PackageFragment, as
the original IPackageFragmentRoot provides IPackageFragments through the generic Java
model child getter, rather than a specific one for package fragments. For most statement
types, fields have translated to attributes in their respective metaclass. The biggest excep-
tion is the Block metaclass, as its contents have been translated into a single aggregation of
Statement.

Metaclass attributes are also derived from original attributes or getters. However, several
attributes of the Type, Method and Field are derived from a special integer flag their original
interfaces provide. The flags, as defined by the class org.eclipse.jdt.core.Flags, are used to
differentiate a Java member’s visibility (reflected on the enumeration VisibilityType) or differ-
ent Java types (enumeration JavaType). Flags were also used to create the isFinal, isSynthetic,
isDeprecated, isStatic, isSynchronized, isNative, isBridge, hasVarargs, isVolatile, isTransient
and isStrictfp attributes. Furthermore, as mentioned previously, the conditionalOperator-
Count is calculated at the moment of instantiation by counting the number of conditional

”and” and “or” operators and conditional expressions contained inside a statement.

3.4 Metaclass presentation

3. The Eclipse Java Metamodel 27

Metaclass name:

JavaElement

Origin:

org.eclipse.jdt.core.lJavaElement

Description

The original interface is implemented by all EJM tree nodes and trans-
lates to an abstract class on the metamodel that is inherited, directly
or indirectly, by all metaclasses that originate from the EJM. Unlike
lJavaElement, the JavaElement metaclass is not used for building a
tree structure, but instead to generalize data into meta-objects such as
element name or handle. The name attribute is the one used to store the
element name (generally from the getElementName() method). han-
dleldentifier is a special identifier string that provides the complete lo-
cation of the element. No two different JavaElements have the same
handleldentifier.

Metaclass name:

JavaProject

Origin:

org.eclipse.jdt.core.lJavaProject

Description:

Represents the folder that holds the Java project.

Metaclass name:

PackageFragmentRoot

Origin:

org.eclipse.jdt.core.IPackageFragmentRoot

Description

Represents a folder within the Java project that may contain packages.
Since packages can be contained in either folders or archive files, the
metaclass includes a specific attribute that dictates the type of pack-
age root in question (see the description of the PackageFragmentRoot-
Type enumeration for further information). A PackageFragmentRoot’s
name is actually the name of its respective resource (obtained from
the getResource() method), such as the folder or archive name, since
the getElementName() method for IPackageFragment instances returns
empty strings.

Metaclass name:

PackageFragment

Origin:

org.eclipse.jdt.core.IPackageFragment

Description:

Represents a single package.

Metaclass name:

Annotatable

Origin:

org.eclipse.jdt.core.IAnnotatable

Description:

Abstract metaclass class that represents any object that can have an-
notations attached. Concrete metaclasses that may have annotations
extend this metaclass.

Metaclass name:

TypeRoot

Origin:

org.eclipse.jdt.core.ITypeRoot

Description:

Represents a file in which a type can be declared.

3. The Eclipse Java Metamodel 28

Metaclass name:

ClassFile

Origin:

org.eclipse.jdt.core.IPackageFragment

Description:

Represents a binary class file containing a single type declaration in
bytecode.

Metaclass name:

CompilationUnit

Origin:

org.eclipse.jdt.core.ICompilationUnit

Description:

Represents a source file that may contain several type declarations.

Metaclass name:

Member

Origin:

org.eclipse.jdt.core.IMember

Description:

Members represent any Java elements that are components of a Java
type, such as methods, fields, the type itself, as well as inner types.
Concrete members inherit from this metaclass.

Metaclass name:

Type

Origin:

org.eclipse.jdt.core.IType

Description:

Represents a single Java type. This may be a class, an interface, an an-
notation definition, an enumeration or a primitive type (such as integers
and booleans). See the enumeration JavaType for more information.

Metaclass name: | TypeParameter
Origin: org.eclipse.jdt.core.ITypeParameter
Description: Represents a parameter for a single type. Not to be confused with type

arguments, that are concrete instantiations of parameters. Parameter
bounds are defined by a meta-association between parameter (bound-
sIn) and the bound type (bounds).

Metaclass name: | Field
Origin: org.eclipse.jdt.core.lField
Description: Represents a field declared within a type. The attribute arrayDimen-

sions indicates the number of array dimensions this Field has (zero, if
not an array).

Metaclass name:

Initializer

Origin:

org.eclipse.jdt.core.llnitializer

Description:

Represents a static initializer of a class. Initializers have no name, but
within the same type, they can be identified by the order in which they
are declared.

3. The Eclipse Java Metamodel 29

Metaclass name:

Method

Origin:

org.eclipse.jdt.core.IMethod

Description:

Represents a method declared in a type. It is linked to its body through
a meta-aggregation with the Block metaclass unless it is an abstract
method. The shortKey attribute contains only the method and parame-
ter section of the method’s full key, representing the method signature
- essentially, a substring of key. The shortKey exists mainly to aid the
comparison between two methods belonging to different types, since
the key contains also the location of the method. The hasVarargs at-
tribute determines whether or not the Method has a variable number
arguments (notice that only the last parameter in a method’s parameter
list can be used multiply). The attribute arrayDimensions indicates the
number of array dimensions this Method’s returnType has (zero, if the
method doesn’t return an array).

Metaclass name:

LocalVariable

Origin:

org.eclipse.jdt.core.ILocalVariable

Description:

Represents a single local variable contained in either a method body,
an initializer body or a method parameter. Its meta-associations with
Method or Initializer mutually exclusive - only one can be defined, de-
noting the location where the local variable is declared. The attribute
arrayDimensions indicates the number of array dimensions this Local-
Variable has (zero, if not an array).

Metaclass name:

Annotation

Origin:

org.eclipse.jdt.core.IAnnotation

Description:

Represents a single occurrence of an annotation within source code. If
the aforesaid occurrence has annotation arguments, they are saved as
AnnotationValue instances.

Metaclass name:

AnnotationValue

Origin:

org.eclipse.jdt.core.IMemberValuePair

Description:

Unlike other metaclasses derived from EJM components, Annotation-
Value is not a direct conversion of an EJM interface. Instead, it is a
metaclass created from data obtained from IAnnotation. Values are
saved as strings and are meta-associated with the corresponding field
of the annotation type.

3. The Eclipse Java Metamodel 30

Metaclass name:

ASTNode

Origin:

org.eclipse.jdt.core.dom.ASTNode

Description:

Base abstract node metaclass for AST nodes. Much like the JavaEle-
ment metaclass, the main purpose of ASTNode is to generalize data
such as the starting byte of the node inside the source text (useful for
ordering) and its length in bytes.

Metaclass name:

Comment

Origin:

org.eclipse.jdt.core.dom.Comment

Description:

Abstract metaclass representing a comment in the source code of a
compilation unit.

Metaclass name:

LineComment

Origin:

org.eclipse.jdt.core.dom.LineComment

Description:

Concrete metaclass for single line comments.

Metaclass name: | BlockComment
Origin: org.eclipse.jdt.core.dom.BlockComment
Description: Concrete metaclass for single block comments.

Metaclass name:

Javadoc

Origin:

org.eclipse.jdt.core.dom.Javadoc

Description:

Concrete metaclass for Javadoc comment blocks.

3. The Eclipse Java Metamodel 31

Metaclass name:

Statement

Origin:

org.eclipse.jdt.core.dom.Statement

Description:

Abstract metaclass for Java statements. To generalize type references
in concrete statements, we have included a typeDependency meta-
association. To generalize method calls, we have the methodsCalled
meta-association and to generalize access to a field, we have fieldsAc-
cessed. In the cases of statement types that cannot depend on any type,
method or field (for instance, EmptyStatement), the meta-associations
are not instantiated. The auxiliary method getStatementAndChildren()
is a recursive method that returns the statement and all statements in-
cluded in it, directly or indirectly. The conditionalOperatorCount at-
tribute represents the number of conditional expressions and condi-
tional operators contained in the statement.

Metaclass name:

AssertStatement

Origin:

org.eclipse.jdt.core.dom.AssertStatement

Description:

Concrete Statement metaclass to represent “assert” statements.

Metaclass name:

Block

Origin:

org.eclipse.jdt.core.dom.Block

Description:

Concrete statement type that represents a block of code which may
contain more statements, defined by a meta-composition.

3. The Eclipse Java Metamodel 32

Metaclass name:

BreakStatement

Origin:

org.eclipse.jdt.core.dom.BreakStatement

Description:

Concrete Statement metaclass to represent ’break” statements.

Metaclass name:

Constructorlnvocation

Origin:

org.eclipse.jdt.core.dom.ConstructorInvocation

Description:

For ConstructorInvocation statements, the depended types include con-
structor arguments, the type that the constructor refers to and the type
arguments used. The methodsCalled meta-association is also used to
link the ConstructorInvocation with its respective constructor Method.

Metaclass name:

ContinueStatement

Origin:

org.eclipse.jdt.core.dom.ContinueStatement

Description:

Concrete Statement metaclass to represent ’continue” statements.

Metaclass name:

DoStatement

Origin:

org.eclipse.jdt.core.dom.DoStatement

Description:

Concrete Statement metaclass to represent ’do” statements.

Metaclass name: | EmptyStatement
Origin: org.eclipse.jdt.core.dom.EmptyStatement
Description: Concrete Statement metaclass to represent empty statements.

Metaclass name:

EnhancedForStatement

Origin:

org.eclipse.jdt.core.dom.EnhancedForStatement

Description:

Concrete Statement metaclass to represent enhanced “’for” statements.

Metaclass name:

ExpressionStatement

Origin:

org.eclipse.jdt.core.dom. ExpressionStatement

Description:

Concrete Statement metaclass representing regular statements contain-
ing an expression.

Metaclass name:

ForStatement

Origin:

org.eclipse.jdt.core.dom. ForStatement

Description:

Concrete Statement metaclass to represent ’for” statements.

Metaclass name:

IfStatement

Origin:

org.eclipse.jdt.core.dom.lfStatement

Description:

Concrete Statement metaclass to represent ”if” statements.

Metaclass name: | LabeledStatement
Origin: org.eclipse.jdt.core.dom.LabeledStatement
Description: Concrete Statement metaclass to represent labelled statements.

3. The Eclipse Java Metamodel 33

Metaclass name: | ReturnStatement
Origin: org.eclipse.jdt.core.dom.ReturnStatement
Description: Concrete Statement metaclass to represent return” statements.

Metaclass name:

SuperConstructorlnvocation

Origin:

org.eclipse.jdt.core.dom.SuperConstructorlnvocation

Description:

Much like a Constructorlnvocation, the typeDependencies of a Su-
perConstructorlnvocation consist of the declaring type, the type ar-
guments used and dependencies found in the constructor arguments.
The methodsCalled meta-association is also used to link the Super-
Constructorlnvocation with its respective constructor Method

Metaclass name: | SwitchCase
Origin: org.eclipse.jdt.core.dom.SwitchCase
Description: Statement metaclass to represent a statement beginning with the key-

word “case”. Not to be confused with SwitchStatement. In Java,

SwitchCases are part of the contents of a SwitchStatement.

Metaclass name: | SwitchStatement
Origin: org.eclipse.jdt.core.dom.SwitchStatement
Description: Concrete Statement metaclass to represent "switch” statements.

Metaclass name:

SynchronizedStatement

Origin:

org.eclipse.jdt.core.dom.SynchronizedStatement

Description:

Concrete Statement metaclass to represent ’synchronized” statements.

Metaclass name:

ThrowStatement

Origin:

org.eclipse.jdt.core.dom.ThrowStatement

Description:

Concrete Statement metaclass to represent “throw” statements.

Metaclass name:

TryStatement

Origin:

org.eclipse.jdt.core.dom.TryStatement

Description:

Concrete Statement metaclass to represent ”try” statements.

Metaclass name:

TypeDeclarationStatement

Origin:

org.eclipse.jdt.core.dom.TypeDeclarationStatement

Description:

The type declared in this statement also contributes for its dependen-
cies.

3. The Eclipse Java Metamodel 34

Metaclass name:

VariableDeclarationStatement

Origin:

org.eclipse.jdt.core.dom.VariableDeclarationStatement

Description:

VariableDeclarationStatements may contain several fragments for each
variable declared within the same statement, thus leading to the in-
stantiation of the corresponding meta-association with the LocalVari-
able metaclass. The initializer expression contained within a Vari-
ableDeclarationStatement 1s scanned to instantiate dependency meta-
associations and to obtain the value of the conditionalOperatorCound
attribute.

Metaclass name:

WhileStatement

Origin:

org.eclipse.jdt.core.dom.WhileStatement

Description:

Concrete Statement metaclass to represent “while” statements.

Metaclass name:

CatchClause

Origin:

org.eclipse.jdt.core.dom.CatchClause

Description:

The base AST class CatchClause does actually not inherit from the
Statement class. However, for simplification purposes, it does so in the
EJMM.

Enumeration name:

JavaType

Description:

Used to differentiate types of the Type metaclass. A type may be
a class, an enumeration, an interface, an annotation definition or a
primitive type. Primitive types include: int, boolean, long, double,
float, byte, short, char and, for simplification purposes, void (not to
be confused with null values).

Enumeration name:

VisibilityType

Description:

Used to define the visibility of a Java member. Default visibility
refers to the visibility given to members in which the visibility key-
word is omitted (it is visible only inside the package where it is
declared).

Enumeration name:

PackageFragmentRootType

Description:

Package fragment roots may be either folders or archive files. In the
latter case, .zip files and .jar files are differentiated.

3. The Eclipse Java Metamodel 35

3.5 Methods and constraints

As shown in the metamodel presentation section, the EJMM includes certain restrictions and
already declares some operations for ease of use. In this section, we shall present the OCL
expressions that define both invariants used and operations declared in the EIMM.

3.5.1 Operations

Type operations

Operation: getAllNestedTypes()
Description: | Recursive operation that returns all types nested inside self.

getAllNestedTypes() : Set(Type) =
self .nests
->union(self.nests.getAllNestedTypes())
->asSet

Definition:

Operation: | getAllEnclosingTypes()
Description: | Recursive operation that returns all types in which self is nested.

getAllEnclosingTypes() : Set(Type) =
if (self.nestedIn->isUndefined)
then Set{}

. else

Definition: Set{self.nestedIn}->
union(self.nestedIn.getAllEnclosingTypes())
->asSet

endif

3. The Eclipse Java Metamodel

36

Operation:

getFulllnterfaceTree()

Description:

Recursive operation that returns all interfaces implemented by the type,
directly or indirectly.

Definition:

getFullInterfaceTree() : Set(Type) =

if (self.javaType = #InterfaceType)

then Set{self}
->union(self.implements.getFullInterfaceTree())
->asSet

else self.implements.getFullInterfaceTree()
->asSet

endif

Operation:

getFulllnheritanceTree()

Description:

Recursive operation that returns the full inheritance chain of all super-
classes of the Type.

Definition:

getFullInheritanceTree() : Set(Type) =

if (self.extends.oclIsUndefined)

then Set{}

else
Set{self.extends}
->union(self.extends.getFullInheritanceTree())
—->asSet

endif

Initializer operations

Operation:

getAllStatements()

Description:

Returns all statements contained in the [Initializer’s body, ordered by
occurrence in the source.

Definition:

getAllStatements() : OrderedSet(Statement) =
body.getStatementAndChildren()
->sortedBy (startPosition)->asOrderedSet

Method operations

3. The Eclipse Java Metamodel 37

Operation: getAllStatements()
Description: | Returns all statements contained in the Method’s body, if any, ordered
by occurrence in the source.

getAllStatements() : OrderedSet(Statement) =
if (optionalBody.isDefined)
then optionalBody.getStatementAndChildren()
->sortedBy(startPosition)->as0OrderedSet
else OrderedSet{}
endif

Definition:

The getStatementAndChildren() operation

The Statement metaclass declares the getStatementAndChildren() operation, a recursive method
to return itself and all other Statements included in it, directly and indirectly. The concrete
definition varies among the several Statement sub-metaclasses. This does not include the

statements contained inside types declared inside a Statement.

Context: Statement
. getStatementAndChildren() : Set(Statement) =
Definition: Set{}
Context: AssertStatement, BreakStatement, ConstructorInvocation, ContinuesS-

tatement, EmptyStatement, ExpressionStatement, ReturnStatement, Su-
perConstructorlnvocation, SwitchCase, ThrowStatement, TypeDeclara-
tionStatement, VariableDeclarationStatement

Definition: | getStatementAndChildren() : Set(Statement) = Set{self}

Context: Block, SwitchStatement

getStatementAndChildren() : Set(Statement) = Set{self}

Definition: ->union(statements.getStatementAndChildren()->asSet)

3. The Eclipse Java Metamodel 38

Context: DoStatement, EnhancedForStatement, ForStatement, LabeledState-
ment, SynchronizedStatement, WhileStatement, CatchClause

getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
Definition: then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

Context: IfStatement

getStatementAndChildren() : Set(Statement) =
Set{self}
->union(thenStatement.getStatementAndChildren())
->union(if (optionalElseStatement.isDefined)

Definition: then
optionalElseStatement.getStatementAndChildren()
else Set{}
endif)
Context: TryStatement

getStatementAndChildren() : Set(Statement) =
Set{self}
->union(if (body.isDefined)
then body.getStatementAndChildren()->asSet
else Set{}
endif)
o —>union(catchClauses.getStatementAndChildren()
Definition: —>asSet)
->union(if (optionalFinallyBody.isDefined)
then
optionalFinallyBody.getStatementAndChildren()
->asSet
else Set{}
endif)

3.5.2 Constraints

We mentioned previously two restrictions to the EIMM - specifically, two invariants for the

LocalVariable and Block metaclasses. These invariants have been translated as OCL con-

3. The Eclipse Java Metamodel 39

straints as follows:

LocalVariable - A LocalVariable may only be inside an Initializer, a Method or be a Method’s
parameter. It can be in one and only one of these locations.

context LocalVariable
inv localVariableExclusiveLocation:
self .parameterLocation.isDefined() xor
self.method.isDefined() xor

self.initializer.isDefined ()

Though this condition can be already observed in the class diagrams, declaration of an
OCL constraint is needed for the USE specification of the EJIMM.

Block - A Block may only serve as a body to either a Initializer or a Method, but not both
at the same time. Note that a Block may not be necessarily linked directly to a Method or
Initializer. 1t may, instead, be a part of another Statement (for instance, a Block may be the
thenStatement of an IfStatement), in which case both meta-associations will be undefined.

inv blockExclusivelocation:
not (self.method.isDefined() and

self.initializer.isDefined())

We have chosen to only create constraints that would help maintain the metamodel in-
tegrity and cannot be specified by the metamodel itself. This means we have not chosen to
verify for Java syntactical correctness, as we can already determine whether or not a Java
project has compile errors through Eclipse. Thus, the guarantee that an EJMM instance is
representative of a correct Java project comes from the plug-in itself, as it will only allow

instantiations of projects in which compiling errors cannot be found.

4. OCL APPLICATIONS OF THE EJIMM

4.1 Introduction

While developing the M2DM plug-in, we have identified the need to create certain artefacts
containing OCL expressions to navigate the EJMM and extract data. The main concern
was the implementation of the Formal Library for Metrics Extraction (FLAME) [6] over the
EJMM. With the FLAME translated, current OCL formalizations for metrics could be applied
with little to no modification. In this chapter, we will include a few OCL expressions to
demonstrate basic EJMM navigation. In a second section, we will present the OCL methods
that comprise the newly-developed FLAME for the EIMM. The FLAME is an extension of
the EJMM and is defined in a seperate file. Finally, in the last section, we will present a few

more operations required for calculating specific metrics found in literature.

4.2 EJMM navigation

Querying the EJMM is a fairly easy matter thanks to the simplicity of OCL. Traversing
the metamodel can be done by accessing to metaclasses’ meta-associations (and the meta-
associations’ meta-associations until finding the desired metaclasses or meta-objects). For

instance, the following expression returns all the Statements that depend on the Type int:

int.dependedStatements

To retrieve all the length values of the Statements, we simply need to append the length

attribute, like so:
int.dependedStatements.length
And to calculate the total length:

int.dependedStatements.length->sum

4. OCL Applications of the EIMM 41

Please note that meta-association navigations that take a single step and with multiplicity
higher than 1 (such as from Type to dependendStatements), return a Set of the target meta-
class. However, when navigating through two or more metaclasses, a Bag is returned instead,
as there might be repeated instances. Operations return their respective return type, but when
being called after a meta-association, the results are also collected in a Bag of the return type.
The same occurs for attributes used after a meta-association.

