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ABSTRACT 
  
It is intended, in this chapter, to present the Hahn-Banach 

theorem in its version for the normed spaces. This result is 
particularly important in optimization problems because of the 
separation theorems consequences of it.  
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1. THE HAHN-BANACH THEOREM 
  
1.1. Convex Sets and Bodies 
Be a real vector space L. 
 
Definition 1.1.1 
A set 퐾 ⊂ 퐿 is convex if and only if 
 

∀
푥, 푦 ∈ 퐾 ∀

휃 ∈ [0,1] 휃푥 + (1 − 휃)푦 ∈ 퐾                                                (1.1.1). ∎ 

                                                             
1This work was financially supported by FCT through the Strategic Project PEst-OE/EGE/ 
UI0315/2011. 
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Definition 1.1.2 
It is called nucleus of a set 퐸 ⊂ 퐿, and designated 퐽(퐸), the set of 

the points 푥 ∈ 퐸 such that, given any 푦 ∈ 퐿, it is determined 휀 =
휀(푦) > 0 such that 푥 + 푡푦 ∈ 퐸 since |푡| < 휀. ∎ 

 
Definition 1.1.3 
A convex set with non-empty nucleus is called convex body.∎  
 
Theorem 1.1.1 
The nucleus of any convex set K is also convex. 
Dem.: 
Suppose that 푥, 푦 ∈ 퐽(퐾). Be 푧 = 휃푥 + (1 − 휃)푦, 0 ≤ 휃 ≤ 1. Then, 

given any 푎 ∈ 퐿, it is possible to determine 휖 > 0, 휖 > 0 such that 
for |푡 | < 휀 , |푡 | < 휀 , 푥 + 푡 푎 and 푥 + 푡 푎 belong to K. So, the point 
휃(푥 + 푡푎) + (1 − 휃)(푦 + 푡푎) = 푧 + 푡푎 belongs to K for |푡| < 휀 =
푚푖푛{휀 , 휀 } and 푧 ∈ 퐽(퐾).∎ 

 
Theorem 1.1.2 
The intersection of any convex sets family is a convex set. 
Dem: Be 퐾 = ∩

훼퐾 , where each 퐾  is a convex set. Consider any 
two points x and y belonging to K. So 휃푥 + (1 − 휃)푦, 0 ≤ 휃 ≤ 1 
belongs to any 퐾  and, in consequence, to K. Then K is convex.∎ 

Observation:  
-The intersection of convex sets, being a convex set, is not 

necessarily a convex body. 
 
Definition 1.1.4 
Be A any part of a vector space L. Among the convex sets that 

contain A there is a minimal set: the intersection of the whole convex 
sets that contain A2.This minimal convex set is called the convex 
hull of A.∎ 

 
1.2. Homogeneous Convex Functionals 
Definition 1.2.1 
A functional p defined in L is convex if and only if  

                                                             
2 There is at least one convex set that contains A: the space L. 
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∀
푥, 푦 ∈ 퐿 ∀

휃 ∈ [0,1] 푝(휃푥 + (1 − 휃)푦) ≤ 휃푝(푥) + (1 − 휃)푝(푦)                (1.2.1). ∎ 
 
Definition 1.2.2 
A functional p is positively homogeneous if and only if 
 

∀
푥 ∈ 퐿 ∀

훼 > 0 푝(훼푥) = 훼푝(푥)                                         (1.2.2). ∎ 
  
Proposition 1.2.1 
For any convex positively homogeneous functional it always 

holds: 
 

i)  푝(푥 + 푦) ≤ 푝(푥) + 푝(푦)                                                (1.2.3),  
ii) 푝(0) = 0                                                                             (1.2.4), 

iii) 푝(푥) + 푝(−푥) ≥ 0, ∀
푥 ∈ 퐿                                               (1.2.5), 

iv) 푝(훼푥) ≥ 훼푝(푥), ∀
훼 ∈ ℝ                                                    (1.2.6).  

