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The generation of dc magnetic fields in unmagnetized electron-ion shear flows is shown to be associated

to either initial thermal effects or the onset of electron-scale shear instabilities, in particular the cold

Kelvin-Helmholtz instability. This mechanism, intrinsic to shear gradients on the electron scale, is desc-

ribed through a kinetic model that predicts the growth and the saturation of the dc field in both scenarios.

The theoretical results are confirmed by multidimensional particle-in-cell simulations, demonstrating the

formation of long-lived magnetic fields (t� 1000s !�1
pi ) along the full longitudinal extent of the shear

layer, with a typical transverse width of
ffiffiffiffiffiffi
�0

p
c=!pe, reaching magnitudes eBdc=mec!pe � �0

ffiffiffiffiffiffi
�0

p
for an

initial sharp shear. The case of an initial smooth shear is also discussed.
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It is well-known that plasma instabilities on the electron
kinetic scale can efficiently transform plasma kinetic
energy into electric and magnetic-field energy, playing a
central role in current high-intensity laser-plasma experi-
ments [1–4] and astrophysical scenarios [5,6]. Ab initio
particle-in-cell simulations (PIC) have demonstrated
the generation of subequipartition magnetic fields, i.e.,
the ratios between the energy density of the field and the
kinetic energy density of the flow are close to 10�3 to 10�2

[7–10]. Electron plasma instabilities associated to shear
flows, such as the cold Kelvin-Helmholtz instability (KHI)
[11,12], however, have been largely overlooked and
contain a wealth of unexplored physics, namely, the unex-
pected generation of a strong dc magnetic field along
the shear interface. Recent particle-in-cell simulations
have demonstrated the emergence of this large-scale dc
magnetic field in unmagnetized electron-ion plasmas with
velocity shear [12–14] after the onset of the KHI. Yet this
dc field is not captured by the two-fluid KHI theory
[11,12,15]. Furthermore, recent experiments have repro-
duced shear flow conditions [1–3] allowing one to probe
the development of the KHI, although the self-generated
magnetic fields remain to be diagnosed. In the near future,
with the advent of more powerful lasers, experiments
will be able to probe the self-generated fields of the KHI
and their consequences in astrophysical, laser-produced,
and even low-temperature plasmas. It is the purpose of this
Letter to identify the physical mechanism responsible for
the generation of such dc magnetic fields.

We recall the two-dimensional (2D) theoretical model
of the unmagnetized KHI [11,12], which is based on the
relativistic fluid formalism of plasmas coupled with
Maxwell’s equations. Without loss of generality, we focus
on symmetrically shearing flows (with velocities �v0 ~ey
along the y direction and with equal densities n0) with
a tangential discontinuity in the x direction. The protons
are considered free-streaming, whereas the electron fluid

quantities and fields are linearly perturbed, u ¼
�ue�k?jxjeiðkky�!tÞ. The unstable modes are stationary
[Reð!Þ ¼ 0] surface waves and obey the following disper-
sion relation
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where � is the growth rate [Imð!Þ] of the mode with wave

number kk, !pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n0e

2=me

p
is the plasma frequency

defined in CGS units, k2? ¼ k2k þ!2
pe=ðc2�0Þ �!2=c2,

and �0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

0

q
is the Lorentz factor of the shearing

flows with �0 ¼ v0=c. After a few e-folding times, the
system is dominated by the fastest growing mode with

�max¼
ffiffiffiffiffiffiffiffi
1=8

p
��3=2
0 !pe and kkmax¼

ffiffiffiffiffiffiffiffi
3=8

p
��3=2
0 !pe=v0. In

the case of an initial smooth shear, the growth rate
decreases as the shear gradient length increases; see
Ref. [16].
To ascertain these results and to fully explore the KHI,

PIC simulations were performed using OSIRIS [17,18]. We
simulate shearing slabs of cold (v0 � vth, where vth is the
thermal velocity) unmagnetized electron-proton plasmas
with a reduced mass ratio mp=me ¼ 100 (me and mp are

respectively the electron and the proton mass) and evolve

it up to !pit ¼ 100 (!pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mp

q
!pe is the proton

plasma frequency). We present the simulation results of a
shear flowwith v0 ¼ 0:2c, which is on the order of the flow
velocity driven in intense laser-plasma experiments [4].
The shear flow initial condition is set by a velocity field
with þv0 ~ey in the middle half of the simulation box and

a symmetric velocity field with �v0 ~ey in the upper

and lower quarters of the box. Initially, the system is charge
and current neutral. Periodic boundary conditions are
imposed in every direction. The simulation box dimensions
are 100� 100ðc=!peÞ2, resolved with 20 cells per electron
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skin depth (c=!pe), and a number of 36 particles per

cell per species is used. Space and time are respectively
normalized to c=!pe and 1=!pe.