There might be times when the user does not have access to a meta-object’s specific name,
but has knowledge of its declared name in Java. For these occasions, the name attribute can
be used to retrieve a specific meta-object from all instances of its metaclass. For example, to
access all the Types included in the “Foobar” JavaProject, we can use the following expres-

sion:

JavaProject.allInstances->any(name = ’Foobar’).packageFragmentRoots

.packageFragments.typeRoots.types

Note that while our M2DM tool only instantiates one project at a time, the previous ex-
pression always returns results different from the expression Type.alllnstances, since external
and basic Types are contained in TypeRoots and PackageFragments that are not part of an
analysed JavaProject.

These last few OCL expressions can serve as queries for the OCL evaluator in USE or
our M2DM prototype plug-in. Defining OCL operations in a USE specification is a similar
process. Here is an example of an operation defined for the Method metaclass that returns

true if a Method 1is either abstract or part of an interface:

isAbstactOrInterface() : Boolean =

self.isAbstract or self.type.javaType = #InterfaceType

Note that it is possible to give use to the “’self”” keyword to refer to the current instance of
a metaclass, much like the ’this” keyword in Java, and then navigate the EJMM from there.
Several more examples of operations can be found in Subsection 3.5.1 in chapter 3, and more

are to follow in the following two sections of this chapter.

4.3 FLAME for EJIMM

The Formal Library for Aiding Metrics Extraction (FLAME) [6, 16] is an OCL library de-
vised to help implement existing M2DM metrics (such as the MOOD [34] and Chidamber

4. OCL Applications of the EIMM 42

& Kemerer metrics set [2]) over the UML metamodel. For the sake of portability of those
metrics sets we decided to implement the FLAME upon the EIMM. The original FLAME
specification defined upon the UML metamodel and, as such, we had to rewrite it for com-
pliance with existing EJMM metaclasses.

The process of conversion is mostly a matter of translating UML concepts into Java ones,
with several UML generalized elements translating to specific EIMM metaclasses. Rules of
visibility, inheritance and overriding have also been revised to what is dictated in the Java
tutorials [35]. This conversion process also incurred to the formalization of “client” and
”supplier” concepts for Java constructs.

The following aspects regarding the FLAME for EIMM are of note:

e Operations that deal specifically with “classes” in the UML FLAME (especially those
defined at the PackageFragment level) deal only with Types that are classes - their
javaType equals ClassType.

e We use the Member metaclass as a representative of a “feature”. However, we did not
consider all Member types to be features - Initializers in particularly. Nested Types are

still considered features of their enclosing Type.

e Regarding overriding, we decided that only Methods override and Fields do not. This
is due to the distinction found in the Java tutorials [35], where methods can override,

but fields can only become hidden.

e The clients of a Field are all the Types which access the Field in the bodies of its
declared Initializers or Methods. Likewise for Methods.

e Clients of a Type, however, are a more complex matter. To aid the definition of a Type’s
clients, we first determined what Type suppliers a given Type needs. We figured out
that the suppliers of a type are the types it inherits from, the types of its fields, return
types of its methods, the types of the annotations used for it and its members, the types
of all local variables found in its methods or initializers and the types invoked in the

bodies of all of its methods and initializers.

The first version of the FLAME for EJMM can be found in Appendix section A.1. All
names of pre-existing FLAME operations have been preserved except for the client operation,

changed to the clearer clients name.

4. OCL Applications of the EIMM 43

4.4 Other Operations and Metrics

Despite the translation of FLAME to a EJMM-compliant version already allowing the use
of existing software metrics, in this section, we shall cover a few more operations for met-
rics calculation. Firstly, we present an example of the use of the conditionalOperatorCount
attribute of the Starement metaclass. The attribute was created with the intention of helping
calculate McCabe’s [1] cyclomatic complexity of a method. One possible formalization for
such a metric - specifically made to match the way it is calculated in Frank Sauer’s metrics

plug-in [15] - can be defined as follows:

complexity() : Integer = 1 +
self.getAllStatements()->select(s |
not (s.oclIsKindOf (ReturnStatement))).conditionalOperatorCount->
excluding(oclUndefined(Integer))->sum + self.getAllStatements()->
select(s | s.oclIsKindOf (CatchClause) or
s.o0clIsKind0Of (DoStatement) or s.oclIsKindOf(ForStatement) or
s.oclIsKind0f (IfStatement) or (s.oclIsKindOf (SwitchCase) and
not(s.oclAsType(SwitchCase) .isDefault)) or
s.0clIsKindOf (WhileStatement))->size

And the same metric including corrections found in the continued version of the plug-in,

by Guillaume Boissier [28], which also counts the number of enhanced for statements:

complexity() : Integer = 1 +
self.getAllStatements()->select(s |
not (s.oclIsKindOf (ReturnStatement))) .conditionalOperatorCount->
excluding(oclUndefined(Integer))->sum + self.getAllStatements()->
select(s | s.oclIsKindOf(CatchClause) or
s.0clIsKindOf (DoStatement) or s.oclIsKindOf (ForStatement) or
s.oclIsKindOf (EnhancedForStatement) or -- Newly added
s.0c1IsKindOf (IfStatement) or (s.oclIsKindOf (SwitchCase) and
not (s.oclAsType(SwitchCase) .isDefault)) or
s.oclIsKindOf (WhileStatement))->size

Cahill et al. [23] propose, with their Source Lines of Code (SLOC), that counting the
number of statements is a more accurate measurement of size of source code. With the
EJMM, we can calculate the number of Statements in the body of a Method or an Initializer,
as follows:

4. OCL Applications of the EIMM 44

SLOC() : Integer =
self.getAllStatements()->select(s | not(s.oclIsKindOf (Block)))->size

Note that Block statements are not included as they are just containers of statements with-
out any information of its own - in Java, blocks are delimited by a pair of braces ({}).
Furthermore, we can also make a full statement count for a CompilationUnit if we were

to consider Type, Field, Initializer and Method declarations as statements.

SLOC() : Integer =
self.types->size + self.types.initializers->size +
self.types.methods->size + self.types.fields->size +

self.types.methods.SLOC() + self.types.initializers.SLOC()

Another basic metric defined by Cahill et al. is the Comment Lines of Code (CLOC).
Though the EJMM does not count the number of text lines on a ASTNode, much like SLOC,
we can count the total number of Comments in a CompilationUnit and even the total size of

all Comments in bytes:

totalComments() : Integer =

self.comments->size

totalCommentSize() : Integer =

self.comments.length->sum

4. OCL Applications of the EIMM

45

[This page was intentionally left blank]

5. ECLIPSE PLUG-IN FOR M2DM

5.1 Introduction

Before creating the final product of the M2DM project, a modified version of Frank Sauer’s
[15] metrics plug-in for Eclipse, we first sought to create a simple prototype plug-in, serving
as a proof-of-concept for M2DM capabilities. This prototype, though lacking in advanced re-
porting, automation and exporting features, served as a testing ground in which to implement
EJMM instantiation and navigation capabilities. In this chapter, we shall present the cur-
rent prototype, its structure and architecture, explain the process in which it converts a Java
project in Eclipse into an EJMM instance consisting of USE [29, 30] objects, and finally, our

validation methods for the tool.

5.2 Tool architecture

To create the prototype M2DM tool, we gathered three main components:

1 An OCL compiler embedded in the UML-based Specification Environment (USE) [29,
30]

ii A facade interface named J-USE produced within the QUASAR group [32] that provides
a Java API for USE services

iii A transformation component that goes through the EJM and the Java AST and generates
EJMM instances by requesting USE services through J-USE

J-USE allows loading UML models or metamodels, instantiate them, test defined OCL
contracts and execute other OCL expressions as queries over the model or metamodel in-
stances. Thus, we will be able to perform traversal operations defined in OCL upon the
EJMM and check the properties of concrete JVM instantiations, that is, of actual Java pro-

grams.

5. Eclipse Plug-in for M2DM 47

The EJMM is defined as a USE specification file (UML class diagram in textual format)
distributed with the plug-in. Metrics definitions are expressed using OCL as operation defi-
nitions upon the FLAME library or upon the EJMM directly, without needing to change any
Java code.

The plug-in source code includes four packages and two Jar archives. The latter are

archive versions of USE and J-USE. The four packages are:

e ejm2metrics - the base package containing the Activator class required by Eclipse to

run the plug-in.

e ejm2. views - contains the declaration of the M2DM view, including its buttons,

menus, text labels and text editors.

e ejm2. ut - contains classes that create an instance of the M2DM view and can capture
event triggers fired by the view’s buttons and OCL evaluator text area to initiate the

tool’s functions.

e ejm2. tools - package containing the classes responsible for loading the EJMM and
crawl through a supplied Java project to instantiate the metamodel through USE ob-

jects.

Note that, for the source code and namespaces, we refer to the EJMM as "EJM2” to help

visualize name meanings and remove naming ambiguity when several words are attached.

5.3 Tool presentation

The plug-in interface consists of an Eclipse view from which users can initiate the load-
ing process and input OCL queries for evaluations. Like most externally-installed views in
Eclipse, our plug-in is accessed by the “Other” option of the ”Show View” sub-menu in the
”Window” menu. We have included the plug-in view in the "M2DM” category and dubbed it

the "Interactive view”.

5. Eclipse Plug-in for M2DM 48

& Show View B

. = General
s = Ant
. = APITools
> = CVS
> = Debug
> = Git
> = Help
s = Java
> [= Java Browsing
a4 = M2DM
& Interactive view
> [= Plug-in Development
> = SVN
. = Team

[ok][cancel

Fig. 5.1: Selecting the MD2M prototype view

From the M2DM view, the user must first locate their USE installation folder using the
”Select USE directory” button and the location of the .use file containing the EJIMM using
the ”Select EIMM path” button. Then, the user must select the project to analyse from
the drop-down menu. Only Java projects without errors can be selected. After these steps
have been taken, the user can press the “Instantiate EJMM” button to initiate the metamodel
instantiation process. Once that process is finished, the upper text box becomes active, in
which the user may input OCL queries in the same fashion as the OCL evaluator of the
USE tools. Query results appear in the larger text area below. The user may also choose
to load extra .use files extending the metamodel, such as the one containing the FLAME
formalization in chapter 4. Several files may be selected and the user must do so before

initializing the instantiation process.

5. Eclipse Plug-in for M2DM 49

E.i'_ Problems @ Javadoc E%Declaration & Interactive view &2 Load models Instantiate MM~ = B

Press the Run JM2Loader button to instantiate a Java project's metamodel

Processing finished. Select USE directory
JHotDraws.0 - Select EIMM path

Insert OCL queries here:

Typealllnstances-=>any(name = 'LineFigure').methods- > select(m | m.optionalBody.isDefined)-> collect{m | Tuple{key:5tring = m.shertKey, complexity:Integer = m.cumplaxity(]}j

Bag{Tuple{complexity=1, key="LineFigure(V'}, Tuple{complexity=1,key="basicDisplayBox(QPoint QPoint)V'} Tuplef complexity=1 key="endPointV'}, Tuple
{complexity=1, key="endPoint{MV'}, Tuplel complexity=1, key="setPoints(QPoint; QPoint)V'}, Tuple{ complexity=1 key="startPoint(QV'}, Tuple{complexity=1, key="startP oint (V" }}

Fig. 5.2: The M2DM prototype view

The current prototype and its source code can be found in http://code.google.com/
p/m2dm/.

5.4 Instantiation process

Despite the EJMM defining the structure of the data, the instantiation process, where EJM and
AST components are translated into USE objects, determines the exact data that is included.
Decisions made during the EJMM instantiation tools for the metrics plug-in greatly affected
what is available for analysis. First of all, the current instantiation process can be divided
in two major phases: a first one that traverses a Java project’s respective Java Model tree,
creating USE objects of the whole structure and a second phase that inspects the contents of

the EJM and AST components to create links between them.

5.4.1 First instantiation phase

The first instantiation takes a top-down approach, from Java project to type components.

During this phase, the following processes take place:

1. Firstly, common meta-objects are created, such as primitive types and place-holder
locations for said primitive types and external types found during the second processing
phase. The entire list of these common meta-objects can be found in section C.1 of

Appendix C.

2. The top JavaProject is created.

5. Eclipse Plug-in for M2DM 50

3. Then, its PackageFragmentRoots meta-objects, obtained through the getAllPackage-
FragmentRoots() method from IJavaProject are created, as well as the meta-links with

the corresponding JavaProject.

4. PackageFragment meta-objects are then created from the getChildren() method from
IPackageFragmentRoot, as well as the corresponding meta-links. Note that this method
is not specific to IPackageFragmentRoot and is meant to return the direct children of
a given lJavaElement, which in this case, is a [PackageFragment. Packages that do
not contain Java resources (either compilation units or class files) do not get respective
instances in the EJMM.

5. Each IPackageFragment is scanned for either compilation units or class files (through
the getCompilationUnits() and getClassFiles() methods from IPackageFragment, re-

spectively), creating meta-objects from each, as well as the corresponding meta-links.

6. Then, types contained in class files and compilation units (obtained through the ger-
Type() and getAllTypes() methods from IClassFile and ICompilationUnit, respectively)
have their Type meta-objects created, as well as the meta-links between Types and their

TypeRoot.

7. Each IType obtained previously is scanned for methods, initializers and fields (through
the getMethods(), getInitializers() and getFields() methods, respectively), creating Method,

Initializer and Field meta-objects.
8. Methods’ type, Initializers’ type and Fields’ type are defined at this moment.

9. The instantiation process moves on to the second phase.

5.4.2 Second instantiation phase

Once all the major components of the Java project are known, the second processing phase
begins. This second process is responsible for creating every meta-object and link between
meta-objects that were not included in the first processing phase, including type inheritance,
field types or return types. Firstly, previously-scanned compilation units are retrieved. The
annotations attached to its package declaration are analysed, then its declared types. Types
are now checked for type parameters, bounds, inheritance and nested types. Then, its meth-
ods are scanned for its parameters (creating LocalVariable instances), return type, excep-

tion thrown and attached annotations. Fields are then inspected for their field type and

5. Eclipse Plug-in for M2DM 51

annotations attached. Once the types are fully scanned, an AST created from the com-
pilation unit code is analysed. Using a visitor pattern (made possible by extending the
org.eclipse.jdt.core.dom.ASTVisitor class), ASTs are scanned for comments, method decla-
rations and initializers. The MethodDeclaration and Initializer classes of the AST (part of
the org.eclipse. jdt.core.dom package) are the ones used to bridge the EJM and AST
components of the EIMM. Block instances are created, linked to their respective Method
or Initializer and then their contents are analysed using a recursive function specific for each
type of Statement. Each Statement that contains an expression has its expression inspected for
dependencies and conditional operators and statements contained within are also inspected
using the same recursive function. For a full list of Statements that may contain Expressions,
see Table C.1. A special case is the VariableDeclarationStatement class, which contains
VariableDeclarationFragments (of the org.eclipse. jdt.core.dom package). These are
scanned to find the variable initializer Expression, which adds directly to the result of the
VariableDeclarationStatement. The methods that retrieve dependencies and conditional op-
erators function much alike the statement analysing process in that expressions are scanned
for other expressions contained within, adding to the final result.

Type dependencies are determined by the type bindings (I7ypeBinding of the org. eclipse.
jdt. core. dom package) that can be obtained from some expressions. The types that these
bindings return are later used to create the typeDependencies meta-links. Specifically, the
following Expression (found in the org. eclipse. jdt. core. dom package) subclasses

produce type bindings:

e CastExpression
o ClassInstanceCreation

o FieldAccess (produces two type bindings, one for the field type and another for the
field’s declaring type)

e [nstanceofExpression (from its right operand)

e MethodInvocation (produces two type bindings, one for the method’s return type and

another for for the method’s declaring type; its arguments are also scanned)
e SimpleName
e QualifiedName

e Typeliteral

5. Eclipse Plug-in for M2DM 52

Field accesses are determined by the IVariableBindings obtained from the FieldAccess
class. Method calls are determined by the IMethodBindings obtained from the ClassInstance-
Creation and MethodInvocation classes. Constructorlnvocation and SuperConstructorinvo-
cation statements also contain IMethodBindings regarding their declaring constructor, which
are also used for generating methodsCalled meta-links.

Regarding the conditionalOperatorCount attribute of the Statement metaclass, statements
that have expressions are scanned to find two specific types of expressions that may add to
its value: ConditionalExpression and InfixExpression. Conditional Expressions found always
add 1 to the count, but InfixExpressions only add if its operator (from the getOperator()
method) is a conditional ”and” or conditional “or” operator - in which case it adds 1 to the
count plus the total number of extended operands. Extended operands of an InfixExpression
are obtained through the extendedOperands() method and define the remaining Expressions
linked to the InfixExpression with the same operator. Note that, being a recursive process,
any Expression contained inside another Expression also adds its value. These current rules
were chosen to aid the calculation of a method’s cyclomatic complexity [1] in the same way
Frank Sauer’s metrics plug-in [15] does.

During the second processing phase, if a reference is made to a type that was not instanti-
ated during the first phase, a new meta-object is created to represent the newly found external
type and linked to the TypeRoot reserved for external types. This meta-association allows
for easy distinction between internal and external types to a Java project. If, when creating
an AnnotationValue meta-object, an annotation member-value pair (IMemberValuePair) has
a member name that does not correspond with any existing Field - a common occurrence
when inspecting the values of an annotation with an external declaring type - a new Field
meta-object is created, with a name equal the member name and the rest of its attributes left
undefined. The new Field is then linked to the AnnotationValue. Furthermore, if a field that
was not instantiated during the first phase is accessed by a Statement, a new Field meta-object
is created, linked to its respective Type and declaring Type. If these Types cannot be found
either, new external Types are created, since a IVariableBinding can also produce the IType-
Binding for both its type and declaring type. Subsequent references to the same type, such as
from analysing different Statements, are directed to this Type instance. The same logic is ap-
plied for methodCalls. If a method that was not instantiated during the first processing phase

is called, a new Method instance is created and linked to its declaring Type and returning

Type.

5. Eclipse Plug-in for M2DM 53

5.4.3 Other rules

As can be observed from the rules defined in this section, only types defined in compilation
units are subject to the second processing phase in the current version of the tool. Binary
types are and their structure are included in the instantiation and thus have respective meta-
objects, but their contents are not inspected.

All meta-objects originating from EJM components have unique USE object names equal
to their handleldentifier with all non-alphanumeric and non-underscore characters removed.
Since this might result in name conflicts between fields and methods with the same signature
when excluded of invalid characters, all Method and Field meta-objects have names starting
with "METHOD_” and "FIELD_” prefixes, respectively. Initializers are an exception, as their
name is equal to the processed handleldentifier of the Type in which they are declared, con-
catenated with the string ”_Initializer” and its occurrenceCount. AST meta-objects have the
name of the metaclass followed by the current count of total meta-objects for the metaclass
for their USE object name. External Types have names equal to their type signature. External
Fields and Methods found when scanning for Statement dependencies follow the same nam-
ing convention as regular Fields or Methods, however, the EJM may provide incorrect handle
identifiers for JRE library components - the functionality of the prototype does not suffer, but
the respective handleldentifier attribute and USE object identifier may produce undesirable
values. For instance, the EJM might provide a handle identifier of a JRE library component
with a project name different from the one instantiated. Basic types have names equal to their
name attribute (for instance, int’s meta-object name is also int).

These rules often result in long names that are hard to read, so it is more advisable to
search for specific meta-objects from all its instances with the “name” attribute, if applicable.

For instance, the following OCL expression returns the first 7ype with the name “Foobar™:
Type.alllnstances->any(name = ’Foobar’)

Since the instantiation rules heavily influence the data that the EJMM offers, they are

subject to change depending on future requirements.

5.4.4 Instantiation classes

The following classes are responsible for the instantiation tasks:
o JM2Loader

o JM2ASTLoader

5. Eclipse Plug-in for M2DM 54

e Statementlnspector

e ExpressionAnalyzer

The JM2Loader class is responsible for initiating the full instantiation process through
the staticloadEJMMfromProject method, which receives a single IJavaProject as a parameter.
The JM2Loader class is also responsible for all EJM-related operations. During the second
instantiation phase, it calls upon services provided by the JM2ASTLoader class, that uses the
aforementioned visitor pattern to find methods (MethodDeclaration), initializers (Initializer
class of the AST) and comments (Javadoc, LineComment and BlockComment classes of the
AST). To inspect the contents of methods and initializers, it uses the StatementlInspector class.
Statement types that contain expressions call upon the ExpressionAnalyzer’s two methods to
return statement type dependencies and the value to use on the conditionalOperatorCount

attribute.