Dem: 
i) In fact, 푝(푥 + 푦) = 2푝 ≤ 2 푝 + 푝 = 푝(푥) + 푝(푦), 
ii) In fact, 푝(0) = 푝(훼0) = 훼푝(0), ∀

훼 > 0. So.푝(0) = 0, 
iii) In this case, 0 = 푝(0) = 푝 푥 + (−푥) ≤ 푝(푥)푝(−푥), ∀

푥 ∈ 퐿, 
iv) The result is evident for 훼 ≥ 0. For 훼 < 0, 0≤ 푝(훼푥) + 푝(−훼푥) =

푝(훼푥) + 푝(|훼|푥) = 푝(훼푥) + |훼|푝(푥). That is: 푝(훼푥) ≥ 훼푝(푥).∎ 
 
1.3. Minkowsky Functionals  
Definition 1.3.1  
Be L any vector space and A a convex body in L which nucleus 

contains 0. The A convex body Minkowsky functional, designated 
 푝 (푥), is the functional 

 
 푝 (푥) = inf 푟: 

푥
푟 ∈ 퐴, 푟 > 0                                               (1.3.1). ∎ 

 
Theorem 1.3.1 
A Minkowsky functional is convex, positively homogeneous and 

assumes only positive values. Reciprocally, if 푝(푥) is a convex 
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positively homogeneous functional, assuming only positive values, 
and k appositive number, then the set  

 
퐴 = {푥: 푝(푥) ≤ 푘}                                                               (1.3.2)  

 
is a convex body with nucleus {푥: 푝(푥) < 푘}, which contains the 

point 0. If in (1.3.2) 푘 = 1, the initial functional 푝(푥) is the A 
Minkowsky functional. 

Dem: Given any element 푥 ∈ 퐿,  belongs to A if r is great 
enough. Then, the number  푝 (푥) defined by (1.3.1) is positive and 
finite. 

But, given 푡 > 0 and 푦 = 푡푥, 푝 (푦) = inf 푟 > 0: ∈ 퐴  = inf 푟 >

0: ∈ 퐴  = inf 푡푟´ > 0: ´ ∈ 퐴  = 푡 inf 푡푟´ > 0: ´ ∈ 퐴 = 푡 푝 (푥).  
 
So, 

 푝 (푡푥)= 푡 푝 (푥), ∀
푡 > 0                                                                     (1.3.3) 

 
and  푝 (푥) is positively homogeneous. 
Suppose now that 푥 , 푥 ∈ 퐿. Given any 휖 > 0, choose the 

numbers 푟  (푖 = 1,2) in the way that  푝 (푥 ) < 푟  <  푝 (푥 ) + 휖. Then 

 
∈ 퐴. Then, defining 푟 = 푟 + 푟 , the point = 푥 + 푥  will 

belong to the set of points 푆 = 푧: 푧 =  휃 + (1 − 휃) , ∀
휃 ∈ [0,1] . 

As A is a convex set, 푆 ⊂ 퐴 and, in particular, ∈ 퐴. So, 푝 (푥 +
푥 ) ≤ 푟 = 푟 + 푟 <  푝 (푥 )+, 푝 (푥 ) + 2휀. As 휀 is arbitrary, 

 
푝 (푥 + 푥 ) ≤ 푝 (푥 ) + 푝 (푥 ). 

So,  푝 (휃푥 + (1 − 휃)푦) ≤ 푝 (휃푥) + 푝 ((1 − 휃)푦) = 휃푝 (푥) + (1 − 휃) 

푝 (푦),
∀

푥, 푦 ∈ 퐿, ∀
휃 ∈ [0,1], since it was already shown that 푝 (푥) is 

positively homogeneous. 
Look now to the set defined by (1.3.2). If 푥, 푦 ∈ 퐴 and 휃 ∈ [0,1], so 

푝(휃푥 + (1 − 휃)푦) ≤ 휃푝(푥) + (1 − 휃)푝(푦) ≤ 퐾. In consequence, A is a 
convex set. Suppose now that 푝(푥) < 퐾, 푡 > 0 and 푦 ∈ 퐿. Under 
these conditions, 푝(푥 ± 푡푦) ≤ 푝(푥) + 푡푝(±푦). If 푝(−푦) = 푝(푦) =
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0, so 푥 ± 푡푦 ∈ 퐴 for any t. If at least one of the numbers (positive) 
푝(푦), 푝(−푦) is not null, so 푥 ± 푡푦 ∈ 퐴 for 

 

푡 <
퐾 − 푝(푥)

푚푎푥{푝(푦), 푝(−푦)}. 

 
From the definitions it results that p is the Minkowsky functional of 

the set {푥: 푝(푥) ≤ 1}. ∎ 
 
Observation: 
-Taking in account the Theorem 1.3.1, the Minkowsky functional 

allows to establish a correspondence between the positively 
homogeneous convex functionals, assuming only positive values, 
and the convex bodies to which nucleus the origin belongs.  

