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Abstract 

 

Convex sets separation is very important in convex programming, a very 

powerful mathematical tool for operations research, management and 

economics, for example. The target of this work is to present Theorem 3.1 that 

gives sufficient conditions for the strict separation of convex sets. 
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1 Introduction 
 

The convex sets separation is very important in convex programming, a very 

powerful mathematical tool for, see [           ], operations research, 

management and economics, namely. 

     In the mathematical fundamentals of the minimax theorem it is necessary to 

consider the strict separation of convex sets, see [ ]. So the target of this work 

is to present the Theorem 3.1 that gives sufficient conditions for the strict 

separation of convex sets.  

      The results important to establish Theorem 3.1 are outlined in 2 and in 3 that 

theorem is present. Follow some conclusions and a short list of references.  

 

 

2 Supporting Results 

 
Begin with the following theorem: 
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    Theorem 2.1  

    Every closed convex set in a Hilbert space has only one point with minimal 

norm. 

     Dem: Call C the closed convex set and      ‖ ‖     . Under these 

conditions it is possible to find a sequence ‖  ‖      , designated minimizing 

sequence, such that       ‖  ‖. By the parallelogram law ‖
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. But, as this equality second member 

second parcel is a C point square norm, ‖
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     and so    is a Cauchy sequence. As C is closed and every Hilbert 

space is complete, this limit, call it z, belongs to C. And, as |‖ ‖  ‖ ‖|  

‖   ‖, it follows that ‖ ‖   .  Suppose now that             are two points 

of C with norm d. So, again by the parallelogram law, ‖
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   and consequently      .  

     Be now a closed convex set C in a Hilbert space H and a point x, anyone, 

belonging to H. As     is a closed convex set it results the following 

Theorem 2.1 corollary: 

      Corollary 2.1 

      Be   C a closed convex set in H. For any point x of H there is only one point 

in C that is the closest of x; that is: there is one only point      such 

that ‖   ‖     ‖   ‖    .  

       So, for the moment, there is an existence and unity result to the 

optimization problem. But, unhappily, the demonstration is not constructive, 

not indicating how to determine that unique point. But it is possible to give a 

better characterization of it, through a variational inequality, as indicated in the 

next result, which demonstration is centered on a variational argument: 

       Theorem 2.2 

       Be   C a closed convex set in H. For any point x of H, z is the unique point 

in C closest, in norm, from x if and only if 

  [       ]                 (   )  
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        Dem: Every characterization of this kind results form a variational 

argument. So, suppose that z is the only closest point in C, guaranteed by 

Corollary 2.1. So, for every        , as C is convex, (   )       

since    . Then 

 ( )  ‖  ((   )    )‖
 
       (   ) 

 

is a θ function twice continuously differentiable. In fact it is a quadratic 

function of θ. More: 

                          ( )     [     (   )     ]       (   ), 

                                    ( )     [       ]    (   ). 

So that z is the minimizing point, it is evident that it must be   ( )    

  [       ]   . 

        Suppose now that (2.1) is satisfied for a certain point z of C. Then, 

constructing again  ( ) as in (2.2), (2.1) allows to conclude that   ( ) is non-

negative and, after (2.4), that    ( ) is also non-negative. So  ( )   ( ) for 

every    , that is ‖   ‖  ‖   ‖      . 

         So it was proved that z is the minimizing point in C and, as it was already 

seen, such point is unique.  

          

        Observation: 

        -It is interesting to interpret geometrically (2.1).So consider the set of 

points h belonging such that   [     ]      [     ]. It is a hiperplane 

passing by z. That hiperplane, which normal is     is a support plane from 

the convex set C in the sense that 

                                     
 )   [     ]             (   )

  )   [     ]           (   )
 

since   

   [        ]      [     ]    [     ]      [     ]  

   [     ]. The point z is the supporting point. 

        Now is the moment to introduce the following definition: 
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        Definition 2.1 

        Given a convex set C in H, the map from H to H, making correspond to 

each x the x closest point in C, is called projection on C and it is 

nominated   ( ).   ( ) is the projection of x over C.  

        And then it follows a Theorem 2.2 corollary: 

        Corollary 2.2 

        If M is a closed vector subspace in H, for each     there is one only 

point of M, that is the closest of x, being the projection of x on M, nominated 

Px, and characterized by  

                                        [      ]                   (   ). 

In this case P is linear and is called projection operator corresponding to M.  

 

3 The Strict Separation Result  
  
First the following definitions: 

 

     Definition 3.1 

 

     Two closed convex subsets A and B, in a Hilbert space H, are at finite 

distance from each other if           ‖   ‖     .  

 

     Definition 3.2 

 

     Two closed convex subsets A and B, in a Hilbert space H, are strictly 

separated if, for some           [   ]        [   ].  

     Then it follows 

 

     Theorem 3.1(Strict separation) 

 

     Two closed convex subsets A and B, in a Hilbert space H, at finite distance 

from each other may be strictly separated. 

 

      Dem: In fact, as zero is then a     complement interior point, taking its 

projection over the     closure and calling it   [      ]         
 , by Theorem 2.2. So [   ]  [   ] and [   ]  [   ]  [   ]         

leading to       [   ]        [   ].  
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      It is also possible to show that 

 

      Theorem 3.2 

       Being H a finite dimension Hilbert space, if A and B are non-empty 

disjoint convex sets, they can always be separated.  

 

 

4 Conclusions  
 

As it was established in Theorem 3.1, it is enough that two closed convex sets 

are at finite distance from each other so that they can be strictly separated in 

the terms of the Definition 3.2. The conditions are very simple but the 

demonstration stands on Theorem 2.2 which proof is based on a variational 

argument. 

    In finite dimension the situation is much simpler: it is enough that the 

convex sets, closed or not, are disjoint for they can be separated, as stated in 

Theorem 3.2. 

    Finally note that the separation theorems are consequences from the Hahn-

Banach theorem and, when formulated for Hilbert spaces, rephrased applying 

the Riesz representation theorem, see for instance [ ]. 
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