5.5 Tool validation

For validation sake of our M2DM tool, we first defined its quality model. The quality char-

acteristics that we identify in a metrics collection tool are then the following:

e Transparency - the tool should allow a clear identification of the calculation algo-

rithms used in metrics collection;
o Extensibility - the tool must allow adding new metrics.

e Scalability - the tool should allow metrics collection in a reasonable time frame, at the

expense of resources typically available in current personal computers;
e Accuracy - the collected metrics values should be accurate;

For the remainder of this section, we will provide our evaluation of the M2DM prototype
we have developed.
5.5.1 Transparency

Transparency is one of the biggest strengths of our tool. As mentioned previously, metrics

definitions are perfectly identified in separate OCL files loaded by the user.

5. Eclipse Plug-in for M2DM 55

5.5.2 Extensibility

Tool extensibility (i.e. adding new metrics sets) is fairly straightforward since the concepts
used in metrics definition are those defined in the EJMM. The user only needs to create a
new file with OCL definitions of the desired metrics. To validate this capability, we have
developed the FLAME [6] for EJIMM, presented in the previous chapter. With FLAME, it is
possible to reuse metrics sets specifications that were already formalized using the FLAME,
such as the MOOD [34] metrics set. Validation of the metrics sets thus obtained is subject
of future work, using benchmark data, obtained from a commercial tool that implements the
MOQD set.

5.5.3 Scalability

To test the scalability, we ran the M2DM tool over Java projects of increasing size, comparing
the duration of the instantiation process. We chose five different projects as test cases, includ-
ing three key components for the M2DM project: J-USE [32], Frank Sauer’s metrics plug-in
for Eclipse [15] and the USE tool [29] in its 3.0.6 version. We also tested the instantiation
time over a software application that is widely-used for research purposes, JHotDraw [36]
(version 6.0), and over a popular open-source application, SweetHome3D [37] (version 4.1),
which enjoys over one hundred thousand weekly downloads at the time of writing. Project
size, for these tests, was determined by the total number of USE objects and USE links gen-
erated by the instantiation process (meta-info). The sizes of projects can be found in Table
5.1, showing the order of size of the Java projects tested, J-USE being the smallest and USE
the largest. To further illustrate differences in sizes, we have also included the total number

of Types instantiated for each project (including external and basic types).

Project | J-USE Eclipse Metrics JHotDraw SweetHome3D USE
Version 1.0 1.3.6 6.0 4.1 3.0.6

Types 195 820 3,403 5,731 9,261
Meta-objects | 3,491 17,240 64,147 136,716 211,452
Meta-links | 10,356 43,303 112,806 311,791 395,460
Total meta-info | 13,847 60,543 176,953 448,507 606,912

Tab. 5.1: Scalability tests: project sizes

To give a better view of the contribution of quantity of types in a project to its size in

meta-info, we mapped normalized meta-info values to normalized Type quantity values and

5. Eclipse Plug-in for M2DM 56

found the following linear approximation:
y = 1.036296166469x — 0.003765204055325

Where y represents meta-info and x represents the number of Types. This results in the
following plot:

Meta-1nfo

. Types

0.97365671810 0.956487562414

Fig. 5.3: Type quantity to project size plot

This suggests that the relation between amount of types in a project and resulting meta-
info is close to a linear one.

The scalability tests consisted of running the instantiation process fifty times over each
project, in order of largest in size to smallest, and registering the times for the first instanti-
ation phase, the second instantiation phase and the total duration for the whole process. All
tests were made under the same Eclipse session and due to the JVM being under heavier
load during the very first instantiation (belonging to USE 3.0.6), its value was discarded to
avoid skewed results. Tests were made on a machine with a dual-core processor running at
3GHz each and 4GB of physical memory. JVM maximum heap space was set to 1024MB,
as opposed to the default 512MB, to allow the instantiation of the largest project, USE. The
full results can be found in tables C.2 trough C.6 with values in seconds. A summary of the
tests can be found in Table 5.2.

5. Eclipse Plug-in for M2DM 57

Project 1st instantiation 2nd instantiation Total duration Average proportion
phase phase

Mean [s] Mean [s] Mean[s] SD|[s] 1stphase 2nd phase
J-USE 0.049 0.648 0.697 0.033 7.08% 92.92%
Eclipse Metrics 0.377 3.952 4.329 0.279 8.71% 91.29%
JHotDraw 3.604 10.189 13.793 0.591 26.13% 73.87%
SweetHome3D 8.270 36.034 44304 1.617 18.67% 81.33%
USE 22.509 70.973 93.482 0.585 24.08% 75.92%

Tab. 5.2: Scalability tests summary

As expected, the larger the Java project, the longer it takes for the instantiation process
to finish. The results are fairly consistent for each project, enjoying low standard deviations.
We can also observe that the second instantiation phase is consistently the most responsible
for the duration times, due to the tool having to iterate over several ASTs. We can confirm
that all values are acceptable for everyday use, with even a large scale project such as USE
having instantiation times that take around a minute and a half.

The next concern was determining how much the durations increased compared to in-
creases in project sizes. To do this, we used a polynomial regression of degree 2 where the
instantiation duration is given as a function of project size in meta-info. By mapping normal-

ized size to normalized duration values, we obtained the following function:
y=1.0429181055 10x% — 0.1075328190896x + 0.03894345306869

Where y refers to instantiation duration and x the project size. This function results in the

following plot:

5. Eclipse Plug-in for M2DM 58

Total Duration

USE

LOF

0.8}

0.6

® SweetHome3D
04+

0.2}

Meta-
I L L 1 L L L 1 L L L 1 L L L 1 L L L 1 |]_u_fo

0.98943580047 0.97887101894

Fig. 5.4: Instantiation duration to project size plot

We can use this quadratic approximation to suggest that changes in size incur more-
than-proportional changes in process duration. This shows it will be exceedingly difficult to

analyse increasingly larger Java projects.

5.5.4 Accuracy

To determine the prototype’s accuracy, our validation approach is based on a comparison
between the values of the same metrics collected with the M2DM tool with those of the
original Frank Sauer plug-in. The latter is in use for several years and has a large number of
downloads and several updates, so we have a good confidence that its calculated values can
be used as a benchmark.

To this date, we have tested the prototype’s capability for calculating a method’s cyclo-
matic complexity [1]. To do this, we employed the OCL operation defined in section 4.4 of
the previous chapter that was defined to create an approximation to Frank Sauer’s calculation
method. The JHotDraw application [36] was chosen as a test subject. From it, we used the
M2DM prototype to calculate the complexity of all non-abstract methods of all non-interface
and non-nested types that are not included in JHotDraw’s test packages (the full list of pack-
ages we have excluded from our analysis can be found in Table C.7), for a total of 245 types.
We then selected a sample of 1005 methods chosen by alphabetical order of the compilation
unit in which they are contained. The full results can be found in Tables C.8 through C.26.

5. Eclipse Plug-in for M2DM 59

The columns named “Source” determine the compilation unit where the method, named in
columns "Method name”, can be found. The columns named “EM value” determine the com-
plexity value of the method as calculated by Frank Sauer’s plug-in. Columns named "M2DM
value” determine the complexity as initially calculated by our prototype. The final columns,
named “Recalculated value”, determine the complexity as calculated by our prototype after
further corrections - more information on that later.

Regarding the first calculation by our M2DM prototype, 97.21% of all values coincided

between the two tools, as such:

Total values: 1005
Matched values 977
Different values 28
Percentage of coincidence: 97.21%
Average difference: 0.046766
Average difference from different values: 1.678571
Largest difference: 7

Tab. 5.3: M2DM to Eclipse Metrics comparison: initial results

Facing these results, we inspected the cases where values were different and proceeded to
perform corrections over our M2DM tool to provide more accurate results. The corrections

made included:

e Including extended operands of InfixExpressions in the analysis of expressions to ob-

tain the conditionalOperatorCount

e Including MethodInvocation argument expressions (as obtained by the arguments()
method)

e Analysing the expressions contained in VariableDeclarationFragments of a VariableDec-

larationStatement

e Excluding ReturnStatements from the calculation (the expression found in section 4.4

is the final version)

Due to time constraints for the publishing of this dissertation, we did not manage to repeat
the full metrics extraction for all 1005 methods. Instead, we calculated the new values for
the 28 methods in which values differed, found in columns named “Recalculated values”
in Tables C.8 through C.26. Out of the 28 different values, 22 were corrected to coincide

5. Eclipse Plug-in for M2DM 60

between the two plug-ins and 6 remained different. The six remaining methods with different

complexity values differed for two reasons:

i Frank Sauer’s plug-in counts all occurrences of "&&” and ”||” in the source code, as
opposed to identifying the Operator object of InfixExpresions in the AST. This results in
commented code adding to a method’s complexity. This is the case in the findConnec-

tionTarget method in ChangeConnectionHandle.java.

ii Frank Sauer’s plug-in also adds to a method’s complexity those of all methods of all
anonymous classes contained inside it. This happens in the CTXWindowMenu constructor
in CTXWindowMenu.java, createComponentListener in DesktopEventService.java, cre-
ateDragGestureListener in DragNDropTool.java, and open and createDesktopListener in

DrawApplication.java.

As the correctness of these points is a subject of discussion, we have decided to not change
the prototype’s calculation process further.

However, corrections made to the plug-in might have come with possibilities of side-
effects changing values that were accurate from the start. To ensure that this is not the case,
we recalculated the complexity for a smaller sample of 48 methods in which the previous
test provided 100% accurate results: all methods of the CompositeFigure type, from the
CompositeFigure.java compilation unit. The results can be found in Table C.27. The values
remained 100% accurate. Though it is not proof that there were no unwanted side-effects, we
took it as evidence with acceptable confidence, that the values that were previously accurate
remained so. Thus, if we consider that all previous values that coincided still coincide, the

new accuracy validation results can be summarized thus:

Total values: 1005
Matched values 999
Different values 6
Percentage of coincidence: 99.4%
Average difference: 0.017191
Average difference from different values: 3
Largest difference: 7

Tab. 5.4: M2DM to Eclipse Metrics comparison: final results

These final results were considered adequate for the M2DM tool in its prototypical stages.

5. Eclipse Plug-in for M2DM

61

[This page was intentionally left blank]

6. CONCLUSIONS AND FUTURE WORK

6.1 Discussion

In this dissertation we tackled the first challenges in creating a M2DM plug-in for Eclipse.
Firstly, we have created a new Java metamodel, the EJMM, based on data provided by the
Eclipse Java Model and Abstract Syntax Tree. Secondly, we have successfully created a
prototype plug-in that can analyse a Java project in Eclipse and translate it to an instance of
the EJMM that is navigable using OCL as a query language. Furthermore, we have presented
an EJMM-functional version of FLAME [6], to ease future work on further implementations
of software metrics over the EJMM.

From the development of the mentioned artefacts, points of discussion surfaced that made
us take certain decisions.

One of our first questions was one of complexity regarding the metamodel itself. The
EJMM is not a direct translation of the EJM and AST, but a simplification (and unification)
of both. As one of the advantages of M2DM cited by its authors being the distancing of com-
plex parser logic and programming languages to a static metamodel and the simpler OCL for
expressions [3, 7], it would be counter-productive to create a metamodel that is hard to nav-
igate. On the other hand, with greater detail, such as more metaclasses and attributes, there
would be more points of measurement. Ultimately, the stance we took was somewhat of a
midpoint. The result of this was the inclusion of Java constructs that are often not measured,
such as Annotations and the entire breadth of Statement types, as well as the exclusion of cer-
tain details, such as package declarations (IPackageDeclaration of the EJM) or the abstract
Expression class of the AST and its subclasses. The information these would provide that we
have deemed relevant for measurement has been abbreviated in other Metaclasses - package
declaration annotations translated into the CompilationUnit metaclass inheritance of the An-
notatable metaclass, and the dependencies meta-associations and conditionalOperatorCount
attribute for the Statement metaclass. We wish that the EJMM, in its current version, will be
useful for the unforeseeable future of M2DM and hope our choices of simplification do not

go against the requirements of future users. Despite this wish, we are not any less open to

6. Conclusions and Future Work 63

make changes to the version presented in this dissertation.

The development of the prototype also raised several questions relevant to our research.
Despite the structure provided by the EIMM, the contents are still at the mercy of the rules
defined by the instantiation process. Despite the EJMM metaclasses being representations
of JDT equivalent interfaces and classes, the complex nature of Java projects resulted in
specific choices to determine what gets instantiated and how. These choices may have a direct
impact on metrics values, even with the same OCL expressions. While OCL formalizations
for metrics definitions can be evaluated and validated through its syntactical correctness,
instantiation correctness is more difficult to ascertain. However, some choices made are
fairly unique and may contribute to more complete analysis of Java projects. Specifically,
instantiating binary and external types is something that cannot be found in Frank Sauer’s
existing plug-in [15]. This can be useful to determine, for instance, outward dependencies
from developed resources to third-party ones.

Choices in EJMM structure and instantiation policies are why validation of the tool’s ac-
curacy was a considerable concern. The tests presented in the previous chapter are promising
for a prototype, as we achieved almost 100% accuracy in relation to Frank Sauer’s plug-in,
but fairly inconclusive, as only one metric was tested.

Scalability tests showed promising results as well, as despite a more-than-proportional
rise in instantiation times in relation to rises in project sizes, even large-scale projects such
as USE showed low absolute instantiation duration values, with average times only slightly
above a minute and a half. Howeyver, it is still of note that we needed to increase the JVM max-
imum heap size for such large-scale projects. Memory issues may come with the implication
that changes to the EIMM involving the addition of more meta-associations or meta-objects

could make the scalability problematic.

6.2 Future work

As accuracy tests are lacking, we hope that in the future, we will be able to perform more and
more complete tests with other metrics supported by Frank Sauer’s plug-in. The extensibility
tests, as mentioned in the previous chapter, will also be the subject of future work, as the
FLAME has not been subject of thorough validation. And of course, if new inaccuracies
are found, the EJMM and the instantiation process will be subject to change accordingly. In
regards to scalability, it would be of interest, in the subject of future work, to measure the
time it takes for the prototype to execute metrics calculations over large sets of meta-objects.

Typical OCL queries result in very short execution times under a second, but unmeasured.

6. Conclusions and Future Work 64

The prototype plug-in’s functionality shall also be subject of future work, as there are
a few technical flaws yet to be addressed. Firstly, the tool is still fairly unstable and prone
to crashing Eclipse when encountering USE specification files with syntactical errors. Sec-
ondly, the user must still specify the locations of an USE installation on their machine and the
EJMM USE specification file to initiate the loading and instantiation process. Since these two
components are always required to run the tool, we plan to find a way to bundle these with
the plug-in distribution and take away this requirement for the user. Thirdly, in terms of scal-
ability, we believe that the current prototype still has much room for improvement regarding
optimization of the instantiation process, which can be subject of future work. Fourthly, the
calculation of metrics depends on using the built-in OCL evaluator, which requires the input
of textual OCL expressions whenever we want to view the value of a certain metric. This is a
fairly time-consuming and impractical solution and automation of this process would greatly
improve the tool’s usefulness. Fortunately, this last matter is something that will be resolved
naturally with the next stage of the M2DM plug-in project, since Frank Sauer’s metrics plug-
in already provides extensive automation capabilities, as well as metrics propagation and an
orderly display of results.

Automatic metrics propagation in itself is also a subject of future study. As Frank Sauer’s
plug-in offers several propagation options (such as calculating total, average or maximum
values), the question remains on how does the user define, on the tool front-end, how their
user-defined metrics should propagate.

Ultimately, the work presented in this dissertation serves as a proof of concept of M2DM
research. By creating the EJIMM and measuring software through OCL-defined metrics, we
have successfully segregated the complex compiler and parser logic from the simpler and
more explicit model-driven side. It is indeed possible at this point for users to create new
software metrics without writing a single line of Java code. Furthermore, since adding EJIMM
extensions with metrics definitions can be done purely from the tool’s front-end, users can
add new metrics without having to recompile an existing tool for individual use. This feature
is something that is not common in current software metrics tools.

We hope that the contributions of this dissertation will facilitate further studies on M2DM
in the context of Java development, and with them, further aid the Software Engineering

community in its continued research on the subject of software quality.

6. Conclusions and Future Work

65

[This page was intentionally left blank]

[1]

(2]

[6]

[7]

[9]

[10]

BIBLIOGRAPHY

T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering,
vol. SE-2, no. 4, pp. 308-320, 1976.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.

F. Brito e Abreu, “Using OCL to formalize object oriented metrics definitions,” Techni-
cal Report ES007/2001, INESC, May 2001.

N. E. Fenton, Software metrics : a rigorous approach. London: Chapman & Hall, 1991.

F. G. Wilkie and T. J. Harmer, “Tool support for measuring complexity in heterogeneous
object-oriented software,” in Proceedings of the International Conference on Software
Maintenance (ICSM), pp. 152-161, 2002.

A. L. Baroni, Formal Definition of Object-Oriented Design Metrics. M.S. Thesis, Vrije
Universiteit Brussel (VUB), Brussels, Belgium, August 2002.

G. Antoniol, M. Di Penta, and E. Merlo, “YAAB (Yet Another AST Browser): using
OCL to navigate ASTs,” in Proceedings of the 11th IEEE International Workshop on
Program Comprehension (IWPC), pp. 13-22, 2003.

J. A. McQuillan, Using Model Driven Engineering to Reliably Automate the Measure-
ment of Object-Oriented Software. Ph.D. Dissertation, National University of Ireland,
Maynooth, 2011.

M. El Wakil, A. El Bastawissi, M. Boshra, and A. Fahmy, “A novel approach to formal-
ize and collect object-oriented design metrics,” in Proceedings of the 9th International

Conference on Empirical Assessment in Software Engineering (ICEASE), 2005.

A. L. Baroni and F. Brito e Abreu, “An OCL-based formalization of the MOOSE

metrics suite,” in Proceedings of the International Workshop on Quantitative Ap-

Bibliography 67

proaches in Object-Oriented Software Engineering (QAOOSE’2003) at ECOOP’2003,
vol. 3013/2004, pp. 92—-106, Springer, July 2003.

[11] G. de Montmollin, “The transparent language popularity index,” 2013. Available:
http://lang-index.sourceforge.net/ Accessed: 2013-05-30.

[12] The Eclipse Foundation, “Eclipse - The Eclipse Foundation open source community
website.” 2013. Available: http://www.eclipse.org Accessed: 2013-05-30.

[13] The Eclipse Foundation, “Eclipse marketplace,” 2013. Available: http://
marketplace.eclipse.org Accessed: 2013-05-30.

[14] The Eclipse Foundation, “Eclipse Java Development Tools (JDT) overview,” 2013.
Available: http://www.eclipse.org/jdt/overview.php Accessed: 2013-05-30.

[15] F. Sauer, “Metrics 1.3.6.,” 2013. Available: http://metrics.sourceforge.net/
Accessed: 2013-05-30.

[16] A. L. Baroni and F. Brito e Abreu, “Formalizing object-oriented design metrics upon
the UML meta-model,” in Actas do XVI Simpdsio Brasileiro de Engenharia de Soft-
ware (SBES), pp. 130145, Biblioteca Digital Brasileira de Computacdao (BDBComp),
Sociedade Brasileira de Computagdo, October 2002.

[17] A. L. Baroni, C. Calero, F. Brito e Abreu, and M. Piattini, “Object-relational
database metrics formalization,” in 6th International Conference on Quality Software
(QSIC’2006), pp. 30-37, IEEE Computer Society Press, Oct 26-28 2006.

[18] M. Goulao, Component-Based Software Engineering: a Quantitative Approach. Ph.D.
Dissertation, FCT/UNL, Caparica, Portugal, December 2008.

[19] L. Ferreira da Silva, Assessment of IT Infrastructures: A Model Driven Approach. M.S.
Thesis, FCT/UNL, Caparica, Portugal, December 2008.

[20] S. Bryton, Modularity Improvements with Aspect-Oriented Programming. M.S. Thesis,
FCT/UNL, Caparica, Portugal, July 2008.

[21] E Brito e Abreu, R. de Braganca V da Porciuncula, J. Freitas, and J. Costa, “Defini-
tion and validation of metrics for itsm process models,” in 2010 Seventh International
Conference on the Quality of Information and Communications Technology (QUATIC),
pp- 79-88, 2010.

Bibliography 68

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

R. C. Martin, Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, 2003.

J. Cahill, J. M. Hogan, and R. Thomas, “The Java Metrics Reporter - an extensible tool
for OO software analysis,” in Proceedings of the Ninth Asia-Pacific Software Engineer-
ing Conference, pp. 507-516, 2002.

H. Mei, T. Xie, and F. Yang, “A model-based approach to object-oriented software
metrics,” Journal of Computer Science and Technology, vol. 17, no. 6, pp. 757-769,
2002.

M. Engelhardt, C. Hein, T. Ritter, and M. Wagner, “Generation of formal model metrics
for MOF based domain specific languages,” Electronic Communications of the EASST,
vol. 24, 2009.