The growth and the wave number of the most unstable
mode are confirmed by 2D simulations [Fig. 1(a1)]. We
measure a wavelength of 2c=!pe and a growth rate of

0:32!pe, in agreement with the theoretical values �kmax¼
2�=kkmax¼2:09c=!pe and �max¼0:33!pe. Interestingly,

the growth of a dc (kk ¼ 0) magnetic-field mode is also

observed [Figs. (insets) 1(a2) and 1(b2)], which is not
predicted by the linear fluid theory [�ðkk ¼ 0Þ ¼ 0], nor
has it been previously identified in magnetohydrodynamics
simulations [19–22] and only recently in kinetic simula-
tions [12]. The growth of the dc-magnetic-field mode
results from a current imbalance due to between the
electron flows across the shear surface, while the proton
flows remain almost unperturbed due to their inertia.
The orientation of the dc-magnetic-field peak is mostly

determined by the proton current structure, i.e., ~r� ~Bdc �
�0en0 ~v0ðxÞ. The mixing arises due to the deformation of
the electron interface between the two flows, which in the

linearized fluid calculations is not accounted for and, in
zeroth order, remains fixed. Alternatively, we find that the
physics describing the formation of a dc mode can be
modeled in a one-dimensional (1D) reduced theory where
an initial temperature drives the mixing effect. In order to
understand the formation of the dc field, we first consider
the one-dimensional case. Initially, all the fields are zero,
and we assume a plasma with a tangential shear flow in the
x direction and an initial temperature such that vth � v0.
This setting is not in Vlasov equilibrium, and it is clear
that the transient thermal expansion of the electrons
across the shear surface (ions are assumed to be cold
and free streaming) leads to an imbalance of the current
neutrality around the shear surface, forming a dc mag-
netic field in the z direction. The initial corresponding
electron distribution function reads fðx;vx;vy;vz;t¼0Þ¼
f0ðvx;vy�v0sgnðxÞ;vzÞ. Due to the dimensionality of the

problem, one verifies that Ez, Bx, By remain zero. The

reduced set of equations is therefore Maxwell’s equations

coupled with the Vlasov equation @tFþ vx@xF�
ðe=meÞð ~Eþ ð ~v=cÞ � ~BzÞ � @ ~vF ¼ 0 where Fðx;vx;vy;tÞ¼R
dvzfðx;vx;vy;vz;tÞ. The formal solution of the Vlasov

equation is Fðx; vx; vy; tÞ ¼ F0ðx0; vx0; vy0Þ, where x0, vx0,

and vy0 denote the position and velocities of an electron

at t ¼ 0 and F0 ¼
R
dvz0f0 [23,24]. At early times, if we

assume that the induced fields are sufficiently small that
we can neglect their effect on the change of momentum of
the electrons, the distribution function can be determined
along the free streaming orbits of the electrons [25]. For
the sake of simplicity, we separate the initial electronic
distribution in two parts, F0 ¼ F�

0 ðx0 < 0Þ þ Fþ
0 ðx0 > 0Þ.

The electron currents read J�e;y’�e
R
dvyvy

R
dvxF

�
0 ðx�

vxt;vx;vy�v0Þ. For a Maxwellian distribution function,

fMðvÞ¼e�v2=2v2
th=

ffiffiffiffiffiffiffi
2�

p
vth, we have F

�
0 ðx0;vx0;vy0�v0Þ¼

n0fMðvx0ÞfMðvy0�v0Þ and we obtain J�e;y ’ �en0v0�R1
�x=t dvxfMðvxÞ ’ � ðev0n0=2Þerfcð�x=

ffiffiffi
2

p
vthxtÞ. The

total current is given by adding the unperturbed proton
currents Jp;y ¼ en0v0sgnðxÞ, from which the magnetic

