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Abstract

The spectrum of known black-hole solutions to the stationary Einstein equations has been
steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not
all black-hole–equilibrium configurations are characterized by their mass, angular momentum
and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-
vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This
text aims to review some developments in the subject and to discuss them in light of the
uniqueness theorem for the Einstein–Maxwell system.
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Chruściel and João Lopes Costa succeeded to this review’s authorship. Significantly restructured
and updated all sections; changes are too numerous to be usefully described here. The number of
references increased from 186 to 329.

http://www.livingreviews.org/lrr-2012-7


Contents

1 Introduction 7
1.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Definitions 9
2.1 Asymptotic flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Kaluza–Klein asymptotic flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Stationary metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Domains of outer communications, event horizons . . . . . . . . . . . . . . . . . . . 10
2.5 Killing horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Bifurcate Killing horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Killing prehorizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Surface gravity: degenerate, non-degenerate and mean-non-degenerate horizons 12

2.6 I+-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Towards a classification of stationary electrovacuum black hole spacetimes 16
3.1 Static solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Stationary-axisymmetric solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Candidate metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 The reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 The Robinson–Mazur proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 The Bunting–Weinstein harmonic-map argument . . . . . . . . . . . . . . . 19
3.2.6 The Varzugin–Neugebauer–Meinel argument . . . . . . . . . . . . . . . . . 19
3.2.7 The axisymmetric uniqueness theorem . . . . . . . . . . . . . . . . . . . . . 19

3.3 The no-hair theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 The rigidity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 The uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 A uniqueness theorem for near-Kerrian smooth vacuum stationary spacetimes 22

3.4 Summary of open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Degenerate horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Rigidity without analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Many components? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Classification of stationary toroidal Kaluza–Klein black holes 26
4.1 Black holes in higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Stationary toroidal Kaluza–Klein black holes . . . . . . . . . . . . . . . . . . . . . 27
4.3 Topology of the event horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Orbit space structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 KK topological censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Classification theorems for KK -black holes . . . . . . . . . . . . . . . . . . . . . . . 28

5 Beyond Einstein–Maxwell 31
5.1 Spherically symmetric black holes with hair . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Static black holes without spherical symmetry . . . . . . . . . . . . . . . . . . . . . 32
5.3 The Birkhoff theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 The staticity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Rotating black holes with hair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



6 Stationary Spacetimes 35
6.1 Reduction of the Einstein–Hilbert action . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 The coset structure of vacuum gravity . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Stationary gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 The stationary Einstein–Maxwell system . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Some Applications 41
7.1 The Mazur identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Mass formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 The Israel–Wilson–Perjés class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Stationary and Axisymmetric Spacetimes 46
8.1 Integrability properties of Killing fields . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Two-dimensional elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 The Ernst equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3.1 A derivation of the Kerr–Newman metric . . . . . . . . . . . . . . . . . . . 49
8.4 The uniqueness theorem for the Kerr–Newman solution . . . . . . . . . . . . . . . 50

8.4.1 Divergence identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.4.2 The distance function argument . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Acknowledgments 53

References 54





Stationary Black Holes: Uniqueness and Beyond 7

1 Introduction

1.1 General remarks

Our conception of black holes has experienced several dramatic changes during the last two hun-
dred years: While the “dark stars” of Michell [235] and Laplace [210] were merely regarded as
peculiarities of Newton’s law of gravity and his corpuscular theory of light, black holes are nowa-
days widely believed to exist in our universe (for a review on the evolution of the subject the reader
is referred to Israel’s comprehensive account [178]; see also [52, 51]). Although the observations
are necessarily indirect, the evidence for both stellar and galactic black holes has become com-
pelling [275, 232, 233, 247, 242, 231]. There seems to be consensus [276, 197, 234, 248] that the
two most convincing supermassive black-hole candidates are the galactic nuclei of NGC 4258 and
of our own Milky Way [123].

The theory of black holes was initiated by the pioneering work of Chandrasekhar [53, 54] in the
early 1930s. (However, the geometry of the Schwarzschild solution [290, 291] was misunderstood
for almost half a century; the misconception of the “Schwarzschild singularity” was retained until
the late 1950s.) Computing the Chandrasekhar limit for neutron stars [8], Oppenheimer and
Snyder [257], and Oppenheimer and Volkoff [258] were able to demonstrate that black holes present
the ultimate fate of sufficiently-massive stars. Modern black-hole physics started with the advent
of relativistic astrophysics, in particular with the discovery of pulsars in 1967.

One of the most intriguing outcomes of the mathematical theory of black holes is the uniqueness
theorem, applying to a class of stationary solutions of the Einstein–Maxwell equations. Strikingly
enough, its consequences can be made into a test of general relativity [285]. The assertion, that all
(four-dimensional) electrovacuum black-hole spacetimes are characterized by their mass, angular
momentum and electric charge, is strangely reminiscent of the fact that a statistical system in
thermal equilibrium is described by a small set of state variables as well, whereas considerably
more information is required to understand its dynamical behavior. The similarity is reinforced
by the black-hole–mass-variation formula [9] and the area-increase theorem [143, 69], which are
analogous to the corresponding laws of ordinary thermodynamics. These mathematical relation-
ships are given physical significance by the observation that the temperature of the black body
spectrum of the Hawking radiation [142] is equal to the surface gravity of the black hole. There
has been steady interest in the relationship between the laws of black hole mechanics and the laws
of thermodynamics. In particular, computations within string theory seem to offer a promising
interpretation of black-hole entropy [171]. The reader interested in the thermodynamic properties
of black holes is referred to the review by Wald [316].

There has been substantial progress towards a proof of the celebrated uniqueness theorem,
conjectured by Israel, Penrose and Wheeler in the late sixties [76, 79, 217] during the last four
decades (see, e.g., [58] and [59] for previous reviews). Some open gaps, notably the electrovacuum
staticity theorem [302, 303] and the topology theorems [109, 110, 85], have been closed (see [59,
73, 65] for related new results). Early on, the theorem led to the expectation that the stationary–
black-hole solutions of other self-gravitating matter fields might also be parameterized by their
mass, angular momentum and a set of charges (generalized no-hair conjecture). However, ever
since Bartnik and McKinnon discovered the first self-gravitating Yang–Mills soliton in 1988 [14],
a variety of new black hole configurations have been found, which violate the generalized no-hair
conjecture, that suitably regular black-hole spacetimes are classified by a finite set of asymptotically-
defined global charges. These solutions include non-Abelian black holes [310, 208, 24], as well as
black holes with Skyrme [94, 161], Higgs [28, 254, 140] or dilaton fields [212, 132].

In fact, black-hole solutions with hair were already known before 1989: in 1982, Gibbons found
a black-hole solution with a non-trivial dilaton field, within a model occurring in the low energy
limit of 𝑁 = 4 supergravity [126].
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While the above counterexamples to the no-hair conjecture consist of static, spherically-symmetric
configurations, there exists numerical evidence that static black holes are not necessarily spheri-
cally symmetric [192, 93]; in fact, they might not even need to be axisymmetric [278]. Moreover,
some studies also indicate that non-rotating black holes need not be static [38]. The rich spec-
trum of stationary–black-hole configurations demonstrates that the matter fields are by far more
critical to the properties of black-hole solutions than expected for a long time. In fact, the proof
of the uniqueness theorem is, at least in the axisymmetric case, heavily based on the fact that
the Einstein–Maxwell equations in the presence of a Killing symmetry form a 𝜎-model, effectively
coupled to three-dimensional gravity [250]. (𝜎-models are a special case of harmonic maps, and
we will use both terminologies interchangeably in our context.) Since this property is not shared
by models with non-Abelian gauge fields [35], it is, with hindsight, not too surprising that the
Einstein–Yang–Mills system admits black holes with hair.

However, there exist other black hole solutions, which are likely to be subject to a generalized
version of the uniqueness theorem. These solutions appear in theories with self-gravitating massless
scalar fields (moduli) coupled to Abelian gauge fields. The expectation that uniqueness results
apply to a variety of these models arises from the observation that their dimensional reduction (with
respect to a Killing symmetry) yields a 𝜎-model with symmetric target space (see, e.g., [31, 86, 120],
and references therein).

1.2 Organization

The purpose of this text is to review some features of four-dimensional stationary asymptotically-
flat black-hole spacetimes. Some black-hole solutions with non-zero cosmological constant can be
found in [313, 36, 323, 286, 271, 15]. It should be noted that the discovery of five-dimensional
black rings by Emparan and Reall [99] has given new life to the overall subject (see [100, 101] and
references therein) but here we concentrate on four-dimensional spacetimes with mostly classical
matter fields.

For detailed introductions into the subject we refer to Chandrasekhar’s book on the mathemat-
ical theory of black holes [56], the classic textbook by Hawking and Ellis [143], Carter’s review [50],
Chapter 12 of Wald’s book [314], the overview [63] and the monograph [151].

The first part of this report is intended to provide a guide to the literature, and to present
some of the main issues, without going into technical details. We start by collecting the significant
definitions in Section 2. We continue, in Section 3, by recalling the main steps leading to the
uniqueness theorem for electro-vacuum black-hole spacetimes. The classification scheme obtained
in this way is then reexamined in the light of solutions, which are not covered by no-hair theorems,
such as stationary Kaluza–Klein black holes (Section 4) and the Einstein–Yang–Mills black holes
(Section 5).

The second part reviews the main structural properties of stationary black-hole spacetimes. In
particular, we discuss the dimensional reduction of the field equations in the presence of a Killing
symmetry in more detail (Section 6). For a variety of matter models, such as self-gravitating
Abelian gauge fields, the reduction yields a 𝜎-model, with symmetric target manifold, coupled
to three-dimensional gravity. In Section 7 we discuss some aspects of this structure, namely the
Mazur identity and the quadratic mass formulae, and we present the Israel–Wilson class of metrics.

The third part is devoted to stationary and axisymmetric black-hole spacetimes (Section 8). We
start by recalling the circularity problem for non-Abelian gauge fields and for scalar mappings. The
dimensional reduction with respect to the second Killing field leads to a boundary value problem
on a fixed, two-dimensional background. As an application, we outline the uniqueness proof for
the Kerr–Newman metric.
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2 Definitions

It is convenient to start with definitions, which will be grouped together in separate sections.

2.1 Asymptotic flatness

We will mostly be concerned with asymptotically-flat black holes. A spacetime (𝑀,g) will be said
to possess an asymptotically-flat end if 𝑀 contains a spacelike hypersurface Sext diffeomorphic
to R𝑛 ∖ 𝐵(𝑅), where 𝐵(𝑅) is an open coordinate ball of radius 𝑅, with the following properties:
there exists a constant 𝛼 > 0 such that, in local coordinates on Sext obtained from R𝑛 ∖𝐵(𝑅), the
metric 𝛾 induced by g on Sext, the extrinsic curvature tensor 𝐾𝑖𝑗 of Sext, and the electromagnetic
potential 𝐴𝜇 satisfy the fall-off conditions

𝛾𝑖𝑗 − 𝛿𝑖𝑗 = 𝑂𝑑(𝑟−𝛼) , 𝐾𝑖𝑗 = 𝑂𝑑−1(𝑟−1−𝛼) , (2.1)

and

𝐴𝜇 = 𝑂𝑑(𝑟−𝛼) , (2.2)

for some 𝑑 > 1, where we write 𝑓 = 𝑂𝑑(𝑟𝛼) if 𝑓 satisfies

𝜕𝑖1 . . . 𝜕𝑖ℓ𝑓 = 𝑂(𝑟𝛼−ℓ) , 0 ≤ ℓ ≤ 𝑑 . (2.3)

2.2 Kaluza–Klein asymptotic flatness

There exists a generalization of the notion of asymptotic flatness, which is relevant to both four-
and higher-dimensional gravitation. We shall say that S𝑒𝑥𝑡 is a Kaluza–Klein asymptotic end if
Sext is diffeomorphic to

(︀
R𝑁 ∖ 𝐵̄(𝑅)

)︀
× 𝑄, where 𝐵̄(𝑅) is a closed coordinate ball of radius 𝑅

and 𝑄 is a compact manifold of dimension 𝑠 ≥ 0; a spacetime containing such an end is said to
have 𝑁 + 1 asymptotically-large dimensions. Let ℎ̊ be a fixed Riemaniann metric on 𝑄, and let
𝑔̊ = 𝛿⊕ ℎ̊, where 𝛿 is the Euclidean metric on R𝑁 . A spacetime (𝑀,g) containing such an end will
be said to be Kaluza–Klein asymptotically flat, or 𝐾𝐾-asymptotically flat if, for some 𝛼 > 0, the
metric 𝛾 induced by g on Sext and the extrinsic curvature tensor 𝐾𝑖𝑗 of Sext, satisfy the fall-off
conditions

𝛾𝑖𝑗 − 𝑔̊𝑖𝑗 = 𝑂𝑑(𝑟−𝛼−𝑙) , 𝐾𝑖𝑗 = 𝑂𝑑−1(𝑟−1−𝛼−𝑙) , (2.4)

where, in this context, 𝑟 is the radius in R𝑁 and we write 𝑓 = 𝑂𝑑(𝑟𝛼) if 𝑓 satisfies

𝐷𝑖1 . . . 𝐷𝑖𝑙𝑓 = 𝑂(𝑟𝛼−𝑙) , 0 ≤ ℓ ≤ 𝑑 , (2.5)

with 𝐷 the Levi-Civita connection of 𝑔̊.

2.3 Stationary metrics

An asymptotically-flat, or 𝐾𝐾-asymptotically-flat, spacetime (𝑀,g) will be called stationary if
there exists on 𝑀 a complete Killing vector field 𝑘, which is timelike in the asymptotic region Sext;
such a Killing vector will be sometimes called stationary as well. In fact, in most of the literature
it is implicitly assumed that stationary Killing vectors satisfy g(𝑘, 𝑘) < −𝜖 < 0 for some 𝜖 and for
all 𝑟 large enough. This uniformity condition excludes the possibility of a timelike vector, which
asymptotes to a null one. This involves no loss of generality in well-behaved asymptotically-flat
spacetimes: indeed, this uniform timelikeness condition always holds for Killing vectors, which are
timelike for all large distances if the conditions of the positive energy theorem are met [17, 77].
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In electrovacuum, as part of the definition of stationarity it is also required that the Maxwell
field be invariant with respect to 𝑘, that is

𝐿𝑘𝐹 ≡ 0 . (2.6)

Note that this definition assumes that the Killing vector 𝑘 is complete, which means that
for every 𝑝 ∈ 𝑀 the orbit 𝜑𝑡[𝑘](𝑝) of 𝑘 is defined for all 𝑡 ∈ R. The question of completeness
of Killing vectors is an important issue, which needs justifying in some steps of the uniqueness
arguments [57, 59].

In regions where 𝑘 is timelike, there exist local coordinates in which the metric takes the form

g = −𝑉 2(𝑑𝑡+ 𝜃𝑖𝑑𝑥
𝑖⏟  ⏞  

=:𝜃

)2 + 𝛾𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗⏟  ⏞  

=:𝛾

, (2.7)

with

𝑘 = 𝜕𝑡 =⇒ 𝜕𝑡𝑉 = 𝜕𝑡𝜃𝑖 = 𝜕𝑡𝛾𝑖𝑗 = 0 . (2.8)

Such coordinates exist globally on asymptotically-flat ends, and if the Einstein–Maxwell equations
hold, one can also obtain there [58, Section 1.3], in dimension 3+1,

𝛾𝑖𝑗 − 𝛿𝑖𝑗 = 𝑂∞(𝑟−1) , 𝜃𝑖 = 𝑂∞(𝑟−1) , 𝑉 − 1 = 𝑂∞(𝑟−1) , (2.9)

and

𝐴𝜇 = 𝑂∞(𝑟−1) , (2.10)

where the infinity symbol means that (2.3) holds for arbitrary 𝑑.

2.4 Domains of outer communications, event horizons

For 𝑡 ∈ R let 𝜑𝑡[𝑘] : 𝑀 → 𝑀 denote the one-parameter group of diffeomorphisms generated by 𝑘;
we will write 𝜑𝑡 for 𝜑𝑡[𝑘] whenever ambiguities are unlikely to occur.

Recall that 𝐼−(Ω), respectively 𝐽−(Ω), is the set covered by past-directed timelike, respectively
causal, curves originating from Ω, while 𝐼− denotes the boundary of 𝐼−, etc. The sets 𝐼+, etc., are
defined as 𝐼−, etc., after changing time-orientation. See [143, 16, 256, 236, 266, 66] and references
therein for details of causality theory.

Consider an asymptotically-flat, or 𝐾𝐾-asymptotically-flat, spacetime with a Killing vector 𝑘,
which is timelike on the asymptotic end Sext. The exterior region 𝑀ext and the domain of outer
communications ⟨⟨𝑀ext⟩⟩, for which we will also use the abbreviation d.o.c., are then defined as
(see Figure 1)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Mext

Sext

I−(Mext)

∂I−(Mext)

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������Mext

∂I+(Mext)

Sext

I+(Mext)

Figure 1: Sext, 𝑀ext, together with the future and the past of 𝑀ext. One has 𝑀ext ⊂ 𝐼±(𝑀ext), even
though this is not immediately apparent from the figure. The domain of outer communications is the
intersection 𝐼+(𝑀ext) ∩ 𝐼−(𝑀ext); compare with Figure 2.
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⟨⟨𝑀ext⟩⟩ = 𝐼+(∪𝑡𝜑𝑡(Sext)⏟  ⏞  
=:𝑀ext

) ∩ 𝐼−(∪𝑡𝜑𝑡(Sext)) . (2.11)

The black-hole region B and the black-hole event horizon H + are defined as

B = 𝑀 ∖ 𝐼−(𝑀ext) , H + = 𝜕B .

The white-hole region W and the white-hole event horizon H − are defined as above after
changing time orientation:

W = 𝑀 ∖ 𝐼+(𝑀ext) , H − = 𝜕W , H = H + ∪ H − .

It follows that the boundaries of ⟨⟨𝑀ext⟩⟩ are included in the event horizons. We set

E ± = 𝜕⟨⟨𝑀ext⟩⟩ ∩ 𝐼±(𝑀ext) , E = E + ∪ E − . (2.12)

There is considerable freedom in choosing the asymptotic region Sext. However, it is not too
difficult to show that 𝐼±(𝑀ext), and hence ⟨⟨𝑀ext⟩⟩, H ± and E ±, are independent of the choice
of Sext whenever the associated 𝑀ext’s overlap.

By standard causality theory, an event horizon is the union of Lipschitz null hypersurfaces. It
turns out that event horizons in stationary spacetimes satisfying energy conditions are as smooth
as the metric allows [76, 69]; thus, smooth if the metric is smooth, analytic if the metric is.

2.5 Killing horizons

A null embedded hypersurface, invariant under the flow of a Killing vector 𝑘, which coincides with
a connected component of the set

N [𝑘] := {g(𝑘, 𝑘) = 0 , 𝑘 ̸= 0} ,

is called a Killing horizon associated to 𝑘. We will often write 𝐻[𝑘] for N [𝑘], whenever N [𝑘] is
a Killing horizon.

2.5.1 Bifurcate Killing horizons

The Schwarzschild black hole has an event horizon with a specific structure, which is captured by
the following definition: A set is called a bifurcate Killing horizon if it is the union of a a smooth
spacelike submanifold 𝑆 of co-dimension two, called the bifurcation surface, on which a Killing
vector field 𝑘 vanishes, and of four smooth null embedded hypersurfaces obtained by following null
geodesics in the four distinct null directions normal to 𝑆.