C. Hein, M. Engelhardt, T. Ritter, and M. Wagner, “Metrino,” 2013. Available: http:
//www.modelbus.org/modelbus/index.php/metrino Accessed: 2013-05-30.

EclipseSource, “Yoxos,” 2013. Available: http://yoxos.eclipsesource.com/ Ac-
cessed: 2013-09-06.

G. Boissier, “Metrics 1.3.8.,” 2013. Available: http://metrics2.sourceforge.
net/ Accessed: 2013-09-06.

Database Systems Group, University of Bremen, ‘“Sourceforge.net: The UML-
based specification environment,” 2013. Available: http://sourceforge.net/apps/
mediawiki/useocl/ Accessed: 2013-05-30.

M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-based specification envi-
ronment for validating UML and OCL,” Science of Computer Programming, vol. 69,
no. 1-3, pp. 27-34, 2007.

The Object Management Group, “OMG object constraint language (OCL), Version
2.3.1”” OMG Document Number: formal/2012-01-01 Available: http://www.ong.
org/spec/0CL/2.3.1 Accessed: 2013-09-29

QUASAR, “Java facade and code generator for USE (UML-based specification envi-
ronment),” 2013. Available: http://code.google.com/p/j-use/ Accessed: 2013-
05-30.

Bibliography 69

[33] T. Kuhn and O. Thomann, “Eclipse corner article: Abstract Syntax Tree,”
2006. Available: http://www.eclipse.org/articles/article.php?file=
Article-JavaCodeManipulation_AST/index.html Accessed: 2013-05-30.

[34] F.B. Abreu, L. M. Ochoa, and M. Goulao, “The GOODLY design language for MOOD2
metrics collection,” in 3rd ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE’1999) (F. B. e. Abreu, H. Sarahoui, and
H. Zuse, eds.), 1999.

[35] Oracle, “The Java™tutorials,” 2013. Available: http://docs.oracle.com/javase/
tutorial/java/index.html Accessed: 22-09-2013.

[36] E. Gamma and T. Eggenschwiler, “JHotDraw start page,” 2013. Available: http://
www . jhotdraw.org/ Accessed: 13-08-2013.

[37] E. Puybaret, “Sweet Home 3D - draw floor plans and arrange furniture freely,” 2013.
Available: http://www.sweethome3d.com/ Accessed: 15-09-2013.

APPENDIX

A. THE ECLIPSE JAVA METAMODEL APPENDIX

A.1 EJMM USE Specification

model EclipseJavaModel
--- Enumerations

enum JavaType {Primitive, ClassType, EnumType,

InterfaceType, AnnotationTypel}
enum VisibilityType {Default, Public, Private, Protected}
enum PackageFragmentRootType {Folder, Jar, Zip}
-- Metaclasses

abstract class JavaElement
attributes
name : String
handleldentifier : String

end --JavaElement

class JavaProject < JavaElement

end --JavaProject

class PackageFragmentRoot < JavaElement
attributes
packageFragmentRootType : PackageFragmentRootType

end --PackageFragmentRoot

A. The Eclipse Java Metamodel Appendix

72

class PackageFragment < JavaElement

end --PackageFragment

abstract class Annotatable

end

abstract class TypeRoot < JavaElement

end --TypeRoot

class ClassFile < TypeRoot
end --ClassFile

class CompilationUnit < TypeRoot, Annotatable
-- Annotations associated with a TypeRoot refer to their package
-- declaration

end --CompilationUnit

abstract class Member < JavaElement, Annotatable

end —--Member

class Type < Member
attributes
visibility : VisibilityType
javaType : JavaType
isFinal : Boolean
isAbstract : Boolean
isStrictfp : Boolean
isSynthetic : Boolean
isDeprecated : Boolean
operations
getAllNestedTypes() : Set(Type) =
self .nests
->union(self.nests.getAllNestedTypes())
->asSet
getAllEnclosingTypes() : Set(Type) =
if (self .nestedIn->isUndefined)
then Set{}

A. The Eclipse Java Metamodel Appendix 73

else Set{self.nestedIn}->
union(self.nestedIn.getAllEnclosingTypes())->asSet
endif
getFullInterfaceTree() : Set(Type) =
if (self. javaType = #InterfaceType)
then Set{self}
->union(self.implements.getFullInterfaceTree())
->asSet
else self.implements.getFullInterfaceTree()
->asSet
endif
getFullInheritanceTree() : Set(Type) =
if (self.extends.oclIsUndefined)
then Set{}
else Set{self.extends}->
union(self.extends.getFullInheritanceTree())->asSet
endif

end —-Type

class TypeParameter < JavaElement

end --TypeParameter

class Field < Member
attributes
key : String
visibility : VisibilityType
isStatic : Boolean
isFinal : Boolean
isVolatile : Boolean
isTransient : Boolean
isSynthetic : Boolean
isDeprecated : Boolean
arrayDimensions : Integer
end --Field

class Initializer < Member

operations --

A. The Eclipse Java Metamodel Appendix

74

getAllStatements() : OrderedSet(Statement) =
body.getStatementAndChildren ()
->sortedBy(startPosition)->asOrderedSet

end --Initializer

class Method < Member
attributes

key : String

shortKey : String

visibility : VisibilityType

isConstructor : Boolean

isStatic : Boolean

isFinal : Boolean

isSynchronized : Boolean

isNative : Boolean

isAbstract : Boolean

isStrictfp : Boolean

isSynthetic : Boolean

isDeprecated : Boolean

isBridge : Boolean

hasVarargs : Boolean

returnTypeArrayDimensions: Integer

operations

getAllStatements() : OrderedSet(Statement) =
if (optionalBody.isDefined)
then optionalBody.getStatementAndChildren()

->sortedBy(startPosition)->asOrderedSet

else OrderedSet{}
endif

end —--Method

class LocalVariable < JavaElement, Annotatable
attributes
arrayDimensions : Integer

end —--LocalVariable

class Annotation < JavaElement

A. The Eclipse Java Metamodel Appendix

attributes
lineNumber : Integer

end --Annotation

class AnnotationValue
attributes
value : String

end --AnnotationValue

abstract class ASTNode
attributes
startPosition : Integer
length : Integer
end --ASTNode

abstract class Comment < ASTNode

end --Comment

class LineComment < Comment

end --LineComment

class BlockComment < Comment

end --BlockComment

class Javadoc < Comment

end --Javadoc

abstract class Statement < ASTNode
attributes
conditionalOperatorCount : Integer
operations

getStatementAndChildren() : Set(Statement)

Set{}

end --Statement

class AssertStatement < Statement
operations

getStatementAndChildren() : Set(Statement)

Set{self}

A. The Eclipse Java Metamodel Appendix

76

end —--AssertStatement

class Block < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}
->union(statements.getStatementAndChildren()->asSet)
end --Block

class BreakStatement < Statement
attributes
optionallLabel : String
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end --BreakStatement

class ConstructorInvocation < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end --ConstructorInvocation

class ContinueStatement < Statement
attributes
optionallLabel : String
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end --ContinueStatement

class DoStatement < Statement
attributes
body : Statement
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

end --DoStatement

A. The Eclipse Java Metamodel Appendix

77

class EmptyStatement < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}
end --EmptyStatement

class EnhancedForStatement < Statement
attributes
body : Statement
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

end --EnhancedForStatement

class ExpressionStatement < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end —-ExpressionStatement

class ForStatement < Statement
attributes
body : Statement
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

end --ForStatement

class IfStatement < Statement
attributes
thenStatement : Statement

optionalElseStatement : Statement

A. The Eclipse Java Metamodel Appendix

78

operations
getStatementAndChildren() : Set(Statement) =

Set{self}->union(thenStatement.getStatementAndChildren())

->union(if (optionalElseStatement.isDefined)
then optionalElseStatement.getStatementAndChildren()
else Set{}
endif)

end --IfStatement

class LabeledStatement < Statement
attributes
body : Statement
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

end --LabeledStatement

class ReturnStatement < Statement

operations
getStatementAndChildren() : Set(Statement) = Set{self}
end --ReturnStatement
class SuperConstructorInvocation < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end --SuperConstructorInvocation

class SwitchCase < Statement
attributes
isDefault : Boolean
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end --SwitchCase

A. The Eclipse Java Metamodel Appendix

79

class SwitchStatement < Statement
attributes
statements : Set(Statement)
operations
getStatementAndChildren() : Set(Statement) = Set{self}
->union(statements.getStatementAndChildren()->asSet)
end --SwitchStatement

class SynchronizedStatement < Statement
attributes
body : Block
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
then Set{selfl}->union(body.getStatementAndChildren())
else Set{self}
endif

end --SynchronizedStatement

class ThrowStatement < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end --ThrowStatement

class TryStatement < Statement
attributes
body : Block
catchClauses : Set(CatchClause)
optionalFinallyBody : Block
operations
getStatementAndChildren() : Set(Statement) =
Set{self}
->union(if (body.isDefined)
then body.getStatementAndChildren()->asSet
else Set{}
endif)
->union(catchClauses.getStatementAndChildren()

A. The Eclipse Java Metamodel Appendix

80

->asSet)
->union(if (optionalFinallyBody.isDefined)

then
optionalFinallyBody.getStatementAndChildren()
->asSet

else Set{}

endif)

end --TryStatement

class TypeDeclarationStatement < Statement

operations
getStatementAndChildren() : Set(Statement) = Set{self}
end --TypeDeclarationStatement
class VariableDeclarationStatement < Statement
operations
getStatementAndChildren() : Set(Statement) = Set{self}

end —--VariableDeclarationStatement

class WhileStatement < Statement
attributes
body : Statement
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)
then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

end --WhileStatement

class CatchClause < Statement

—- CatchClause is now a Statement subclass to aid recursive functions

attributes
body : Block
operations
getStatementAndChildren() : Set(Statement) =
if (body.isDefined)

A. The Eclipse Java Metamodel Appendix

81

then Set{self}->union(body.getStatementAndChildren())
else Set{self}
endif

end --CatchClause

--- Meta-Associations -----——-——————-——-"—"-"""""""""""-"——

aggregation A_JavaProject_PackageFragmentRoot between
JavaProject [1]
PackageFragmentRoot [*] role packageFragmentRoots

end

aggregation A_PackageFragmentRoot_PackageFragment between
PackageFragmentRoot [1]
PackageFragment [*] role packageFragments

end

aggregation A_PackageFragment_TypeRoot between
PackageFragment [1]
TypeRoot [*] role typeRoots

end

aggregation A_TypeRoot_Type between
TypeRoot [1]
Type [*] role types

end

composition A_Type_TypeParameter between
Type [1]
TypeParameter [*] role typeParameters ordered

end

association B_Type_TypeParameter between
Type [*] role bounds
TypeParameter [*] role boundsIn

end

A. The Eclipse Java Metamodel Appendix

82

aggregation A_Type_Method between
Type [1]
Method [*] role methods

end

association A_Method_Type between
Method [*] role returningMethods
Type [0..1] role returnType

end

association B_Method_Type between
Method [*] role throwingMethods
Type [*] role throws

end

association A_LocalVariable_Type between
LocalVariable [*] role localVariablesWithType
Type [1]

end

aggregation A_Annotatable_Annotation between
Annotatable [1]
Annotation [*] role annotations

end

association A_Type_Annotation between
Type [1]
Annotation [*] role annotationsUsed

end

composition A_Annotation_AnnotationValue between
Annotation [1]
AnnotationValue [*] role values

end

association A_Field_AnnotationValue between
Field [1]

A. The Eclipse Java Metamodel Appendix

83

AnnotationValue [*] role fieldValues

end

aggregation A_CompilationUnit_Comment between
CompilationUnit [1] role location
Comment [*] role comments

end

composition A_Type_Initializer between
Type [1]
Initializer [0..*] role initializers ordered

end

composition A_Type_Field between
Type [1]
Field [*] role fields

end

association A_Field_Type between
Type [1] role fieldType
Field [*] role fieldsWithType

end

composition A_Method_LocalVariable between
Method [0..1]
LocalVariable [*] role localVariables

end

aggregation B_Method_LocalVariable between
Method [0..1] role parameterLocation
LocalVariable [*] role parameters ordered

end

aggregation A_Initializer_LocalVariable between
Initializer [O0..1]
LocalVariable [*] role localVariables

end

A. The Eclipse Java Metamodel Appendix

84

aggregation A_Initializer_Block between
Initializer [O0..1]
Block [1] role body

end

aggregation A_Method_Block between
Method [0..1]
Block [0..1] role optionalBody

end

aggregation A_Block_Statement between
Block [0..1]
Statement [*] role statements ordered

end

association A_Type_Type between
Type [*] role nests
Type [0..1] role nestedIn
end -—-A_Type_Type

association B_Type_Type between
Type [0..1] role extends
Type [*] role extendedBy

end --B_Type_Type

association C_Type_Type between
Type [0..%*] role implements
Type [*] role implementedBy
end --C_Type_Type

association A_Statement_Type between
Statement [*] role dependee
Type [*] role typeDependencies
end —- A_Statement_Type

association A_Statement_Field between

A. The Eclipse Java Metamodel Appendix

85

Statement [*] role dependee
Field [*] role fieldsAccessed
end -- A_Statement_Field

association A_Statement_Method between
Statement [*] role dependee
Method [*] role methodsCalled

end -- A_Statement_Method

aggregation A_CatchClause_LocalVariable between
CatchClause [0..1]
LocalVariable [1] role exceptionVariable

end —- A_CatchClause_LocalVariable

association A_VariableDeclarationStatement_LocalVariable between
VariableDeclarationStatement [0..1] role declarationStatement
LocalVariable [*] role localVariablesDeclared

end —-- A_VariableDeclarationStatement_LocalVariable

association A_TypeDeclarationStatement_Type between
TypeDeclarationStatement [0..1] role declarationStatement
Type [1] role typeDeclared

end -- A_TypeDeclarationStatement_Type

constraints

context LocalVariable
inv localVariableExclusivelocation:
-- A LocalVariable instance can only be either a method parameter,
-- a method local variable or an initializer variable.
self.parameterLocation.isDefined() xor self.method.isDefined()

xor self.initializer.isDefined()

context Block

inv blockExclusiveLocation:

-— If a block belongs to a method, it can not belong to an initializer.

A. The Eclipse Java Metamodel Appendix

86

-- If it belongs to a initializer, it can not belong to a method.

not(self.method.isDefined() and self.initializer.isDefined())

B. OCL APPLICATIONS APPENDIX

B.1 FLAME for EJMM specification

JavaElement operations

Operation: clients()
Informal definition: | Set containing all direct clients of the JavaElement.
. clients() : Set(JavaElement) =

Definition: oclUndefined(Set (JavaElement))

Notes: Taken from the client operation for the ModelElement meta-
class. This operation is left undefined in the JavaElement
abstract class. Concrete implementations can be found in
metaclasses Type, Field and Method.

Operation: allClients()

Informal definition:

Set containing all the JavaElements that are clients of this
JavaElement, including the clients of these JavaElements.
This is the transitive closure.

Definition:

allClients() : Set(JavaElement) =
self.clients()->union(self.clients()—>
collect(m : JavaElement |
m.allClients())->flatten)—>asSet

PackageFragment operations

B. OCL Applications Appendix

88

Operation:

allClasses()

Informal definition:

Set of all Types that are classes belonging to the current
PackageFragment.

allClasses(): Set(Type) =
self.typeRoots.types

Definition: ->select (javaType = JavaType::ClassType)
->asSet
Operation: isInternal(c : Type)

Informal definition:

True if the Type received as parameter belongs to the current
PackageFragment.

o isInternal(c : Type) : Boolean =
Definition: self.typeRoots.types->includes(c)
Operation: internalBaseClasses()

Informal definition:

Set of base classes in the current PackageFragment.

internalBaseClasses() : Set(Type) =

Definition: self.allClasses() .parents()—>
select(javaType = JavaType::ClassType)->asSet
Operation: baseClassesInPackages(p : PackageFragment)

Informal definition:

Set of base classes in both the current PackageFragment and
the one bound to the parameter.

Definition:

baseClassesInPackages(p : PackageFragment)
Set(Type) =
self.internalBaseClasses()->

union(p.internalBaseClasses())

B. OCL Applications Appendix

89

Operation:

baseClasses(p : PackageFragment)

Informal definition:

Set of base classes in the current PackageFragment that be-
long to the p PackageFragment.

baseClasses(p : PackageFragment) : Set (Type) =

Definition: self.internalBaseClasses()
->select(c: Type | p.isInternal(c))
Operation: internalSupplierClasses()

Informal definition:

Set of supplier classes in the current PackageFragment.

Definition:

internalSupplierClasses() : Set (Type) =
self.supplierClasses(self)

Operation:

supplierClassesInPackages(p : PackageFragment)

Informal definition:

Set of supplier classes in both the current PackageFragment
and the one bound to the parameter.

supplierClassesInPackages(p :
Set(Type) =

PackageFragment)

Definition: self.internalSupplierClasses()->
union(p.internalSupplierClasses())
Operation: supplierClasses(p : PackageFragment)

Informal definition:

Set of supplier classes in the current PackageFragment that
belong to the p PackageFragment (excludes inheritance).

supplierClasses(p : PackageFragment) : Set(Type) =
Definition: self.allClasses().coupledClasses()->
select(c: Type | p.isInternal(c))->asSet
Operation: relatedClasses(p : PackageFragment)

Informal definition:

Ce_L%

Set of classes from the “p
base or supplier classes.

PackageFragment that are either

Definition:

relatedClasses(p : PackageFragment) : Set(Type) =
baseClasses(p)->union(supplierClasses(p))

B. OCL Applications Appendix

90

Operation:

TC() (Total Classes)

Informal definition:

Number of classes in the PackageFragment.

Definition:

TC() : Integer = allClasses()->size()

Operation:

CN() (Classes Number)

Informal definition:

Number of classes in the PackageFragment (replaces TC
that was defined in the MOODLiDb).

Definition:

CN() : Integer = TC()

Operation:

TON() (Total Operations New)

Informal definition:

Total number of new Methods in the PackageFragment.

Definition:

TON() : Integer = allClasses().NON()->sum

Operation:

TOO() (Total Operations Overridden)

Informal definition:

Total number of overridden Methods in the PackageFrag-
ment.

Definition:

TOO() : Integer = allClasses().00N()->sum

Operation:

TOD() (Total Operations Defined)

Informal definition:

Total number of defined Methods in the PackageFragment.

Definition:

TOD() : Integer = allClasses().DON()->sum

Operation:

TOI() (Total Operations Inherited)

Informal definition:

Total number of inherited Methods in the PackageFragment.

Definition:

TOI() : Integer = allClasses().ION()->sum

B. OCL Applications Appendix

91

Operation:

TON() (Total Operations Available)

Informal definition:

Total number of available Methods in the PackageFragment.

Definition:

TOA() : Integer = allClasses().AON()->sum

Operation:

TAN() (Total Attributes New)

Informal definition:

Total number of new Fields in the PackageFragment.

Definition:

TAN() : Integer = allClasses().NAN()->sum

Operation:

TAO() (Total Attributes Overridden)

Informal definition:

Total number of overridden Fields in the PackageFragment.

Definition:

TAO() : Integer = allClasses().0AN()->sum

Operation:

TAD() (Total Attributes Defined)

Informal definition:

Total number of defined Fields in the PackageFragment.

Definition:

TAD() : Integer = allClasses().DAN()->sum

Operation:

TAI() (Total Attributes Inherited)

Informal definition:

Total number of inherited Fields in the PackageFragment.

Definition:

TAI() : Integer = allClasses().IAN()->sum

Operation:

TON() (Total Attributes Available)

Informal definition:

Total number of available Fields in the PackageFragment.

Definition:

TAA() : Integer = allClasses().AAN()->sum

B. OCL Applications Appendix

92

Operation:

IL(p : PackageFragment) (Inheritance Links)

Informal definition:

Total number of inheritance relations where the derived
classes belongs to the current PackageFragment and the

base one belongs to the given “p” PackageFragment (from

MOOQODLib).
IL(p : PackageFragment): Integer =
Definition: allClasses() .parents()
->select(t: Type | p.isInternal(t))->size
Operation: TIL() (Total Inheritance Links)

Informal definition:

Total number of inheritance relations where the derived
classes belongs to the current PackageFragment.

Definition:

TIL() : Integer = allClasses().PARN()->sum

Operation:

CL(p : PackageFragment) (Coupling Links)

Informal definition:

Total number of coupling relations where the client class
belongs to the current PackageFragment and the supplier

class belongs to the given “p” PackageFragment (excludes

inheritance).
. CL(p : PackageFragment) : Integer =
Definition: self.supplierClasses(p)->size()
Operation: TCL() (Total Coupling Links)

Informal definition:

Total number of distinct coupling relations where the client
class belongs to the current PackageFragment (excludes in-
heritance).

