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It is shown through analytical modeling and numerical simulations that external magnetic fields
can relax the self-trapping thresholds in plasma based accelerators. In addition, the transverse
location where self-trapping occurs can be selected by adequate choice of the spatial profile of the
external magnetic field. We also find that magnetic-field assisted self-injection can lead to the
emission of betatron radiation at well defined frequencies. This controlled injection technique could
be explored using state-of-the-art magnetic fields in current/next generation plasma/laser wakefield
accelerator experiments.
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INTRODUCTION

Plasma based accelerators (PBA) use high intensity

laser pulses [1], with intensities above I ∼ 1018 W/cm
2
,

or highly charged particle bunch drivers [2], with more
than 1010 charged particles, to excite ultra-relativistic
plasma waves. The ideal plasma density to maximize
charge and energy gain depends on the nature of the
driver (i.e. lepton, hadron or laser pulse), typically rang-
ing between n0 = 1014 − 1019 cm−3. At these plasma
densities, charged particle bunches can be accelerated by
plasma wakefields to 1-100 GeV in 1-100 cm [3].

The proof-of-principle of PBA is firmly demon-
strated [4, 5]. Presently, connection with applications [6]
is an essential step to further improve this technology.
To this end, fine control over the properties of the ac-
celerated electrons is required. Several techniques were
proposed to control self-trapping. Control over charge
and energy of accelerated bunches can be reached using
plasma ramps [7], counter propagating lasers [8], to ion-
ization mechanisms [9], and resorting to non-linear opti-
cal effects such as self-focusing [10].

A novel technique using transverse magnetic fields
to relax self-injection thresholds has been recently pro-
posed [11]. The use of external magnetic fields in plasma
acceleration was first proposed to extend the accelera-
tion distances in plasma accelerators in the surfatron
model [12]. The role of external magnetic fields in PBA
was also explored in [13], and the use of longitudinal mag-
netic fields to enhance the self-injected charge in laser
wakefield acceleration was investigated in [14].

This paper presents a detailed derivation of the self-
trapping threshold condition in the presence of external
fields. Using the particle-in-cell (PIC) code Osiris [15],
it is shown that magnetic injection can be used to gener-
ate single or multiple off-axis self-injected bunches with
well defined radial injection positions. Using the post-

processing radiation code JRad [16] it is demonstrated
that these electrons may emit betatron radiation at well
defined frequencies close to the undulator regime. This
paper is structured as follows. In Sec. describes an
analytical trapping condition in the presence of external
fields. In Sec. , 3D PIC simulation results are employed
to analyze the relevant physical mechanisms of magnetic
field assisted self-injection. The use of different B-field
geometries to control transverse features of magnetically
injected electrons is described in Sec. . Section shows
that magnetically assisted injection can lead to the emis-
sion of clearly defined betatron radiation harmonics for
the first time in PBAs. Finally, conclusions are stated in
Sec. .

TRAPPING CONDITIONS IN THE PRESENCE
OF EXTERNAL FIELDS

The dynamics of the electrons in the fields created
by an intense laser in the blowout regime can be de-
scribed using Hamiltonian dynamics [9]. A general trap-
ping condition in the presence of external fields can be
found by examining the evolution of the Hamiltonian of
plasma electrons in the co-moving frame, (x = x, y =
y, ξ = vφt − z, s = z), given by H = H − vφP‖, where
(x, y) are the transverse coordinates, z the distance,
vφ the wake phase velocity (determined by the driver
group velocity), P‖ the longitudinal canonical momen-

tum, H =
√
m2
ec

4 + (P + eA)2 − eφ the Hamiltonian of
a charged particle in the presence of electric and magnetic
fields, me and e the electron mass and charge, c the speed
of light, A and φ the vector and scalar potentials, and
P = p− eA, where P and p are the canonical and linear
momentum respectively. Normalized units will be used
henceforth unless explicitly stated. Mass and charges are
normalized to me and e, respectively, velocity v to c, time
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to ωp =
√

4πn0e2/me, momentum to mec, and density
to the background plasma density n0. Vector and scalar
potentials are normalized to e/mec

2 and e/mec respec-
tively. Magnetic fields (B) are normalized to ωc/ωp where
ωc = eB/me is the cyclotron frequency.