field can be integrated by neglecting the displacement
current in Ampère’s Law

Bdc ’ e4�n0�0

ffiffiffi
2

p
vthxt

�
e��2ffiffiffiffi
�

p � �erfcð�Þ
�
; (2)

where � ¼ jxj= ffiffiffi
2

p
vthxt. We thus verify that the dc-mag-

netic-field width is on the order of
ffiffiffi
2

p
vthxt and its peak

intensity grows linearly in time as Bpeak
dc ¼4

ffiffiffiffiffiffiffi
2�

p
en0�0vthxt

[Fig. 2(a4)]. This derivation is valid as long as the orbits of
the electrons do not diverge much from the free streaming
orbits, i.e., as long as the electric and magnetic fields that
develop self-consistently do not affect the free motion
of the particles. However, the electrons will eventually
feel the induced magnetic field, which tends to push

more electrons across the shear via the ~v0 � ~Bdc force.

FIG. 1 (color online). Bz component of the magnetic-field
structure generated by the cold KHI for v0 ¼ 0:2c during
(a) the linear regime, (b) near saturation, and (c) at t ¼
1000!�1

pe ¼ 100!�1
pi . The insets on the right hand side represent

the longitudinal average of the magnetic field, revealing the dc
component. (S1) and (S2) show the magnetic field at saturation
for an initial smooth shear v0ðxÞ=c ¼ 0:2 tanhðx=LÞ with
L ¼ 10c=!pe ¼ c=!pi.
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Consequently, the rate at which electrons cross the shear
increases, which in turn enhances the growth rate of the
magnetic field. We find that the displacement current term
leads to a ðvthx=cÞ2 correction to the dc-magnetic-field
peak at early times (following a simple dimensional analy-
sis of Maxwell’s curl equations), which is negligible in
our regime. However, the displacement current tends to
increase the electron current on either side of the shear
interface, eventually building the dc-magnetic-field side
wings observed at later times [Figs. 2(a3) and 2(b3)].

In order to verify our analytical calculations and to
further investigate the phase where electrons deviate
from their free streaming orbits, we carried out 1D simu-
lations of the x direction of the 2D simulations. The Debye
length is resolved in the 1D simulations (�x ¼ �D), and
we used 1000 particles per cell. Figures 2(a1)–(a3) shows
the time evolution of the xpx phase space and the magnetic
field for vth ¼ 0:016c and v0 ¼ 0:2c. At earlier times of
!pet ¼ 9 [Fig. 2(a1)], an excellent agreement between the

model and the simulation is observed. The model breaks
down approximately when an electron initially with vx ¼
0 (around the shear) acquires a velocity change on the order
of vthx, which corresponds to a strong distortion of the
Maxwellian distribution around the shear. Figures 2(a2)

and 2(a4) shows this effect at !pet ¼ 17. The model

underestimates the magnitude of the magnetic field, and
one can clearly observe the distortion of the distribution
function in the field region. As the magnetic field grows,
the Larmor radius (rL) of the electrons crossing the shear
interface decreases. When the minimum rL;min (associated

to the peak of Bdc) becomes smaller than the characteristic
width of the magnetic field ldc, the bulk of the electrons
becomes trapped by the magnetic-field structure. This
is illustrated in Fig. 2(a3) at !pet ¼ 55. The magnetic

trapping prevents the electron bulk expansion across the
shear (that drives the growth of the magnetic field), satu-
rating the magnetic field. An estimate of the saturation
can be obtained by equating rL;min � ldc. From Eq. (2),

it is possible to write the magnetic field as Bdcðx; tÞ ¼
4�en0�0wðx; tÞ, where wð0; tÞ should be interpreted as
the characteristic width of the field. With ldc � wð0; tÞ,
rL;min¼�0mev0=eBdcð0;tÞ, we find that ldc � c

ffiffiffiffiffiffi
�0

p
=!pe,

giving the saturation level of the magnetic field as
eBsat

dc =mec!pe � �0
ffiffiffiffiffiffi
�0

p
. This scaling has been verified

for 1D simulations (Fig. 3).
In the absence of an initial temperature, an alternative

mechanism is needed to drive the electron mixing across
the shear surface that in turn generates the dc field. This
mechanism is the cold fluid KHI that operates in 2D and
3D geometries. In fact, in the warm shear flow scenario,
both the cold fluid KHI and the electron thermal expansion
can contribute to the generation of the dc field. This
happens when the typical length of the dc field due to the
thermal expansion (ldc) after a few e foldings of the cold
fluid KHI (TKHI;growth ¼ ne-foldings=�max, where ne-foldings is

on the order of 10) is on the order of the relativistic electron
skin depth, i.e., vthTKHI;growth � ffiffiffiffiffiffi