Definition:

TCL() : Integer =
allClasses()->collect(coupledClasses()->
select(c: Type | self.isInternal(c))->size()
->sum

B. OCL Applications Appendix

93

Operation:

AVN(a : Field) (Attribute Visibility Number)

Informal definition:

Number of classes in the considered PackageFragment
where the Field can be accessed.

Definition:

AVN(a : Field) : Integer = FVN(a)

Operation:

APV(a : Field) (Attribute to Package Visibility)

Informal definition:

Percentage of classes in the considered PackageFragment
where the Field can be accessed (excludes the Type where
the Field is declared).

o APV(a : Field) : Real =
Definition: (self.AVN(a) -1) / (self.TC() -1)
Operation: OVN(o : Method) (Operation Visibility Number)

Informal definition:

Number of classes in the considered PackageFragment
where the Method can be accessed.

Definition:

OVN(o : Method) : Integer = FVN(o)

Operation:

OPV(o : Method) (Operation to Package Visibility)

Informal definition:

Percentage of classes in the considered PackageFragment
where the Method can be accessed (excludes the Type where
the Method is declared).

o 0PV(o : Method) : Real =
Definition: (self.0VN(o) -1) / (self.TC() -1)
Operation: FVN(f : Member) (Feature Visibility Number)

Informal definition:

Number of classes in the considered PackageFragment
where the Member can be accessed (Member is expected
to be either a Type, Field or Method).

Definition:

FVN(f : Member) : Integer =
self.allClasses()->select (FCV(f))->size

B. OCL Applications Appendix

94

Operation:

FPV(f: Member) (Feature to Package Visibility)

Informal definition:

Percentage of classes in the considered PackageFragment
where the Member can be accessed (excludes the Type
where the Member is declared).

o FPV(f : Member) : Real =
Definition: (self.FUN(£) -1) / (self.TC() -1)
Operation: FUN(f : Member) (Feature Use Number)

Informal definition:

Number of classes that use the Member (excludes the Type
where the Member is declared).

FUN(f : Member) : Integer =
Definition: self.allClasses()->
select(allFeatures()->includes(f))->size() - 1
Operation: PNAN() (Package New Attributes Number)

Informal definition:

Number of new Fields in the PackageFragment.

Definition:

PNAN() : Integer = TAN()

Operation:

PDAN() (Package Defined Attributes Number)

Informal definition:

Number of defined Fields in the PackageFragment.

Definition:

PDAN() : Integer = TADQ)

Operation:

PIAN() (Package Inherited Attributes Number)

Informal definition:

Number of inherited Fields in the PackageFragment.

Definition:

PIAN() : Integer = TAI()

Operation:

POAN() (Package Overridden Attributes Number)

Informal definition:

Number of overridden Fields in the PackageFragment.

Definition:

POAN() : Integer = TAOQ

B. OCL Applications Appendix

95

Operation:

PAAN() (Package Available Attributes Number)

Informal definition:

Number of available Fields in the PackageFragment.

Definition:

PAAN() : Integer = TAAQ

Operation:

PNON() (Package New Operations Number)

Informal definition:

Number of new Methods in the PackageFragment.

Definition:

PNON() : Integer = TON()

Operation:

PDON() (Package Defined Operations Number)

Informal definition:

Number of defined Methods in the PackageFragment.

Definition:

PDON() : Integer = TOD()

Operation:

PION() (Package Inherited Methods Number)

Informal definition:

Number of inherited Fields in the PackageFragment.

Definition:

PION() : Integer = TOI()

Operation:

POON() (Package Overridden Operations Number)

Informal definition:

Number of overridden Methods in the PackageFragment.

Definition:

POON() : Integer = TOO()

Operation:

PAON() (Package Available Operations Number)

Informal definition:

Number of available Methods in the PackageFragment.

Definition:

PAON() : Integer = TOAQ)

B. OCL Applications Appendix

96

Operation:

EILN(p: PackageFragment) (External Inheritance Links
Number)

Informal definition:

Number of inheritance relations where the derived classes
belong to the current PackageFragment and the base ones

belong to the PackageFragment “p” given as parameter.

Definition:

EILN(p: PackageFragment) : Integer = IL(p)

Operation:

IILN() (Internal Inheritance Links Number)

Informal definition:

Number of inheritance relations where the base and derived
classes belong to the current PackageFragment.

Definition:

IILN() : Integer = TIL()

Operation:

ECLN(p: PackageFragment) (External Coupling Links
Number)

Informal definition:

Number of coupling relations where the client class belongs
to the current PackageFragment and the supplier class be-
longs to the PackageFragment “p” (excludes inheritance).

Definition:

ECLN(p: PackageFragment) : Integer = CL(p)

Operation:

ICLN() (Internal Coupling Links Number)

Informal definition:

Number of distinct coupling relations where both the client
and the supplier classes belong to the current PackageFrag-
ment (excludes inheritance).

Definition:

ICLN() : Integer = TCL()

Member operations

Operation:

FUN() (Feature Use Number)

Informal definition:

Number of classes that use the Member.

Definition:

FUN() : Integer =
self.allClients()->size

B. OCL Applications Appendix

97

Type operations

Operation:

suppliers()

Informal definition:

Set of all other Types that the current 7ype depends on. Includes
inheritance.

Definition:

suppliers(): Set(Type) =
self.initializers.localVariables.type->asSet—->
union((self.initializers.getAllStatements()
.typeDependencies)->asSet)->
union(self.typeParameters.bounds->asSet)->
union(self.ascendants())->
union(self.fields.fieldType)->
union(self.methods.returnType)—>
union(self.methods.parameters.type)->
union(self.methods.localVariables.type)—>
union(self.methods.getAllStatements ()
.typeDependencies->asSet)->
union(self.annotations.type)->
union(self.initializers.annotations.type->asSet)->
union(self.fields.annotations.type)->
union(self.methods.annotations.type)
—->asSet->excluding(self)

Notes:

This operation is not part of the original FLAME specification,
but was defined here to help discern which are the supplier Types
and, in turn, help find out the clients of a Type.

Operation:

clients()

Informal definition:

Set of all other Types that the depend on the current Type.
Concrete implementation of the JavaElement operation.

Definition:

clients(): Set(Type) =
Type.allInstances->select (suppliers()
->includes(self))
->excluding(self)

Operation:

isRoot()

Informal definition:

True if the Type has no ascendants.

Definition:

isRoot() : Boolean =
self.parents()->isEmpty ()

B. OCL Applications Appendix

98

Operation: isLeaf()

Informal definition: | True if the Type has no children.
o isLeaf() : Boolean =

Definition: self.children()->isEmpty ()

Operation: children()

Informal definition:

Set of directly derived Types.

Definition:

children(): Set(Type) =
self.extendedBy->union(self.implementedBy)

Operation:

descendants()

Informal definition:

Set of all derived Types (either directly or indirectly).

Definition:

descendants() : Set (Type) =
children()->iterate(elem: Type;

acc: Set(Type)= children() |
acc->union(elem.descendants()))
Operation: parents()

Informal definition:

Set of Types from which the current Type derives directly.

Definition:

parents(): Set(Type) =
self.extends->union(self.implements)

Operation:

parents()

Informal definition:

Set of Types from which the current Type derives directly or
indirectly.

Definition:

ascendants() : Set (Type) =
parents()->iterate(elem: Type;
acc: Set(Type) = parents() |
acc->union(elem.ascendants()))

B. OCL Applications Appendix

99

Operation:

CHIN() (Children Number)

Informal definition:

Number of children of the current Type.

Definition:

CHIN(): Integer = children()->size

Operation:

DESN() (Descendants Number)

Informal definition:

Number of descendants of the current Type.

Definition:

DESN() : Integer = descendants()->size()

Operation:

PARN() (Parents Number)

Informal definition:

Number of parents of the current Type.

Definition:

PARN() : Integer = parents()->size()

Operation:

ASCN() (Ascendants Number)

Informal definition:

Number of ascendants of the current Type.

Definition:

ASCN() : Integer = ascendants()->size()

Operation:

coupledClasses()

Informal definition:

Set of Types to which the current Type is coupled (excluding
inheritance).

Definition:

coupledClasses(): Set(Type) =
self.suppliers() - self.ascendants()

Operation:

definedFeatures()

Informal definition:

Set of features that belong only to this Type. Excludes in-
heritance.

Definition:

definedFeatures() : Set(Member) =
self.fields->union(self.methods)->
union(self .nestedFeatures())

B. OCL Applications Appendix

100

Operation:

nestedFeatures()

Informal definition:

Set of features that belong to all 7Types nested in the current
Type. Excludes inheritance.

nestedFeatures() : Set(Member) =
self.getAllNestedTypes()->

Definition: union(self.getAllNestedTypes() .methods)->
union(self.getAllNestedTypes().fields)->asSet
Notes: Auxiliary operation not featured in the original FLAME

specification.

B. OCL Applications Appendix 101

Operation:

FCV(m : Member) (Feature to Classifier Visibility)

Informal definition:

True if the Member ”m” is visible to the current Type

Definition:

FCV (m : Member) : Boolean =
if (m.oclIsTypeOf(Method)) then
self .methods->includes(m) or
self.getAllNestedTypes () .methods->includes(m) or
self.getAl1EnclosingTypes() .methods->includes(m) or
self .nestedIn.nests.methods->includes(m) or
m.oclAsType(Method) .visibility = #Public or
m.oclAsType(Method) .visibility = #Protected and
self .parents() .methods->includes(m) or
m.oclAsType(Method) .visibility = #Default and
m.oclAsType(Method) . type.typeRoot .packageFragment =
self.typeRoot.packageFragment
else
if (m.oclIsTypeOf (Field)) then
self.fields->includes(m) or
self.getAllNestedTypes () .fields->includes(m) or
self.getAllEnclosingTypes() .fields->includes(m) or
self .nestedIn.nests.fields->includes(m) or
m.oclAsType(Field) .visibility = #Public or
m.oclAsType(Field) .visibility = #Protected and
self.parents() .methods->includes(m) or
m.oclAsType(Field) .visibility = #Default and
m.oclAsType(Field) .type.typeRoot.packageFragment =
self.typeRoot.packageFragment
else
if (m.oclIsTypeOf(Type)) then
self.getAllNestedTypes()->includes(m) or
self .getAllNestedTypes () ->includes(m) or
self .nestedIn.nests->includes(m) or
m.oclAsType(Type) .visibility = #Public or
m.oclAsType(Type) .visibility = #Protected and
self.parents() .methods->includes(m) or
m.oclAsType(Type) .visibility = #Default and
m.oclAsType(Type) . typeRoot . packageFragment =
self.typeRoot.packageFragment
else
false
endif
endif
endif

B. OCL Applications Appendix

102

Operation:

ACV(a : Field) (Attribute to Classifier Visibility)

Informal definition:

True if the Field a” is visible to the current Type

Definition:

ACV(a : Field) : Boolean = FCV(a)

Operation:

OCV(o : Method) (Operation to Classifier Visibility)

Informal definition:

True if the Method ”0” is visible to the current Type

Definition:

OCV(o : Method) : Boolean = FCV(o)

Operation:

directlylnheritedFeatures()

Informal definition:

Set of directly inherited Members.

directlyInheritedFeatures() : Set(Member) =
self .parents() .definedFeatures()->

Definition: select(m: Member | self.FCV(m))->asSet
->reject (oclIsTypeOf (Method) and
oclAsType (Method) . isConstructor)
Operation: alllnheritedFeatures()

Informal definition:

Set containing all inherited Members (both directly and in-
directly).

allInheritedFeatures() : Set(Member) =
self.ascendants() .definedFeatures ()

Definition: ->select(m: Member | self.FCV(m))->asSet
->reject (oclIsTypeOf (Method) and
oclAsType (Method) . isConstructor)
Operation: allFeatures()

Informal definition:

Set containing all Members of the Type itself and all its in-
herited Members.

Definition:

allFeatures() : Set(Member) =
self.allInheritedFeatures()->
union(self.definedFeatures())->asSet

B. OCL Applications Appendix

103

Operation:

newkeatures()

Informal definition:

Set of Members declared in the current Type. This definition
excludes inherited Members (and consequently, it excludes
overridden Methods).

Definition:

newFeatures() : Set (Member) =
definedAttributes()->
union(definedFeatures()->
select(oclIsTypeOf (Type)))—>
union(definedOperations()->
reject(ml : Method |
self.allInheritedOperations()
->exists(m2: Method |
ml.shortKey = m2.shortKey and
ml.returnType = m2.returnType and
ml.returnTypeArrayDimensions =
m2.returnTypeArrayDimensions)))

Operation:

overriddenFeatures()

Informal definition:

Set of redefined Members in the Type.

overriddenFeatures() : Set (Member) =

Definition: definedFeatures () -newFeatures ()

Notes: In Java, only methods can be overridden, so this operation
should only return Method instances.

Operation: definedOperations()

Informal definition:

Set of Methods declared in the current Type.

Definition:

definedOperations() : Set(Method) =
self.definedFeatures()->select(f |
f.oclIsKind0f (Method))->
collect(f | f.oclAsType(Method))->asSet

B. OCL Applications Appendix

104

Operation:

directlylnheritedOperations()

Informal definition:

Set of directly inherited Methods.

directlyInheritedOperations()
self.directlyInheritedFeatures()->

: Set(Method) =

Definition: select(f | f.oclIsKindOf(Method))->
collect(f | f.oclAsType(Method))->asSet
Operation: alllnheritedOperations()

Informal definition:

Set of all inherited Methods (directly or indirectly).

allInheritedOperations() : Set(Method) =
self.allInheritedFeatures()->

Definition: select(f | f.oclIsKind0f (Method))->
collect(f | f.oclAsType(Method))->asSet
Operation: newOperations()

Informal definition:

Set of Methods declared in the current Type.

newOperations() : Set (Method) =
self.newFeatures()->

Definition: select(f | f.oclIsKindOf (Method))->
collect(f | f.oclAsType(Method))->asSet
Operation: overriddenOperations()

Informal definition:

Set of redefined Methods in the Type.

Definition:

overriddenOperations() : Set (Method) =
self.overriddenFeatures()
->select(f | f.oclIsKindOf (Method))->
collect(f | f.oclAsType(Method))->asSet

105

B. OCL Applications Appendix
Operation: allOperations()
Informal definition: | Set containing all Methods of the Type itself and all its in-
herited Methods.
allOperations() : Set (Method) =
. self.allFeatures()->select(f |
Definition: f.0c1IsKindOf (Method))->
collect(f | f.oclAsType(Method))->asSet
Operation: definedAttributes()
Informal definition: | Set of Fields declared in the Type.
definedAttributes() : Set(Field) =

self.definedFeatures()->

Definition: select(f | f.oclIsKindOf (Field))->
collect(f | f.oclAsType(Field))->asSet
Operation: directlylnheritedAttributes()

Informal definition:

Set of directly inherited Fields.

directlyInheritedAttributes()
self .directlyInheritedFeatures()->

: Set(Field) =

Definition: select(f | f.oclIsKindOf (Field))->
collect(f | f.oclAsType(Field))->asSet
Operation: alllnheritedAttributes()

Informal definition:

Set of all inherited Fields (directly or indirectly).

allInheritedAttributes() : Set(Field) =
self.directlyInheritedFeatures()->

Definition: select(f | f.oclIsKindOf (Field))->
collect(f | f.oclAsType(Field))->asSet
Operation: newAttributes()

Informal definition:

Set of Fields declared in the current Type.

Definition:

newAttributes() : Set (Field) =
self.definedAttributes()

B. OCL Applications Appendix

106

Operation:

overriddenAttributes()

Informal definition:

Set of redefined Fields in the Type.

Definition: overriddenAttributes() : Set (Field) = Set{}

Notes: There is no field overriding in Java, only field hiding (when
two fields share the same name). Thus, this operation al-
ways returns an empty Set.

Operation: NON() (New Operations Number)

Informal definition:

Number of new Methods in the Type.

Definition:

NON() : Integer = newOperations()->size()

Operation:

ION() (Inherited Operations Number)

Informal definition:

Number of inherited Methods in the Type.

Definition:

ION(Q) : Integer =
allInheritedOperations()->size()

Operation:

OON() (Overridden Operations Number)

Informal definition:

Number of overridden Methods in the Type.

Definition:

00N() : Integer =
overriddenOperations()->size ()

Operation:

DON() (Defined Operations Number)

Informal definition:

Number of defined Methods in the Type.

Definition:

DON() : Integer =
definedOperations()->size()

Operation:

AON() (Available Operations Number)

Informal definition:

Number of available Methods in the Type.

Definition:

AON() : Integer = allOperations()->size()

B. OCL Applications Appendix

107

Operation:

NAN() (New Attribute Number)

Informal definition:

Number of new Fields belonging to the Type.

Definition: NAN() : Integer = newAttributes()->size()
Operation: IAN() (Inherited Attributes Number)
Informal definition: | Number of inherited Fields in the Type.

o IAN() : Integer =
Definition: alllnheritedAttributes()->size()
Operation: OAN() (Overridden Attributes Number)

Informal definition:

Number of overridden Fields in the Type.

- OAN() : Integer =
Definition: overriddenAttributes()->size()
Operation: DAN() (Defined Attributes Number)
Informal definition: | Number of defined Fields in the Type.
o DAN() : Integer =
Definition: definedAttributes()->size()
Operation: AAN() (Available Operations Number)

Informal definition:

Number of all Fields in the Type.

Definition:

AAN() : Integer = allAttributes()->size()

Field operations

Operation:

AUN() (Feature Use Number)

Informal definition:

Number of Types that use the Field (excludes the Type
where the Field is declared).

Definition:

AUN(Q) : Integer = self.FUN()

B. OCL Applications Appendix

108

Operation:

clients()

Informal definition:

Set of all Types that the depend on the current Field (ex-
cludes the Type where the Field is declared). Concrete im-
plementation of the JavaElement operation.

clients(): Set(Type) =
Type.allInstances->
select (methods.getAllStatements()->

Definition: union(initializers.getAllStatements()
->asSet) .fieldsAccessed->includes(self))
->excluding(self.type)
Method operations
Operation: OUN() (Feature Use Number)

Informal definition:

Number of Types that use the Method (excludes the Type
where the Method is declared).

Definition:

OUN() : Integer = self.FUN()

Operation:

clients()

Informal definition:

Set of all Types that the depend on the current Method (ex-
cludes the Type where the Method is declared). Concrete
implementation of the JavaElement operation.

Definition:

clients(): Set(Type) =
Type.alllnstances—>
select (methods.getAllStatements () ->
union(initializers.getAllStatements()->
asSet) .methodsCalled->includes(self))
->excluding(self.type)

C. TOOL ARCHITECTURE APPENDIX

C.1 Common Meta-objects

Name: BasicTypes

Type: PackageFragment

Description: Place-holder PackageFragment to house all primitive and other basic
types.

Attributes: name = "BasicTypesPackage”

Meta-associations:

TypeRoots = BasicTypesClassFile

Name: External Types

Type: PackageFragment

Description: Place-holder PackageFragment to house all external types found dur-
ing the second processing moment.

Attributes: name = "External TypesPackage”

Meta-associations:

TypeRoots = ExternalTypesClassFile

Name: BasicTypesClassFile

Type: ClassFile

Description: Place-holder TypeRoot to house all primitive and other basic types.
Attributes: name = "BasicTypes”

Meta-associations:

packageFrament = BasicTypes

Name: External TypesClassFile

Type: ClassFile

Description: Place-holder TypeRoot to house all external types found during the
second processing moment.

Attributes: name = "External Types”

Meta-associations:

packageFrament = ExternalTypes

C. Tool Architecture Appendix 110
Name: int
Type: Type
Description: Meta-object representing the int primitive type in Java.
Attributes: name = "int”

handleldentifier = "int”
javaType = JavaType. Primitive

Meta-associations:

typeRoot = BasicTypes

Name: boolean

Type: Type

Description: Meta-object representing the boolean primitive type in Java.
Attributes: name = "boolean”

handleldentifier = ’boolean”
javaType = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

Name: long

Type: Type

Description: Meta-object representing the long primitive type in Java.
Attributes: name = "long”

handleldentifier = ’long”
javaType = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

Name: double

Type: Type

Description: Meta-object representing the double primitive type in Java.
Attributes: name = "double”

handleldentifier = "double”
javalype = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

C. Tool Architecture Appendix 111
Name: float
Type: Type
Description: Meta-object representing the float primitive type in Java.
Attributes: name = "float”

handleldentifier = "float”
javaType = JavaType. Primitive

Meta-associations:

typeRoot = BasicTypes

Name: byte

Type: Type

Description: Meta-object representing the byte primitive type in Java.
Attributes: name = "byte”

handleldentifier = "byte”
javaType = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

Name: short

Type: Type

Description: Meta-object representing the short primitive type in Java.
Attributes: name = "short”

handleldentifier = "short”
javaType = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

Name: char

Type: char

Description: Meta-object representing the char primitive type in Java.
Attributes: name = "char”

handleldentifier = ”char”
javalype = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

C. Tool Architecture Appendix 112

Name: void

Type: Type

Description: Meta-object to represent the void keyword for method return types.
Though not a typical primitive type, it is used to simplify the instan-
tiation process and is an alternative to leaving a Method’s returnType
undefined.