For example, the Killing vector 𝑥𝜕𝑡+𝑡𝜕𝑥 in Minkowski spacetime has a bifurcate Killing horizon,
with the bifurcation surface {𝑡 = 𝑥 = 0}. As already mentioned, another example is given by the
set {𝑟 = 2𝑚} in Schwarzschild–Kruskal–Szekeres spacetime with positive mass parameter 𝑚.

In the spirit of the previous definition, we will refer to the union of two null hypersurfaces,
which intersect transversally on a 2-dimensional spacelike surface as a bifurcate null surface.

The reader is warned that a bifurcate Killing horizon is not a Killing horizon, as defined in
Section 2.5, since the Killing vector vanishes on 𝑆. If one thinks of 𝑆 as not being part of the
bifurcate Killing horizon, then the resulting set is again not a Killing horizon, since it has more
than one component.
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12 Piotr T. Chruściel, João Lopes Costa and Markus Heusler

2.5.2 Killing prehorizons

One of the key steps of the uniqueness theory, as described in Section 3, forces one to consider
“horizon candidates” with local properties similar to those of a proper event horizon, but with
global behavior possibly worse: A connected, not necessarily embedded, null hypersurface 𝐻0 ⊂
N [𝑘] to which 𝑘 is tangent is called a Killing prehorizon. In this terminology, a Killing horizon
is a Killing prehorizon, which forms a embedded hypersurface, which coincides with a connected
component of N [𝑘]. The Minkowskian Killing vector 𝜕𝑡−𝜕𝑥 provides an example where N is not
a hypersurface, with every hyperplane 𝑡+ 𝑥 = const being a prehorizon.

The Killing vector 𝑘 = 𝜕𝑡 + 𝑌 on R × T𝑛, equipped with the flat metric, where T𝑛 is an 𝑛-
dimensional torus, and where 𝑌 is a unit Killing vector on T𝑛 with dense orbits, admits prehorizons,
which are not embedded. This last example is globally hyperbolic, which shows that causality
conditions are not sufficient to eliminate this kind of behavior.

Of crucial importance to the zeroth law of black-hole physics (to be discussed shortly) is the
fact that the (𝑘, 𝑘)-component of the Ricci tensor vanishes on horizons or prehorizons,

𝑅(𝑘, 𝑘) = 0 on 𝐻[𝑘] . (2.13)

This is a simple consequence of the Raychaudhuri equation.
The following two properties of Killing horizons and prehorizons play a role in the theory of

stationary black holes:

∙ A theorem due to Vishveshwara [308] gives a characterization of the Killing horizon 𝐻[𝑘] in
terms of the twist 𝜔 of 𝑘:1 A connected component of the set N := { 𝑔(𝑘, 𝑘) = 0 , 𝑘 ̸= 0} is
a (non-degenerate) Killing horizon whenever

𝜔 = 0 and 𝑖𝑘d𝑘 ̸= 0 on N . (2.14)

∙ The following characterization of Killing prehorizons is often referred to as the Vishveshwara–
Carter Lemma [46, 43] (compare [61, Addendum]): Let (𝑀,g) be a smooth spacetime with
complete, static Killing vector 𝑘. Then the set {𝑝 ∈𝑀 | 𝑔(𝑘, 𝑘)|𝑝 = 0 , 𝑘(𝑝) ̸= 0} is the union
of integral leaves of the distribution 𝑘⊥, which are totally geodesic within 𝑀 ∖ {𝑘 = 0}.

2.5.3 Surface gravity: degenerate, non-degenerate and mean-non-degenerate hori-
zons

An immediate consequence of the definition of a Killing horizon or prehorizon is the proportionality
of 𝑘 and d𝑁 on 𝐻[𝑘], where

𝑁 := g(𝑘, 𝑘) .

This follows, e.g., from 𝑔(𝑘, d𝑁) = 0, since 𝐿𝑘𝑁 = 0, and from the fact that two orthogonal null
vectors are proportional. The observation motivates the definition of the surface gravity 𝜅 of a
Killing horizon or prehorizon 𝐻[𝑘], through the formula

𝑑 (g(𝑘, 𝑘)) |𝐻 = −2𝜅𝑘 , (2.15)

where we use the same symbol 𝑘 for the covector g𝜇𝜈 𝑘
𝜈𝑑𝑥𝜇 appearing in the right-hand side as

for the vector 𝑘𝜇𝜕𝜇.
The Killing equation implies d𝑁 = −2∇𝑘𝑘; we see that the surface gravity measures the extent

to which the parametrization of the geodesic congruence generated by 𝑘 is not affine.

1 See, e.g., [89], p. 239 or [151], p. 92 for the proof.
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A fundamental property is that the surface gravity 𝜅 is constant over horizons or prehorizons in
several situations of interest. This leads to the intriguing fact that the surface gravity plays a similar
role in the theory of stationary black holes as the temperature does in ordinary thermodynamics.
Since the latter is constant for a body in thermal equilibrium, the result

𝜅 = constant on 𝐻[𝑘] (2.16)

is usually called the zeroth law of black-hole physics [9].
The constancy of 𝜅 holds in vacuum, or for matter fields satisfying the dominant-energy con-

dition, see, e.g., [151, Theorem 7.1]. The original proof of the zeroth law [9] proceeds as follows:
First, Einstein’s equations and the fact that 𝑅(𝑘, 𝑘) vanishes on the horizon imply that 𝑇 (𝑘, 𝑘) = 0
on 𝐻[𝑘]. Hence, the vector field 𝑇 (𝑘) := 𝑇𝜇

𝜈𝑘
𝜈𝜕𝑥𝜇 is perpendicular to 𝑘 and, therefore, space-like

(possibly zero) or null on 𝐻[𝑘]. On the other hand, the dominant energy condition requires that
𝑇 (𝑘) is zero, time-like or null. Thus, 𝑇 (𝑘) vanishes or is null on the horizon. Since two orthogonal
null vectors are proportional, one has, using Einstein’s equations again, 𝑘 ∧ 𝑅(𝑘) = 0 on 𝐻[𝑘],
where 𝑅(𝑘) = 𝑅𝜇𝜈𝑘

𝜇𝑑𝑥𝜈 . The result that 𝜅 is constant over each horizon follows now from the
general property (see, e.g., [314])

𝑘 ∧ d𝜅 = −𝑘 ∧𝑅(𝑘) on 𝐻[𝑘] . (2.17)

The proof of (2.16) given in [314] generalizes to all spacetime dimensions 𝑛+ 1 ≥ 4; the result
also follows in all dimensions from the analysis in [165] when the horizon has compact spacelike
sections.

By virtue of Eq. (2.17) and the identity d𝜔 = *[𝑘 ∧ 𝑅(𝑘)], the zeroth law follows if one can
show that the twist one-form is closed on the horizon [270]:

[d𝜔]𝐻[𝑘] = 0 =⇒ 𝜅 = constant on 𝐻[𝑘]. (2.18)

While the original proof of the zeroth law takes advantage of Einstein’s equations and the dominant
energy condition to conclude that the twist is closed, one may also achieve this by requiring that
𝜔 vanishes identically, which then proves the zeroth law under the second set of hypotheses listed
below. This is obvious for static configurations, since then 𝑘 has vanishing twist by definition.

Yet another situation of interest is a spacetime with two commuting Killing vector fields 𝑘 and
𝑚, with a Killing horizon 𝐻[𝜉] associated to a Killing vector 𝜉 = 𝑘 + Ω𝑚. Such a spacetime is
said to be circular if the distribution of planes spanned by 𝑘 and 𝑚 is hypersurface-orthogonal.
Equivalently, the metric can be locally written in a 2+2 block-diagonal form, with one of the blocks
defined by the orbits of 𝑘 and 𝑚. In the circular case one shows that 𝑔(𝑚,𝜔𝜉) = 𝑔(𝜉, 𝜔𝑚) = 0
implies d𝜔𝜉 = 0 on the horizon generated by 𝜉; see [151], Chapter 7 for details.

A significant observation is that of Kay and Wald [184], that 𝜅 must be constant on bifurcate
Killing horizons, regardless of the matter content. This is proven by showing that the derivative
of the surface gravity in directions tangent to the bifurcation surface vanishes. Hence, 𝜅 cannot
vary between the null-generators. But it is clear that 𝜅 is constant along the generators.

Summarizing, each of the following hypotheses is sufficient to prove that 𝜅 is constant over a
Killing horizon defined by 𝑘:

(i) The dominant energy condition holds;

(ii) the domain of outer communications is static;

(iii) the domain of outer communications is circular;

(iv) 𝐻[𝑘] is a bifurcate Killing horizon.
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See [270] for some further observations concerning (2.16).
A Killing horizon is called degenerate if 𝜅 vanishes, and non-degenerate otherwise.
As an example, in Minkowski spacetime, consider the Killing vector 𝜉 = 𝑥𝜕𝑡 + 𝑡𝜕𝑥. We have

𝑑(g(𝜉, 𝜉)) = 𝑑(−𝑥2 + 𝑡2) = 2(−𝑥𝑑𝑥+ 𝑡𝑑𝑡) ,

which equals twice 𝜉♭ := g𝜇𝜈𝜉
𝜇𝑑𝑥𝜈 on each of the four Killing horizons

𝐻(𝜉)𝜖𝛿 := {𝑡 = 𝜖𝑥 , 𝛿𝑡 > 0} , 𝜖, 𝛿 ∈ {±1} .

On the other hand, for the Killing vector

𝑘 = 𝑦𝜕𝑡 + 𝑡𝜕𝑦 + 𝑥𝜕𝑦 − 𝑦𝜕𝑥 = 𝑦𝜕𝑡 + (𝑡+ 𝑥)𝜕𝑦 − 𝑦𝜕𝑥 (2.19)

one obtains
𝑑(g(𝑘, 𝑘)) = 2(𝑡+ 𝑥)(𝑑𝑡+ 𝑑𝑥) ,

which vanishes on each of the Killing horizons {𝑡 = −𝑥 , 𝑦 ̸= 0}. This shows that the same null
surface can have zero or non-zero values of surface gravity, depending upon which Killing vector
has been chosen to calculate 𝜅.

A key theorem of Rácz and Wald [270] asserts that non-degenerate horizons (with a compact
cross section and constant surface gravity) are “essentially bifurcate”, in the following sense: Given
a spacetime with such a non-degenerate Killing horizon, one can find another spacetime, which
is locally isometric to the original one in a one-sided neighborhood of a subset of the horizon,
and which contains a bifurcate Killing horizon. The result can be made global under suitable
conditions.

The notion of average surface gravity can be defined for null hypersurfaces, which are not
necessarily Killing horizons: Following [238], near a smooth null hypersurface N one can introduce
Gaussian null coordinates, in which the metric takes the form

g = 𝑟𝜙𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 2𝑟ℎ𝑎𝑑𝑥
𝑎𝑑𝑣 + ℎ𝑎𝑏𝑑𝑥

𝑎𝑑𝑥𝑏 . (2.20)

The null hypersurface N is given by the equation {𝑟 = 0}; when it corresponds to an event
horizon, by replacing 𝑟 by −𝑟 if necessary we can, without loss of generality, assume that 𝑟 > 0 in
the domain of outer communications. Assuming that N admits a smooth compact cross-section
𝑆, the average surface gravity ⟨𝜅⟩𝑆 is defined as

⟨𝜅⟩𝑆 = − 1

|𝑆|

∫︁
𝑆

𝜙𝑑𝜇ℎ , (2.21)

where 𝑑𝜇ℎ is the measure induced by the metric ℎ on 𝑆, and |𝑆| is the area of 𝑆. We emphasize
that this is defined regardless of whether or not the hypersurface is a Killing horizon; but if it is
with respect to a vector 𝑘, and if the surface gravity 𝜅 of 𝑘 is constant on 𝑆, then ⟨𝜅⟩𝑆 equals 𝜅.

A smooth null hypersurface, not necessarily a Killing horizon, with a smooth compact cross-
section 𝑆 such that ⟨𝜅⟩𝑆 ̸= 0 is said to be mean non-degenerate.

Using general identities for Killing fields (see, e.g., [151], Chapter 2) one can derive the following
explicit expressions for 𝜅:

𝜅2 = − lim
𝑁→0

[︂
1

𝑁
𝑔(∇𝑘𝑘,∇𝑘𝑘)

]︂
= −

[︂
1

4
Δg𝑁

]︂
𝐻[𝑘]

, (2.22)

where Δg denotes the Laplace–Beltrami operator of the metric g. Introducing the four velocity
𝑢 = 𝑘/

√
−𝑁 for a time-like 𝑘, the first expression shows that the surface gravity is the limiting

value of the force applied at infinity to keep a unit mass at 𝐻[𝑘] in place: 𝜅 = lim(
√
−𝑁 |𝑎|), where

𝑎 = ∇𝑢𝑢 (see, e.g., [314]).
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2.6 I+-regularity

The classification theory of stationary black holes requires that the spacetime under consideration
satisfies various global regularity conditions. These are captured by the following definition:

Definition 2.1 Let (𝑀,g) be a spacetime containing an asymptotically-flat end, or a 𝐾𝐾-asymp-
totically-flat end Sext, and let 𝑘 be a stationary Killing vector field on 𝑀 . We will say that
(𝑀,g, 𝑘) is 𝐼+-regular if 𝑘 is complete, if the domain of outer communications ⟨⟨𝑀ext⟩⟩ is globally
hyperbolic, and if ⟨⟨𝑀ext⟩⟩ contains a spacelike, connected, acausal hypersurface S ⊃ Sext, the
closure S of which is a topological manifold with boundary, consisting of the union of a compact
set and of a finite number of asymptotic ends, such that the boundary 𝜕S := S ∖S is a topological
manifold satisfying

𝜕S ⊂ E + := 𝜕⟨⟨𝑀ext⟩⟩ ∩ 𝐼+(𝑀ext) , (2.23)

with 𝜕S meeting every generator of E + precisely once. (See Figure 2.)

Mext∂S

S〈〈Mext〉〉

E +

Figure 2: The hypersurface S from the definition of 𝐼+-regularity.

The “𝐼+” of the name is due to the 𝐼+ appearing in (2.23).
Some comments about the definition are in order. First, one requires completeness of the

orbits of the stationary Killing vector to have an action of R on 𝑀 by isometries. Next, global
hyperbolicity of the domain of outer communications is used to guarantee its simple connectedness,
to make sure that the area theorem holds, and to avoid causality violations as well as certain kinds
of naked singularities in ⟨⟨𝑀ext⟩⟩. Further, the existence of a well-behaved spacelike hypersurface
is a prerequisite to any elliptic PDEs analysis, as is extensively needed for the problem at hand.
The existence of compact cross-sections of the future event horizon prevents singularities on the
future part of the boundary of the domain of outer communications, and eventually guarantees the
smoothness of that boundary. The requirement Eq. (2.23) might appear somewhat unnatural, as
there are perfectly well-behaved hypersurfaces in, e.g., the Schwarzschild spacetime, which do not
satisfy this condition, but there arise various technical difficulties without this condition. Needless
to say, all those conditions are satisfied by the Kerr–Newman and the Majumdar–Papapetrou (MP)
solutions.
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3 Towards a classification of stationary electrovacuum black
hole spacetimes

While the uniqueness theory for black-hole solutions of Einstein’s vacuum equations and the
Einstein–Maxwell (EM) equations has seen deep successes, the complete picture is nowhere settled
at the time of revising of this work. We know now that, under reasonable global conditions (see
Definition 2.1), the domains of dependence of analytic, stationary, asymptotically-flat electrovac-
uum black-hole spacetimes with a connected non-degenerate horizon belong to the Kerr–Newman
family. The purpose of this section is to review the various steps involved in the classification of
electrovacuum spacetimes (see Figure 3). In Section 5, we shall then comment on the validity of
the partial results in the presence of non-linear matter fields.

For definiteness, from now on we assume that all spacetimes are 𝐼+-regular. We note that
the slightly weaker global conditions spelled-out in Theorem 3.1 suffice for the analysis of static
spacetimes, or for various intermediate steps of the uniqueness theory, but those weaker conditions
are not known to suffice for the Uniqueness Theorem 3.3.

The main task of the uniqueness program is to show that the domains of outer communications
of sufficiently regular stationary electrovacuum black-hole spacetimes are exhausted by the Kerr–
Newman or the MP spacetimes.

The starting point is the smoothness of the event horizon; this is proven in [76, Theorem 4.11],
drawing heavily on the results in [69].

One proves, next, that connected components of the event horizon are diffeomorphic to R×𝑆2.
This was established in [85], taking advantage of the topological censorship theorem of Friedman,
Schleich and Witt [106]; compare [141] for a previous partial result. (Related versions of the
topology theorem, applying to globally-hyperbolic, not-necessarily-stationary, spacetimes, have
been established by Jacobson and Venkataramani [180], and by Galloway [108, 109, 110, 112]; the
strongest-to-date version, with very general asymptotic hypotheses, can be found in [73].)

3.1 Static solutions

A stationary spacetime is called static if the Killing vector 𝑘 is hypersurface-orthogonal: this means
that the distribution of the hyperplanes orthogonal to 𝑘 is integrable. Equivalently,

𝑘 ∧ 𝑑𝑘 = 0 .

Here and elsewhere, by a common abuse of notation, we also write 𝑘 for the one-form associated
with 𝑘.

The results concerning static black holes are stronger than the general stationary case, and
so this case deserves separate discussion. In any case, the proof of uniqueness for stationary
black holes branches out at some point and one needs to consider separately uniqueness for static
configurations.

In pioneering work, Israel showed that both static vacuum [176] and electrovacuum [177] black-
hole spacetimes satisfying a set of restrictive conditions are spherically symmetric. Israel’s ingenious
method, based on differential identities and Stokes’ theorem, triggered a series of investigations
devoted to the static uniqueness problem (see, e.g., [244, 245, 279, 281, 294]). A breakthrough was
made by Bunting and Masood-ul-Alam [42], who showed how to use the positive energy theorem2

2 This theorem was first proven by Schoen and Yau [288, 289] and somewhat later, using spinor techniques, by
Witten [325] (compare [265]). See [12] for a version relevant to the uniqueness problem, which allows degenerate
components of the event horizon.
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to exclude non-connected configurations (compare [61]).3

The annoying hypothesis of analyticity, which was implicitly assumed in the above treatments,
has been removed in [72]. The issue here is to show that the Killing vector field cannot become null
on the domain of outer communications. The first step to prove this is the Vishveshwara–Carter
lemma (see Section 2.5.2 and [308, 43]), which shows that null orbits of static Killing vectors form
a prehorizon, as defined in Section 2.5.2. To finish the proof one needs to show that prehorizons
cannot occur within the d.o.c. This presents no difficulty when analyticity is assumed. Now,
analyticity of stationary electrovacuum metrics is a standard property [245, 243] when the Killing
vector is timelike, but timelikeness throughout the d.o.c. is not known yet at this stage of the
argument. The nonexistence of prehorizons within the d.o.c. for smooth metrics requires more
work, and is the main result in [72].

In the static vacuum case the remainder of the argument can be simplified by noting that there
are no static solutions with degenerate horizons, which have spherical cross-sections [81]. This is
not true anymore in the electrovacuum case, where an intricate argument to handle non-degenerate
horizons is needed [83] (compare [284, 295, 225, 62] for previous partial results).