  
1.4. The Hahn-Banach-Theorem  
Definition 1.4.1 
Consider a vector space L and its subspace 퐿 . Suppose that in 

퐿  is defined a linear functional 푓 . A linear functional f defined in the 
whole space L is an extension of the functional 푓  if and only if  

 
f(x)= 푓 (푥), ∀

푥 ∈ 퐿 . ∎ 
  
The Hahn-Banach theorem is essential in the in the resolution of 

the problem of finding an extension of a linear functional. 
 
Theorem 1.4.1 (Hahn-Banach)  
Be p a positively homogeneous convex functional defined in a 

real vector space L and 퐿  an L subspace. If 푓  is a linear functional 
defined in 퐿 , fulfilling the condition 

 
푓 (푥) ≤ 푝(푥), ∀

푥 ∈ 퐿                                                    (1.4.1), 
 
so there is an extension f of 푓  defined in L, linear, and such that 

f(x)≤ 푝(푥), ∀
푥 ∈ 퐿. 
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Dem: 
Begin showing that if 퐿 ≠ 퐿, there is an extension of 푓 , 푓′, 

defined in a subspace 퐿′ such that 퐿 ⊂ 퐿′, in order to fulfill the 
condition (1.4.1). 

 Be z any element of L not belonging to 퐿 ; if 퐿′is the subspace 
generated by 퐿  and z, each element of 퐿′ is expressed in the form 
tz+x, being 푥 ∈ 퐿 . If 푓′is an extension (linear) of the functional 푓  to 
퐿′, it will happen that 푓′(푡푧 + 푥) = 푡푓′(푧) + 푓 (푥) or, making 푓′(푧) = 푐, 

 
푓′(푡푧 + 푥) = 푡푐 + 푓 (푥). 

 
Now choose c, fulfilling the condition (5.1) in 퐿′, that is: in order 

that the inequality 푓 (푥) + 푡푐 ≤ 푝(푥 + 푡푧), for any 푥 ∈ 퐿  and any real 
number t, is accomplished. 

For 푡 > 0 this inequality is equivalent to the condition 푓 + 푐 ≤

푝 + 푧  or 
푐 ≤  푝

푥
푡 + 푧 − 푓

푥
푡                                                         (1.4.2). 

 
For 푡 < 0 it is equivalent to the condition 푓 + 푐 ≥ −푝 − − 푧 , or 
 

푐 ≥ − 푝 −
푥
푡 − 푧 − 푓

푥
푡                                                    (1.4.3). 

  
Now it will be proved that there is always a number c satisfying 

simultaneously the conditions (1.4.2) and (1.4.3). 
Given any two elements푦 ′and 푦 ′′푏elonging to 퐿 , 
 

−푓 푦 ′′ + 푝 푦 ′′ + 푧 ≥ −푓 푦 ′ − 푝 −푦 ′ − 푧                              (1.4.4), 
 
since 푓 푦′′ − 푓 푦′ ≤ 푝 푦 ′′ − 푦 ′ = 푝 푦 ′′ + 푧 − 푦 ′ + 푧 ≤ 푝 푦 ′′ + 푧 +

푝 −푦 ′ − 푧 . 
Be푐′′ =  inf ′′ −푓 푦 ′′ + 푝 푦 ′′ + 푧   and 푐′ =  sup ′ −푓 푦 ′ − 푝 −푦 ′ − 푧 . As  
푦 ′and 푦 ′′ are arbitrary, it results from (1.4.4) that 푐′′ ≥ 푐′. Choosing 

c in order that 푐′′ ≥ 푐 ≥ 푐′, it is defined the functional 푓′ on 퐿′ through 
the formula 
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 푓 ′(푡푧 + 푥) = 푡푐 + 푓 (푥). 
 
This functional satisfies the condition (1.4.1). So, any functional 푓  

defined in a subspace 퐿 ⊂ 퐿 and subject in 퐿  to the condition 
(1.4.1), may be extended to a subspace 퐿′. The extension 푓′ satisfies 
the condition 

푓 ′(푥) ≤ 푝(푥), ∀
푥 ∈ 퐿′. 

 
If L has an algebraic numerable base (푥 , 푥 , … , 푥 , … ) the 

functional in L is built by finite induction, considering the increasing 
sequence of subspaces 

 
퐿( ) = (퐿 , 푥 ), 퐿( ) = 퐿( ), 푥 , … 

 
designating 퐿( ), 푥  the L subspace generated by 퐿( ) and 

푥 . In the general case, that is, when L has not an algebraic 
numerable base, it is mandatory to use a transfinite induction 
process, for instance the Haudsdorf maximal chain theorem. 