Attributes: name = ’void”

handleldentifier = ’void”
javalype = JavaType.Primitive

Meta-associations:

typeRoot = BasicTypes

Name: String

Type: Type

Description: Meta-object representing the String class. Considered a basic type.
Attributes: name = String”

javaType = JavaType.ClassType

Meta-associations:

typeRoot = BasicTypes

Statement type Expressions obtained with
AssertStatement getExpression()
Constructorlnvocation arguments()
EnhancedForStatement getExpression()
ForStatement getExpression()
initializers()
updaters()
IfStatement getExpression()
ReturnStatement getExpression()
SuperConstructorInvocation getExpression()
arguments()
SwitchCase getExpression()
SwitchStatement getExpression()
SynchronizedStatement getExpression()
ThrowStatement getExpression()
VariableDeclarationStatement getlnitializer()*
WhileStatement getExpression()

xgetlnitializer() is a method belonging to the VariableDeclarationFragment class obtained from the

VariableDeclarationStatement method fragments()

Tab. C.1: Statements that include Expressions

C. Tool Architecture Appendix 113

C.2 Tool Scalability Validation

C. Tool Architecture Appendix 114

J-USE
1st moment duration (s) 2nd moment duration (s) Total duration (s)
0.138567358 0.747325717 0.885893075
0.044774942 0.676637136 0.721412078
0.045630071 0.626382202 0.672012273
0.082243229 0.624962108 0.707205337
0.044419577 0.640152674 0.684572251
0.044239676 0.618268551 0.662508227
0.050511644 0.626959797 0.677471441
0.045018338 0.662793953 0.707812291
0.046376303 0.649754693 0.696130996
0.045171612 0.652569278 0.69774089
0.044212025 0.655792139 0.700004164
0.045867663 0.63377932 0.679646983
0.045503423 0.65344523 0.698948653
0.044734661 0.712570629 0.75730529
0.050262445 0.667886832 0.718149277
0.044477611 0.65629122 0.700768831
0.044201102 0.623381912 0.667583014
0.044318191 0.633928498 0.678246689
0.044880767 0.657366873 0.70224764
0.044344135 0.624628591 0.668972726
0.043887383 0.641893996 0.685781379
0.043860416 0.650841952 0.694702368
0.044928559 0.623711333 0.668639892
0.044299758 0.641901847 0.686201605
0.044128049 0.621285226 0.665413275
0.049457497 0.658578049 0.708035546
0.045541315 0.68301322 0.728554535
0.043660032 0.615574469 0.659234501
0.043623164 0.638185707 0.681808871
0.043559328 0.641914819 0.685474147
0.045773104 0.64944985 0.695222954
0.043640233 0.64434673 0.687986963
0.044211001 0.614166323 0.658377324
0.098327157 0.62506998 0.723397137
0.044265621 0.654502789 0.69876841
0.067628552 0.636491495 0.704120047
0.049494365 0.676276992 0.725771357
0.043762785 0.655919811 0.699682596
0.043719089 0.643672868 0.687391957
0.046204253 0.651571798 0.697776051
0.044904662 0.662871444 0.707776106
0.043355532 0.637072162 0.680427694
0.045533463 0.646083955 0.691617418
0.044893056 0.651763647 0.696656703
0.053882318 0.642580488 0.696462806
0.043948148 0.660547064 0.704495212
0.044378955 0.631737936 0.676116891
0.044103471 0.64862681 0.692730281
0.045034041 0.661765409 0.70679945
0.043761078 0.647218664 0.690979742

Tab. C.2: Scalability tests: J-USE

C. Tool Architecture Appendix 115

Eclipse Metrics 1.3.6

1st moment duration (s) 2nd moment duration (s) Total duration (s)

0.729034842 4.660256218 5.38929106
0.386690853 3.835194362 4.221885215
0.361328866 3.81258244 4.173911306
0.384242557 4.312641839 4.696884396
0.371381834 4.163232952 4.534614786

0.38931871 3.745352607 4.134671317
0.358372955 3.784383679 4.142756634
0.361059868 3.775033932 4.1360938
0.363045268 3.841220543 4.204265811
0.380042357 4.244929992 4.624972349
0.341714845 3.848697883 4.190412728

0.36204813 3.828271064 4.190319194
0.361110732 3.836746565 4.197857297
0.374429914 3.773210682 4.147640596
0.372920724 3.785919155 4.158839879
0.360204398 4.323948311 4.684152709
0.341420244 3.828319196 4.16973944
0.363839291 3.810124245 4.173963536
0.389480177 3.800325256 4.189805433
0.465910922 4.008803216 4.474714138

0.36434998 3.904086661 4.268436641
0.366787011 4.434043471 4.800830482
0.372080274 3.819730359 4.191810633
0.356429201 3.85831185 4.214741051
0.366725564 3.822981214 4.189706778
0.364029093 3.895570195 4.259599288
0.394780951 4.058720878 4.453501829
0.368714037 4.293776439 4.662490476
0.352417778 3.771928501 4.124346279
0.368341945 3.913246607 4.281588552
0.367487499 3.773473878 4.140961377
0.357664274 3.855779235 4.213443509
0.373382254 3.863464469 4.236846723
0.377946695 4.696512987 5.074459682
0.367882122 3.737474499 4.105356621
0.357796383 3.898219216 4.256015599
0.378381939 3.818801155 4.197183094

0.36066388 3.789388145 4.150052025
0.371884669 3.822767175 4.194651844
0.375795389 4.232449211 4.6082446
0.332035336 3.755353344 4.08738868
0.360139879 3.831950676 4.192090555
0.365662201 3.782180485 4.147842686
0.371237434 3.784739044 4.155976478
0.358887398 3.928731774 4.287619172
0.365423242 4.640639807 5.006063049

0.38696429 3.925762891 4.312727181
0.397991523 4.023475925 4421467448
0.363535474 3.815715522 4.179250996
0.357204108 3.819455558 4.176659666

Tab. C.3: Scalability tests: Eclipse Metrics

C. Tool Architecture Appendix 116

JHotDraw 6.0
1st moment duration (s) 2nd moment duration (s) Total duration (s)
5.885808416 11.02789119 16.9136996
3.751500998 9.817519315 13.56902031
3.785597245 9.847677532 13.63327478
3.512636786 11.73312512 15.24576191
3.961988596 9.977678583 13.93966718
3.659689887 9.980969036 13.64065892
4.052728492 9.979217474 14.03194597
3.526514107 9.998311249 13.52482536
3.533637789 10.02182234 13.55546012
4.20936859 9.628041937 13.83741053
3.454652923 9.594333143 13.04898607
3.473705052 9.617337638 13.09104269
4.185685796 9.703233512 13.88891931
3.482400395 9.575655838 13.05805623
3.456480271 9.885988999 13.34246927
3.897244267 9.829931139 13.72717541
3.427165233 10.36703587 13.7942011
3.520988713 10.51192947 14.03291818
3.455980506 10.35171695 13.80769745
3.300358369 9.500361168 12.80071954
3.722493535 9.558759111 13.28125265
3.539852064 9.846574912 13.38642698
3.829809954 9.861241134 13.69105109
3.402032646 9.793565473 13.19559812
3.858543639 9.485217029 13.34376067
3.444650479 10.2068015 13.65145198
3.518259129 10.26122113 13.77948026
3.4913603 10.34467007 13.83603037
3.4101323 10.17569018 13.58582248
3.400442551 10.16922944 13.56967199
3.405124422 10.18165048 13.5867749
3.385572871 10.34631103 13.7318839
3.384354185 10.79985997 14.18421416
3.496614646 10.4241134 13.92072804
3.398760627 10.2662314 13.66499203
3.428950592 10.49721511 13.92616571
3.446044287 10.59339779 14.03944208
3.538236707 10.24275104 13.78098774
3.504884303 10.2740443 13.77892861
3.496744367 10.30361264 13.800357
3.453369036 10.29146606 13.74483509
3.452069445 10.38268523 13.83475468
3.457159936 10.3778139 13.83497384
3.454208462 10.47050233 13.92471079
3.464064458 10.66587651 14.12994097
3.368010135 10.49639242 13.86440255
3.429178967 10.39494686 13.82412582
3.44457333 10.24276435 13.68733768
3.604434926 10.86804769 14.47248261
3.430005079 10.67380617 14.10381125

Tab. C.4: Scalability tests: JHotDraw

C. Tool Architecture Appendix 117

SweetHome3D 4.1

1st moment duration (s) 2nd moment duration (s) Total duration (s)

15.24985799 36.9863217 52.23617969
7.988581899 35.73407822 43.72266012
7.758661548 35.73088165 43.48954319
8.330309717 37.04797323 45.37828294
8.565748636 35.99900491 44.56475355
7.966747616 36.42630942 44.39305704
7.811845425 35.8156848 43.62753022
7.708633624 35.85355112 43.56218475
7.852815472 36.00495975 43.85777522
8.112502834 35.43353893 43.54604176
7.918747422 36.4442958 4436304322
8.121456252 36.05953607 44.18099232
7.99357749 36.54834429 44.54192178
8.045332398 35.96242418 44.00775658
8.041637764 35.73357027 43.77520803
8.108896615 36.28056684 44.38946345
8.149192458 35.86342419 44.01261665
8.147118984 35.7896551 43.93677408
8.094457402 35.93821909 44.0326765
8.25824542 36.1159469 44.37419232
8.084708594 36.00179048 44.08649907
8.176627578 36.05131386 4422794144
8.328279256 36.18350035 44.51177961
8.710531634 36.46780859 45.17834023
8.84477624 36.56703082 45.41180706
9.04061673 36.99142857 46.0320453
9.034634244 37.00179765 46.03643189
9.646755086 37.67746496 47.32422004
9.756266164 37.55518191 47.31144807
10.26926548 37.57252754 47.84179302
7.777358653 35.43811873 43.21547738
7.857042641 35.35602161 43.21306425
7.684487592 35.49264043 43.17712802
7.575759955 35.5039213 43.07968126
7.680430084 35.31191677 42.99234686
7.861408405 35.51470241 43.37611081
7.847577511 35.52369099 43.3712685
7.755314086 36.52926349 4428457758
7.698288446 35.39947818 43.09776663
8.586519896 36.00521065 44.59173055
7.747012 35.18864205 42.93565405
7.57583335 35.65385692 43.22969027
7.60464555 36.15068561 43.75533116
8.190426383 35.61180166 43.80222805
7.73609537 35.85609807 43.59219344
7.600362055 35.50194034 43.1023024
7.619077253 35.10624589 42.72532314
7.641315717 35.72861564 43.36993136
7.73646678 35.64593 43.38239678
7.590292021 35.36619986 42.95649188

Tab. C.5: Scalability tests: SweetHome3D

C. Tool Architecture Appendix 118

USE 3.0.6

1st moment duration (s) 2nd moment duration (s) Total duration (s)

22.52295534

71.13184205

93.65479739

22.57525234 70.88761869 93.46287103
22.63305698 71.07171064 93.70476762
22.62291868 70.76623515 93.38915383
22.476252 70.84026335 93.31651535
22.38949929 70.79991698 93.18941627
22.70859505 70.9646936 93.67328865
22.32469796 70.84448062 93.16917857
22.40361523 70.81773574 93.22135097
22.52322365 70.85377847 93.37700213
22.56906981 70.72920894 93.29827875
22.57133991 70.67656716 93.24790707
22.22832241 70.78960389 93.0179263
22.68491294 70.69541549 93.38032842
22.69659014 70.60033816 93.2969283
22.83829433 71.49382054 94.33211487
22.44942179 70.65547125 93.10489304
22.54991493 70.82724832 93.37716325
22.33390262 70.8475601 93.18146272
22.50948561 70.71844285 93.22792847
22.39726236 70.94582581 93.34308817
22.52500082 70.80430698 93.3293078
22.42894581 70.68437016 93.11331597
22.56192633 70.58295259 93.14487892
22.30305655 70.73348936 93.03654591
22.65078665 71.38398653 94.03477318
22.48590523 71.8665856 94.35249083
22.38586201 73.15895321 95.54481522
24.0711607 72.17015625 96.24131695
22.68207958 71.3058882 93.98796778
22.47448269 71.2801746 93.75465729
22.63282042 71.11198088 93.7448013
22.32585656 70.72913725 93.05499382
22.29854229 71.18929441 93.48783669
22.27113892 71.05448893 93.32562785
22.64930682 70.77174177 93.42104859
22.37720866 70.77063267 93.14784132
22.55761109 70.63896266 93.19657375
22.45928496 70.83882755 93.2981125
22.47959059 70.74091311 93.2205037
22.21703505 70.75321433 92.97024938
22.31336213 70.8846068 93.19796893
22.27584468 70.92372765 93.19957233
22.59162438 70.78329574 93.37492012
22.29911169 71.14699439 93.44610608
22.54624249 70.90636188 93.45260437
22.31895306 70.7785176 93.09747066
22.47358796 70.82401044 93.2975984
22.34896142 70.90954583 93.25850725
22.44972322 70.97058801 93.42031123

Tab. C.6: Scalability tests: USE

C. Tool Architecture Appendix 119

C.3 Tool Accuracy Validation

Package name

org

org.
org.
org.
org.

org

org.

org

org.
org.
org.
org.

org

. jhotdraw.
jhotdraw.
jhotdraw.
jhotdraw.
jhotdraw.
. jhotdraw.
jhotdraw.
. jhotdraw.
jhotdraw.
jhotdraw.
jhotdraw.
jhotdraw.
. jhotdraw.

test
test
test
test
test
test
test
test
test
test

test

.contrib

.figures
.framework
.samples. javadraw
.samples.minimap
.samples.net
.samples.nothing
.samples.pert
.standard

test.
test.

util
util.collections. jdkl11l

.util.collections. jdk12

Tab. C.7: Excluded packages

C. Tool Architecture Appendix

120

AbstractFigure.java
AbstractFigure.java

connector Visibility
containsPoint

AbstractFigure.java decompose
AbstractFigure.java displayBox
AbstractFigure.java displayBox
AbstractFigure.java figures
AbstractFigure. java getAttribute
AbstractFigure. java getAttribute
AbstractFigure.java getDecoratedFigure
AbstractFigure.java getDependendFigures
AbstractFigure.java getTextHolder
AbstractFigure.java getZValue
AbstractFigure.java includes
AbstractFigure.java invalidateRectangle
AbstractFigure.java isEmpty 1
AbstractFigure.java listener
AbstractFigure.java moveBy
AbstractFigure.java read

AbstractFigure.java
AbstractFigure java

removeDependendFigure
removeFigureChangeListener

Source Method name EM M2DM Recalculated
value value value
AbstractCommand.java viewSelectionChanged 8 8
AbstractCommand.java isExecutable 4 4
AbstractCommand.java addCommandListener 2 2
AbstractCommand.java firecCommandExecutableEvent 2 2
AbstractCommand.java firecCommandExecutedEvent 2 2
AbstractCommand.java firecCommandNotExecutableEvent 2 2
AbstractCommand.java removeCommandListener 2 2
AbstractCommand.java dispose 2 2
AbstractCommand.java execute 2 2
AbstractCommand.java EventDispatcher 1 1
AbstractCommand.java AbstractCommand 1 1
AbstractCommand.java AbstractCommand 1 1
AbstractCommand.java addCommandListener 1 1
AbstractCommand.java createEventDispatcher 1 1
AbstractCommand.java createViewChangeListener 1 1
AbstractCommand.java figureSelectionChanged 1 1
AbstractCommand.java getDrawingEditor 1 1
AbstractCommand.java getEventDispatcher 1 1
AbstractCommand.java getUndoActivity 1 1
AbstractCommand.java isExecutableWithView 1 1
AbstractCommand.java isViewRequired 1 1
AbstractCommand.java name 1 1
AbstractCommand.java removeCommandListener 1 1
AbstractCommand.java setDrawingEditor 1 1
AbstractCommand.java setEventDispatcher 1 1
AbstractCommand.java setName 1 1
AbstractCommand.java setUndoActivity 1 1
AbstractCommand.java view 1 1
AbstractCommand.java viewCreated 1 1
AbstractCommand.java viewDestroying 1 1
AbstractConnector.java AbstractConnector 1 1
AbstractConnector.java AbstractConnector 1 1
AbstractConnector.java connector Visibility 1 1
AbstractConnector.java containsPoint 1 1
AbstractConnector.java displayBox 1 1
AbstractConnector.java draw 1 1
AbstractConnector.java findEnd 1 1
AbstractConnector.java findPoint 1 1
AbstractConnector.java findStart 1 1
AbstractConnector.java owner 1 1
AbstractConnector.java read 1 1
AbstractConnector.java write 1 1
AbstractContentProducer.java AbstractContentProducer 1 1
AbstractContentProducer.java read 1 1
AbstractContentProducer.java write 1 1
AbstractFigure.java clone 4 4
AbstractFigure java visit 4 4
AbstractFigure java changed 2 2
AbstractFigure. java findFigureInside 2 2
AbstractFigure. java invalidate 2 2
AbstractFigure. java release 2 2
AbstractFigure.java AbstractFigure 1 1
AbstractFigure.java addDependendFigure 1 1
AbstractFigure.java addFigureChangeListener 1 1
AbstractFigure.java addToContainer 1 1
AbstractFigure.java basicMoveBy 1 1
AbstractFigure.java canConnect 1 1
AbstractFigure.java center 1 1
AbstractFigure.java connectedTextLocator 1 1
AbstractFigure.java connectionInsets 1 1
AbstractFigure.java connectorAt 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 2
1 1
1 1
1 1
1 1
1 1
AbstractFigure. java removeFromContainer 1 1
AbstractFigure. java setAttribute 1 1
AbstractFigure. java setAttribute 1 1
AbstractFigure.java setZValue 1 1
AbstractFigure. java size 1 1
AbstractFigure.java willChange 1 1
AbstractFigure.java write 1 1

Tab. C.8: M2DM to Eclipse Metrics comparison: AbstractCommand.java to AbstractFigure.java

C. Tool Architecture Appendix

121

AbstractTool java
ActionTool java
ActionTool java

viewDestroying
mouseDown
ActionTool

Source Method name EM M2DM Recalculated
value value value
AbstractHandle. java AbstractHandle 1 1
AbstractHandle java containsPoint 1 1
AbstractHandle.java displayBox 1 1
AbstractHandle java draw 1 1
AbstractHandle. java getCursor 1 1
AbstractHandle. java getUndoActivity 1 1
AbstractHandle. java invokeEnd 1 1
AbstractHandle.java invokeEnd 1 1
AbstractHandle.java invokeStart 1 1
AbstractHandle.java invokeStart 1 1
AbstractHandle.java invokeStep 1 1
AbstractHandle.java invokeStep 1 1
AbstractHandle.java owner 1 1
AbstractHandle.java setUndoActivity 1 1
AbstractLineDecoration.java read 4 4
AbstractLineDecoration.java draw 3 3
AbstractLineDecoration.java write 3 3
AbstractLineDecoration.java displayBox 2 2
AbstractLineDecoration.java AbstractLineDecoration 1 1
AbstractLineDecoration.java getBorderColor 1 1
AbstractLineDecoration.java getFillColor 1 1
AbstractLineDecoration.java setBorderColor 1 1
AbstractLineDecoration.java setFillColor 1 1
AbstractLocator.java clone 2 2
AbstractLocator.java AbstractLocator 1 1
AbstractLocator.java read 1 1
AbstractLocator.java write 1 1
AbstractTool java checkUsable 3 2 3
AbstractTool java deactivate 3 3
AbstractTool java setEnabled 3 3
AbstractTool java setUsable 3 3
AbstractTool.java activate 2 2
AbstractTool.java viewSelectionChanged 2 2
AbstractTool.java AbstractTool 1 1
AbstractTool.java addToolListener 1 1
AbstractTool.java createEventDispatcher 1 1
AbstractTool .java createViewChangeListener 1 1
AbstractTool.java drawing 1 1
AbstractTool.java editor 1 1
AbstractTool.java getActiveDrawing 1 1
AbstractTool.java getActiveView 1 1
AbstractTool.java getAnchorX 1 1
AbstractTool java getAnchorY 1 1
AbstractTool java getEventDispatcher 1 1
AbstractTool.java getUndoActivity 1 1
AbstractTool java isActive 1 2 1
AbstractTool java isEnabled 1 1
AbstractTool java isUsable 1 2 1
AbstractTool.java keyDown 1 1
AbstractTool.java mouseDown 1 1
AbstractTool java mouseDrag 1 1
AbstractTool.java mouseMove 1 1
AbstractTool.java mouseUp 1 1
AbstractTool.java removeToolListener 1 1
AbstractTool.java setAnchorX 1 1
AbstractTool.java setAnchorY 1 1
AbstractTool.java setEditor 1 1
AbstractTool.java setEventDispatcher 1 1
AbstractTool.java setUndoActivity 1 1
AbstractTool java setView 1 1
AbstractTool java view 1 1
AbstractTool.java viewCreated 1 1
1 1
2 2
1 1
1 1