All this can be summarized in the following classification theorem:

Theorem 3.1 Let (𝑀,g) be an electrovacuum, four-dimensional spacetime containing a spacelike,
connected, acausal hypersurface S , such that S is a topological manifold with boundary consisting
of the union of a compact set and of a finite number of asymptotically-flat ends. Suppose that
there exists on 𝑀 a complete hypersurface-orthogonal Killing vector, that the domain of outer
communication ⟨⟨𝑀ext⟩⟩ is globally hyperbolic, and that 𝜕S ⊂ 𝑀 ∖ ⟨⟨𝑀ext⟩⟩. Then ⟨⟨𝑀ext⟩⟩ is
isometric to the domain of outer communications of a Reissner–Nordström or a MP spacetime.

3.2 Stationary-axisymmetric solutions

3.2.1 Topology

A second class of spacetimes where reasonably satisfactory statements can be made is provided
by stationary-axisymmetric solutions. Here one assumes from the outset that, in addition to
the stationary Killing vector, there exists a second Killing vector field. Assuming 𝐼+-regularity,
one can invoke the positive energy theorem to show [18, 19] that some linear combination of the
Killing vectors, say 𝑚, must have periodic orbits, and an axis of rotation, i.e., a two-dimensional
totally-geodesic submanifold of 𝑀 on which the Killing vector 𝑚 vanishes. The description of the
quotient manifold is provided by the deep mathematical results concerning actions of isometry
groups of [259, 273], together with the simple-connectedness and structure theorems [76]. The
bottom line is that the spacetime is the product of R with R3 from which a finite number of aligned
balls, each corresponding to a black hole, has been removed. Moreover, the 𝑈(1) component of
the group of isometries acts by rotations of R3. Equivalently, the quotient space is a half-plane
from which one has removed a finite number of disjoint half-discs centered on points lying on the
boundary of the half-plane.

3.2.2 Candidate metrics

The only known 𝐼+-regular stationary and axisymmetric solutions of the Einstein–Maxwell equa-
tions are the Kerr–Newman metrics and the MP metrics. However, it should be kept in mind that
candidate solutions for non-connected black-hole configurations exist:

3 Non-existence of certain static 𝑛-body configurations (possibly, but not necessarily, black holes) was estab-
lished in [21, 20]). These results rely on the positive energy theorem and exclude, in particular, suitably regular
configurations with a reflection symmetry across a noncompact surface, which is disjoint from the matter regions.
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First, there are the multi-soliton metrics constructed using inverse scattering methods [23, 22]
(compare [268]). Closely related (and possibly identical, see [148]), are the multi-Kerr solutions
constructed by successive Bäcklund transformations starting from Minkowski spacetime; a special
case is provided by the Neugebauer–Kramer double-Kerr solutions [198]. These are explicit solu-
tions, with the metric functions being rational functions of coordinates and of many parameters.
It is known that some subsets of those parameters lead to metrics, which are smooth at the axis
of rotation, but one suspects that those metrics will be nakedly singular away from the axis. We
will return to that question in Section 3.4.3.

Next, there are the solutions constructed by Weinstein [322], obtained from an abstract exis-
tence theorem for suitable harmonic maps. The resulting metrics are smooth everywhere except
perhaps at some components of the axis of rotation. It is known that some Weinstein solutions
have conical singularities [319, 216, 249, 70] on the axis, but the general case remains open.

Finally, the Israel–Wilson–Perjés (IWP) metrics [267, 179], discussed in more detail in Sec-
tion 7.3, provide candidates for rotating generalizations of the MP black holes. Those metrics are
remarkable because they admit nontrivial Killing spinors. The Killing vector obtained from the
Killing spinor is causal everywhere, so the horizons are necessarily non-rotating and degenerate. It
has been shown in [80] that the only regular IWP metrics with a Killing vector timelike throughout
the d.o.c. are the MP metrics. A strategy for a proof of timelikeness has been given in [80], but
the details have yet to be provided. In any case, one expects that the only regular IWP metrics
are the MP ones.

Some more information concerning candidate solutions with non-connected horizons can be
found in Section 3.4.3.

3.2.3 The reduction

Returning to the classification question, the analysis continues with the circularity theorem of
Papapetrou [264] and Kundt and Trümper [201] (compare [43]), which asserts that, locally and
away from null orbits, the metric of a vacuum or electrovacuum spacetime can be written in a 2+2
block-diagonal form.

The next key observation of Carter is that the stationary and axisymmetric EM equations can
be reduced to a two-dimensional boundary value problem [45] (see Sections 6.1 and 8.2 for more
details), provided that the area density of the orbits of the isometry group can be used as a global
spacelike coordinate on the quotient manifold. (See also [47] and [50].) Prehorizons intersecting
the d.o.c. provide one of the obstructions to this, and a heavy-duty proof that such prehorizons do
not arise was given in [76]; a simpler argument has been provided in [72].

In essence, Carter’s reduction proceeds through a global manifestly–conformally-flat (“isother-
mal”) coordinate system (𝜌, 𝑧) on the quotient manifold. One also needs to carefully monitor the
boundary conditions satisfied by the fields of interest. The proof of existence of the (𝜌, 𝑧) coordi-
nates, with sufficient control of the boundary conditions so that the uniqueness proof goes through,
has been given in [76], drawing heavily on [64], assuming that all horizons are non-degenerate. A
streamlined argument has been presented in [79], where the analysis has also been extended to
cover configurations with degenerate components.

So, at this stage one has reduced the problem to the study of solutions of harmonic-type
equations on R3 ∖ A , where A is the rotation axis {𝑥 = 𝑦 = 0}, with precise boundary conditions
at the axis. Moreover, the solution is supposed to be invariant under rotations. Equivalently, one
has to study a set of harmonic-type equations on a half-plane with specific singularity structure
on the boundary.

There exist today at least three arguments that finish the proof, to be described in the following
subsections.
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3.2.4 The Robinson–Mazur proof

In the vacuum case, Robinson was able to construct an amazing identity, by virtue of which the
uniqueness of the Kerr metric followed [280]. The uniqueness problem with electro-magnetic fields
remained open until Mazur [228] obtained a generalization of the Robinson identity in a systematic
way: The Mazur identity (see also [229, 230, 48, 31, 168, 167]) is based on the observation that
the EM equations in the presence of a Killing field describe a non-linear 𝜎-model with coset
space 𝐺/𝐻 = 𝑆𝑈(1, 2)/𝑆(𝑈(1) × 𝑈(2)). The key to the success is Carter’s idea to carry out
the dimensional reduction of the EM action with respect to the axial Killing field. Within this
approach, the Robinson identity loses its enigmatic status – it turns out to be the explicit form of
the Mazur identity for the vacuum case, 𝐺/𝐻 = 𝑆𝑈(1, 1)/𝑈(1).

Reduction of the EM action with respect to the time-like Killing field yields, instead, 𝐻 =
𝑆(𝑈(1, 1) × 𝑈(1)), but the resulting equations become singular on the ergosurface, where the
Killing vector becomes null.

More information on this subject is provided in Sections 7.1 and 8.4.1.

3.2.5 The Bunting–Weinstein harmonic-map argument

At about the same time, and independently of Mazur, Bunting [41] gave a proof of uniqueness
of the relevant harmonic-map equations exploiting the fact that the target space for the problem
at hand is negatively curved. A further systematic PDE study of the associated harmonic maps
has been carried out by Weinstein: as already mentioned, Weinstein provided existence results for
multi-horizon configurations, as well as uniqueness results [322].

All the uniqueness results presented above require precise asymptotic control of the harmonic
map and its derivatives at the singular set A . This is an annoying technicality, as no detailed
study of the behavior of the derivatives has been presented in the literature. The approach in [75,
Appendix C] avoids this problem, by showing that a pointwise control of the harmonic map is
enough to reach the desired conclusion.

For more information on this subject consult Section 8.4.2.

3.2.6 The Varzugin–Neugebauer–Meinel argument

The third strategy to conclude the uniqueness proof has been advocated by Varzugin [306, 307] and,
independently, by Neugebauer and Meinel [251]. The idea is to exploit the properties of the linear
problem associated with the harmonic map equations, discovered by Belinski and Zakharov [23, 22]
(see also [268]). This proceeds by showing that a regular black-hole solution must necessarily be
one of the multi-soliton solutions constructed by the inverse-scattering methods, providing an
argument for uniqueness of the Kerr solution within the class. Thus, one obtains an explicit
form of the candidate metric for solutions with more components, as well as an argument for the
non-existence of two-component configurations [249] (compare [70]).

3.2.7 The axisymmetric uniqueness theorem

What has been said so far can be summarized as follows:

Theorem 3.2 Let (𝑀,g) be a stationary, axisymmetric asymptotically-flat, 𝐼+-regular, electrovac-
uum four-dimensional spacetime. Then the domain of outer communications ⟨⟨𝑀ext⟩⟩ is isometric
to one of the Weinstein solutions. In particular, if the event horizon is connected, then ⟨⟨𝑀ext⟩⟩
is isometric to the domain of outer communications of a Kerr–Newman spacetime.
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3.3 The no-hair theorem

3.3.1 The rigidity theorem

Throughout this section we will assume that the spacetime is 𝐼+-regular, as made precise by
Definition 2.1.

To prove uniqueness of connected, analytic, non-degenerate configurations, it remains to show
that every such black hole is either static or axially symmetric. The first step for this is provided
by Hawking’s strong rigidity theorem (SRT) [143, 238, 60, 107], which relates the global concept of
the event horizon to the independently-defined, and logically-distinct, local notion of the Killing
horizon. Assuming analyticity, SRT asserts that the event horizon of a stationary black-hole
spacetime is a Killing horizon. (In this terminology [151], the weak rigidity theorem is the existence,
already discussed above, of prehorizons for static or stationary and axisymmetric configurations.)

A Killing horizon is called non-rotating if it is generated by the stationary Killing field, and
rotating otherwise. At this stage the argument branches-off, according to whether at least one of
the horizons is rotating, or not.

In the rotating case, Hawking’s theorem actually provides only a second Killing vector field
defined near the Killing horizon, and to continue one needs to globalize the Killing vector field, to
prove that its orbits are complete, and to show that there exists a linear combination of Killing
vector fields with periodic orbits and an axis of rotation. This is done in [60], assuming analyticity,
drawing heavily on the results in [253, 57, 18].

The existing attempts in the literature to construct a second Killing vector field without assum-
ing analyticity have only had limited success. One knows now how to construct a second Killing
vector in a neighborhood of non-degenerate horizons for electrovacuum black holes [2, 174, 327],
but the construction of a second Killing vector throughout the d.o.c. has only been carried out for
vacuum near-Kerr non-degenerate configurations so far [3] (compare [326]).

In any case, sufficiently regular analytic stationary electro-vacuum spacetimes containing a
rotating component of the event horizon are axially symmetric as well, regardless of degeneracy
and connectedness assumptions (for more on this subject see Section 3.4.2). One can then finish the
uniqueness proof using Theorem 3.2. Note that the last theorem requires neither analyticity nor
connectedness, but leaves open the question of the existence of naked singularities in non-connected
candidate solutions.

In the non-rotating case, one continues by showing [84] that the domain of outer communications
contains a maximal Cauchy surface. This has been proven so far only for non-degenerate horizons,
and this is the only missing step to include situations with degenerate components of the horizon.
This allows one to prove the staticity theorem [302, 303], that the stationary Killing field of a
non-rotating, electrovacuum black-hole spacetime is hypersurface orthogonal. (Compare [134, 136,
143, 141] for previous partial results.) One can then finish the argument using Theorem 3.1.

3.3.2 The uniqueness theorem

All this leads to the following precise statement, as proven in [76, 79] in vacuum and in [217, 79]
in electrovacuum:

Theorem 3.3 Let (𝑀,g) be a stationary, asymptotically-flat, 𝐼+-regular, electrovacuum, four-
dimensional analytic spacetime. If the event horizon is connected and either mean non-degenerate
or rotating, then ⟨⟨𝑀ext⟩⟩ is isometric to the domain of outer communications of a Kerr–Newman
spacetime.

The structure of the proof can be summarized in the flow chart of Figure 3. This is to be
compared with Figure 4, which presents in more detail the weaker hypotheses needed for various
parts of the argument.
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Stationary, analytic, connected, mean non-degenerate, 𝐼+-regular electrovacuum black-hole spacetime

[asymptotically time-like Killing field 𝑘𝜇]

Smoothness and topology theorems

STRONG RIGIDITY THM (1st part)

Event horizon = Killing horizon 𝐻[𝜉]

[null generator Killing field 𝜉𝜇]

𝐻[𝜉] non-rotating: 𝑘𝜇𝑘𝜇 |𝐻[𝜉]≡ 0 𝐻[𝜉] rotating: 𝑘𝜇𝑘𝜇 |𝐻[𝜉] ̸≡ 0

STATICITY THM STRONG RIGIDITY THM (2nd part)

d.o.c. static d.o.c. axisymmetric

[𝑘[𝛼∇𝛽𝑘𝛾] = 0] [∃ Killing field 𝑚𝜇]

STATICITY THM (2nd part) CIRCULARITY THM

d.o.c. static and strictly stationary d.o.c. circular

[𝑘𝜇𝑘𝜇 < 0] ∃ coordinates 𝑡, 𝜙: 𝑘𝜇 = 𝜕𝑡 and
∃ coordinate 𝑡: 𝑘𝜇 = 𝜕𝑡 is hypersurface orthogonal 𝑚𝜇 = 𝜕𝜙 are hypersurface orthogonal

STATIC UNIQUENESS THM CIRCULAR UNIQUENESS THM

[originally by means of Israel’s thm, [originally by means of Robinson’s thm,
later by the positive energy thm] later by 𝜎-model/harmonic map identities

or by inverse scattering techniques]

Schwarzschild (Reissner–Nordström or MP) Kerr (Kerr–Newman) metric

Figure 3: Classification of analytic, connected, mean non-degenerate, asymptotically-flat, 𝐼+-regular,
stationary electrovacuum black holes.
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The hypotheses of analyticity and non-degeneracy are highly unsatisfactory, and one believes
that they are not needed for the conclusion. One also believes that, in vacuum, the hypothesis
of connectedness is spurious, and that all black holes with more than one component of the event
horizon are singular, but no proof is available except for some special cases [216, 319, 249]. Indeed,
Theorem 3.3 should be compared with the following conjecture, it being understood that both the
Minkowski and the Reissner–Nordström spacetimes are members of the Kerr–Newman family:

Conjecture 3.4 Let (𝑀,g) be an electrovacuum, four-dimensional spacetime containing a space-
like, connected, acausal hypersurface S , such that S is a topological manifold with boundary, con-
sisting of the union of a compact set and of a finite number of asymptotically-flat ends. Suppose
that there exists on 𝑀 a complete stationary Killing vector 𝑘, that ⟨⟨𝑀ext⟩⟩ is globally hyperbolic,
and that 𝜕S ⊂𝑀 ∖ ⟨⟨𝑀ext⟩⟩. Then ⟨⟨𝑀ext⟩⟩ is isometric to the domain of outer communications
of a Kerr–Newman or MP spacetime.

3.3.3 A uniqueness theorem for near-Kerrian smooth vacuum stationary spacetimes

The existing results on rigidity without analyticity require one to assume either staticity, or a
near-Kerr condition on the spacetime geometry (see Section 3.3.1), which is quantified in terms
of a smallness condition of the Mars–Simon tensor [223, 293]. The results in [3] together with
Theorems 3.1 – 3.2, and a version of the Rácz–Wald Theorem [107, Proposition 4.1], lead to:

Theorem 3.5 Let (𝑀,g) be a stationary asymptotically-flat, 𝐼+-regular, smooth, vacuum four-
dimensional spacetime. Assume that the event horizon is connected and mean non-degenerate. If
the Mars–Simon tensor 𝑆 and the Ernst potential E of the spacetime satisfy∑︁

𝑖𝑗𝑘𝑙

|(1 − E)𝑆𝑖𝑗𝑘𝑙| < 𝜖

for a small enough 𝜖 > 0, then ⟨⟨𝑀ext⟩⟩ is isometric to the domain of outer communications of a
Kerr spacetime.

3.4 Summary of open problems

For the convenience of the reader, we summarize here the main open problems left in the no-hair
theorem.

3.4.1 Degenerate horizons

We recall that there exist no vacuum static spacetimes containing degenerate horizons with compact
spherical sections [81]. On the other hand, MP [220, 262] black holes provide the only electro-
vacuum static examples with non-connected degenerate horizons. See [78, 154] and references
therein for a discussion of the geometry of MP black holes.

Under the remaining hypotheses of Theorem 3.3, the only step where the hypothesis of non-
degeneracy enters is the proof of existence of a maximal hypersurface S in the black-hole spacetime
under consideration, such that S is Cauchy for the domain of outer communications. The geometry
of Cauchy surfaces in the case of degenerate horizons is well understood by now [62, 79], and has
dramatically different properties when compared to the non-degenerate case. A proof of existence
of maximal hypersurfaces in this case would solve the problem, but requires new insights. A
key missing element is an equivalent of Bartnik’s a priori height estimate [10], established for
asymptotically-flat ends, that would apply to asymptotically-cylindrical ends.
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(𝑀,g) Stationary, asymptotically flat, electrovacuum, 𝐼+-regular black-hole spacetime

[asymptotically time-like Killing field 𝑘; classification of isometry groups and actions]

Regularity and topology theorems

[horizons smooth/analytic with spherical sections; d.o.c. simply connected; structure theorem;
nonexistence of prehorizons meeting the d.o.c.]

STRONG RIGIDITY THM (1st part)

Assume moreover that (𝑀,g) is either a) analytic, or b) vacuum and near-Kerrian with connected and
mean non-degenerate event horizon (⟨𝜅⟩ ̸= 0).

Event horizon = Killing horizon 𝐻[𝜉]

𝐻[𝜉] non-rotating: g(𝑘, 𝑘)|𝐻(𝜉) ≡ 0 𝐻[𝜉] rotating: g(𝑘, 𝑘)|𝐻(𝜉) ̸≡ 0

If non-degenerate (𝜅 ̸= 0):
∙ Horizon essentially bifurcate
∙ Existence of maximal hypersurfaces

STATICITY THM STRONG RIGIDITY THM (2nd part)

d.o.c. static d.o.c. axisymmetric

𝑑𝑘♭ ∧ 𝑘♭ = 0 If (𝑀,g) analytic or near-Kerrian:
∃ periodic Killing field 𝑚 s.t. [𝑘,𝑚] = 0

𝑀 ≈ R×
(︀
R
3 ∖ ∪𝑖𝐵𝑖

)︀
𝜌2 := g2(𝑘,𝑚)− g(𝑘, 𝑘)g(𝑚,𝑚) ≥ 0 in d.o.c.

STATICITY THM (2nd part) CIRCULARITY THM

d.o.c. static and strictly stationary d.o.c. circular

d.o.c. strictly stationary: g(𝑘, 𝑘) < 0 ∃ global Weyl coordinates (𝑡, 𝜙, 𝜌, 𝑧):
∃ coordinate 𝑡: 𝑘 = 𝜕𝑡 is 𝑘 = 𝜕𝑡, 𝑚 = 𝜕𝜙

hypersurface orthogonal g = −𝜌2𝑒2𝜆𝑑𝑡2 + 𝑒−2𝜆(𝑑𝜙− 𝑣𝑑𝑡)2 + 𝑒2𝑢(𝑑𝜌2 + 𝑑𝑧2)
g = −𝑉 2𝑑𝑡2 + 𝛾𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 (with controlled asymptotic behavior)

STATIC UNIQUENESS THM CIRCULAR UNIQUENESS THM

∙ originally by means of Israel’s thm, ∙ originally by means of Robinson’s thm,
later by the positive energy thm later by 𝜎-model/harmonic map identities
∙ No analyticity, degeneracy or or by inverse scattering techniques
connectedness needed ∙ multi-black holes?