In order to derive a trapping threshold condition in the
presence of external fields, we consider first the expres-
sion for the temporal evolution of H:

dH
dt

= (vφ − v‖)
dH
dξ

=
∂H

∂s
=

[
v · ∂A

∂s
− ∂φ

∂s

]
, (1)

Integration over the particle trajectory yields:

Hf −Hi =

∫
dt

dH
dt

=

∫
dξ

vφ − v‖
dH
dt
, (2)

where the subscripts ’i‘ and ’f ‘ refer to the initial and
final (trapped) electron positions. The integration is per-
formed along the electron trajectory, and dt = dξ/(vφ −
vz). Combining Eq. (1) with Eq. (2) gives:

Hf −Hi =

∫
dξ

dH
dξ

=

∫
dξ

[
v · ∂A

∂s
− ∂φ

∂s

]
, (3)

Using the definition for H, and considering that initially
electrons are at rest (i.e. pi = 0):

Hf−Hi = γf−vφpf‖−1−
(
φf − vφAf‖

)
−
(
φi − vφAi‖

)
,

(4)

with φ = φpl + φext, A‖ = Apl
‖ + Aext

‖ , and where the

superscripts ’pl‘ and ’ext‘ refer to the plasma and external
fields respectively, and γ = (1−v2)−1/2 is the relativistic
factor. Defining the wake potential ψ = φ− vφA‖, ∆ψ =
ψf −ψi, and assuming that for trapping the longitudinal
velocity of the electron must reach the velocity of the
wake i.e. vz = vφ, Eq. (4) readily becomes:

Hf −Hi =
γ

γ2
φ

− 1−∆ψpl −∆ψext. (5)

where γφ = (1 − v2
φ)−1/2 is the gamma factor of the

plasma wave. Using Eq. (3) to express Hf − Hi leads
to the trapping condition [11]:

1 + ∆ψpl =
γ

γ2
φ

−
∫

dH
dξ

dξ −∆ψext. (6)

Equation (6) is a general trapping condition in the pres-
ence of external fields, and valid beyond the range of va-
lidity of the quasi-static approximation [17]. Analytical
solutions to Eq. (6), however, are not yet known because
the calculation of ∆ψpl and

∫
dξHdξ requires accurate

prediction of the particle trajectories and field structures
at the back of the bubble, where the applicability of the
standard analytical models [18] is limited.

To retrieve a general trapping threshold in the absence
of external fields, and in the conditions where the quasi-
static approximation is valid, it should be considered

∆ψext = 0, and
∫

dξHdξ = 0 in Eq. (6). For an ultra-
relativistic plasma wave with γφ → ∞ trapping occurs
when 1 + ∆ψpl = 0, or, equivalently, ∆ψpl = −1. Gen-
erally, this condition can only be met at the back of the
plasma wave, in regions of maximum accelerating fields,
where ψpl is minimum and approaches ψpl = −1 [9]. In
the presence of static external fields the trapping condi-
tion becomes 1 + ∆ψpl = −∆ψext. The trapping thresh-
olds are relaxed because they can be met when ∆ψpl is
larger than −1 provided that ∆ψext > 0. In other words,
trapping may occur for lower values of peak accelerat-
ing gradients. Moreover, trapping may be suppressed if
∆ψext < 0.