ActionTool java

mouseUp

Tab. C.9: M2DM to Eclipse Metrics comparison: AbstractHandle.java to ActionTool.java

C. Tool Architecture Appendix

122

Source Method name EM M2DM Recalculated
value value value
AlignCommand.java AlignCommand 1 1
AlignCommand.java createUndoActivity 1 1
AlignCommand.java execute 1 1
AlignCommand.java getAlignment 1 1
AlignCommand.java isExecutableWithView 1 1
AlignCommand.java setAlignment 1 1
AnimationDecorator.java animationStep 9 9
AnimationDecorator.java AnimationDecorator 1 1
AnimationDecorator.java AnimationDecorator 1 1
AnimationDecorator.java basicDisplayBox 1 1
AnimationDecorator.java basicMoveBy 1 1
AnimationDecorator.java displayBox 1 1
AnimationDecorator.java read 1 1
AnimationDecorator.java velocity 1 1
AnimationDecorator.java velocity 1 1
AnimationDecorator.java write 1 1
Animator.java run 3 3
Animator.java Animator 1 1
Animator.java end 1 1
Animator.java start 1 1
AreaTracker.java AreaTracker 1 1
AreaTracker.java drawXORRect 1 1
AreaTracker.java eraseRubberBand 1 1
AreaTracker.java getArea 1 1
AreaTracker.java mouseDown 1 1
AreaTracker.java mouseDrag 1 1
AreaTracker.java mouseUp 1 1
AreaTracker.java rubberBand 1 1
ArrowTip.java ArrowTip 1 1
ArrowTip.java ArrowTip 1 1
ArrowTip.java addPointRelative 1 1
ArrowTip.java getAngle 1 1
ArrowTip.java getlnnerRadius 1 1
ArrowTip.java getOuterRadius 1 1
ArrowTip.java outline 1 1
ArrowTip.j outline 1 1
ArrowTip.java read 1 1
ArrowTip.java setAngle 1 1
ArrowTip.java setInnerRadius 1 1
ArrowTip.java setOuterRadius 1 1
ArrowTip.java write 1 1
AttributeFigure java draw 3 3
AttributeFigure java getAttribute 3 3
AttributeFigure java writeObject 3 3
AttributeFigure java getDefaultAttribute 2 2
AttributeFigure java getDefaultAttribute 2 2
AttributeFigure java initDefaultAttribute 2 2
AttributeFigure java read 2 2
AttributeFigure java setAttribute 2 2
AttributeFigure java write 2 2
AttributeFigure java AttributeFigure 1 1
AttributeFigure java drawBackground 1 1
AttributeFigure java drawFrame 1 1
AttributeFigure java getAttribute 1 1
AttributeFigure java getFillColor 1 1
AttributeFigure java getFrameColor 1 1
AttributeFigure java initializeAttributes 1 1
AttributeFigure java setAttribute 1 1
AttributeFigure java setDefaultAttribute 1 1
AttributeFigureContentProducer.java getContent 2 2
AttributeFigureContentProducer.java AttributeFigureContentProducer 1 1
AttributeFigureContentProducer.java read 1 1
AttributeFigureContentProducer.java write 1 1
AutoscrollHelper.java autoscroll 9 9
AutoscrollHelper.java AutoscrollHelper 1 1
AutoscrollHelper.java getAutoscrolllnsets 1 1
AutoscrollHelper.java getAutoscrollMargin 1 1
AutoscrollHelper.java getSize 1 1
AutoscrollHelper.java getVisibleRect 1 1
AutoscrollHelper.java scrollRectToVisible 1 1
AutoscrollHelper.java setAutoscrollMargin 1 1
AWTCursor.java AWTCursor 1 1
AWTCursor.java AWTCursor 1 1

Tab. C.10: M2DM to Eclipse Metrics comparison: AlignCommand.java to AWTCursor.java

C. Tool Architecture Appendix

123

Source Method name EM M2DM Recalculated
value value value
BorderDecorator.java getBorderOffset 2 2
BorderDecorator.java BorderDecorator 1 1
BorderDecorator.java BorderDecorator 1 1
BorderDecorator.java connectionInsets 1 1
BorderDecorator.java displayBox 1 1
BorderDecorator.java draw 1 1
BorderDecorator.java figureInvalidated 1 1
BorderDecorator.java initialize 1 1
BorderDecorator.java setBorderOffset 1 1
BorderTool java mouseDown 4 4
BorderTool java BorderTool 1 1
BorderTool java action 1 1
BorderTool java createUndoActivity 1 1
BorderTool java reverseAction 1 1
BouncingDrawing.java add 3 3
BouncingDrawing.java animationStep 3 3
BouncingDrawing.java replace 3 3
BouncingDrawing.java remove 2 2
Bounds.java cropLine 38 38
Bounds.java intersectsLine 19 20 19
Bounds.java equals 7 5 7
Bounds.java intersectsBounds 4 8 4
Bounds.java expandToRatio 3 3
Bounds.java hashCode 3 3
intersect 3 3
setCenter 2 2
Bounds 1 1
Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java Bounds 1 1
Bounds.java asRectangle2D 1 1
Bounds.java completelyContainsLine 1 2 1
Bounds.java getCenter 1 1
Bounds.java getEast 1 1
Bounds.java getGreaterX 1 1
Bounds.java getGreaterY 1 1
Bounds.java getHeight 1 1
Bounds.java getLesserX 1 1
a getLesserY 1 1
a getNorth 1 1
a getSouth 1 1
Bounds.java getWest 1 1
Bounds.java getWidth 1 1
Bounds.java includeBounds 1 1
Bounds.java includeLine 1 1
Bounds.java includeLine 1 1
Bounds.java includePoint 1 1
Bounds.java includePoint 1 1
Bounds.java includeRectangle2D 1 1
Bounds.java includeXCoordinate 1 1
Bounds.java includeYCoordinate 1 1
Bounds.java intersectsLine 1 1
Bounds.java intersectsPoint 1 2 1
Bounds.java intersectsPoint 1 1
Bounds.java isCompletelyInside 1 2 1
Bounds.java max 1 1
min 1 1
Bounds.java offset 1 1
Bounds.java shiftBy 1 1
Bounds.java toString 1 1
Bounds.java zoomBy 1 1
BoxHandleKit.java addCornerHandles 1 1
BoxHandleKit.java addHandles 1 1
BoxHandleKit.java east 1 1
BoxHandleKit.java northEast 1 1
BoxHandleKit.java northWest 1 1
BoxHandleKit.java north 1 1
BoxHandleKit.java southEast 1 1
BoxHandleKit.java southWest 1 1
BoxHandleKit.java south 1 1
BoxHandleKit.java west 1 1
BringToFrontCommand.java execute 2 2
BringToFrontCommand.java BringToFrontCommand 1 1
BringToFrontCommand.java createUndoActivity 1 1
BringToFrontCommand.java isExecutableWithView 1 1
BufferedUpdateStrategy.java draw 4 3 4

Tab. C.11: M2DM to Eclipse Metrics comparison: BorderDecoratorjava to BufferedUpdateStrat-

egy.java

C. Tool Architecture Appendix

124

Source Method name EM M2DM Recalculated
value value value
ChangeAttributeCommand.java execute 2 2
ChangeAttributeCommand.java ChangeAttributeCommand 1 1
ChangeAttributeCommand.java createUndoActivity 1 1
ChangeAttributeCommand.java isExecutableWithView 1 1
ChangeConnectionEndHandle.java ChangeConnectionEndHandle 1 1
ChangeConnectionEndHandle.java canConnectTo 1 1
ChangeConnectionEndHandle.java connect 1 1
ChangeConnectionEndHandle.java createUndoActivity 1 1
ChangeConnectionEndHandle.java disconnect 1 1
ChangeConnectionEndHandle java locate 1 1
ChangeConnectionEndHandle java setPoint 1 1
ChangeConnectionEndHandle.java target 1 1
ChangeConnectionHandle java findConnectionTarget 7 5 6
ChangeConnectionHandle java invokeEnd 6 5 6
ChangeConnectionHandle java findConnectableFigure 5 5
ChangeConnectionHandle java invokeStep 5 5
ChangeConnectionHandle java source 2 2
ChangeConnectionHandle.java ChangeConnectionHandle 1 1
ChangeConnectionHandle.java draw 1 1
ChangeConnectionHandle.java findConnector 1 1
ChangeConnectionHandle.java getConnection 1 1
ChangeConnectionHandle.java getTargetFigure 1 1
ChangeConnectionHandle.java invokeStart 1 1
ChangeConnectionHandle.java setConnection 1 1
ChangeConnectionHandle.java setTargetFigure 1 1
ChangeConnectionStartHandle.java ChangeConnectionStartHandle 1 1
ChangeConnectionStartHandle.java canConnectTo 1 1
ChangeConnectionStartHandle.java connect 1 1
ChangeConnectionStartHandle.java createUndoActivity 1 1
ChangeConnectionStartHandle.java disconnect 1 1
ChangeConnectionStartHandle.java locate 1 1
ChangeConnectionStartHandle.java setPoint 1 1
ChangeConnectionStartHandle.java target 1 1
ChopBoxConnector.java findEnd 2 2
ChopBoxConnector.java findStart 2 2
ChopBoxConnector.java ChopBoxConnector 1 1
ChopBoxConnector.java ChopBoxConnector 1 1
ChopBoxConnector.java chop 1 1
ChopDiamondConnector.java chop 13 13
ChopDiamondConnector.java ChopDiamondConnector 1 1
ChopDiamondConnector.java ChopDiamondConnector 1 1
ChopEllipseConnector.java ChopEllipseConnector 1 1
ChopEllipseConnector.java ChopEllipseConnector 1 1
ChopEllipseConnector.java chop 1 1
ChopPolygonConnector.java ChopPolygonConnector 1 1
ChopPolygonConnector.java ChopPolygonConnector 1 1
ChopPolygonConnector.java chop 1 1
Clipboard.java Clipboard 1 1
Clipboard.java getClipboard 1 1
Clipboard.java getContents 1 1
Clipboard.java setContents 1 1

Tab. C.12: M2DM to Eclipse Metrics comparison: ChangeAttributeCommand.java to Clipboard.java

C. Tool Architecture Appendix

125

Source

Method name

value

M2DM Recalculated
value value

ClippingUpdateStrategy.java
ClippingUpdateStrategy.java
CollectionsFactory.java
CollectionsFactory.java
CollectionsFactory.java
CollectionsFactory.java
CollectionsFactoryJDK11.java
CollectionsFactoryJDK11.java
CollectionsFactoryJDK11.java
CollectionsFactoryJDK11.java
CollectionsFactoryJDK11
CollectionsFactoryJDK11
CollectionsFactoryJDK11
CollectionsFactoryJDK11.java
CollectionsFactoryJDK12 java
CollectionsFactoryJDK12.java
CollectionsFactoryJDK12.java
CollectionsFactoryJDK12.java
CollectionsFactory]JDK 12 java
CollectionsFactoryJDK12.java
CollectionsFactoryJDK12.java
CollectionsFactoryJDK12.java
ColorContentProducer.java
ColorContentProducer.java
ColorContentProducer.java
ColorContentProducer.java
ColorContentProducer.java
ColorContentProducer.java
ColorContentProducer.java
ColorMap.java

ColorMap.java

ColorMap.java

ColorMap.java

ColorMap.java

ColorMap.java

ColorMap.java
CommandButton.java
CommandButton.java
CommandCheckBoxMenultem.java
CommandCheckBoxMenultem.java
CommandCheckBoxMenultem.java
CommandCheckBoxMenultem.java
CommandCheckBoxMenultem.java
CommandCheckBoxMenultem.java
CommandChoice.java

CommandChoice.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenu.java
CommandMenultem.java
CommandMenultem.java
CommandMenultem.java
CommandMenultem.java
CommandMenultem java
CommandMenultem.java

draw
ClippingUpdateStrategy
createCollectionsFactory
determineCollectionsFactory
isIDK12

current
CollectionsFactoryJDK11
createList

createList

createList

createMap

createMap

createSet

createSet
CollectionsFactoryJDK12
createList

createList

createList

createMap

createMap

createSet

createSet

getContent

read

write
ColorContentProducer
ColorContentProducer
getColor

setColor

colorIndex

color

color

name

ColorEntry

isTransparent

size

actionPerformed
CommandButton
CommandCheckBoxMenultem
CommandCheckBoxMenultem
CommandCheckBoxMenultem
CommandCheckBoxMenultem
getCommand
setCommand
itemStateChanged
CommandChoice
addItem

actionPerformed
checkEnabled

enable

CommandMenu
addCheckItem
addMenultem

add

add

commandExecutable
commandExecuted
commandNotExecutable
remove

remove
CommandMenultem
CommandMenultem
CommandMenultem
actionPerformed
getCommand
setCommand

UGG GGG G G VG S Y GGG QG G G G G GO U OC R JC N O R GG GGG UGG S N NC GGV GGG UG UG N GG SR I I RN

— e e e b i 00 W0 R i e e e e i e R e e e G0 G0 WD WD b i e e D N b b e e e e e b e e b b e e e R N B e O

Tab. C.13: M2DM to Eclipse Metrics comparison: ClippingUpdateStrategy.java to CommandMenu-

Item.java

C. Tool Architecture Appendix

126

Source Method name EM M2DM Recalculated
value value value
ComponentFigure.java ComponentFigure 1 1
ComponentFigure.java ComponentFigure 1 1
ComponentFigure.java basicDisplayBox 1 1
ComponentFigure.java basicMoveBy 1 1
ComponentFigure.java displayBox 1 1
ComponentFigure.java draw 1 1
ComponentFigure.java getComponent 1 1
ComponentFigure.java handles 1 1
ComponentFigure.java setComponent 1 1
CompositeFigure.java findFigureInsideWithout 7 7
CompositeFigure.java findFigureWithout 5 5
CompositeFigure. java findFigure 5 5
CompositeFigure.java sendToLayer 5 5
CompositeFigure.java ~addToQuadTree 4 4
CompositeFigure. java figures 4 4
CompositeFigure.java findFigureInside 4 4
CompositeFigure. java includes 4 4
CompositeFigure. java assignFiguresToPredecessorZValue 3 3
CompositeFigure. java assignFiguresToSuccessorZValue 3 3
CompositeFigure.java findFigure 3 3
CompositeFigure.java findFigure 3 3
CompositeFigure.java getFigureFromLayer 3 3
CompositeFigure.java —clearQuadTree 2 2
CompositeFigure.java —removeFromQuadTree 2 2
CompositeFigure.java addAll 2 2
CompositeFigure.java add 2 2
CompositeFigure.java basicMoveBy 2 2
CompositeFigure.java bringToFront 2 2
CompositeFigure. java draw 2 2
CompositeFigure.java figurelnvalidated 2 2
CompositeFigure.java figureRemoved 2 2
CompositeFigure.java figureRequestRemove 2 2
CompositeFigure. java figureRequestUpdate 2 2
CompositeFigure. java getLayer 2 2
CompositeFigure. java init 2 2
CompositeFigure. java orphanAll 2 2
CompositeFigure. java readObject 2 2
CompositeFigure.java read 2 2
CompositeFigure.java release 2 2
CompositeFigure.java removeAll 2 2
CompositeFigure.java removeAll 2 2
CompositeFigure.java remove 2 2
CompositeFigure.java replace 2 2
CompositeFigure.java sendToBack 2 2
CompositeFigure.java write 2 2
CompositeFigure.java CompositeFigure 1 1
CompositeFigure. java addAll 1 1
CompositeFigure.java containsFigure 1 1
CompositeFigure.java draw 1 1
CompositeFigure. java figureAt 1 1
CompositeFigure. java figureChanged 1 1
CompositeFigure. java figureCount 1 1
CompositeFigure. java figures 1 1
CompositeFigure.java figuresReverse 1 1
CompositeFigure.java orphanAll 1 1
CompositeFigure.java orphan 1 1
CompositeFigure.java removeAll 1 1

Tab. C.14: M2DM to Eclipse Metrics comparison: ComponentFigure.java to CompositeFigure.java

C. Tool Architecture Appendix

127

Source Method name EM M2DM Recalculated
value value value

CompositeFigureCreationTool java mouseDown 3 3
CompositeFigureCreationTool.java mouseMove 3 3
CompositeFigureCreationTool.java CompositeFigureCreationTool 1 1
CompositeFigureCreationTool.java getContainerFigure 1 1
CompositeFigureCreationTool java setContainerFigure 1 1
CompositeFigureCreationTool java toolDone 1 1
ConnectedTextTool.java endEdit 5 5
ConnectedTextTool.java mouseDown 5 4 5
ConnectedTextTool.java ConnectedTextTool 1 1
ConnectedTextTool.java activate 1 1
ConnectedTextTool java createDeleteUndoActivity 1 1
ConnectedTextTool.java createUndoActivity 1 1
ConnectedTextTool.java getConnectedFigure 1 1
ConnectedTextTool.java setConnectedFigure 1 1
ConnectionHandle.java findConnectableFigure 5 4 5
ConnectionHandle.java findConnectionTarget 5 3 5
ConnectionHandle.java invokeStep 5 5
ConnectionHandle.java invokeEnd 3 3
ConnectionHandle.java ConnectionHandle 1 1
ConnectionHandle java createConnection 1 1
ConnectionHandle java createUndoActivity 1 1
ConnectionHandle java draw 1 1
ConnectionHandle java findConnector 1 1
ConnectionHandle java getConnection 1 1
ConnectionHandle java getCursor 1 1
ConnectionHandle java getTargetFigure 1 1
ConnectionHandle java invokeStart 1 1
ConnectionHandle.java setConnection 1 1
ConnectionHandle.java setTargetFigure 1 1
ConnectionHandle.java startConnector 1 1

Tab. C.15: M2DM to Eclipse Metrics comparison: CompositeFigureCreationTool.java to Connection-
Handle.java

C. Tool Architecture Appendix

128

Source Method name EM M2DM Recalculated
value value value

ConnectionTool.javz trackConnectors 7 7
ConnectionTool findTarget 6 6
ConnectionTool.java findConnectableFigure 5 4 5
ConnectionTool.java mouseDown 5 5
ConnectionTool.java mouseUp 5 5
ConnectionTool.java findConnection 4 4
ConnectionTool.java mouseDrag 4 4
ConnectionTool java findConnectionStart 3 3
ConnectionTool.java deactivate 2 2
ConnectionTool.java ConnectionTool 1 1
ConnectionTool.java createConnection 1 1
ConnectionTool.java createUndoActivity 1 1
ConnectionTool.java findConnector 1 1
ConnectionTool.java findSource 1 1
ConnectionTool.java getAddedFigure 1 1
ConnectionTool.java getConnection 1 1
ConnectionTool.java getEndConnector 1 1
ConnectionTool.java getStartConnector 1 1
ConnectionTool java getTargetConnector 1 1
ConnectionTool.java getTargetFigure 1 1
ConnectionTool.java mouseMove 1 1
ConnectionTool.java setAddedFigure 1 1
ConnectionTool.java setConnection 1 1
ConnectionTool java setEndConnector 1 1
ConnectionTool java setStartConnector 1 1
ConnectionTool java setTargetConnector 1 1
ConnectionTool.java setTargetFigure 1 1
ContentProducerRegistry.java getSuperClassContentProducer 7 7
ContentProducerRegistry.java getExactContentProducer 3 3
ContentProducerRegistry.java read 3 3
ContentProducerRegistry.java getContentProducer 2 2
ContentProducerRegistry.java unregisterContentProducer 2 2
ContentProducerRegistry.java write 2 2
ContentProducerRegistry.java ContentProducerRegistry 1 1
ContentProducerRegistry.java ContentProducerRegistry 1 1
ContentProducerRegistry.java getDefaultContentProducer 1 1
ContentProducerRegistry.java getExactDefaultContentProducer 1 1
ContentProducerRegistry.java getParent 1 1
ContentProducerRegistry.java isAutonomous 1 1
ContentProducerRegistry.java registerContentProducer 1 1
ContentProducerRegistry.java registerDefaultContentProducer 1 1
ContentProducerRegistry.java setAutonomous 1 1
ContentProducerRegistry.java setParent 1 1
ContentProducerRegistry.java unregisterDefaultContentProducer 1 1