Reissner–Nordström or MP Kerr–Newman metric

Figure 4: Classification of stationary electrovacuum black-hole spacetimes
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3.4.2 Rigidity without analyticity

Analyticity enters the current argument at two places: First, one needs to construct the second
Killing vector near the horizon. This can be done by first constructing a candidate at the horizon,
and then using analyticity to extend the candidate to a neighborhood of the horizon. Next, the
Killing vector has to be extended to the whole domain of outer communications. This can be done
using analyticity and a theorem by Nomizu [253], together with the fact that 𝐼+-regular domains
of outer communications are simply connected. Finally, analyticity can be used to provide a simple
argument that prehorizons do not intersect ⟨⟨𝑀ext⟩⟩ (but this is not critical, as a proof is available
now within the smooth category of metrics [72]).

A partially-successful strategy to remove the analyticity condition has been invented by Alex-
akis, Ionescu and Klainerman in [2]. Their argument applies to non-degenerate near-Kerrian
configurations, but the general case remains open.

The key to the approach in [2] is a unique continuation theorem near bifurcate Killing horizons
proven in [174], which implies the existence of a second Killing vector field, say 𝑚, in a neigh-
borhood of the horizon. One then needs to prove that 𝑚 extends to the whole domain of outer
communications. This is established via another unique continuation theorem [175] with specific
convexity conditions. These lead to non-trivial restrictions, and so far the argument has only been
shown to apply to near-Kerrian configurations.

A unique continuation theorem across more general timelike surfaces would be needed to obtain
the result without smallness restrictions.

It follows from what has been said in [72] that the boundary of the set where two Killing vector
fields are defined cannot become null within a domain of outer communications; this fact might be
helpful in solving the full problem.

3.4.3 Many components?

The only known examples of singularity-free stationary electrovacuum black holes with more than
one component are provided by the MP family. (Axisymmetric MP solutions are possible, but MP
metrics only have one Killing vector in general.) It has been suspected for a very long time that
these are the only such solutions, and that there are thus no such vacuum configurations. This
should be contrasted with the five-dimensional case, where the Black Saturn solutions of Elvang
and Figueras [97] (compare [71, 305]) provide non-trivial two-component examples.

It might be convenient to summarize the general facts known about four-dimensional multi-
component solutions.4 In case of doubts, 𝐼+-regularity should be assumed.

We start by noting that the static solutions, whether connected or not, have already been
covered in Section 3.1.

A multi-component electro-vacuum configuration with all components non-degenerate and non-
rotating would be, by what has been said, static, but then no such solutions exist (all components
of an MP black hole are degenerate). On the other hand, the question of existence of a multi–
black-hole configuration with components of mixed type, none of which rotates, is open; what’s
missing is the proof of existence of maximal hypersurfaces in such a case. Neither axisymmetry
nor staticity is known for such configurations.

Analytic multi–black-hole solutions with at least one rotating component are necessarily ax-
isymmetric; this leads one to study the corresponding harmonic-map equations, with candidate
solutions provided by Weinstein or by inverse scattering techniques [198, 322, 23, 22]. The Wein-
stein solutions have no singularities away from the axes, but they are not known in

4 Here we are interested in stationary multi–black-hole configurations; nonexistence of some suitably regular
stationary 𝑛-body configurations was established, under different symmetry conditions, in [20, 21].
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explicit form, which makes difficult the analysis of their behavior on the axis of rotation. The
multi–black-hole metrics constructed by multi-soliton superpositions or by Bäcklund transforma-
tion techniques are obtained as rational functions with several parameters, with explicit constraints
on the parameters that lead to a regular axis [222], but the analysis of the zeros of their denom-
inators has proved intractable so far. It is perplexing that the five dimensional solutions, which
are constructed by similar methods [268], can be completely analyzed with some effort and lead
to regular solutions for some choices of parameters, but the four-dimensional case remains to be
understood.

In any case, according to Varzugin [306, 307] and, independently, to Neugebauer and Meinel [251]
(a more detailed exposition can be found in [249, 147]), the multi-soliton solutions provide the
only candidates for stationary axisymmetric electrovacuum solutions. A breakthrough in the
understanding of vacuum two-component configurations has been made by Hennig and Neuge-
bauer [147, 249], based on the area-angular momentum inequalities of Ansorg, Cederbaum and
Hennig [145] as follows: Hennig and Neugebauer exclude many of the solutions by verifying that
they have negative total ADM mass. Next, configurations where two horizons have vanishing
surface gravity are shown to have zeros in the denominators of some geometric invariants. For
the remaining ones, the authors impose a non-degeneracy condition introduced by Booth and
Fairhurst [25]: a black hole is said to be sub-extremal if any neighborhood of the event horizon
contains trapped surfaces. The key of the analysis is the angular momentum - area inequality of
Hennig, Ansorg, and Cederbaum [145], that on every sub-extremal component of the horizon it
holds that

8𝜋|𝐽 | < 𝐴 , (3.1)

where 𝐽 is the Komar angular-momentum and 𝐴 the area of a section. (It is shown in [7] and [146,
Appendix] that 𝜅 = 0 leads to equality in (3.1) under conditions relevant to the problem at hand.)
Hennig and Neugebauer show that all remaining candidate solutions violate the inequality; this is
their precise non-existence statement.

The problem with the argument so far is the lack of justification of the sub-extremality con-
dition. Fortunately, this condition can be avoided altogether using ideas of [88] concerning the
inequality (3.1) and appealing to the results in [96, 6, 73] concerning marginally–outer-trapped
surfaces (MOTS): Using existence results of weakly stable MOTS together with various aspects
of the candidate Weyl metrics, one can adapt the argument of [145] to show [70] that the area
inequality (3.1), with “less than” there replaced by “less than or equal to”, would hold for those
components of the horizon, which have non-zero surface gravity, assuming an 𝐼+-regular metric of
the Weyl form, if any existed. The calculations of Hennig and Neugebauer [249] together with a
contradiction argument lead then to

Theorem 3.6 𝐼+-regular two-Kerr black holes do not exist.

The case of more than two horizons is widely open.
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4 Classification of stationary toroidal Kaluza–Klein black
holes

In this work we are mostly interested in uniqueness results for four-dimensional black holes. This
leads us naturally to consider those vacuum Kaluza–Klein spacetimes with enough symmetries
to lead to four-dimensional spacetimes after dimensional reduction, providing henceforth four-
dimensional black holes. It is convenient to start with a very short overview of the subject; the
reader is referred to [101, 172] and references therein for more information. Standard examples
of Kaluza–Klein black holes are provided by the Schwarzschild metric multiplied by any spatially
flat homogeneous space (e.g., a torus). Non-trivial examples can be found in [272, 211]; see
also [200, 172] and reference therein.

4.1 Black holes in higher dimensions

The study of spacetimes with dimension greater then four is almost as old as general relativity it-
self [183, 195]. Concerning black holes, while in dimension four all explicitly-known asymptomatically-
flat and regular solutions of the vacuum Einstein equations are exhausted by the Kerr family, in
spacetime dimension five the landscape of known solutions is richer. The following 𝐼+-regular,
stationary, asymptotically-flat, vacuum solutions are known in closed form: the Myers–Perry
black holes, which are higher-dimensional generalizations of the Kerr metric with spherical-horizon
topology [246]; the celebrated Emparan–Reall black rings with 𝑆2 × 𝑆1 horizon topology [99];
the Pomeransky–Senkov black rings generalizing the previous by allowing for a second angular-
momentum parameter [269]; and the “Black Saturn” solutions discovered by Elvang and Figueras,
which provide examples of regular multi-component black holes where a spherical horizon is sur-
rounded by a black ring [97].5

Inspection of the basic features of these solutions challenges any naive attempt to generalize the
classification scheme developed for spacetime dimension four: One can find black rings and Myers–
Perry black holes with the same mass and angular momentum, which must necessarily fail to be
isometric since the horizon topologies do not coincide. In fact there are non-isometric black rings
with the same Poincaré charges; consequently a classification in terms of mass, angular momenta
and horizon topology also fails. Moreover, the Black Saturns provide examples of regular vacuum
multi–black-hole solutions, which are widely believed not to exist in dimension four; interestingly,
there exist Black Saturns with vanishing total angular momentum, a feature that presumably
distinguishes the Schwarzschild metric in four dimensions.

Nonetheless, results concerning 4-dimensional black holes either generalize or serve as inspi-
ration in higher dimensions. This is true for landmark results concerning black-hole uniqueness
and, in fact, classification schemes exist for classes of higher dimensional black-hole spacetimes,
which mimic the symmetry properties of the “static or axisymmetric” alternative, upon which the
uniqueness theory in four-dimensions is built.

For instance, staticity of 𝐼+-regular, vacuum, asymptotically-flat, non-rotating, non-degenerate
black holes remains true in higher dimensions6. Also, Theorem 3.1 remains valid for vacuum space-
times of dimension 𝑛+ 1, 𝑛 ≥ 3, whenever the positive energy theorem applies to an appropriate
doubling of S (see [72], Section 3.1 and references therein). Moreover, the discussion in Section 3.1
together with the results in [282, 283] suggest that an analogous generalization to electrovacuum
spacetimes exists, which would lead to uniqueness of the higher-dimensional Reissner–Nordström
metrics within the class of static solutions of the Einstein–Maxwell equations, for all 𝑛 ≥ 3 (see
also [101, Section 8.2], [173] and references therein).

5 Studies of regularity and causal structure of black rings and Saturns can be found in [82, 67, 68, 305, 71].
6 It should be noted that, although formulated for 4-dimensional spacetimes, the results in [84] remain valid

without changes in higher-dimensional spacetimes.
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Rigidity theorems are also available for (𝑛 + 1)-dimensional, asymptotically-flat and analytic
black-hole spacetimes: the non-degenerate horizon case was established in [165] (compare [239]),
and partial results concerning the degenerate case were obtained in [163]. These show that sta-
tionary rotating (analytic) black holes are “axisymmetric”, in the sense that their isometry group
contains R×𝑈(1); the R factor corresponds to the action generated by the stationary vector, while
the circle action provides an “extra” axial Killing vector. A conjecture of Reall [274], supported
by the results in [98], predicts the existence of 5-dimensional black holes with exactly R × 𝑈(1)
isometry group; in particular, it is conceivable that the rigidity results are sharp when providing
only one “axial” Killing vector. The results in [133, 92, 166] are likely to be relevant in this context.

So we see that, assuming analyticity and asymptotic flatness, the dichotomy provided by the
rigidity theorem remains valid but its consequences appear to be weaker in higher dimensions. A
gap appears between the two favorable situations encountered in dimension four: one being the
already discussed staticity and the other corresponding to black holes with cohomogeneity-two
Abelian groups of isometries. We will now consider this last scenario, which turns out to have
connections to the four dimensional case.

4.2 Stationary toroidal Kaluza–Klein black holes

The four-dimensional vacuum Einstein equations simplify considerably in the stationary and ax-
isymmetric setting by reducing to a harmonic map into the hyperbolic plane (see Sections 8
and 3.2.3). A similar such reduction in (𝑛 + 1)-dimensions works when the isometry group in-
cludes R × T𝑛−2, i.e., besides the stationary vector there exist 𝑛 − 2 commuting axial Killing
vectors.

Since the center T𝑠 of 𝑆𝑂(𝑛) has dimension

𝑠 =
⌊︁𝑛

2

⌋︁
,

in the asymptotically flat case the existence of such a group of isometries is only possible for
𝑛 = 3 or 𝑛 = 4. However, one can move beyond the usual asymptotic-flatness and consider
instead 𝐾𝐾-asymptotically-flat spacetimes, in the sense of Section 2.2, with asymptotic ends
Sext ≈ (R𝑁 ∖ 𝐵) × T𝑠, satisfying 𝑁 = 3, 4 and 𝑁 + 𝑠 = 𝑛, with the isometry group containing
R× T𝑛−2, 𝑛 ≥ 3. Here one takes Sext ≈

(︀
R𝑁 ∖ 𝐵̄(𝑅)

)︀
× T𝑠, with the reference metric of the form

𝑔̊ = 𝛿⊕ ℎ̊, where ℎ̊ is the flat 𝑠-torus metric. Finally, the action of R×T𝑛−2 on (𝑀,g) by isometries
is assumed in the exterior region 𝑀ext ≈ R× Sext to take the form

R× T
𝑛−2 ∋ (𝜏, 𝑔) : (𝑡, 𝑝) ↦→ (𝑡+ 𝜏, 𝑔 · 𝑝) . (4.1)

Such metrics will be referred to as stationary toroidal Kaluza–Klein metrics.

4.3 Topology of the event horizon

A theorem of Galloway and Schoen [111] shows that compact cross-sections of the horizon must be
of positive Yamabe type, i.e., admit metrics of positive scalar curvature. In spacetime dimension
five, the positive Yamabe property restricts the horizon to be a finite connected sum of spaces
with 𝑆3, 𝑆2 ×𝑆1 and lens-space 𝐿(𝑝, 𝑞) topologies. Such results require no symmetry assumptions
but by further assuming stationarity and the existence of one axial Killing vector more topological
restrictions, concerning the allowed factors in the connected sum, appear in five dimensions [162].

In the toroidal Kaluza–Klein case, the existence of a toroidal action leads to further restric-
tions [169]; for instance, for 𝑁 = 4 and 𝑛 ≥ 4, each connected component of the horizon has
necessarily one of the following topologies: 𝑆3 × T𝑛−4, 𝑆2 × 𝑇𝑛−3 and 𝐿(𝑝, 𝑞) × T𝑛−4.
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It should be noted that no asymptotically-flat or Kaluza–Klein black holes with lens-space
topology of the horizon are known. Constructing a black lens, or establishing non-existence,
appears to be a challenging problem.

4.4 Orbit space structure

The structure theorem [65] applies to stationary toroidal Kaluza–Klein black holes and provides
the following product structure

⟨⟨𝑀ext⟩⟩ ≈ R× Σ ,

with the stationary vector being tangent to the R factor and where Σ, endowed with the induced
metric, is an 𝑛-dimensional Riemannian manifold admitting a T𝑛−2 action by isometries. A careful
analysis of the topological properties of such toroidal actions [169], based on deep results from [260,
261], allows one to show that the orbit space ⟨⟨𝑀ext⟩⟩/(R×T𝑛−2) is homeomorphic to a half plane
with boundary composed of segments and corners; the segments being the projection of either a
component of the event horizon or an axis of rotation (the set of zeros of a linear combination of
axial vectors), and the corners being the projections of the intersections of two axes. Moreover,
the interiors are in fact diffeomorphic. To establish this last fundamental result it is necessary to
exclude the existence of exceptional orbits of the toroidal action; this was done by Hollands and
Yazadjiev in [169] by extending the results in [260] to the 𝐾𝐾-black hole setting. In particular
one obtains the following decomposition

⟨⟨𝑀ext⟩⟩ ∖ (∪A𝑖) ≈ R× T
𝑛−2 × R× R

+ ,

where ∪A𝑖 is the union of all axes; we note that such product structure is necessary to the construc-
tion of Weyl coordinates [76, 65] and, consequently, indispensable to perform the desired reduction
of the vacuum equations.

As already discussed, basic properties of black rings show that a classification of 𝐾𝐾-black holes
in terms of mass, angular momenta and horizon topology is not possible. But, as argued by Hollands
and Yazadjiev [169], the angular momenta and the structure of the orbit space characterize such
black holes if one further assumes non-degeneracy of the event horizon. This orbit space structure
is in turn determined by the interval structure of the boundary of the quotient manifold, a concept
related to Harmark’s rod structure developed in [137] (see also [101, Section 5.2.2.1]). Note that
the interval structure codifies the horizon topology.

4.5 KK topological censorship

Black-hole uniqueness in four-dimensions uses simple connectedness of the event horizon exten-
sively. But the Schwarzschild metric multiplied by a flat torus shows that simple connectedness
does not hold for general domains of outer communications of Kaluza–Klein black holes. For-
tunately, simple connectedness of the orbit space ⟨⟨𝑀ext⟩⟩/(R × T𝑛−2) suffices: for instance, to
prove that the (𝑛− 1)-dimensional orbit generated by the stationary and axial vectors is timelike
in ⟨⟨𝑀ext⟩⟩ away from the axes (which in turn is essential to the construction of Weyl coordi-
nates), to guarantee the existence of global twist potentials [65] and to exclude the existence of
exceptional orbits of the toroidal action (see Section 4.4). The generalized topological censorship
theorem of [73] shows that this property follows from the simple connectedness of the orbit space
in the asymptotic end Sext/T

𝑛−2 ≈ R𝑁 ∖𝐵.

4.6 Classification theorems for KK -black holes

As usual, the static case requires separate consideration. The first classification results addressed
static five-dimensional solutions with KK asymptotics and with a R× 𝑈(1) factor in the group of
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isometries. In such a setting, the Kaluza–Klein reduction leads to gravity coupled with a Maxwell
field 𝐹 and a “dilaton” field 𝜑, with a Lagrangean

𝐿 = 𝑅− 2(∇𝜑)2 − 𝑒−2𝛼𝜑|𝐹 |2 ,

where 𝛼 =
√

3. In the literature one also considers more general theories where 𝛼 does not
necessarily take the Kaluza–Klein value. All current uniqueness proofs require that the mass, the
Maxwell charges, and the dilaton charge satisfy a certain genericity condition, and that all horizon
components have non-vanishing surface gravity. When 𝛼 = 1, Mars and Simon [224] show that
the generic static solutions belong to the family found by Gibbons and Maeda [131, 126, 122]. For
other values of 𝛼, in particular for the KK value, a purely electric or purely magnetic configuration
is assumed, and then the same conclusion is reached. The result is an improvement on the original
uniqueness theorems of Simon [294] and Masood-ul-Alam [226], and has been generalized to higher
dimensions in [129]. The analyticity assumption, which is implicit in all the above proofs, can be
removed using [72].

The remaining classfication results assume cohomogeneity-two isometry actions [169]:

Theorem 4.1 Let (𝑀𝑖,g𝑖), 𝑖 = 1, 2, be two 𝐼+-regular, (𝑛 + 1)-dimensional, 𝑛 ≥ 3, stationary
toroidal Kaluza–Klein spacetimes, with five asymptotically-large dimensions (𝑁 = 4). Assume,
moreover, that the event horizon is connected and mean non-degenerate. If the interval structure
and the set of angular momenta coincide, then the domains of outer communications are isometric.

This theorem generalizes previous results by the same authors [167, 168] as well as a uniqueness
result for a connected spherical black hole of [240].