 Call ℱ the set of the whole pairs 퐿′, 푓′ , at which 퐿′ is a L 
subspace that contains 퐿  and 푓′ is an extension of 푓  to 퐿′ that 
fulfills (1.4.1). Order partially ℱso that 

 
퐿′, 푓 ′ ≤ 퐿′′, 푓 ′′  if and only if 퐿′ ⊂ 퐿′′and 푓 ′ �

′′ = 푓 ′. 
 
By the Haudsdorf maximal chain theorem, there is a chain, that 

is: a subset of ℱ totally ordered, maximal, that is: not strictly 
contained in another chain. Call it Ω. Be Φ the family of the whole 퐿′ 
such that 퐿′, 푓′ ∈ Ω. Φ is totally ordered by the sets inclusion; so, 
the union Τ of the whole elements of Φ is a L subspace. If 푥 ∈  Τ 
then 푥 ∈ 퐿′ for some 퐿′ ∈  Φ ; define 푓(푥) = 푓′(푥), where 푓′is the 
extension of 푓  that is in the pair 퐿′, 푓′ - the definition of 푓 is 
obviously coherent. It is easy to check that Τ = 퐿 and that 푓 = 푓′ 
satisfies the condition (1.4.1).∎ 

Now the Hahn-Banach theorem complex case, corresponding to 
the contribution of Hahn to the theorem, will be presented. But first: 
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Definition 1.4.2 
A linear functional p, assuming only positive values, defined in a 

complex vector space L, is homogeneous convex if and only if, for 
any 푥, 푦 ∈ 퐿 and any complex number 휆, 

 
푝(푥 + 푦) ≤ 푝(푥) + 푝(푦),

푝(휆푥) = |휆|푝(푥). ∎  
  
Theorem 1.4.1a (Hahn-Banach)  
Be p an homogeneous convex functional defined in a vector 

space L and 푓  a linear functional, defined in a subspace 퐿 ⊂ 퐿, 
fulfilling the condition 

|푓 (푥)| ≤ 푝(푥), 푥 ∈ 퐿 . 
 
Then, there is a linear functional f defined in L, satisfying the 

conditions 
|푓(푥)| ≤ 푝(푥), 푥 ∈ 퐿; 푓(푥) = 푓 (푥), 푥 ∈ 퐿 . 

  
Dem: 
Call 퐿  and 퐿  the real vector spaces underlying, respectively, 

the spaces L and 퐿 . As it is evident, p is an homogeneous convex 
functional in 퐿  and 푓  (푥) = 푅푒푓 (푥) a real linear functional in 
퐿  fulfilling the condition |푓  (푥)| ≤ 푝(푥) and so, 

 
푓  (푥) ≤ 푝(푥). 

 
Then, owing to Theorem 1.4.1, there is a real linear functional 푓 , 

defined in the whole 퐿  space, that satisfies the conditions 
 

푓 (푥) ≤  푝(푥), 푥 ∈ 퐿 ; 푓 (푥) = 푓  (푥), 푥 ∈ 퐿  . 
 
But, −푓 (푥) = 푓 (−푥) ≤ 푝(−푥) = 푝(푥), and 
|푓  (푥)| ≤ 푝(푥), 푥 ∈ 퐿  (1.4.5). 
Define in L the functional f making 
  

푓(푥) = 푓  (푥) − 푖푓  (푖푥). 
 
It is immediate that f is a complex linear functional in L such that 
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푓(푥) = 푓 (푥), 푥 ∈ 퐿 ; 푅푒푓(푥) = 푓  (푥), 푥 ∈ 퐿. 
 
 

It only misses to show that |푓(푥)| ≤ 푝(푥), ∀
푥 ∈ 퐿. 

 Proceed by absurd. Suppose that there is 푥 ∈ 퐿 such that 
|푓(푥 )| > 푝(푥 ). So, 푓(푥 ) = 휌푒 , 휌 > 0, and making 푦 = 푒 푥 , it 
would happen that 푓  (푦 ) = 푅푒 푒 푓(푥  ) = 휌 > 푝(푥 ) = 푝(푦 ) that 
is contrary to (1.4.5).∎  

 
2. THE HAHN-BANACH-THEOREM FOR  
THE NORMED SPACES 
  
2.1. Normed Spaces  
 
Definition 2.1.1 
Calling L a vector space, a norm in L is a functional p such that: 
 

-푝(푥) ≥ 0, 
-푝(푥) = 0 if and only if 푥 = 0, 
-푝(푥 + 푦) ≤ 푝(푥) + 푝(푦), 
-푝(훼 푥) = |훼|푝(푥), for every 훼.∎ 

  
A vector space L with a norm is a normed space. It is usual to 

designate the norm of an element 푥 ∈ 퐿, ‖푥‖. 
Every normed space is a metric space, with the distance  
 

푑(푥, 푦) = ‖푥 − 푦‖. 
 