�0
p

c=!pe. Therefore, the

cold fluid KHI dominates the electron mixing in the limit
vthTKHI;growth � ffiffiffiffiffiffi

�0
p

c=!pe.

For a two-dimensional cold plasma undergoing
the KHI, the electron distribution function can be

FIG. 2 (color online). Evolution of the electron phase space
[(a1)–(a3)] and (b1)–(b3)] and dc-magnetic-field peak [(a4) and
(b4)]; log-log scale is used to display linear dc peak evolution in
(a4), and log-linear scale is used to display exponential evolution
in (b4). Left: 1D warm shear flow with v0 ¼ 0:2c and vth ¼
0:016. Right: 2D cold shear flow for the same v0. The blue (red)
color represents the electrons with a negative (positive) drift
velocity v0. The self-consistent dc magnetic field is represented
by the solid curve, whereas the dashed curve represents the
magnetic field given by the theoretical model. The flow velocity
is positive (negative) on the right (left) side of the shear.

FIG. 3 (color online). Magnitude of the dc-magnetic-field peak
at saturation as a function of �0

ffiffiffiffiffiffi
�0

p
. The red, blue, and black

markers represent the results of 1D, 2D, and 3D PIC simulations,
respectively. The error bars are associated to the fluctuations of
the peak value in the saturation stage. The lines represent best-fit
curves to the simulation results, demonstrating the good agree-
ment with the theoretical estimate.
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written as fðx;y;vx;vy;vz;tÞ¼n0�ðvx�vx;flðx;y;tÞÞ�ðvy�
vy;flðx;y;tÞÞ�ðvzÞ where vx;fl, vy;fl correspond to the

velocity field solutions of the fluid theory. In this case, the
self-generated KHI fields play the role of an effective
temperature that transports the electrons across the shear
surface, while the protons remain unperturbed, inducing a
dc component in the current density and, hence, in the
fields. We then have to solve the evolution of the distribu-
tion function and show that the current density Jy, averaged

over a wavelength � ¼ 2�=kk, has a nonzero dc part.

We follow the same approach as before and calculate
the average distribution function defined as Fðx; vx; tÞ ¼
ð1=�ÞR dvy

R
dvz

R
� dyfðx; y; vx; vy; vz; tÞ. To obtain ana-

lytical results we will assume that the linearly perturbed
fluid quantities are purely monochromatic, which is equi-
valent to assume that after a few e foldings, the mode
corresponding to kk ¼ kkmax dominates with a growth

rate of � ¼ �max. We then write vy;fl ’ v0ðxÞ and vx;fl ¼
�vx;fl sinðkkyÞe�k?jxjþ�t, where �vx;fl is the amplitude of the

velocity perturbations at t ¼ 0. We then obtain

Fðx; vx; tÞ ¼ n0

�vmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ; (3)

where �ðx;vx;tÞ¼vx=vmaxðx;tÞ with vmaxðx;tÞ ¼
�vx;fle

�k?jxjþ�t. We observe that the development of 2D

cold KHI [Fig. 2(b)] reveals close similarities with the
1D hot model previously described. In the 2D KHI,
averaging the distribution in the direction of the flow
shows that the perturbation gives rise to a spread in vx

that may be interpreted as an effective temperature.
The spread in vx decays exponentially away from the
shear and grows exponentially with time. The mean
velocity is zero, and the effective temperature associated
to this distribution function is defined as V2

effðx; tÞ ¼ð1=n0Þ
R
dvxv

2
xFðx; vx; tÞ ¼ v2

max=2. One can then expect
a similar physical picture as that in the hot shear scenario
and, as a result, the emergence of dc components in the
fields which are induced by the development of the un-
stable KH perturbations. The evolution of the phase space
in Fig. 2 illustrates the similarity between the warm 1D
[Figs. 2(a1)–2(a3)] and cold 2D [Figs. 2(b1)–2(b3)]
scenarios.