The proof of Theorem 4.1 can be outlined as follows: After establishing the, mainly topological,
results of Sections 4.3, 4.4 and 4.5, the proof follows closely the arguments for uniqueness of 4-
dimensional stationary and axisymmetric electrovacuum black holes. First, a generalized Mazur
identity is valid in higher dimensions (see [218, 31] and Section 7.1). From this Hollands and
Yazadjiev show that (compare the discussion in Sections 8.4.1 and 8.4.2)

Δ𝛿𝜓 ≥ 0 , (4.2)

where Δ𝛿 is the flat Laplacian on R3, the function

𝜓 : R3 ∖ {𝑧 = 0} → R ,

is defined as
𝜓 = Trace(Φ2Φ−1

1 − 1) ,

the Φ𝑖’s, 𝑖 = 1, 2, are the Mazur matrices [169, Eq. (78)] associated with the two black-hole
spacetimes that are being compared. In terms of twist potentials ((𝑖)𝜒𝑖) and metric components
of the axisymmetric Killing vectors (generators of the toroidal symmetry)

(𝑖)𝑓𝑚𝑛 =
(︁
(𝑖)g(𝑘𝑚, 𝑘𝑛)

)︁
, 𝑖 = 1, 2 ,

we have the following explicit formula (see also [218, 240])

𝜓 = −1 +
(1)𝑓
(2)𝑓

+
(1)𝑓 𝑖𝑗

(︀
(1)𝜒𝑖 −(2) 𝜒𝑖

)︀ (︀
(1)𝜒𝑗 −(2) 𝜒𝑗

)︀
(2)𝑓

+ (1)𝑓 𝑖𝑗
(︁
(2)𝑓𝑖𝑗 − (1)𝑓𝑖𝑗

)︁
, (4.3)

where (𝑖)𝑓 = det
(︀
(𝑖)𝑓𝑚𝑛

)︀
, and where (1)𝑓 𝑖𝑗 is the matrix inverse to (1)𝑓𝑖𝑗 .

It should be noted that this provides a variation on Mazur’s and the harmonic map methods (see
Sections 3.2.4 and 3.2.5), which avoids some of their intrinsic difficulties. Indeed, the integration
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by parts argument based on the Mazur identity requires detailed knowledge of the maps under
consideration at the singular set {𝜌 = 0}, while the harmonic map approach requires finding, and
controlling, the distance function for the target manifold. (In some simple cases 𝜓 is the desired
distance function, but whether this is so in general is unclear.) The result then follows by a careful
analysis of the asymptotic behavior of the relevant fields; such analysis was also carried out in [169].

In this context, the degenerate horizons suffer from the supplementary difficulty of controlling
the behavior of the fields near the horizon. One expects that an exhaustive analysis of near-horizon
geometries would allow one to settle the question; some partial results towards this can be found
in [204, 203, 202, 164].
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5 Beyond Einstein–Maxwell

The purpose of this section is to reexamine the various steps leading to the classification of elec-
trovacuum black-hole spacetimes for other matter models. In particular, it will be seen that several
steps in Figure 3 cease to hold in the presence of non-Abelian gauge fields. Unfortunately, this
implies that we are far from having a classification of all stationary black-hole spacetimes with
physically-interesting sources.

5.1 Spherically symmetric black holes with hair

One can find in the literature the naive expectation that – within a given matter model – the
stationary black-hole solutions are uniquely characterized by a set of global charges; this will be
referred to as the generalized no-hair conjecture. A model in which this might possibly be correct
is provided by the static sector of the EM-dilaton theory, discussed at the beginning of Section 4.6.

The failure of this generalized no-hair conjecture is demonstrated by the Einstein–Yang–Mills
(EYM) theory: According to the conjecture, any static solution of the EYM equations should
either coincide with the Schwarzschild metric or have some non-vanishing Yang–Mills charges.
This turned out not to be the case when, in 1989, various authors [310, 208, 24] found a family
of static black-hole solutions with vanishing global Yang–Mills charges (as defined, e.g., in [74]);
these were originally constructed by numerical means and rigorous existence proofs were given later
in [299, 297, 298, 29, 227]; for a review see [311]. These solutions violate the generalized no-hair
conjecture.

As the non-Abelian black holes are unstable [301, 329, 315], one might adopt the view that they
do not present actual threats to the generalized no-hair conjecture. (The reader is referred to [37]
for the general structure of the pulsation equations, [309, 40], to [27] for the sphaleron instabilities
of the particle-like solutions, and to [292] for a review on sphalerons.) However, various authors
have found stable black holes, which are not characterized by a set of asymptotic flux integrals.
For instance, there exist stable black-hole solutions with hair of the static, spherically-symmetric
Einstein–Skyrme equations [94, 156, 157, 161, 241] and to the EYM equations coupled to a Higgs
triplet [28, 30, 214, 1]; it should be noted that the solutions of the EYM–Higgs equations with a
Higgs doublet are unstable [27, 324]. Hence, the restriction of the generalized no-hair conjecture
to stable configurations is not correct either.

One of the reasons why it was not until 1989 that black-hole solutions with self-gravitating
gauge fields were discovered was the widespread belief that the EYM equations admit no soliton
solutions. There were, at least, five reasons in support of this hypothesis.

∙ First, there exist no purely gravitational solitons, that is, the only globally-regular, asymptoti-
cally-flat, static vacuum solution to the Einstein equations with finite energy is Minkowski
spacetime. This is the Lichnerowicz theorem, which nowadays can be obtained from the
positive mass theorem and the Komar expression for the total mass of an asymptotically-
flat, stationary spacetime [170]; see, e.g., [127] or [152]. A rather strong version thereof,
which does not require asymptotic conditions other than completeness of the space metric,
has been established by Anderson [5], see also [4].

∙ Next, there are no nontrivial static solutions of the EYM equations near Minkowski space-
time [221].

∙ Further, both Deser’s energy argument [90] and Coleman’s scaling method [87] show that
there do not exist pure YM solitons in flat spacetime.

∙ Moreover, the EM system admits no soliton solutions. (This follows by applying Stokes’
theorem to the static Maxwell equations; see, e.g., [151].)
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∙ Finally, Deser [91] proved that the three-dimensional EYM equations admit no soliton solu-
tions. The argument takes advantage of the fact that the magnetic part of the Yang–Mills
field has only one non-vanishing component in 2+1 dimensions.

All this shows that it was conceivable to conjecture a nonexistence theorem for soliton solutions
of the EYM equations in 3+1 dimensions, and a no-hair theorem for the corresponding black hole
configurations. On the other hand, none of the above examples takes care of the full nonlinear EYM
system, which bears the possibility to balance the gravitational and the gauge field interactions. In
fact, a closer look at the structure of the EYM action in the presence of a Killing symmetry dashes
the hope to generalize the uniqueness proof along the lines used in the Abelian case: The Mazur
identity owes its existence to the 𝜎-model formulation of the EM equations. The latter is, in turn,
based on scalar magnetic potentials, the existence of which is a peculiarity of Abelian gauge fields
(see Section 6).

5.2 Static black holes without spherical symmetry

The above counterexamples to the generalized no-hair conjecture are static and spherically sym-
metric. The famous Israel theorem guarantees that spherical symmetry is, in fact, a consequence of
staticity, provided that one is dealing with vacuum [176] or electrovacuum [177] black-hole space-
times. The task to extend the Israel theorem to more general self-gravitating matter models is,
of course, a difficult one. In fact, the following example proves that spherical symmetry is not a
generic property of static black holes.

In [213], Lee et al. reanalyzed the stability of the Reissner–Nordström (RN) solution in the
context of 𝑆𝑈(2) EYM–Higgs theory. It turned out that – for sufficiently small horizons – the
RN black holes develop an instability against radial perturbations of the Yang–Mills field. This
suggested the existence of magnetically-charged, spherically-symmetric black holes with hair, which
were also found by numerical means [28, 30, 214, 1].

Motivated by these solutions, Ridgway and Weinberg [277] considered the stability of the mag-
netically charged RN black holes within a related model; the EM system coupled to a charged,
massive vector field. Again, the RN solution turned out to be unstable with respect to fluctuations
of the massive vector field. However, a perturbation analysis in terms of spherical harmonics re-
vealed that the fluctuations cannot be radial (unless the magnetic charge assumes an integer value),
as discussed in Weinberg’s comprehensive review on magnetically-charged black holes [317]. In fact,
the work of Ridgway and Weinberg shows that static black holes with magnetic charge need not
even be axially symmetric [278]. Axisymmetric, static black holes without spherical symmetry
appear to exist within the pure EYM system and the EYM-dilaton model [194].

This shows that static black holes may have considerably more structure than one might expect
from the experience with the EM system: Depending on the matter model, they may allow for
nontrivial fields outside the horizon and, moreover, they need not be spherically symmetric. Even
more surprisingly, there exist static black holes without any rotational symmetry at all.

5.3 The Birkhoff theorem

The Birkhoff theorem shows that the domain of outer communication of a spherically-symmetric
black-hole solution to the vacuum or the EM equations is static. The result does not apply to many
other matter models: dust, fluids, scalar fields, Einstein-Vlasov, etc., and it is natural to raise the
question for non-Abelian gauge fields. Now, the Einstein Yang–Mills equations have a well-posed
Cauchy problem, so one needs to make sure that the constraint equations admit non-stationary
solutions: Bartnik [11] has indeed proved existence of such initial data. The problem has also been
addressed numerically in [328, 329], where spherically-symmetric solutions of the EYM equations
describing the explosion of a gauge boson star or its collapse to a Schwarzschild black hole have
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been found. A systematic study of the problem for the EYM system with arbitrary gauge groups
was performed by Brodbeck and Straumann [39]. Extending previous results of Künzle [205] (see
also [206, 207]), the authors of [39] were able to classify the principal bundles over spacetime, which
– for a given gauge group – admit 𝑆𝑂(3) as symmetry group, acting by bundle automorphisms.
It turns out that the Birkhoff theorem can be generalized to bundles, which admit only 𝑆𝑂(3)-
invariant connections of Abelian type. We refer to [39] for the precise formulation of the statement
in terms of Stiefel diagrams, and to [33, 34, 138, 255] for a classification of EYM solitons. The results
in [104, 13] concerning particle-like EYM solutions are likely to be relevant for the corresponding
black-hole problem, but no detailed studies of this exist so far.

5.4 The staticity problem

Going back one step further in the left half of the classification scheme displayed in Figure 3,
one is led to the question of whether all black holes with non-rotating horizon are static. For
non-degenerate EM black holes this issue was settled by Sudarsky and Wald [302, 303, 84],7 while
the corresponding vacuum problem was solved quite some time ago [143]; the degenerate case
remains open. Using a slightly improved version of the argument given in [143], the staticity
theorem can be generalized to self-gravitating stationary scalar fields and scalar mappings [152] as,
for instance, the Einstein–Skyrme system. (See also [158, 149, 160], for more information on the
staticity problem). It should also be noted that the proof given in [152] works under less restrictive
topological assumptions, since it does not require the global existence of a twist potential.

While the vacuum and the scalar staticity theorems are based on differential identities and inte-
gration by parts, the approach due to Sudarsky and Wald takes advantage of the ADM formalism
and the existence of a maximal slicing [84]. Along these lines, the authors of [302, 303] were able
to extend the staticity theorem to topologically-trivial non-Abelian black-hole solutions. However,
in contrast to the Abelian case, the non-Abelian version applies only to configurations for which
either all components of the electric Yang–Mills charge or the electric potential vanish asymptot-
ically. This leaves some room for stationary black holes, which are non-rotating and not static.
Moreover, the theorem implies that such configurations must be charged. On a perturbative level,
the existence of these charged, non-static black holes with vanishing total angular momentum was
established in [38].

5.5 Rotating black holes with hair

So far we have addressed the ramifications occurring on the “non-rotating half” of the classification
diagram of Figure 3: We have argued that non-rotating black holes need not be static; static ones
need not be spherically symmetric; and spherically-symmetric ones need not be characterized
by a set of global charges. The right-hand-side of the classification scheme has been studied
less intensively so far. Here, the obvious questions are the following: Are all stationary black
holes with rotating Killing horizons axisymmetric (rigidity)? Are the stationary and axisymmetric
Killing fields orthogonally-transitive (circularity)? Are the circular black holes characterized by
their mass, angular momentum and global charges (no-hair)?

Let us start with the first issue, concerning the generality of the strong rigidity theorem (SRT).
The existence of a second Killing vector field to the future of a bifurcation surface can be established
by solving a characteristic Cauchy problem [107], which makes it clear that axial symmetry will
hold for a large class of matter models satisfying the, say, dominant energy condition.

The counterpart to the staticity problem is the circularity problem: As general non-rotating
black holes are not static, one expects that the axisymmetric ones need not be circular. This is,

7 An early apparent success rested on a sign error [46]. Carter’s amended version of the proof was subject to a
certain inequality between the electric and the gravitational potential [50].
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indeed, the case: While circularity is a consequence of the EM equations and the symmetry prop-
erties of the electro-magnetic field, the same is not true for the EYM system. In the Abelian case,
the proof rests on the fact that the field tensor satisfies 𝐹 (𝑘,𝑚) = (*𝐹 )(𝑘,𝑚) = 0, 𝑘 and 𝑚 being
the stationary and the axial Killing field, respectively; for Yang–Mills fields these conditions do no
longer follow from the field equations and their invariance properties (see Section 8.1 for details).
Hence, the familiar Papapetrou ansatz for a stationary and axisymmetric metric is too restrictive
to take care of all stationary and axisymmetric degrees of freedom of the EYM system. However,
there are other matter models for which the Papapetrou metric is sufficiently general: the proof
of the circularity theorem for self-gravitating scalar fields is, for instance, straightforward [150].
Recalling the key simplifications of the EM equations arising from the (2+2)-splitting of the metric
in the Abelian case, an investigation of non-circular EYM equations is expected to be rather awk-
ward. As rotating black holes with hair are most likely to occur already in the circular sector (see
the next paragraph), a systematic investigation of the EYM equations with circular constraints is
needed as well.

The static subclass of the circular sector was investigated in studies by Kleihaus and Kunz
(see [194] for a compilation of the results). Since, in general, staticity does not imply spherical
symmetry, there is a possibility for a static branch of axisymmetric black holes without spherical
symmetry. Using numerical methods, Kleihaus and Kunz have constructed black-hole solutions of
this kind for both the EYM and the EYM-dilaton system [192]. The related axisymmetric soliton
solutions without spherical symmetry were previously obtained by the same authors [190, 191];
see also [193] for more details. The new configurations are purely magnetic and parameterized by
their winding number and the node number of the relevant gauge field amplitude. In the formal
limit of infinite node number, the EYM black holes approach the Reissner–Nordström solution,
while the EYM-dilaton black holes tend to the Gibbons–Maeda black hole [126, 131]. The solutions
themselves are neutral and not spherically symmetric; however, their limiting configurations are
charged and spherically symmetric. Both the soliton and the black-hole solutions of Kleihaus and
Kunz are unstable and may, therefore, be regarded as gravitating sphalerons and black holes inside
sphalerons, respectively.

Existence of slowly rotating regular black-hole solutions to the EYM equations was established
in [38]. Using the reduction of the EYM action in the presence of a stationary symmetry reveals that
the perturbations giving rise to non-vanishing angular momentum are governed by a self-adjoint
system of equations for a set of gauge invariant fluctuations [35]. With a soliton background,
the solutions to the perturbation equations describe charged, rotating excitations of the Bartnik–
McKinnon solitons [14]. In the black-hole case the excitations are combinations of two branches of
stationary perturbations: The first branch comprises charged black holes with vanishing angular
momentum,8 whereas the second one consists of neutral black holes with non-vanishing angular
momentum. (A particular combination of the charged and the rotating branch was found in [312].)
In the presence of bosonic matter, such as Higgs fields, the slowly rotating solitons cease to exist,
and the two branches of black-hole excitations merge to a single one with a prescribed relation
between charge and angular momentum [35]. More information about the EYM–Higgs system can
be found in [209, 254].

8 As already mentioned in Section 5.4, these black holes present counter-examples to the naive generalization of
the staticity theorem; they are nice illustrations of the correct non-Abelian version of the theorem [302, 303].
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6 Stationary Spacetimes

For physical reasons, the black-hole equilibrium states are expected to be stationary. Spacetimes
admitting a Killing symmetry exhibit a variety of interesting features, some of which will be
discussed in this section. In particular, the existence of a Killing field implies a canonical local 3+1
decomposition of the metric. The projection formalism arising from this structure was developed
by Geroch in the early seventies [125, 124], and can be found in Chapter 16 of the book on exact
solutions by Kramer et al. [199].

A slightly different, rather powerful approach to stationary spacetimes is obtained by taking
advantage of their Kaluza–Klein (KK) structure. As this approach is less commonly used in the
present context, we will discuss the KK reduction of the Einstein–Hilbert(–Maxwell) action in
some detail, the more so as this yields an efficient derivation of the Ernst equations and the Mazur
identity. Moreover, the inclusion of non-Abelian gauge fields within this framework [35] reveals
a decisive structural difference between the Einstein–Maxwell (EM) and the Einstein–Yang–Mills
(EYM) system.

6.1 Reduction of the Einstein–Hilbert action

By definition, a stationary spacetime (𝑀,g) admits an asymptotically–time-like Killing field, that
is, a vector field 𝑘 with 𝐿𝑘g = 0, 𝐿𝑘 denoting the Lie derivative with respect to 𝑘. At least locally,
𝑀 has the structure Σ × 𝐺, where 𝐺 ≈ R denotes the one-dimensional group generated by the
Killing symmetry, and Σ is the three-dimensional quotient space 𝑀/𝐺. A stationary spacetime is
called static, if the integral trajectories of 𝑘 are orthogonal to Σ.

With respect to an adapted coordinate 𝑡, so that 𝑘 := 𝜕𝑡, the metric of a stationary spacetime
can be parameterized in terms of a three-dimensional (Riemannian) metric 𝑔̄ := 𝑔𝑖𝑗d𝑥

𝑖d𝑥𝑗 , a one-
form 𝑎 := 𝑎𝑖d𝑥

𝑖, and a scalar field 𝑉 , where stationarity implies that 𝑔𝑖𝑗 , 𝑎𝑖 and 𝑉 are functions
on (Σ, 𝑔̄):

g = −𝑉 (d𝑡+ 𝑎)2 +
1

𝑉
𝑔̄. (6.1)

The notation 𝑡 suggests that 𝑡 is a time coordinate, g(∇𝑡,∇𝑡) < 0, but this restriction does not
play any role in the local form of the equations that we are about to derive. Similarly the local
calculations that follow remain valid regardless of the causal character of 𝑘, provided that 𝑘 is not
null everywhere, and then one only considers the region where g(𝑘, 𝑘) ≡ −𝑉 does not change sign.
On any connected component of this region 𝑘 is either spacelike or timelike, as determined by the
sign of 𝑉 , and then the metric 𝑔̄ is Lorentzian, respectively Riemannian, there. In any case, both
the parameterization of the metric and the equations become singular at places where 𝑉 has zeros,
so special care is required wherever this occurs.