Trapping can also be relaxed (or suppressed) when the
external fields vary spatially in z because of the contri-
bution of finite

∫
dξHdξ 6= 0 to Eq. (6). If the pro-

file of the external fields profile leads to
∫

dξHdξ > 0
(
∫

dξHdξ < 0) along the electron trajectory then trap-
ping is facilitated (suppressed) [10, 11]. Physically, the
fact that

∫
dξHdξ > 0 is typically associated with the re-

duction of the wake phase velocity through the accordion
effect, thus facilitating self-injection [10, 11, 19].

MAGNETICALLY CONTROLLED
SELF-INJECTION IN LWFAS AND PWFAS

To investigate controlled self-trapping in the presence
of external static magnetic fields we present in this sec-
tion 3D particle-in-cell simulations of laser (LWFA) and
plasma (PWFA) wakefield accelerators using the particle-
in-cell code Osiris. Figure 1 illustrates the evolution,
and highlights the key mechanisms of injection assisted
by external B-fields in the LWFA. The simulation win-
dow moves at the speed of light, with dimensions of
24 × 24 × 12 (c/ωp)

3, divided into 480 × 480 × 1200
cells with 1 × 1 × 2 electrons per cell in the (x, y, z)
directions respectively. The plasma ions are immobile.
A linearly polarized laser pulse with central frequency
ω0/ωp = 20 was used, with a peak vector potential of
a0 = 3, a duration ωpτFWHM = 2

√
a0, and a trans-

verse spot size matched to the pulse duration such that
W0 = cτFWHM [3]. The plasma density is of the form
n = n0(z)

(
1 + ∆nr2

)
for r <

√
10 c/ωp and n = 0 for

r >
√

10c/ωp with ∆n = ∆nc = 4/W 4
0 (i.e. the nor-

malized matching condition given by ∆nc = 4/(πreW
2
0 ),

where re = e2/mec
2 is the classical electron radius) be-

ing the linear guiding condition in the normalized units,
and where n0(z) is a linear function of z which increases
from n0 = 0 to n0 = 1 for 50 c/ωp to ensure a smooth
vacuum-plasma transition. The channel guides the front
of the laser thereby minimizing the evolution of the bub-
ble. A static external B-field pointing in the positive
y-direction was used. At the point where the plasma den-
sity reaches its maximum value, the external field rises
with Bext

y = ωc/ωp = 0.6 sin2[πz/(2Lramp) + Φ1], with
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Lramp = 10c/ωp. It is constant and equal to Bext
y = 0.6

for Lflat = 40 c/ωp and then drops back to zero with
Bext
y = 0.6 sin2[πz/(2Lramp) + Φ2]. Moreover, Φ1 and

Φ2 are phases chosen to guarantee the continuity of the
external B-field profile. Qualitatively, the longitudinal
profile of the magnetic field thus resembles that of [20].
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FIG. 1: 3D osiris simulation results illustrating the mag-
netic self-injection mechanisms. (a), (c), and (e) show the
electron plasma density in gray, the self-trapped particles in
blue, and the laser pulse envelope in red colors at t = 110/ωp,
t = 126/ωp and t = 159/ωp. (b), (d), and (f) show the cor-
responding p‖ − ξ phase-space. The magnetic field leads to
off-axis self-injection in a narrow angular region. The inset
in (f) represents the transverse momentum phase-space of the
self-injected electron bunch residing within the bubble. The
B-field profile is schematically represented on the top of the
figure. The laser driver moves from left to right as indicated
by the arrow.

Self-injection is absent from the regions where the B-
field rises. In these regions, electrons traveling backwards
(vz < 0) near the back of the bubble feel an increas-
ing v × Bext force that rotates electrons anti-clockwise
thereby locally decreasing (increasing) the blowout ra-
dius for x > 0 (x < 0). Then, as the B-field rises, the
local wake phase velocity at the back of the bubble in-
creases (decreases) for x > 0 (x < 0). For x > 0, vφ
is superluminal,

∫
dξHdξ < 0, and self-injection can not

occur. For x < 0 trapping is precluded because electrons
reach the axis in regions where the plasma focusing and
accelerating fields are unable to focus and trap electrons.
Thus, although for x < 0