2.2. Continuous Linear Functionals 
Be E a normed vector space. 
 
Definition 2.2.1 
A linear functional f, defined in E, is continuous in 푥 ∈ 퐸 if and 

only if, for any 휀 < 0, there is a neighboring U of 푥  such that 
 

|푓(푥) − 푓(푥 )| < 휀 for 푥 ∈ 푈.∎ 
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Definition 2.2.2 
A linear functional f, defined in E, is continuous if it is continuous 

in all 푥 ∈ 퐸. ∎ 
Follow some important results on the continuity of linear 

functionals defined in normed vector spaces. 
 
Proposition 2.2.1 
Be E a normed vector space and f a linear functional in E. So 
i) If E has finite dimension, f is continuous, 
ii) f is continuous if and only if f is continuous at the origin, 
iii) f is continuous if and only if f is bounded over the unitary ball.∎ 

  
Definition 2.2.3  
Be f a continuous linear functional in a normed space E. It is 

called f norm, and designated ‖푓‖,  
 

‖푓‖ = sup
| |

|푓(푥)| 

 
that is: the supreme of the values that |풇(풙)| assumes in the E 

unitary ball.∎ 
 
Observation:  
-The class of continuous linear functionals so defined, is a vector 

normed space, called the E dual space, designated 퐸´. 
  
2.3. The Hahn-Banach Theorem Version in Normed Spaces 
The Theorem 1.4.1 is as follows, in normed spaces: 
Theorem 2.3.1 (Hahn-Banach) 
Name L a subspace of a real normed space E and 푓  a bounded 

linear functional in L. So, there is a linear functional defined in E, 
extension of 푓 , such that 

‖푓 ‖ , = ‖푓‖ , . 
Dem: 
It is enough to think in the functional 퐾‖푥‖ at which 퐾 = ‖푓 ‖ ,. As 

it is convex and positively homogeneous, it is possible to put 
푝(푥) = 퐾‖푥‖ and to apply Theorem 1.4.1.∎ 
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Observation: 
- To see an interesting geometric interpretation of this theorem, 

consider the equation ‖푓 (푥)‖ = 1. It defines, in L, an hiperplane at 
distance ‖ ‖  표푓 0. Considering the extension f of 푓 , with norm 
conservation, it is obtained an hiperplane in E, that contains the 
hiperplane considered behind in L, and that at the same distance 
from the origin. 

The version for normed spaces of Theorem 1.4.1a is: 
 
Theorem 2.3.1a (Hahn-Banach) 
Be E a complex normed space and 푓  a bounded linear functional 

defined in a subspace 퐿 ⊂ 퐸. So, there is a bounded linear 
functional f, defined in E, such that 

 
푓(푥) = 푓 (푥), 푥 ∈ 퐿; ‖푓‖ , = ‖푓 ‖ , . ∎ 

 
2.4. Separation Theorems 
In this this section, two separation theorems, important 

consequences of the Hahn-Banach theorem, applied to the normed 
vector spaces, will be presented. 

 
Observation:  
- It was seen that a convex body, in a vector space, is a convex 

set with non-empty nucleus. It may be stated that: 
i) In a normed space, the nucleus of a set is coincident with the 

total of its interior points, and so 
 ii) In a normed space, a convex body is a convex set the has, at 

least, one interior point. 
 
Theorem 2.4.1 (Separation) 
Consider two convex sets A and B in a normed space E. If one of 

them, for instance A, has at least on interior point and (푖푛푡퐴) ∩ 퐵 =
∅, there is a continuous linear functional non-null that separates the 
sets A and B.∎ 
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Theorem 2.4.2 (Separation) 
Consider a closed convex set A, in a normed space E, and a 

point 푥 ∈ 퐸, not belonging to A. So, there is a continuous linear 
functional, non-null, that separates strictly {푥 } and A.∎ 

 
3. CONCLUSIONS  

  
After a review on convex sets and bodies, homogeneous convex 

functionals, Minkowsky functionals and continuous convex functio-
nals, the Hahn-Banach theorem for the normed spaces is presented, 
of course base on its general version. In addition two important 
separation theorems consequences of the Hahn-Banach theorem 
for the normed spaces are enounced. These last results are 
important in the optimization of functionals.  
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