Using Cartan’s structure equations (see, e.g., [300]), it is a straightforward task to compute the
Ricci scalar for the above decomposition of the spacetime metric; see, e.g., [155] for the details of
the derivation. The result is that the Einstein–Hilbert action of a stationary spacetime reduces to
the action for a scalar field 𝑉 and a vector field 𝑎, which are coupled to three-dimensional gravity.
The fact that this coupling is minimal is a consequence of the particular choice of the conformal
factor in front of the three-metric 𝑔̄ in the decomposition (6.1). The vacuum field equations are thus
seen to be equivalent to the three-dimensional Einstein-matter equations obtained from variations
of the effective action

𝑆eff =

∫︁
*̄
(︂
𝑅̄− 1

2𝑉 2
⟨d𝑉 , d𝑉 ⟩ +

𝑉 2

2
⟨d𝑎 , d𝑎⟩

)︂
, (6.2)

with respect to 𝑔𝑖𝑗 , 𝑉 and 𝑎. Here and in the following 𝑅̄ denotes the Ricci scalar of 𝑔̄, while for
𝑝-forms 𝛼 and 𝛽, their inner product is defined by *̄⟨𝛼 , 𝛽⟩ := 𝛼 ∧ *̄𝛽, where *̄ is the Hodge dual
with respect to 𝑔̄.
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It is worth noting that the quantities 𝑉 and 𝑎 are related to the norm and the twist of the
Killing field as follows:

𝑉 = −g(𝑘, 𝑘) , 𝜔 :=
1

2
* (𝑘 ∧ d𝑘) = −1

2
𝑉 2*̄ d𝑎 , (6.3)

where * and *̄ denote the Hodge dual with respect to g and 𝑔̄, respectively. Here and in the following
we use the symbol 𝑘 for both the Killing field 𝜕𝑡 and the corresponding one-form −𝑉 (d𝑡+𝑎). One
can view 𝑎 as a connection on a principal bundle with base space Σ and fiber R, since it behaves
like an Abelian gauge potential under coordinate transformations of the form 𝑡 → 𝑡 + 𝜙(𝑥𝑖). Not
surprisingly, it enters the effective action in a gauge-invariant way, that is, only via the “Abelian
field strength”, 𝑓 := d𝑎.

6.2 The coset structure of vacuum gravity

For many applications, in particular for the black-hole uniqueness theorems, it is convenient to
replace the one-form 𝑎 by a function, namely the twist potential. We have already pointed out
that 𝑎, parameterizing the non-static part of the metric, enters the effective action (6.2) only via
the field strength, 𝑓 = d𝑎. For this reason, the variational equation for 𝑎 (that is, the off-diagonal
Einstein equation) takes in vacuum the form of a source-free Maxwell equation:

d*̄
(︀
𝑉 2d𝑎

)︀
= 0 =⇒ d𝑌 = −*̄

(︀
𝑉 2d𝑎

)︀
. (6.4)

By virtue of Eq. (6.3), the (locally-defined) function 𝑌 is a potential for the twist one-form,
d𝑌 = 2𝜔. In order to write the effective action (6.2) in terms of the twist potential 𝑌 , rather than
the one-form 𝑎, one considers 𝑓 as a fundamental field and imposes the constraint d𝑓 = 0 with the
Lagrange multiplier 𝑌 . The variational equation with respect to 𝑓 then yields 𝑓 = −*̄(𝑉 −2d𝑌 ),
which is used to eliminate 𝑓 in favor of 𝑌 . One finds 1

2𝑉
2𝑓 ∧*̄𝑓 −𝑌 d𝑓 → − 1

2𝑉
−2d𝑌 ∧*̄d𝑌 . Thus,

the action (6.2) becomes

𝑆eff =

∫︁
*̄
(︂
𝑅̄− ⟨d𝑉 , d𝑉 ⟩ + ⟨d𝑌 , d𝑌 ⟩

2𝑉 2

)︂
, (6.5)

where we recall that ⟨ , ⟩ is the inner product with respect to the three-metric 𝑔̄ defined in Eq. (6.1).
The action (6.5) describes a harmonic map into a two-dimensional target space, effectively

coupled to three-dimensional gravity. In terms of the complex Ernst potential E [102, 103], one
has

𝑆eff =

∫︁
*̄
(︂
𝑅̄− 2

⟨dE , dĒ⟩
(E + Ē)2

)︂
, E := 𝑉 + 𝑖𝑌 . (6.6)

The stationary vacuum equations are obtained from variations with respect to the three-metric 𝑔̄
[(𝑖𝑗)-equations] and the Ernst potential E [(0𝜇)-equations]. One easily finds 𝑅̄𝑖𝑗 = 2(E+Ē)−2E,𝑖 Ē,𝑗
and Δ̄E = 2(E + Ē)−1⟨dE , dE⟩, where Δ̄ is the Laplacian with respect to 𝑔̄.

The target space for stationary vacuum gravity, parameterized by the Ernst potential E, is a
Kähler manifold with metric 𝐺EĒ = 𝜕E𝜕Ē ln(𝑉 ) (see [115] for details). By virtue of the mapping

E ↦→ 𝑧 =
1 − E

1 + E
, (6.7)

the semi-plane where the Killing field is time-like, Re(E) > 0, is mapped into the interior of the
complex unit disc, 𝐷 = {𝑧 ∈ C | |𝑧| < 1}, with standard metric (1 − |𝑧|2)−2⟨d𝑧 , d𝑧⟩. By virtue
of the stereographic projection, Re(𝑧) = 𝑥1(𝑥0 + 1)−1, Im(𝑧) = 𝑥2(𝑥0 + 1)−1, the unit disc 𝐷 is
isometric to the pseudo-sphere, 𝑃𝑆2 = {(𝑥0, 𝑥1, 𝑥2) ∈ R3 | −(𝑥0)2 + (𝑥1)2 + (𝑥2)2 = −1}. As the
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three-dimensional Lorentz group, 𝑆𝑂(2, 1), acts transitively and isometrically on the pseudo-sphere
with isotropy group 𝑆𝑂(2), the target space is the coset 𝑃𝑆2 ≈ 𝑆𝑂(2, 1)/𝑆𝑂(2) (see, e.g., [196]
or [26] for the general theory of symmetric spaces). Using the universal covering 𝑆𝑈(1, 1) of
𝑆𝑂(2, 1), one can parameterize 𝑃𝑆2 ≈ 𝑆𝑈(1, 1)/𝑈(1) in terms of a positive hermitian matrix
Φ(𝑥), defined by

Φ(𝑥) =

(︂
𝑥0 𝑥1 + 𝑖 𝑥2

𝑥1 − 𝑖 𝑥2 𝑥0

)︂
=

1

1 − |𝑧|2
(︂

1 + |𝑧|2 2 𝑧
2𝑧 1 + |𝑧|2

)︂
. (6.8)

Hence, the effective action for stationary vacuum gravity becomes the standard action for a 𝜎-model
coupled to three-dimensional gravity [250],

𝒮eff =

∫︁
*̄
(︂
𝑅̄− 1

4
Trace⟨𝒥 , 𝒥 ⟩

)︂
, (6.9)

where
Trace⟨𝒥 , 𝒥 ⟩ ≡ ⟨𝒥 𝐴

𝐵 , 𝒥 𝐵
𝐴⟩ := 𝑔𝑖𝑗(𝒥𝑖)

𝐴
𝐵(𝒥𝑗)

𝐵
𝐴 , (6.10)

and the currents 𝒥𝑖 are defined as
𝒥𝑖 := Φ−1∇̄𝑖Φ . (6.11)

The simplest nontrivial solution to the vacuum Einstein equations is obtained in the static,
spherically-symmetric case: For E = 𝑉 (𝑟) one has 2𝑅̄𝑟𝑟 = (𝑉 ′/𝑉 )2 and Δ̄ ln(𝑉 ) = 0. With respect
to the general spherically-symmetric ansatz

𝑔̄ = d𝑟2 + 𝜌2(𝑟)dΩ2, (6.12)

one immediately obtains the equations −4𝜌′′/𝜌 = (𝑉 ′/𝑉 )2 and (𝜌2𝑉 ′/𝑉 )′ = 0, the solution of
which is the Schwarzschild metric in the usual parametrization: 𝑉 = 1 − 2𝑀/𝑟, 𝜌2 = 𝑉 (𝑟)𝑟2.

6.3 Stationary gauge fields

The reduction of the Einstein–Hilbert action in the presence of a Killing field yields a 𝜎-model,
which is effectively coupled to three-dimensional gravity. While this structure is retained for the
EM system, it ceases to exist for self-gravitating non-Abelian gauge fields. In order to perform
the dimensional reduction for the EM and the EYM equations, we need to recall the notion of a
symmetric gauge field.

In mathematical terms, a gauge field (with gauge group 𝐺, say) is a connection in a principal
bundle 𝑃 (𝑀,𝐺) over spacetime 𝑀 . A gauge field is symmetric with respect to the action of a
symmetry group 𝑆 of 𝑀 , if it is described by an 𝑆-invariant connection on 𝑃 (𝑀,𝐺). Hence, finding
the symmetric gauge fields involves the task of classifying the principal bundles 𝑃 (𝑀,𝐺), which
admit the symmetry group 𝑆, acting by bundle automorphisms. This program was carried out
by Brodbeck and Straumann for arbitrary gauge and symmetry groups [33], (see also [34, 39]),
generalizing earlier work of Harnad et al. [138], Jadczyk [181] and Künzle [207].

The gauge fields constructed in the above way are invariant under the action of 𝑆 up to gauge
transformations. This is also the starting point of the alternative approach to the problem, due to
Forgács and Manton [105]. It implies that a gauge potential 𝐴 is symmetric with respect to the
action of a Killing field 𝜉, say, if there exists a Lie algebra valued function 𝒱𝜉, such that

𝐿𝜉𝐴 = D𝒱𝜉 , (6.13)

where 𝒱𝜉 is the generator of an infinitesimal gauge transformation, 𝐿𝜉 denotes the Lie derivative,
and D is the gauge covariant exterior derivative, D𝒱𝜉 = d𝒱𝜉 + [𝐴,𝒱𝜉].
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Let us now consider a stationary spacetime with (asymptotically) time-like Killing field 𝑘. A
stationary gauge potential can be parameterized in terms of a one-form 𝐴 orthogonal to 𝑘, in the
sense that 𝐴(𝑘) = 0, and a Lie algebra valued potential 𝜑,

𝐴 = 𝜑 (d𝑡+ 𝑎) +𝐴 , (6.14)

where we recall that 𝑎 is the non-static part of the metric (6.1). For the sake of simplicity we
adopt a gauge where 𝒱𝑘 vanishes.9 By virtue of the above decomposition, the field strength
becomes 𝐹 = D̄𝜑∧ (d𝑡+𝑎) + (𝐹 +𝜑𝑓), where 𝐹 is the Yang–Mills field strength for 𝐴 and 𝑓 = 𝑑𝑎.
Using the expression (6.5) for the vacuum action, one easily finds that the EYM action,

𝑆EYM =

∫︁ (︀
*𝑅− 2 t̂r (𝐹 ∧ *𝐹 )

)︀
, (6.15)

where 𝑅 and * refer to the 4-dimensional space-time metric g and t̂r ( ) denotes a suitably normal-
ized trace (e.g., t̂r (𝜏𝑎𝜏𝑏) = 1

2𝛿𝑎𝑏 where the 𝜎𝑎’s are the Pauli matrices), gives rise to the effective
action

𝑆eff =

∫︁
*̄
(︂
𝑅̄− 1

2𝑉 2
|d𝑉 |2 +

𝑉 2

2
|𝑓 |2 +

2

𝑉
|D̄𝜑|2 − 2𝑉 |𝐹 + 𝜑 𝑓 |2

)︂
, (6.16)

where D̄ is the gauge covariant derivative with respect to 𝐴, and where the inner product also
involves the trace: *̄|𝐹 |2 := t̂r

(︀
𝐹 ∧ *̄𝐹

)︀
. The above action describes two scalar fields, 𝑉 and 𝜑,

and two vector fields, 𝑎 and 𝐴, which are minimally coupled to three-dimensional gravity with
metric 𝑔̄. Similarly to the vacuum case, the connection 𝑎 enters 𝑆eff only via the field strength 𝑓 .
Again, this gives rise to a differential conservation law,

d*̄
[︀
𝑉 2𝑓 − 4𝑉 t̂r

(︀
𝜑(𝐹 + 𝜑𝑓)

)︀]︀
= 0, (6.17)

by virtue of which one can (locally) introduce a generalized twist potential 𝑌 , defined by −d𝑌 =
*̄[. . .].

The main difference between the Abelian and the non-Abelian case concerns the variational
equation for 𝐴, that is, the Yang–Mills equation for 𝐹 : For non-Abelian gauge groups, 𝐹 is no
longer an exact two-form, and the gauge covariant derivative of 𝜑 introduces source terms in the
corresponding Yang–Mills equation:

D̄
[︀
𝑉 *̄

(︀
𝐹 + 𝜑𝑓

)︀]︀
= 𝑉 −1*̄

[︀
𝜑 , D̄𝜑

]︀
. (6.18)

Hence, the scalar magnetic potential – which can be introduced in the Abelian case according to
𝑑𝜓 := 𝑉 *̄(𝐹 + 𝜑𝑓) – ceases to exist for non-Abelian Yang–Mills fields. The remaining stationary
EYM equations are easily derived from variations of 𝑆eff with respect to the gravitational potential
𝑉 , the electric Yang–Mills potential 𝜑 and the three-metric 𝑔̄.

As an application, we note that the effective action (6.16) is particularly suited for analyzing
stationary perturbations of static (𝑎 = 0), purely magnetic (𝜑 = 0) configurations [35], such as
the Bartnik–McKinnon solitons [14] and the corresponding black-hole solutions [310, 208, 24]. The
two crucial observations in this context are [35, 312]:

(i) The only perturbations of the static, purely magnetic EYM solutions, which can contribute
the ADM angular momentum are the purely non-static, purely electric ones, 𝛿𝑎 and 𝛿𝜑.

(ii) In first-order perturbation theory, the relevant fluctuations, 𝛿𝑎 and 𝛿𝜑, decouple from the
remaining metric and matter perturbations.

9 The symmetry condition (6.13) translates into 𝐿𝑘𝜑 = [𝜑,𝒱] and 𝐿𝑘𝐴 = D̄𝒱, which can be used to reduce the
EYM equations in the presence of a Killing symmetry in a gauge-invariant manner [158, 159].
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The second observation follows from the fact that the magnetic Yang–Mills equation (6.18) and
the Einstein equations for 𝑉 and 𝑔̄ become background equations, since they contain no linear
terms in 𝛿𝑎 and 𝛿𝜑. Therefore, the purely electric, non-static perturbations are governed by the
twist equation (6.17) and the electric Yang–Mills equation (obtained from variations of 𝑆eff with
respect to 𝜑).

Using Eq. (6.17) to introduce the twist potential 𝑌 , the fluctuation equations for the first-order
quantities 𝛿𝑌 and 𝛿𝜑 assume the form of a self-adjoint system [35]. Considering perturbations of
spherically-symmetric configurations, one can expand 𝛿𝑌 and 𝛿𝜑 in terms of isospin harmonics.
In this way one obtains a Sturm–Liouville problem, the solutions of which reveal the features
mentioned in the last paragraph of Section 5.5 [38].

6.4 The stationary Einstein–Maxwell system

In the one-dimensional Abelian case, both the off-diagonal Einstein equation (6.17) and the
Maxwell equation (6.18) give rise to scalar potentials, (locally) defined by

d𝜓 := 𝑉 *̄
(︀
𝐹 + 𝜑𝑓

)︀
, d𝑌 := −𝑉 2*̄𝑓 + 2𝜑d𝜓 − 2𝜓d𝜑 . (6.19)

Similarly to the vacuum case, this enables one to apply the Lagrange multiplier method to express
the effective action in terms of the scalar fields 𝑌 and 𝜓, rather than the one-forms 𝑎 and 𝐴. It
turns out that in the stationary-axisymmetric case, to which we return in Section 8, we will also
be interested in the dimensional reduction of the EM system with respect to a space-like Killing
field. Therefore, we give here the general result for an arbitrary Killing field 𝜉 with norm 𝑁 :

𝑆eff =

∫︁
*̄
(︂
𝑅̄− 2

|d𝜑|2 + |d𝜓|2
𝑁

− |d𝑁 |2 + |d𝑌 − 2𝜑d𝜓 + 2𝜓d𝜑|2
2 𝑁2

)︂
, (6.20)

where *̄|d𝜑|2 = d𝜑 ∧ *̄d𝜑, etc. The electro-magnetic potentials 𝜑 and 𝜓 and the gravitational
scalars 𝑁 and 𝑌 are obtained from the four-dimensional field strength 𝐹 and the Killing field as
follows (given a two-form 𝛽, we denote by 𝑖𝜉𝛽 the one-form with components 𝜉𝜇𝛽𝜇𝜈):

d𝜑 = −𝑖𝜉𝐹 , d𝜓 = 𝑖𝜉 * 𝐹 , (6.21)

𝑁 = 𝑔(𝜉, 𝜉) , d𝑌 = 2 (𝜔 + 𝜑d𝜓 − 𝜓d𝜑) , (6.22)

where 2𝜔 := *(𝜉 ∧ d𝜉). The inner product ⟨· , ·⟩ and the associated “norm” | · | are taken with
respect to the three-metric 𝑔̄, which becomes pseudo-Riemannian if 𝜉 is space-like. The additional
stationary symmetry will then imply that the inner products in (6.20) have a fixed sign, despite
the fact that 𝑔̄ is not a Riemannian metric in this case.

The action (6.20) describes a harmonic mapping into a four-dimensional target space, effectively
coupled to three-dimensional gravity. In terms of the complex Ernst potentials, Λ := −𝜑+ 𝑖𝜓 and
E := −𝑁 − ΛΛ̄ + 𝑖𝑌 [102, 103], the effective EM action becomes

𝑆eff =

∫︁
*̄
(︂
𝑅̄− 2

| dΛ |2
𝑁

− 1

2

| dE + 2Λ̄dΛ |2
𝑁2

)︂
, (6.23)

where |dΛ|2 := ⟨dΛ , dΛ⟩. The field equations are obtained from variations with respect to the
three-metric 𝑔̄ and the Ernst potentials. In particular, the equations for E and Λ become

Δ̄E = −⟨dE , dE + 2Λ̄dΛ⟩
𝑁

, Δ̄Λ = −⟨dΛ , dE + 2Λ̄dΛ⟩
𝑁

, (6.24)

where −𝑁 = ΛΛ̄ + 1
2 (E + Ē). The isometries of the target manifold are obtained by solving the

respective Killing equations [250] (see also [186, 187, 189, 188]). This reveals the coset structure
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of the target space and provides a parametrization of the latter in terms of the Ernst potentials.
For vacuum gravity and a timelike Killing vector we have seen in Section 6.2 that the coset space,
𝐺/𝐻, is 𝑆𝑈(1, 1)/𝑈(1), whereas one finds 𝐺/𝐻 = 𝑆𝑈(2, 1)/𝑆(𝑈(1, 1) × 𝑈(1)) for the stationary
EM equations. If the dimensional reduction is performed with respect to a space-like Killing field,
then 𝐺/𝐻 = 𝑆𝑈(2, 1)/𝑆(𝑈(2) × 𝑈(1)). The explicit representation of the coset manifold in terms
of the above Ernst potentials, E and Λ, is given by the Hermitian matrix Φ, with components

Φ𝐴𝐵 = 𝜂𝐴𝐵 + 2sig(𝑁)𝑣𝐴𝑣𝐵 , (𝑣0, 𝑣1, 𝑣2) :=
1

2
√︀

|𝑁 |
(E − 1,E + 1, 2Λ) , (6.25)

where 𝑣𝐴 is the Kinnersley vector [185], and 𝜂 := diag(−1,+1,+1). It is straightforward to
verify that, in terms of Φ, the effective action (6.23) assumes the 𝑆𝑈(2, 1) invariant form (6.9).
The equations of motion following from this action are the following three-dimensional Einstein
equations with sources, obtained from variations with respect to 𝑔̄, and the 𝜎-model equations,
obtained from variations with respect to Φ:

𝑅̄𝑖𝑗 =
1

4
Trace (𝒥𝑖 𝒥𝑗) , d*̄𝒥 = 0 ; (6.26)

here all operations are taken with respect to 𝑔̄.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-7

http://www.livingreviews.org/lrr-2012-7


Stationary Black Holes: Uniqueness and Beyond 41

7 Some Applications

The 𝜎-model structure is responsible for various distinguished features of the stationary EM system
and related self-gravitating matter models. This section is devoted to a brief discussion of some
applications. We show how the Mazur identity [230], the quadratic mass formulae [153] and the
Israel–Wilson–Perjés class of stationary black holes [179, 267] arise from the 𝜎-model structure of
the stationary field equations.