∫
dξHdξ > 0, we have that∫

dξHdξ + ∆ψext < 0.
Self-trapping occurs in the uniform regions of the ex-

ternal magnetic field where x > 0. For x > 0, elec-
trons rotating anti-clockwise reach the axis in regions of
maximum focusing and accelerating fields with larger p‖
and can be trapped. For x < 0, electrons reach regions
of the axis (where focusing and accelerating fields are
lower) with lower p‖, and are are lost to the surround-
ing plasma. A threshold B-field for injection may be
retrieved in the limit where γφ → ∞. Neglecting the
plasma fields (∆ψpl = 0), and noting that the exter-
nal longitudinal vector potential Aext

‖ = −Byx is consis-
tent with the considered magnetic field, leads to a sim-

plified trapping condition ∆ψext = −By∆x = 1, where
∆x = xf − xi ' −rb, where rb is the blowout radius and
where it was considered that the initial (final) trapped
electron radial position is x = rb (x = 0). It shows that
injection is facilitated in the region where ∆x < 0 is min-
imum. As a consequence, injection occurs off-axis (for
x > 0), and in a well defined azimuthal region defined by
−Byrb sin θ = 1, where θ is the angle between the plane
of the electron trajectory with the B field [11]. Note,
however, that this trapping threshold condition overes-
timates the threshold B-field for self-injection because it
neglects the plasma fields.

There is an upper By value, given by ωc/ωp . 1, be-
yond which injection may be suppressed in regions where
the B field is flat. The later condition ensures that the
plasma wakefields are nearly undisturbed by the exter-
nal fields. Simulations then showed that when ωc/ωp � 1
there is a suppression of the wakefields that prevents in-
jection. Hence trapping can be relaxed in the regions of
uniform B-fields provided that 1/rb . By . 1 or, equiv-

alently 170/rb[10µm] . B[T] . 32
√
n0[1016cm−3].

The above-mentioned upper B-field limit for injection
is absent from the downramp regions, where a stronger
self-injection burst occurs for x > 0. Injection occurs
within the same angular and radial region as in the uni-
form B-field section (Fig. 1c). For x > 0, when the B-
field lowers rb increases, vφ lowers and

∫
dξHdξ > 0,

facilitating injection. For x < 0, vφ > 1, and trapping is
suppressed. The resulting phase space at t = 126c/ωp is
shown in Fig. 1d.

After the magnetized plasma region, the magnetically
injected electron bunch is clearly detached from the back
of the bubble, leading to the generation of a quasi-mono-
energetic electron bunch. The magnetic injected electron
bunch right after the B-field is shown at t = 159c/ωp
in Fig. 1e, and the corresponding phase-space in Fig. 1f.
The inset of Fig. 1f shows the transverse phase space of
the magnetically injected electron bunch residing within
the blowout region. The asymmetrical distribution re-
sults from the fact that the injection process occurs off-
axis. At this location, the emittance of the beam is on
the order of 1π mm mrad in both transverse directions.
Although comparison of beam emittance with a similar
scenario without the B-field is not meaninfull because
without the field the amount of self-injected charge is
much smaller. However, the measured beam emittance
is at the same values or lower than typical emittances of
LWFAs.

External magnetic fields also relax the self-trapping
thresholds in the PWFA. Figure 2 shows results from a
3D simulation of a magnetized PWFA. A 30 GeV elec-
tron bunch was considered with density profile given

by nb = nb0 exp
(
−x2
⊥/(2σ

2
⊥)
)

exp
(
−ξ2/(2σ2

ξ )
)

, with

σ⊥ = 0.17 c/ωp, σξ = 1.95 c/ωp, and nb/n0 = 19. These
parameters ensure that rb is similar to the magnetized
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LWFA investigated above. The simulation window di-
mensions are 24 × 24 × 24 (c/ωp)