The challenge in this scenario is to determine how such
a distribution function expands across the shear surface
due to the complexity of the orbits in the fields structure
(multidimensional fields with discontinuities at x ¼ 0).
In the region where the electron mixing occurs, we assume
electron orbits given by x� x0 þ ðvx0=�Þe�t and vx �
vx0e

�t where x0 and vx0 are the position and velocity of
a particle at the time t0 when the instability begins. We

obtain J�e;yðx;tÞ ’�ev0

Rv0
max

�x�dvxFðx;vx;tÞ ’ ev0n0½ð1=2Þ�
ð1=�Þarcsinðx�=v0

maxÞ	 where x� 2 ½�v0
max; v

0
max	 and

v0
maxðtÞ ¼ vmaxðx ¼ 0; tÞ that represents the maximum ve-

locity of a particle that was originally in the vicinity of the

shear. The limits of the integral represent the deformation
of the boundary between the two flows on a characteristic
distance of v0

max=� as the instability develops. We then find
the total current density by summing the proton contribu-
tion and integrate to obtain the induced dc magnetic field

Bdcðx_0; tÞ¼�8en0�0x

"
arcsinð	Þ��

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

	2
�1

s #
(4)

with 	 ¼ �x=v0
max. The peak of the dc magnetic field is

located at x ¼ 0 where the expression above reduces to
Bdcð0; tÞ ¼ 8e�0n0v

0
maxðtÞ=� and thus grows at the same

rate as the KHI fields that can be verified in Fig. 2(b4). One
can verify in Figs. 2(b1) and 2(b2) that Eq. (4) shows
reasonable agreement with the 2D simulations. This deri-
vation neglects the dc Lorentz force on the electron trajec-
tories, which makes this model valid as long as the induced
dc field remains small compared to the fluid fields asso-
ciated to the mode kkmax. The peak of the Bdc field is

proportional to v0
maxðtÞ. We therefore conclude that the

induced dc magnetic field is always of the same order of
the fluid fields [Figs. 1(a) and 1(b)]; thus, its consequences
to KHI development cannot be neglected. As the dc field
evolves, electrons start to get trapped and we expect a level
of saturation similar to the one obtained in the 1D model
which is verified by the simulations. The comparisons
between the saturation level of the 1D, 2D, and 3D simu-
lations are shown in Fig. 3, verifying the �0

ffiffiffiffiffiffi
�0

p
scaling.

When a smooth shear is considered, the electron KH still
develops, and we verified that the initial electron transport
across the shear, due to the development of the instability,
is the mechanism triggering magnetic-field generation,
therefore validating the physics captured by our model.
At saturation, the dc magnetic field has a typical width
on the order of the initial shear gradient length and
reaches a maximum value of BdcðLÞ � Bdcð0Þ=L where L
is the initial shear gradient length measured in c=!pe.

Interestingly, the dc magnetic field remains stable beyond
the electron time scale and persists up to 100’s !�1

pi as

shown in Figs. 1(c) and 1(S). Eventually the protons will
drift away from the shear surface due to the magnetic
pressure, broadening the dc-magnetic-field structure and
lowering its magnitude.
In conclusion, we have shown that the emergence of dc

magnetic field is an intrinsic phenomenon associated to
electron-ion shear flows. The dc field is generated through
the formation of dc current driven by the expansion of
electrons in the shear region due to a thermal expansion
or the development of the cold fluid KHI perturbations. We
have presented an analytical description of the formation
of the dc field in agreement with 1D, 2D, and 3D PIC
simulations. The dc-magnetic-field saturation on the elec-
tron time scale is independent of the type of the expansion
and persists up to proton time scales, reaching maximum
magnitudes of eBdc=mc!pe ’ 1:4�0

ffiffiffiffiffiffi
�0

p
with thicknesses
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of a few
ffiffiffiffiffiffi
�0

p
c=!pe and, thus, is dynamically relevant for

the evolution of the KHI on ion time scales. The effect of
an initial smooth shear tends to lower the saturation value
proportionally to the initial shear gradient length whereas
the thickness increases proportionally.
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