7.1 The Mazur identity

In the presence of a second Killing field, the EM equations (6.26) experience further, considerable
simplifications, which will be discussed later. In this section we will not yet require the existence
of an additional Killing symmetry. The Mazur identity [230], which is the key to the uniqueness
theorem for the Kerr–Newman metric [228, 229], is a consequence of the coset structure of the
field equations. Note, however, that while the derivation of the general form of this identity only
requires one Killing vector, its application to the uniqueness argument uses two; we will return to
this issue shortly.

In order to obtain the Mazur identity, one considers two arbitrary Hermitian matrices, Φ1 and
Φ2. The aim is to compute the Laplacian with respect to a metric 𝑔̄ (which in the application of
interest will be flat) of the relative difference Ψ, say, between Φ2 and Φ1,

Ψ := Φ2Φ−1
1 − 1 . (7.1)

It turns out to be convenient to introduce the current matrices 𝒥1 = Φ−1
1 ∇̄Φ1 and 𝒥2 = Φ−1

2 ∇̄Φ2,
and their difference 𝒥△ = 𝒥2 − 𝒥1, where ∇̄ denotes the covariant derivative with respect to 𝑔̄.
Using ∇̄Ψ = Φ2 𝒥△ Φ−1

1 , the Laplacian of Ψ becomes

Δ̄Ψ = ⟨∇̄Φ2 , 𝒥△⟩Φ−1
1 + Φ2 ⟨𝒥△ , ∇̄Φ−1

1 ⟩ + Φ2 (∇̄𝒥△) Φ−1
1 ,

where, as before, the inner product ⟨· , ·⟩ is taken with respect to the three-metric 𝑔̄ and also involves

a matrix multiplication. For hermitian matrices one has ∇̄Φ2 = 𝒥 †
2 Φ2 and ∇̄Φ−1

1 = −Φ−1
1 𝒥 †

1 ,
which can be used to combine the trace of the first two terms on the right-hand side of the above
expression. One easily finds

Trace
(︀
Δ̄Ψ

)︀
= Trace

(︁
⟨Φ−1

1 𝒥 †
△ , Φ2𝒥△⟩ + Φ2 (∇̄𝒥△) Φ−1

1

)︁
. (7.2)

The above expression is an identity for the relative difference of two arbitrary Hermitian matrices,
with all operations taken with respect to 𝑔̄ (recall (6.10)). If the latter are solutions of a non-linear
𝜎-model with action

∫︀
Trace (𝒥 ∧ *̄𝒥 ), then their currents are conserved [see Eq. (6.26)], implying

that the second term on the right-hand side vanishes. Moreover, if the 𝜎-model describes a mapping
with coset space 𝑆𝑈(𝑝, 𝑞)/𝑆(𝑈(𝑝)×𝑈(𝑞)), then this is parameterized by positive Hermitian matrices
of the form Φ = 𝑔𝑔†. (We refer to [196, 95], and [26] for the theory of symmetric spaces.) Hence,
the “on-shell” restriction of the Mazur identity to 𝜎-models with coset 𝑆𝑈(𝑝, 𝑞)/𝑆(𝑈(𝑝) × 𝑈(𝑞))
becomes

Trace
(︀
Δ̄Ψ

)︀
= Trace⟨ℳ , ℳ†⟩, (7.3)

where ℳ := 𝑔−1
1 𝒥 †

△𝑔2.
Of decisive importance to the uniqueness proof for the Kerr–Newman metric is the fact that the

right-hand side of the above relation is non-negative. In order to achieve this one needs two Killing
fields: The requirement that Φ be represented in the form 𝑔𝑔† forces the reduction of the EM
system with respect to a space-like Killing field; otherwise the coset is 𝑆𝑈(2, 1)/𝑆(𝑈(1, 1)×𝑈(1)),
which is not of the desired form. As a consequence of the space-like reduction, the three-metric
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𝑔̄ is not Riemannian, and the right-hand side of Eq. (7.3) is indefinite, unless the matrix valued
one-form ℳ is space-like. This is the case if there exists a time-like Killing field with 𝐿𝑘Φ = 0,
implying that the currents are orthogonal to 𝑘: 𝒥 (𝑘) = 𝑖𝑘Φ−1𝑑Φ = Φ−1𝐿𝑘Φ = 0. The reduction
of Eq. (7.3) with respect to the second Killing field and the integration of the resulting expression
will be discussed in Section 8.

7.2 Mass formulae

The stationary vacuum Einstein equations describe a two-dimensional 𝜎-model coupled to three-
dimensional gravity. The target manifold is the pseudo-sphere 𝑆𝑂(2, 1)/𝑆𝑂(2) ≈ 𝑆𝑈(1, 1)/𝑈(1),
which is parameterized in terms of the norm and the twist potential of the Killing field (see
Section 6.2). The symmetric structure of the target space persists for the stationary EM system,
where the four-dimensional coset, 𝑆𝑈(2, 1)/𝑆(𝑈(1, 1)×𝑈(1)), is represented by a hermitian matrix
Φ, comprising the two electro-magnetic scalars, the norm of the Killing field and the generalized
twist potential (see Section 6.4).

The coset structure of the stationary field equations is shared by various self-gravitating matter
models with massless scalars (moduli) and Abelian vector fields. For scalar mappings into a
symmetric target space 𝐺̄/𝐻̄, say, Breitenlohner et al. [31] have classified the models admitting
a symmetry group, which is sufficiently large to comprise all scalar fields arising on the effective
level10 within one coset space, 𝐺/𝐻. A prominent example of this kind is the EM-dilaton-axion
system, which is relevant to 𝑁 = 4 supergravity and to the bosonic sector of four-dimensional
heterotic string theory: The pure dilaton-axion system has an 𝑆𝐿(2,R) symmetry, which persists
in dilaton-axion gravity with an Abelian gauge field [114]. Like the EM system, the model also
possesses an 𝑆𝑂(1, 2) symmetry, arising from the dimensional reduction with respect to the Abelian
isometry group generated by the Killing field. However, Gal’tsov and Kechkin [116, 117] have shown
that the full symmetry group is larger than 𝑆𝐿(2,R) × 𝑆𝑂(1, 2): The target space for dilaton-
axion gravity with a 𝑈(1) vector field is the coset 𝑆𝑂(2, 3)/(𝑆𝑂(2) × 𝑆𝑂(1, 2)) [113]. Using the
fact that 𝑆𝑂(2, 3) is isomorphic to 𝑆𝑝(4,R), Gal’tsov and Kechkin [118] were also able to give a
parametrization of the target space in terms of 4 × 4 (rather than 5 × 5) matrices. The relevant
coset space was shown to be 𝑆𝑝(4,R)/𝑈(1, 1); for the generalization to the dilaton-axion system
with multiple vector fields we refer to [119, 121].

Common to the black-hole solutions of the above models is the fact that their Komar mass can
be expressed in terms of the total charges and the area and surface gravity of the horizon [153].
The reason for this is the following: Like the EM equations (6.26), the stationary field equations
consist of the three-dimensional Einstein equations and the 𝜎-model equations,

𝑅̄𝑖𝑗 =
1

4
Trace (𝒥𝑖 𝒥𝑗) , d*̄𝒥 = 0 . (7.4)

The current one-form 𝒥 := Φ−1dΦ is given in terms of the Hermitian matrix Φ, which comprises
all scalar fields arising on the effective level. The 𝜎-model equations, d*̄𝒥 = 0, include dim(𝐺)
differential current conservation laws, of which dim(𝐻) are redundant. Integrating all equations
over a space-like hypersurface extending from the horizon to infinity, Stokes’ theorem yields a set
of relations between the charges and the horizon-values of the scalar potentials. A very familiar
relation of this kind is the Smarr formula [296]; see Eq. (7.8) below. The crucial observation is that
Stokes’ theorem provides dim(𝐺) independent Smarr relations, rather than only dim(𝐺/𝐻) ones.
(This is due to the fact that all 𝜎-model currents are algebraically independent, although there are
dim(𝐻) differential identities, which can be derived from the dim(𝐺/𝐻) field equations.)

10 In addition to the actual scalar fields, the effective action comprises two gravitational scalars (the norm and
the generalized twist potential) and two scalars for each stationary Abelian vector field (electric and magnetic
potentials).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-7

http://www.livingreviews.org/lrr-2012-7


Stationary Black Holes: Uniqueness and Beyond 43

The complete set of Smarr type formulae can be used to get rid of the horizon-values of the
scalar potentials. In this way one obtains a relation, which involves only the Komar mass, the
charges and the horizon quantities. For the EM-dilaton-axion system one finds, for instance [153],(︂

1

4𝜋
𝜅𝒜

)︂2

= 𝑀2 +𝑁2 +𝐷2 +𝐴2 −𝑄2 − 𝑃 2, (7.5)

where 𝜅 and 𝒜 are the surface gravity and the area of the horizon, and the right-hand side
comprises the asymptotic flux integrals, that is, the total mass, the NUT charge, the dilaton and
axion charges, and the electric and magnetic charges, respectively. The derivation of Eq. (7.5) is not
restricted to static configurations. However, when evaluating the surface terms, one assumes that
the horizon is generated by the same Killing field that is also used in the dimensional reduction;
the asymptotically time-like Killing field 𝑘. A generalization of the method to rotating black holes
requires the evaluation of the potentials (defined with respect to 𝑘) on a Killing horizon, which is
generated by ℓ = 𝑘 + Ω𝐻𝑚, rather than 𝑘.

A very simple illustration of the idea outlined above is the static, purely electric EM system.
In this case, the electrovacuum coset 𝑆𝑈(2, 1)/𝑆(𝑈(1, 1) × 𝑈(1)) reduces to 𝐺/𝐻 = 𝑆𝑈(1, 1)/R.
The matrix Φ is parameterized in terms of the electric potential 𝜑 and the gravitational potential
𝑉 := −𝑘𝜇𝑘𝜇. The 𝜎-model equations comprise dim(𝐺) = 3 differential conservation laws, of which
dim(𝐻) = 1 is redundant:

d*̄
(︂

d𝜑

𝑉

)︂
= 0, d*̄

(︂
d𝑉

𝑉
− 2𝜑

d𝜑

𝑉

)︂
= 0, (7.6)

d*̄
(︂(︀
𝑉 + 𝜑2

)︀ d𝜑

𝑉
− 𝜑

d𝑉

𝑉

)︂
= 0. (7.7)

[It is immediately verified that Eq. (7.7) is indeed a consequence of the Maxwell and Einstein
Eqs. (7.6).] Integrating Eqs. (7.6) over a space-like hypersurface and using Stokes’ theorem yields

𝑄 = 𝑄𝐻 , 𝑀 =
𝜅

4𝜋
𝒜 + 𝜑𝐻𝑄𝐻 , (7.8)

which is the well-known Smarr formula; to establish it, one also uses the fact that the electric
potential assumes a constant value 𝜑𝐻 on the horizon. Also, the quantity 𝑄𝐻 is defined by the
flux integral of *𝐹 over the horizon (at time Σ), while the corresponding integral of *d𝑘 gives
𝜅𝒜/4𝜋 (see [153] for details). In a similar way, Eq. (7.7) provides an additional relation of the
Smarr type,

𝑄 = 2𝜑𝐻
𝜅

4𝜋
𝒜 + 𝜑2𝐻𝑄𝐻 , (7.9)

which can be used to compute the horizon-value of the electric potential, 𝜑𝐻 . Using this in the
Smarr formula (7.8) gives the desired expression for the total mass, 𝑀2 = (𝜅𝒜/4𝜋)2 +𝑄2.

In the “extreme” case, the Bogomol’nyi–Prasad–Sommerfield (BPS) bound [128] for the static
EM-dilaton-axion system, 0 = 𝑀2+𝐷2+𝐴2−𝑄2−𝑃 2, was previously obtained by constructing null
geodesics of the target space [86]. For spherically-symmetric configurations with non-degenerate
horizons (𝜅 ̸= 0), Eq. (7.5) was derived by Breitenlohner et al. [31]. In fact, many of the spherically-
symmetric black-hole solutions with scalar and vector fields [126, 131, 122] are known to fulfill
Eq. (7.5), where the left-hand side is expressed in terms of the horizon radius (see [120] and
references therein). Using the generalized first law of black-hole thermodynamics, Gibbons et
al. [130] obtained Eq. (7.5) for spherically-symmetric solutions with an arbitrary number of vector
and moduli fields.

The above derivation of the mass formula (7.5) is neither restricted to spherically-symmetric
configurations, nor are the solutions required to be static. The crucial observation is that the coset
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structure gives rise to a set of Smarr formulae, which is sufficiently large to derive the desired
relation. Although the result (7.5) was established by using the explicit representations of the EM
and EM-dilaton-axion coset spaces [153], similar relations are expected to exist in the general case.
More precisely, it should be possible to show that the Hawking temperature of all asymptotically-
flat (or asymptotically NUT) non-rotating black holes with massless scalars and Abelian vector
fields is given by

𝑇𝐻 =
2

𝒜
√︁∑︁

(𝑄𝑆)2 −
∑︁

(𝑄𝑉 )2 , (7.10)

provided that the stationary field equations assume the form (7.4), where Φ is a map into a sym-
metric space, 𝐺/𝐻. Here 𝑄𝑆 and 𝑄𝑉 denote the charges of the scalars (including the gravitational
ones) and the vector fields, respectively.

7.3 The Israel–Wilson–Perjés class

A particular class of solutions to the stationary EM equations is obtained by requiring that the
Riemannian manifold (Σ, 𝑔̄) is flat [179]. For 𝑔𝑖𝑗 = 𝛿𝑖𝑗 , the three-dimensional Einstein equations
obtained from variations of the effective action (6.23) with respect to 𝑔̄ become

4𝑉 Λ,𝑖 Λ̄,𝑗 =
(︀
E,𝑖 +2Λ̄Λ,𝑖

)︀ (︀
Ē,𝑗 +2ΛΛ̄,𝑗

)︀
, (7.11)

where, as we are considering stationary configurations, we use the dimensional reduction with
respect to the asymptotically–time-like Killing field 𝑘 with norm 𝑉 = − 𝑔(𝑘, 𝑘) = −𝑁 . Israel
and Wilson [179] have shown that all solutions of this equation fulfill Λ = 𝑐0 + 𝑐1E. In fact, it
is not hard to verify that this ansatz solves Eq. (7.11), provided that the complex constants 𝑐0
and 𝑐1 are subject to 𝑐0𝑐1 + 𝑐1𝑐0 = −1/2. Using asymptotic flatness, and adopting a gauge where
the limits at infinity of the electro-magnetic potentials and the twist potential vanish, one has
E∞ := lim𝑟→∞ E = 1 and Λ∞ := lim𝑟→∞ Λ = 0, and thus

Λ =
e𝑖𝛼

2
(1 − E) , where 𝛼 ∈ R. (7.12)

It is crucial that this ansatz solves both the equation for E and the one for Λ: One easily verifies
that Eqs. (6.24) reduce to the single equation

Δ̄ (1 + E)
−1

= 0, (7.13)

where Δ̄ is the three-dimensional flat Laplacian.
For static, purely electric configurations the twist potential 𝑌 and the magnetic potential 𝜓

vanish. The ansatz (7.12), together with the definitions of the Ernst potentials, E = 𝑉 − |Λ|2 + 𝑖𝑌
and Λ = −𝜑+ 𝑖𝜓 (see Section 6.4), yields

1 + E = 2
√
𝑉 , and 𝜑 = 1 −

√
𝑉 . (7.14)

Since 𝑉∞ = 1, the linear relation between 𝜑 and the gravitational potential
√
𝑉 implies (d𝑉 )∞ =

−(2d𝜑)∞. By virtue of this, the total mass and the total charge of every asymptotically flat, static,
purely electric Israel–Wilson–Perjés solution are equal:

𝑀 = − 1

8𝜋

∫︁
*𝑑𝑘 = − 1

4𝜋

∫︁
*𝐹 = 𝑄, (7.15)

where the integral extends over an asymptotic two-sphere. Note that for purely electric configura-
tions one has 𝐹 = 𝑘 ∧ d𝜑/𝑉 ; also, staticity implies 𝑘 = −𝑉 d𝑡 and thus 𝑑𝑘 = −𝑘 ∧ d𝑉/𝑉 = −𝐹 .
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The simplest nontrivial solution of the flat Poisson equation (7.13), Δ̄𝑉 −1/2 = 0, corresponds to a
linear combination of 𝑛 monopole sources 𝑚𝑎 located at arbitrary points 𝑥𝑎,

𝑉 −1/2(𝑥) = 1 +

𝑛∑︁
𝑎=1

𝑚𝑎

|𝑥− 𝑥𝑎|
. (7.16)

This is the MP solution [262, 220], with spacetime metric g = −𝑉 d𝑡2 + 𝑉 −1d𝑥2 and electric
potential 𝜑 = 1−

√
𝑉 . The MP metric describes a regular black-hole spacetime, where the horizon

comprises 𝑛 disconnected components. Hartle and Hawking [139] have shown that all singularities
are “hidden” behind these null surfaces. In Newtonian terms, the configuration corresponds to 𝑛
arbitrarily-located singularities are “hidden” behind these null surfaces. In Newtonian terms, the
configuration corresponds to 𝑛 arbitrarily-located charged mass points with |𝑞𝑎| =

√
𝐺𝑚𝑎.

Non-static members of the Israel–Wilson–Perjés class were constructed as well [179, 267]. How-
ever, these generalizations of the MP multi–black-hole solutions share certain unpleasant properties
with NUT spacetime [252] (see also [32, 237]). In fact, the results of [81] (see [139, 78, 154] for
previous results) suggest that – except the MP solutions – all configurations obtained by the
Israel–Wilson–Perjés technique either fail to be asymptotically flat or have naked singularities.
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8 Stationary and Axisymmetric Spacetimes

The presence of two Killing symmetries yields a considerable simplification of the field equations.
In fact, for certain matter models the latter become completely integrable [219], provided that
the Killing fields satisfy the orthogonal-integrability conditions. Spacetimes admitting two Killing
fields provide the framework for both the theory of colliding gravitational waves and the the-
ory of rotating black holes [56]. Although dealing with different physical subjects, the theories
are mathematically closely related. We refer the reader to Chandrasekhar’s comparison between
corresponding solutions of the Ernst equations [55].

This section reviews the structure of the stationary and axisymmetric field equations. We
start by recalling the circularity problem. It is argued that circularity is not a generic property of
asymptotically-flat, stationary and axisymmetric spacetimes. However, if the symmetry conditions
for the matter fields do imply circularity, then the reduction with respect to the second Killing field
simplifies the field equations drastically. The systematic derivation of the Kerr–Newman metric
and the proof of its uniqueness provide impressive illustrations of this fact.