Tab. C.16: M2DM to Eclipse Metrics comparison: Connectionlool.java to ContentProducerReg-
istry.java

C. Tool Architecture Appendix

129

Source Method name EM M2DM Recalculated
value value value

CopyCommand.java CopyCommand

CopyCommand.java execute

CopyCommand.java isExecutableWithView

CreationTool java mouseUp

CreationTool java activate

CreationTool java createFigure

CreationTool java mouseDrag

CreationTool java
CreationTool java
CreationTool java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CreationTool.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.j
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXCommandMenu.java
CTXWindowMenu.java
CTXWindowMenu.java
CTXWindowMenu.java
CustomSelectionTool.java
CustomSelectionTool java
CustomSelectionTool java
CustomSelectionTool java
CustomSelectionTool java
CustomSelectionTool.java
CustomSelectionTool.java
CustomSelectionTool.java
CustomSelectionTool.java
CustomSelectionTool.java
CustomToolBar.java
CustomToolBar.java
CustomToolBar.java
CustomToolBar.java
CustomToolBar.java
CustomToolBar.java
CutCommand.java
CutCommand.java
CutCommand.java
CutCommand.java

CreationTool
CreationTool
createUndoActivity
deactivate
getAddedFigure
getAddedFigures
getCreatedFigure
getPrototypeFigure
mouseDown
setAddedFigures
setAddedFigure
setCreatedFigure
setPrototypeFigure
checkEnabled
actionPerformed
enable
CTXCommandMenu
addCheckItem
addMenultem

add

add

add

add
commandExecutable
commandExecuted
commandNotExecutable
remove

remove
CTXWindowMenu
buildChildMenus
removeWindowsList
showPopupMenu
handlePopupMenu
mouseUp
mouseDown
mouseDrag
CustomSelectionTool
handleMouseClick
handleMouseDoubleClick
handleMouseDown
handleMouseUp
activateTools

add
switchToEditTools
switchToStandardTools
switchToolBar
CustomToolBar
execute
CutCommand
createUndoActivity
isExecutableWithView

e R ORI W, — o RO R W R OV WO e e e e e D R DN e e e e e e e e R R R B —

— e B PO RO RO R L0 e RO RO W0 S O RO L) e e e e e e e G0 R O e e RO RO N B

Tab. C.17: M2DM to Eclipse Metrics comparison: CopyCommand.java to CutCommand.java

C. Tool Architecture Appendix

130

Source Method name EM M2DM Recalculated
value value value
DecoratorFigure.java findFigurelnside 3

DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java
DecoratorFigure.java

figureInvalidated
figureRequestRemove
figureRequestUpdate
DecoratorFigure
DecoratorFigure
addDependendFigure
basicDisplayBox
basicMoveBy
canConnect
connectedTextLocator
connectionInsets
connectorAt
connector Visibility
containsPoint
decompose

decorate

displayBox

draw

figureChanged
figureRemoved
figures

getAttribute
getAttribute
getDecoratedFigure
getDependendFigures
getTextHolder
handles

includes

initialize

moveBy
peelDecoration
readObject

read

release

removeDependendFigure

setAttribute
setAttribute
setDecoratedFigure
write

e et b b b e b e b e b bt b b e et ek b ek b e b e b e e DD RO RO WD

USSR O I O I Y

Tab. C.18: M2DM to Eclipse Metrics comparison: DecoratorFigure.java

C. Tool Architecture Appendix

131

Source Method name EM M2DM Recalculated
value value value

DeleteCommand.java execute 4

DeleteCommand.java DeleteCommand 1

DeleteCommand.java createUndoActivity 1

DeleteCommand.java isExecutableWithView 1

DeleteFromDrawing Visitor.java visitFigure 3

DeleteFromDrawing Visitor.java
DeleteFromDrawing Visitor.java
DeleteFromDrawing Visitor.java
DeleteFromDrawing Visitor.java
DeleteFromDrawing Visitor.java
DeleteFromDrawing Visitor.java
DesktopEvent.java
DesktopEvent.java
DesktopEvent.java
DesktopEvent.java
DesktopEvent.java
DesktopEvent.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService. java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java
DesktopEventService.java

DeleteFromDrawingVisitor
getDeletedFigures
getDrawing

setDrawing
visitFigureChangeListener
visitHandle

DesktopEvent

DesktopEvent

getDrawing View
getPreviousDrawing View
setDrawing View
setPreviousDrawing View
createComponentListener
getDrawing Views
removeComponent
fireDrawing ViewAddedEvent
fireDrawingViewRemovedEvent
fireDrawing ViewSelectedEvent
DesktopEventService
addComponent
addDesktopListener
createDesktopEvent
getActiveDrawingView
getContainer

getDesktop
removeAllComponents
removeDesktopListener
setActiveDrawing View
setContainer

setDesktop

e e e e e e e e R R R WO W W) e e e e e W) B

e e e RO R RO WD W) e e e e e

Tab. C.19: M2DM to Eclipse Metrics comparison: DeleteCommand.java to DesktopEventService.java

C. Tool Architecture Appendix

132

Source Method name EM M2DM Recalculated
value value value

DiamondFigure java DiamondFigure 1 1
DiamondFigure java DiamondFigure 1 1
DiamondFigure java chop 1 1
DiamondFigure.java connectionInsets 1 1
DiamondFigure.java connectorAt 1 1
DiamondFigure.java containsPoint 1 1
DiamondFigure.java draw 1 1
DiamondFigure.java getPolygon 1 1
DiamondFigureGeometricAdapter.java DiamondFigureGeometricAdapter 1 1
DiamondFigureGeometricAdapter.java DiamondFigureGeometricAdapter 1 1
DiamondFigureGeometricAdapter.java getShape 1 1
DisposableResourceManagerFactory.java initManager 6 6
DisposableResourceManagerFactory.java createStandardHolder 1 1
DisposableResourceManagerFactory.java getManager 1 1
DisposableResourceManagerFactory.java setStrategy 1 1
DNDFigures.java DNDFigures 2 2
DNDFigures.java getFigures 1 1
DNDFigures.java getOrigin 1 1
DNDFiguresTransferable. java getTransferData 2 2
DNDFiguresTransferable.java DNDFiguresTransferable 1 1
DNDFiguresTransferable. java getTransferDataFlavors 1 1
DNDFiguresTransferable.java isDataFlavorSupported 1 1
DNDHelper.java processReceivedData 10 10
DNDHelper.java createDropTarget 3 3
DNDHelper.java deinitialize 3 3
DNDHelper.java initialize 3 3
DNDHelper.java setDropTarget 3 3
DNDHelper.java createDragGestureRecognizer 2 2
DNDHelper.java destroyDragGestreRecognizer 2 2
DNDHelper.java DNDHelper 1 1
DNDHelper.java createDragSourceListener 1 1
DNDHelper.java createDropTargetListener 1 1
DNDHelper.java getDragGestureListener 1 1
DNDHelper.java getDragGestureRecognizer 1 1
DNDHelper.java getDragSourceActions 1 1
DNDHelper.java getDragSourceListener 1 1
DNDHelper.java getDropTargetActions 1 1
DNDHelper.java getDropTargetListener 1 1
DNDHelper.java setDragGestureListener 1 1
DNDHelper.java setDragGestureRecognizer 1 1
DNDHelper.java setDragSourceListener 1 1
DNDHelper.java setDropTargetListener 1 1

Tab. C.20: M2DM to Eclipse Metrics comparison: DiamondFigure.java to DNDHelper.java

C. Tool Architecture Appendix

133

Source

Method name

EM
value

M2DM Recalculated
value value

DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DoubleBufferImage.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragNDropTool.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.java
DragTracker.ja
DragTracke:
DragTracker.jz
DragTracker.java

DoubleBufferImage
flush

getGraphics
getHeight
getProperty
getReallmage
getScaledInstance
getSource

getWidth
createDragGestureListener
mouseDown
setCursor
mouseDrag
mouseMove
mouseUp
viewCreated
viewDestroying
DragNDropTool
activate
createAreaTracker
createDragTracker
createHandleTracker
deactivate
getDragGestureListener
isDragOn
setDragGestureListener
setDragOn
mouseDrag
mouseDown
deactivate
DragTracker
activate
createUndoActivity
getAnchorFigure
getLastMouseX
getLastMouseY
hasMoved
setAnchorFigure
setHasMoved
setLastMouseX
setLastMouseY

e RO WD s e 1O RO RO R RO A 00 00

e e R) D) e e e e PO RO B RO RO S 00 e e

Tab. C.21: M2DM to Eclipse Metrics comparison: DoubleBufferImage.java to DragTracker.java

C. Tool Architecture Appendix 134

Source Method name EM M2DM Recalculated
value value value

DrawApplet.java createButtons

DrawApplet.java setupAttributes

DrawApplet.java guessType

DrawApplet.java loadDrawing

DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java
DrawApplet.java

paletteUserOver
readDrawing
readFromObjectInput
setSelected

setTool
createColorChoice
createFontChoice
readFromStorableInput
showHelp
addViewChangeListener
createAttributeChoices
createAttributesPanel
createButtonPanel
createDrawing
createDrawing View
createlconkit
createSelectionTool
createToolButton
createToolPalette
createTools

drawing
figureSelectionChanged
getRequiredVersions
getUndoManager
getVersionControlStrategy
init

initDrawing
paletteUserSelected
removeViewChangeListener
setBufferedDisplayUpdate
setSimpleDisplayUpdate
setUndoManager

tool

toolDone

view
viewSelectionChanged
views

e e e e e e e i RO RO RO R L LD L0 WD WO W W A

e e e e e e e e e e e DO RO RO RO L0 LD L0 D W W) W A

Tab. C.22: M2DM to Eclipse Metrics comparison: DrawApplet.java

Source Method name EM M2DM Recalculated
value value value

DrawApplication.java open 5 5

DrawApplication.java promptSaveAs S

DrawApplication.java promptOpen 4

DrawApplication.java setTool 4

DrawApplication.java checkCommandMenus 3

DrawApplication.java checkCommandMenu 3

DrawApplication.java createDesktopListener 1 1

DrawApplication.java loadDrawing 3

DrawApplication.java new View

DrawApplication.java paletteUserOver

DrawApplication.java print

DrawApplication.java saveDrawing

DrawApplication.java setSelected

DrawApplication.java addMenulfPossible

DrawApplication.java createColorMenu

DrawApplication.java createFontMenu

DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java

createFontSizeMenu
createLookAndFeelMenu
endApp
fireViewCreatedEvent
fireViewDestroyingEvent
fireViewSelectionChangedEvent
getDefaultTool
newLookAndFeel

new Window
setDefaultTool
setDrawingTitle
toolDone
DrawApplication
DrawApplication
addListeners
addViewChangeListener

e RN RRRRRRRRRNRRNRDNWLWLWWWWWWWHRERWLV

_ e e R RN R R R R R R R RN DN LWL WW

Tab. C.23: M2DM to Eclipse Metrics comparison: DrawApplication.java (1/2)

C. Tool Architecture Appendix

135

Source Method name EM M2DM Recalculated
value value value

DrawApbplication.java closeQuery

DrawApbplication.java createAlignmentMenu

DrawApbplication.java create Application

DrawApplication.java createArrowMenu

DrawApplication.java createAttributesMenu

DrawApplication.java createDebugMenu

DrawApplication.java createDefaultTool

DrawApplication.java createDesktop

DrawApplication.java
DrawApplication.java
DrawApplication java
DrawApplication.java
DrawApbplication.java
DrawApbplication.java
DrawApplication.java
DrawApplication.java
DrawApbplication.java
DrawApbplication.java
DrawApplication.java
DrawApbplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApbplication.java
DrawApbplication.java
DrawApplication.java
DrawApbplication.java
DrawApbplication.java
DrawApbplication.java
DrawApbplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication.ja
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApplication java
DrawApplication.java
DrawApplication.java
DrawApplication.java
DrawApbplication.java
DrawApbplication.java
DrawApbplication.java
DrawApbplication.java
DrawApbplication.java
DrawApplicatio:
DrawApbplicatio:
DrawApplication.java
DrawApplication.java
DrawApplication.java

createDrawing
createDrawing View
createDrawing View
createEditMenu
createFileMenu
createFontStyleMenu
createlconkit
createlnitialDrawing View
createMenus
createOpenFileChooser
createSaveFileChooser
createSelectionTool
createStatusLine
createStorageFormatManager
createToolButton
createToolPalette
createTools

defaultSize

destroy

exit
figureSelectionChanged
getApplicationName
getDefaultDrawingTitle
getDesktop
getDesktopListener
getDrawingTitle
getDrawing ViewSize
getlconkit
getRequiredVersions
getStatusLine
getStorageFormatManager
getUndoManager
getVersionControlStrategy
newWindow

open

paletteUserSelected
promptNew
removeViewChangeListener
setApplicationName
setDesktopListener
setDesktop

setlconkit

setStatusLine
setStorageFormatManager
setUndoManager

setView

showStatus

tool

view

views

Tab. C.24: M2DM to Eclipse Metrics comparison: DrawApplication.java (2/2)

C. Tool Architecture Appendix

136

Source

Method name

EM
value

M2DM Recalculated
value value

DrawingChangeEvent.java

DrawingChangeEvent

DrawingChangeEvent.java getDrawing
DrawingChangeEvent.java getInvalidatedRectangle
DuplicateCommand.java DuplicateCommand
DuplicateCommand.java createUndoActivity
DuplicateCommand.java execute
DuplicateCommand.java isExecutableWithView
ElbowConnection.java updatePoints
ElbowConnection.java handles
ElbowConnection.java ElbowConnection
ElbowConnection.java connectedTextLocator

ElbowConnection.java
ElbowConnection java

layoutConnection
updateConnection

ElbowConnection java locate
ElbowHandle.java constrainX
ElbowHandle.java constrainY’
ElbowHandle.java invokeStep
ElbowHandle.java ElbowHandle
ElbowHandle java draw
ElbowHandle.java invokeStart
ElbowHandle java isVertical
ElbowHandle.java locate
ElbowHandle java ownerConnection
EllipseFigure.java EllipseFigure
EllipseFigure.java EllipseFigure
EllipseFigure.java basicDisplayBox
EllipseFigure.java basicMoveBy
EllipseFigure.java connectionInsets
EllipseFigure.java connectorAt
EllipseFigure.java displayBox
EllipseFigure. java drawBackground
EllipseFigure java drawFrame
EllipseFigure java handles
EllipseFigure java read
EllipseFigure.java write

EllipseFigureGeometricAdapter.java EllipseFigureGeometricAdapter
EllipseFigureGeometricAdapter.java EllipseFigureGeometricAdapter
EllipseFigureGeometricAdapter.java getShape

ETSLADisposalStrategy.java dispose
ETSLADisposalStrategy.java startDisposing
ETSLADisposalStrategy.java stopDisposing
ETSLADisposalStrategy.java initDisposal Thread
ETSLADisposalStrategy.java setManager
ETSLADisposalStrategy.java setPeriodicity
ETSLADisposalStrategy.java ETSLADisposalStrategy

ETSLADisposalStrategy.java
ETSLADisposalStrategy.java
ETSLADisposalStrategy.java
ETSLADisposalStrategy.java

ETSLADisposalStrategy
ETSLADisposalStrategy
getManager
getPeriodicity

e B RO RO WD W) R e e e e e e e e e e b e e e e e R W) WD i e e e) R e e e e

— e DO R DD LD 00 AN e e e e e e e e b e b e b b e b e b e RO WD L0 e = 0 LA e e e e e

Tab. C.25: M2DM to Eclipse Metrics comparison:
Strategy

DrawingChangeEvent.java to ETSLADisposal-

C. Tool Architecture Appendix 137

Source Method name EM M2DM Recalculated
value value value

FastBufferedUpdateStrategy.java —checkCaches 7

FastBufferedUpdateStrategy.java draw

FastBufferedUpdateStrategy.java FastBufferedUpdateStrategy

FigureAndEnumerator.java nextFigure

FigureAndEnumerator.java FigureAndEnumerator

FigureAndEnumerator.java hasNextFigure 1

FigureAndEnumerator.java reset

FigureAttributeConstant.java equals

FigureAttributeConstant.java getConstant 5

FigureAttributeConstant.java addConstant

FigureAttributeConstant.java
FigureAttributeConstant.java
FigureAttributeConstant.java
FigureAttributeConstant.java
FigureAttributeConstant. java
FigureAttributeConstant. java
FigureAttributeConstant. java
FigureAttributeConstant. java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureAttributes.java
FigureChangeAdapter.java
FigureChangeAdapter.java
FigureChangeAdapter.java
FigureChangeAdapter.java
FigureChangeAdapter.java
FigureChangeEvent.java
FigureChangeEvent.java
FigureChangeEvent.java
FigureChangeEvent.java
FigureChangeEvent.java
FigureChangeEvent.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureChangeEventMulticaster.java
FigureDataContentProducer.java
FigureDataContentProducer.java
FigureDataContentProducer.java
FigureDataContentProducer.java

FigureAttributeConstant
FigureAttributeConstant
getConstant

getID

getName

hashCode

setID

setName

read

write

clone

set

writeColor
FigureAttributes

get

hasDefined

readColor
figureChanged
figureInvalidated
figureRemoved
figureRequestRemove
figureRequestUpdate
FigureChangeEvent
FigureChangeEvent
FigureChangeEvent
getFigure
getInvalidatedRectangle
getNestedEvent
remove
removelnternal
addInternal

FigureChangeEventMulticaster

add

figureChanged
figurelnvalidated
figureRemoved
figureRequestRemove
figureRequestUpdate
remove

getContent

FigureDataContentProducer

read
write

(=1

03 B U e e B D RO AD e U1 00—) — O]

JUEPG UG GG UG G UG UG N

S

e Ul 00 B U 2O RO R A e i i B B 00— 1) — L) — O L

Tab. C.26: M2DM to Eclipse Metrics comparison: FastBufferedUpdateStrategy.java to FigureData-
ContentProducer

C. Tool Architecture Appendix

138

Source Method name EM Recalculated
value value
CompositeFigure.java findFigurelnsideWithout 7 7
CompositeFigure.java findFigureWithout 5 5
CompositeFigure.java findFigure 5 5
CompositeFigure.java sendToLayer 5 5
CompositeFigure.java _addToQuadTree 4 4
CompositeFigure.java figures 4 4
CompositeFigure.java findFigurelnside 4 4
CompositeFigure.java includes 4 4
CompositeFigure.java assignFiguresToPredecessorZValue 3 3
CompositeFigure.java assignFiguresToSuccessorZValue 3 3
CompositeFigure.java findFigure 3 3
CompositeFigure.java findFigure 3 3
CompositeFigure.java getFigureFromLayer 3 3
CompositeFigure.java _clearQuadTree 2 2
CompositeFigure.java _removeFromQuadTree 2 2
CompositeFigure.java addAll 2 2
CompositeFigure.java add 2 2
CompositeFigure.java basicMoveBy 2 2
CompositeFigure.java bringToFront 2 2
CompositeFigure.java draw 2 2
CompositeFigure.java figurelnvalidated 2 2
CompositeFigure.java figureRemoved 2 2
CompositeFigure.java figureRequestRemove 2 2
CompositeFigure.java figureRequestUpdate 2 2
CompositeFigure.java getLayer 2 2
CompositeFigure.java init 2 2
CompositeFigure.java orphanAll 2 2
CompositeFigure.java readObject 2 2
CompositeFigure.java read 2 2
CompositeFigure.java release 2 2
CompositeFigure.java removeAll 2 2
CompositeFigure.java removeAll 2 2
CompositeFigure.java remove 2 2
CompositeFigure.java replace 2 2
CompositeFigure.java sendToBack 2 2
CompositeFigure.java write 2 2
CompositeFigure.java CompositeFigure 1 1
CompositeFigure.java addAll 1 1
CompositeFigure.java containsFigure 1 1
CompositeFigure.java draw 1 1
CompositeFigure.java figureAt 1 1
CompositeFigure.java figureChanged 1 1
CompositeFigure.java figureCount 1 1
CompositeFigure.java figures 1 1
CompositeFigure.java figuresReverse 1 1
CompositeFigure.java orphanAll 1 1
CompositeFigure.java orphan 1 1
CompositeFigure.java removeAll 1 1

Tab. C.27: M2DM to Eclipse Metrics comparison: ComponentFigure.java recalculated values