3, and it is divided in
480× 480× 640 cells with 1× 1× 2 electrons per cell in
the (x, y, z) directions respectively. The magnetic field
profile is similar to the LWFA case.
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FIG. 2: 3D osiris simulation results illustrating magnetic self-
injection in the plasma wakefield accelerator using (a) Bext =
0, (b) Bext = 0.2, and (c) Bext = 0.6 at t = 275/ωp. In this
scenario the B-field injection mechanism is dominated by the
plasma bubble dynamics in the B-field down-ramp. It is clear
that the trapped charge increases with the amplitude of the
external field. The driver moves from left to right as indicated
by the arrow in (c).

The accelerating structures are similar for the LWFA
and PWFA parameters described above since the blowout
radius are similar for both cases. However, as shown by
Eq. (6), self-injection thresholds are harder to meet in the
PWFA than in the LWFA because γPWFA

φ ' 60000 �
γLWFA
φ ' 20. In contrast to the LWFA scenario, injec-

tion is then absent in the PWFA in the uniform regions
of the B-field, where the larger pz at the back of the bub-
ble for x > 0, associated with the additional electrons
v×B anti-clockwise rotation, is still below that required
for injection. Magnetic self-injection occurs only in the
B-field downramp (Fig. 2b-c), where the injection mecha-
nism is similar to that ascribed to the LWFA. In general,
stronger self-injection bursts occur in the B-field down-
ramp for both LWFA and PWFA.

The amount of self-injected charge can be tuned by
changing the B-field amplitude. The inset of Fig. 2c
shows the spectra of the self-injected charge in the first
plasma bucket using Bext = 0.6 (red curve), Bext = 0.2
(green curve), and Bext = 0.0 (blue curve). The amount
of trapped charge is negligible in the un-magnetized sce-
nario, and it is roughly 8 times larger for Bext = 0.6
than for Bext = 0.2 (notice that the plot is logarithmic in
the vertical y-direction). These results show that higher
B-field amplitudes increase the total amount of injected
charge.

Because of beam-loading [21], higher amounts of self-
injected charge lead to lower accelerating gradients. Con-
sequently, the maximum energy that can be achieved is
lower for self-injected bunches with higher charges. This
is consistent with the inset of Fig. 2c which shows that
self-injected bunches with lower charges reach higher en-
ergies.

The inset of Fig. 2c also shows that the energy spreads
of the magnetically injected electrons are on the order
of 100%. Due to the short duration of the self-injected
bunch in comparison to the plasma wavelength, which
guarantees uniform acceleration throughout the entire
bunch length, the relative energy spread would decrease
as the beam accelerates. Moreover, the energy spread
would further narrow down near the dephasing length
due to the bunch phase-space rotation [22].

For these parameters the threshold magnetic field for
self-injection is Bext

y & 0.2. To connect these sim-
ulations with actual experimental conditions, we take
n0 = 1017 cm−3 for which the electron beam and plasma
parameters match those available at SLAC [5] with σ⊥ =
50.4 µm, σz = 84 µm and a total number of 3×1010 elec-
trons. For these parameters, Bext

y = 0.2 corresponds to
20 T. These magnetic fields could be produced with state-
of-the-art magnetic field generation techniques [20, 25].
By tuning further the plasma parameters controlled in-
jection with magnetic fields as low as 5 T can also be
achieved (cf. Sec. ).

SIMULTANEOUS GENERATION OF MULTIPLE
SELF-INJECTED ELECTRON BUNCHES

The transverse location where self-trapping is relaxed
can be selected by adequate choice of the profile of the
external magnetic field. As an example, Fig. 3 shows the
results from a 2D slab geometry simulation using a mag-
netic field which reverses sign at x = 0 (this is equivalent
to an azimuthal B-field profile in cylindrical symmetry).
In this case, the magnetic field points outside (inside)
the simulation plane for x > 0 (x < 0). The 2D sim-
ulations use a simulation box that moves at c with di-
mensions 12× 32 (c/ωp)

2, and is divided into 640× 3000
cells with 3× 3 electrons per cell in the (x, ξ) directions
respectively. The laser pulse and plasma channel param-
eters are similar to those of the 3D LWFA simulation
(cf. Fig. 1). The amplitude of the external B-field is
Bext
y = ωc/ωp = 0.6 sin2[πz/(2Lramp) + Φ1]x/|x|, with

Lramp = 10c/ωp, it is constant and equal to Bext
y = 0.6

for Lflat = 50 c/ωp and drops back to zero with Bext
y =

0.6 sin2[πz/(2Lramp) + Φ2]x/|x|, where the choice of Φ1

and Φ2 ensures the continuity of the B-field longitudinal
profile.

Figure 3a shows the magnetically injected electrons in
the regions where the B-field is uniform. Two off-axis in-
jection bursts occur at well defined transverse positions
in the flat B-field regions. The two bunches are then in-
jected symmetrically close to x = 0. An additional and
stronger self-injection burst occurs at the B-field down-
ramp (Fig. 3b). After the magnetized plasma region, the
two self-injected electron bunches continuously acceler-
ate in the wakefield (Fig. 3c). Note that Fig. 3c refers
to the early propagation of the electron bunch, much
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shorter than the dephasing length. Similarly, the propa-
gation distance is much smaller than the betatron period
of oscillation. The physical mechanisms under which self-
injection occurs in the present configuration are identical
to those presented in Sections and .

Interestingly, Fig. 3 reveals that injection occurs in a
highly spatially localized region. Off axis injection from
well defined radial and azimuthal regions was observed in
Sec. in 3D simulations. Generally, however, this effect
is more noticeable in 2D slab geometry simulations than
in 3D. These results also suggest that ring like electron
bunches could be obtained in 3D. This could be advan-
tageous for radiation generation purposes because bunch
particles would perform betatron oscillations with similar
amplitudes.
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azimuthal-like magnetic field. In the upper (lower) simulation
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tion plane. (a) is taken in the B-field flat region at t = 79/ωp,
(b) in the B-field down-ramp at t = 92/ωp, and (c) after the
B-field at t = 102/ωp. The B-field profile is schematically
represented on the top of the figure. This configuration leads
to identical magnetically injected electron bunches in the up-
per and lower simulation mid-plane. The laser driver moves
from left to right as indicated by the arrow. The dark points
represent self-injected particles.

EMISSION OF BETATRON RADIATION AT
WELL DEFINED FREQUENCIES

Typical synchrotron radiation experiments in plasma
accelerators reveal that radiation emission occurs in the
wiggler regime. The wiggler regime enables emission of
x-rays with broad spectra [23]. This contrasts with the
undulator regime, where radiation is emitted at well de-
fined harmonics. Although not yet attained experimen-
tally, the undulator regime provides ideal conditions for
radiation amplification, being critical for the realization
of a ion-channel plasma based laser [24]. This section il-
lustrates how could magnetically injected electrons emit
betatron radiation at well defined frequencies, closer to
the undulator regime.

The PWFA beam and plasma simulation parameters,
presented in Sec. , were tuned in order to lower the re-
quired magnetic field for injection, such that it could be
more easily reached experimentally, and in order to lower

the amplitude of the betatron oscillations in comparison
to the plasma skin depth, such that distinguishable be-
tatron radiation harmonics could be emitted. System-
atic 3D parameter scans then showed that the threshold
magnetic field for injection is 5.5 T at n0 = 1015 cm−3.
At this plasma density, Lflat = 40c/ωp = 6.8 mm, and
Lramp = 10 c/ωp = 1.68 mm, and the maximum B-field
amplitude is Bext

y = 0.55 ωc/ωp. These parameters are
within current technological reach [20, 25]. Simulations
used a simulation box with 12× 12× 16 (c/ωp)

3, divided
into 480× 480× 640 cells with 2× 2× 1 particles per cell
for the electron beam and background plasma.
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Self-trapping occurs off-axis at the B-field downramp.
Injection is localized radially and azimuthally, enabling
the bunch to perform synchronized betatron oscillations
(Fig. 4a). The transverse x-axis shift of the electron tra-
jectories result from the electron beam driver deflection
when traversing the magnetized plasma region. The de-
flection angle is small and could be corrected by adding
additional magnetized plasma regions with alternating
B-fields along the propagation direction [11].

The small blowout radius (rb ' 1.5c/ωp) ensures
that the betatron amplitudes of oscillation rβ are much
smaller than the plasma skin-depth (〈rβ〉 ' 0.06c/ωp).
The corresponding radiation strength parameter (αβ =
γKβrβkp) distribution, where Kβ = 1/

√
2γ is the nor-

malized betatron frequency, and kp the plasma wavenum-
ber, is shown in the inset of Fig. 4a. It shows that a
significant portion (83%) of the electrons radiate with
αβ < 1, an indication that single harmonics could be
distinguishable in the emitted radiation spectrum. To
retrieve the radiation spectrum, a random sample of the
self-injected electrons was post-processed using the radi-
ation code JRad [16]. Figure 4b-c shows the radiation
spectrum in the transverse central lines of a virtual de-
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tector placed at a distance 5100 c/ωp from the exit of the
plasma. The detector lies on the x− y plane.

The asymmetries in the x direction depicted in Fig. 4b
result from the tilt of the magnetically injected electron
trajectories. Figure 4b-c reveal that radiation is emitted
at well defined frequencies, which are particularly clear
at larger angles, i.e. for larger |x|. The width of each
harmonic present in Fig. 4b is larger than that expected
in an idealized scenario, where radiation would be purely
emitted in the undulator regime. This widening is due
to the spread on the αβ distribution (through γ and rβ
spreads) and also because some electrons radiate with
strength parameters which are larger than unity αβ & 1.

For an electron bunch with constant relativistic factor
γ, and constant rβ in a pure ion-channel, the frequency
of the betatron radiation harmonics emitted in the un-
dulator regime are given by [26]:

ωn
ωp

=
2nγ2Kβ(

1 + α2
β/2
)

cos θ + 2γ2 (1− cos θ)
, (7)

where n corresponds to the nth emitted harmonic, and θ
to the angle between the velocity vector of the electron
and the point in the detector. Radiation collected on-axis
only exhibits odd-harmonics. To compare the predictions
of Eq. (7) with simulation results we computed the parti-
cles trajectories average 〈γ〉 = 400 and 〈rβ〉 = 0.06. This
yields αβ ' 0.7, consistent with the inset of Fig. 4. The
analytical prediction Eq. (7) are shown by the dashed
lines in Fig. 4b-c. Eq. (7) is in good agreement with the
simulation results specially for larger values of |x|. Dis-
crepancies are due to the fact that the beam trajectories
are tilted, and that αβ , rβ , and γ vary in time and for
each electron.

CONCLUSIONS

In conclusion, we explored further a recent controlled
injection technique that uses transverse, static mag-
netic fields to tailor transverse properties of self-injection.
This scheme leads to off-axis self-injection in well de-
fined radial and azimuthal regions. A configuration con-
sisting of a section of transversely uniform magnetized
plasma yielding off-axis self-injection was investigated.
It was shown that simultaneous self-injection of electron
bunches could be achieved by using transversely non-
uniform fields. This work also suggests that a series of
magnetized regions could be used to produce a temporal
sequence of electron bunches. Moreover, multiple spa-
tially separated electrons could be produced simultane-
ously with transversely non-uniform B-fields. We showed
that this technique could be used to produce electron
bunches capable to emit betatron radiation at well de-
fined frequencies with current technology.
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