8.1 Integrability properties of Killing fields

Our aim here is to discuss the circularity problem in some more detail. The task is to use the
symmetry properties of the matter model in order to establish the orthogonal-integrability condi-
tions for the Killing fields. The link between the relevant components of the stress-energy tensor
and the integrability conditions is provided by a general identity for the derivative of the twist of
a Killing field 𝜉, say,

d𝜔𝜉 = * [𝜉 ∧𝑅(𝜉)] , (8.1)

and Einstein’s equations, implying 𝜉 ∧ 𝑅(𝜉) = 8𝜋[𝜉 ∧ 𝑇 (𝜉)]. This follows from the definition of
the twist and the Ricci identity for Killing fields, Δ𝜉 = −2𝑅(𝜉), where 𝑅(𝜉) is the one-form with
components [𝑅(𝜉)]𝜇 := 𝑅𝜇𝜈𝜉

𝜈 ; see, e.g., [151], Chapter 2. For a stationary and axisymmetric
spacetime with Killing fields (one-forms) 𝑘 and 𝑚, Eq. (8.1) implies

d 𝑔(𝑚,𝜔𝑘) = −8𝜋 * [𝑚 ∧ 𝑘 ∧ 𝑇 (𝑘)] , (8.2)

and similarly for 𝑘 ↔ 𝑚. Eq. (8.2) is an identity up to a term involving the Lie derivative of the
twist of the first Killing field with respect to the second one (since d 𝑔(𝑚,𝜔𝑘) = 𝐿𝑚𝜔𝑘−𝑖𝑚d𝜔𝑘). In
order to establish 𝐿𝑚𝜔𝑘 = 0, it is sufficient to show that 𝑘 and 𝑚 commute in an asymptotically-
flat spacetime. This was first achieved by Carter [44] and later, under more general conditions, by
Szabados [304].

The following is understood to also apply for 𝑘 ↔ 𝑚: By virtue of Eq. (8.2) – and the fact that
the condition 𝑚 ∧ 𝑘 ∧ 𝑑𝑘 = 0 can be written as 𝑔(𝑚,𝜔𝑘) = 0 – the circularity problem is reduced
to the following two tasks:

(i) Show that d 𝑔(𝑚,𝜔𝑘) = 0 implies 𝑔(𝑚,𝜔𝑘) = 0.

(ii) Establish 𝑚 ∧ 𝑘 ∧ 𝑇 (𝑘) = 0 from the stationary and axisymmetric matter equations.

(i) Since 𝑔(𝑚,𝜔𝑘) is a function, it is locally constant if its derivative vanishes. As 𝑚 vanishes on
the rotation axis, this implies 𝑔(𝑚,𝜔𝑘) = 0 in every connected domain of spacetime intersecting the
axis. (At this point it is worthwhile to recall that the corresponding step in the staticity theorem
requires more effort: Concluding from d𝜔𝑘 = 0 that 𝜔𝑘 vanishes is more involved, since 𝜔𝑘 is a one-
form. However, using the Stokes’ theorem to integrate an identity for the twist [152] shows that
a strictly stationary – not necessarily simply connected – domain of outer communication must
be static if 𝜔𝑘 is closed. While this proves the staticity theorem for vacuum and self-gravitating
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scalar fields [152], it does not solve the electrovacuum case. It should be noted that in the context
of the proof of uniqueness the strictly stationary property follows from staticity [72] and not the
other way around (compare Figure 3).

(ii) While 𝑚∧𝑘∧𝑇 (𝑘) = 0 follows from the symmetry conditions for electro-magnetic fields [43]
and for scalar fields [150], it cannot be established for non-Abelian gauge fields [152]. This implies
that the usual foliation of spacetime used to integrate the stationary and axisymmetric Maxwell
equations is too restrictive to treat the EYM system. This is seen as follows: In Section 6.3 we have
derived the formula (6.17). By virtue of Eq. (6.3) this becomes an expression for the derivative of
the twist in terms of the electric Yang–Mills potential 𝜑𝑘 (defined with respect to the stationary
Killing field 𝑘) and the magnetic one-form 𝑖𝑘 * 𝐹 = 𝑉 *̄(𝐹 + 𝜑𝑘𝑓):

d
[︀
𝜔𝑘 + 4 t̂r (𝜑𝑘 𝑖𝑘 * 𝐹 )

]︀
= 0 , (8.3)

where t̂r ( ) is a suitably normalized trace (see Eq. (6.15)). Contracting this relation with the axial
Killing field 𝑚, and using again the fact that the Lie derivative of 𝜔𝑘 with respect to 𝑚 vanishes,
yields immediately

d 𝑔(𝑚,𝜔𝑘) = 0 ⇐⇒ t̂r (𝜑𝑘 (*𝐹 ) (𝑘,𝑚)) = 0 . (8.4)

The difference between the Abelian and the non-Abelian case is due to the fact that the Maxwell
equations automatically imply that the (𝑘𝑚)-component of *𝐹 vanishes, whereas this does not
follow from the Yang–Mills equations. In fact, the Maxwell equation d * 𝐹 = 0 and the symmetry
property 𝐿𝑘 * 𝐹 = *𝐿𝑘𝐹 = 0 imply the existence of a magnetic potential, d𝜓 = (*𝐹 )(𝑘, · ), thus,
(*𝐹 )(𝑘,𝑚) = 𝑖𝑚d𝜓 = 𝐿𝑚𝜓 = 0. Moreover, the latter do not imply that the Lie algebra valued
scalars 𝜑𝑘 and (*𝐹 ) (𝑘,𝑚) are orthogonal. Hence, circularity is an intrinsic property of the EM
system, whereas it imposes additional requirements on non-Abelian gauge fields.

Both staticity and circularity theorems can be established for scalar fields or, more generally,
scalar mappings with arbitrary target manifolds: Consider, for instance, a self-gravitating scalar
mapping 𝜑 : (𝑀,g) → (𝑁,𝐺) with Lagrangian 𝐿[𝜑, d𝜑,g,𝐺]. The stress energy tensor is of the
form

𝑇 = 𝑃𝐴𝐵 d𝜑𝐴 ⊗ d𝜑𝐵 + 𝑃 g, (8.5)

where the functions 𝑃𝐴𝐵 and 𝑃 may depend on 𝜑, d𝜑, the spacetime metric g and the target metric
𝐺. If 𝜑 is invariant under the action of a Killing field 𝜉 – in the sense that 𝐿𝜉𝜑

𝐴 = 0 for each
component 𝜑𝐴 of 𝜑 – then the one-form 𝑇 (𝜉) becomes proportional to 𝜉: 𝑇 (𝜉) = 𝑃 𝜉. By virtue
of the Killing field identity (8.1), this implies that the twist of 𝜉 is closed. Hence, the staticity
and the circularity issue for self-gravitating scalar mappings can be established, under appropriate
conditions, as in the vacuum case. From this one concludes that (strictly) stationary non-rotating
black-hole configuration of self-gravitating scalar fields are static if 𝐿𝑘𝜑

𝐴 = 0, while stationary and
axisymmetric ones are circular if 𝐿𝑘𝜑

𝐴 = 𝐿𝑚𝜑
𝐴 = 0.

8.2 Two-dimensional elliptic equations

The vacuum and the EM equations in the presence of a Killing symmetry describe harmonic maps
into coset manifolds, coupled to three-dimensional gravity (see Section 6). This feature is shared
by a variety of other self-gravitating theories with scalar (moduli) and Abelian vector fields (see
Section 7.2), for which the field equations assume the form (6.26):

𝑅̄𝑖𝑗 =
1

4
Trace (𝒥𝑖 𝒥𝑗) , d*̄𝒥 = 0 , (8.6)

The current one-form 𝒥 = Φ−1dΦ is given in terms of the Hermitian matrix Φ, which comprises
the norm and the generalized twist potential of the Killing field, the fundamental scalar fields and
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the electric and magnetic potentials arising on the effective level for each Abelian vector field. If
the dimensional reduction is performed with respect to the axial Killing field 𝑚 = 𝜕𝜙 with norm
𝑒−2𝜆 := 𝑔(𝑚,𝑚), then 𝑅̄𝑖𝑗 is the Ricci tensor of the pseudo-Riemannian three-metric 𝑔̄, defined
by

g = 𝑒−2𝜆(d𝜙+ 𝑎)2 + 𝑒2𝜆 𝑔̄. (8.7)

In the stationary and axisymmetric case under consideration, there exists, in addition to 𝑚,
an asymptotically–time-like Killing field 𝑘. Since 𝑘 and 𝑚 fulfill the orthogonal-integrability con-
ditions, the spacetime metric can locally be written in a (2+2)-block diagonal form. Hence, the
circularity property implies that

∙ (Σ, 𝑔̄) is a static pseudo-Riemannian three-dimensional manifold with metric 𝑔̄ = −𝜌2d𝑡2+ 𝑔̃;

∙ the connection 𝑎 is orthogonal to the two-dimensional Riemannian manifold (Σ̃, 𝑔̃), that is,
𝑎 = 𝑎𝑡 d𝑡;

∙ the functions 𝑎𝑡 and 𝑔𝑎𝑏 do not depend on the coordinates 𝑡 and 𝜙.

With respect to the resulting Papapetrou metric [263],

g = 𝑒−2𝜆(d𝜙+ 𝑎𝑡 d𝑡)2 + 𝑒2𝜆
(︀
−𝜌2d𝑡2 + 𝑔̃

)︀
, (8.8)

the field equations (8.6) become a set of partial differential equations on the two-dimensional
Riemannian manifold (Σ̃, 𝑔̃):

Δ𝑔̃𝜌 = 0 , (8.9)

𝑅̃𝑎𝑏 −
1

𝜌
∇̃𝑏∇̃𝑎𝜌 =

1

4
Trace (𝒥𝑎 𝒥𝑏) , (8.10)

∇̃𝑎 (𝜌 𝐽𝑎) = 0 , (8.11)

as is seen from the standard reduction of the Ricci tensor 𝑅̄𝑖𝑗 with respect to the static three-metric
𝑔̄ = −𝜌2d𝑡2 + 𝑔̃. Further 𝒥𝑡 = 0 and *̄𝒥 = −𝜌 d𝑡 ∧ *̃𝒥 .

The last simplification of the field equations is obtained by choosing 𝜌 as one of the coordinates
on (Σ̃, 𝑔̃). Roughly speaking, this follows from the fact that 𝜌2 := g2

𝑡𝜙−g𝑡𝑡g𝜙𝜙 is non-negative, that
its square root 𝜌 is harmonic (with respect to the Riemannian two-metric 𝑔̃), and that the domain
of outer communications of a stationary black-hole spacetime is simply connected; see [79, 76, 64]
for details. The function 𝜌 and the conjugate harmonic function 𝑧 are called Weyl coordinates.
With respect to these, the metric 𝑔̃ becomes manifestly conformally flat, and one ends up with the
spacetime metric

g = −𝜌2𝑒−2𝜆d𝑡2 + 𝑒−2𝜆 (d𝜙+ 𝑎𝑡d𝑡)
2

+ 𝑒2𝜆 𝑒2ℎ
(︀
d𝜌2 + d𝑧2

)︀
, (8.12)

the 𝜎-model equations
𝜕𝜌 (𝜌𝒥𝜌) + 𝜕𝑧 (𝜌𝒥𝑧) = 0, (8.13)

and the remaining Einstein equations

𝜕𝜌ℎ =
𝜌

8
Trace (𝒥𝜌𝒥𝜌 − 𝒥𝑧𝒥𝑧) , 𝜕𝑧ℎ =

𝜌

4
Trace (𝒥𝜌𝒥𝑧) , (8.14)

for the function ℎ(𝜌, 𝑧). It is not hard to verify that Eq. (8.13) is the integrability condition for
Eqs. (8.14). Since Eq. (8.10) is conformally invariant, the metric function ℎ(𝜌, 𝑧) does not appear
in the 𝜎-model equation (8.13). Taking into account that 𝜌 is non-negative, the stationary and
axisymmetric equations reduce to an elliptic system for a matrix Φ on a flat half-plane. Once the
solution to Eq. (8.13) is known, the remaining metric function ℎ(𝜌, 𝑧) is obtained from Eqs. (8.14)
by quadrature.
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8.3 The Ernst equations

The circular 𝜎-model equations (8.13) for the EM system, with target space 𝑆𝑈(2, 1)/𝑆(𝑈(2) ×
𝑈(1)), are called Ernst equations. Here, again, we consider the dimensional reduction with respect
to the axial Killing field. The fields can be parameterized in terms of the Ernst potentials Λ =
−𝜑+ 𝑖𝜓 and E = −𝑒−2𝜆 −ΛΛ̄ + 𝑖𝑌 , where the four scalar potentials are obtained from Eqs. (6.21)
and (6.22) with 𝜉 = 𝑚. Instead of writing out the components of Eq. (8.13) in terms of Λ and E,
it is more convenient to consider Eqs. (6.24), and to reduce them with respect to a static metric
𝑔̄ = −𝜌2d𝑡2 + 𝑔̃ (see Section 8.2). Introducing the complex potentials 𝜀 and 𝜆 according to

𝜀 =
1 − E

1 + E
, 𝜆 =

2 Λ

1 + E
, (8.15)

one easily finds the two equations

Δ𝛿𝜁 + ⟨d𝜁 , d𝜌

𝜌
+

2 (𝜀d𝜀+ 𝜆̄d𝜆)

1 − |𝜀|2 − |𝜆|2 ⟩ = 0, (8.16)

where 𝜁 stands for either of the complex potentials 𝜀 or 𝜆. Here we have exploited the conformal
invariance of the equations and used both the Laplacian Δ𝛿 and the inner product with respect
to a flat two-dimensional metric 𝛿. Indeed, consider two black-hole solutions, then each black
hole comes with its own metric 𝑔̃. However, the equation is conformally covariant, and the (𝜌, 𝑧)
representation of the metric is manifestly conformally flat, with the same domain of coordinates
for both black holes. This allows one to view the problem as that of two different Ernst maps
defined on the same flat half-plane in (𝜌, 𝑧)-coordinates.

8.3.1 A derivation of the Kerr–Newman metric

The Kerr–Newman metric is easily derived within this formalism. For this it is convenient to
introduce, first, prolate spheroidal coordinates 𝑥 and 𝑦, defined in terms of the Weyl coordinates
𝜌 and 𝑧 by

𝜌2 = 𝜇2
(︀
𝑥2 − 1)(1 − 𝑦2

)︀
, 𝑧 = 𝜇𝑥𝑦 , (8.17)

where 𝜇 is a constant. The domain of outer communications, that is, the upper half-plane 𝜌 ≥ 0,
corresponds to the semi-strip 𝒮 = {(𝑥, 𝑦)|𝑥 ≥ 1 , |𝑦| ≤ 1}. The boundary 𝜌 = 0 consists of the
horizon (𝑥 = 0) and the northern (𝑦 = 1) and southern (𝑦 = −1) segments of the rotation axis. In
terms of 𝑥 and 𝑦, the metric 𝑔̃ becomes (𝑥2 − 1)−1d𝑥2 + (1 − 𝑦2)−1d𝑦2, up to a conformal factor,
which does not enter Eqs. (8.16). The Ernst equations finally assume the form (𝜀𝑥 := 𝜕𝑥𝜀, etc.)(︀

1 − |𝜀|2 − |𝜆|2
)︀ {︀
𝜕𝑥(𝑥2 − 1)𝜕𝑥 + 𝜕𝑦(1 − 𝑦2)𝜕𝑦

}︀
𝜁 =

−2
{︀

(𝑥2 − 1)
(︀
𝜀𝜀𝑥 + 𝜆̄𝜆𝑥

)︀
𝜕𝑥 + (1 − 𝑦2)

(︀
𝜀𝜀𝑦 + 𝜆̄𝜆𝑦

)︀
𝜕𝑦

}︀
𝜁 , (8.18)

where 𝜁 stand for 𝜀 or 𝜆. A particularly simple solution to those equations is

𝜀 = 𝑝𝑥+ 𝑖 𝑞𝑦 , 𝜆 = 𝜆0 , where 𝑝2 + 𝑞2 + 𝜆20 = 1 , (8.19)

with real constants 𝑝, 𝑞 and 𝜆0. The norm 𝑒−2𝜆, the twist potential 𝑌 and the electro-magnetic
potentials 𝜑 and 𝜓 (all defined with respect to the axial Killing field) are obtained from the above
solution by using Eqs. (8.15) and the expressions 𝑒−2𝜆 = −Re(E)− |Λ|2, 𝑌 = Im(E), 𝜑 = −Re(Λ),
𝜓 = Im(Λ). The off-diagonal element of the metric, 𝑎 = 𝑎𝑡d𝑡, is obtained by integrating the twist
expression (6.3), where the twist one-form is given in Eq. (6.22), and the Hodge dual in Eq. (6.3)
now refers to the decomposition (8.7) with respect to the axial Killing field. Eventually, the metric
function ℎ is obtained from Eqs. (8.14) by quadratures.
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The solution derived so far is the “conjugate” of the Kerr–Newman solution [56]. In order
to obtain the Kerr–Newman metric itself, one has to perform a rotation in the 𝑡𝜙-plane: The
spacetime metric is invariant under 𝑡 → 𝜙, 𝜙 → −𝑡, if 𝑒−2𝜆, 𝑎𝑡 and 𝑒2ℎ are replaced by 𝛼𝑒−2𝜆,
𝛼−1𝑎𝑡 and 𝛼𝑒2ℎ, where 𝛼 := 𝑎2𝑡 −𝑒4𝜆𝜌2. This additional step in the derivation of the Kerr–Newman
metric is necessary because the Ernst potentials were defined with respect to the axial Killing field
𝜕𝜙. If, on the other hand, one uses the stationary Killing field 𝜕𝑡, then the Ernst equations are
singular at the boundary of the ergoregion.

In terms of Boyer–Lindquist coordinates,

𝑟 = 𝑚 (1 + 𝑝𝑥), cos𝜗 = 𝑦, (8.20)

one eventually finds the Kerr–Newman metric in the familiar form:

g = −Δ

Ξ

[︀
d𝑡− 𝛼 sin2𝜗d𝜙

]︀2
+

sin2𝜗

Ξ

[︀
(𝑟2 + 𝛼2)d𝜙− 𝛼d𝑡

]︀2
+ Ξ

[︂
1

Δ
d𝑟2 + d𝜗2

]︂
, (8.21)

where the constant 𝛼 is defined by 𝑎𝑡 := 𝛼 sin2𝜗. The expressions for Δ, Ξ and the electro-magnetic
vector potential 𝐴 show that the Kerr–Newman solution is characterized by the total mass 𝑀 , the
electric charge 𝑄, and the angular momentum 𝐽 = 𝛼𝑀 :

Δ = 𝑟2 − 2𝑀𝑟 + 𝛼2 +𝑄2, Ξ = 𝑟2 + 𝛼2 cos2𝜗. (8.22)

𝐴 =
𝑄

Ξ
𝑟
[︀
d𝑡− 𝛼 sin2𝜗d𝜙

]︀
. (8.23)

8.4 The uniqueness theorem for the Kerr–Newman solution

In order to establish uniqueness of the Kerr–Newman metric among the stationary and axisym-
metric black-hole configurations, one has to show that two solutions of the Ernst equations (8.19)
are equal if they are subject to black-hole boundary conditions on 𝜕𝒮, where 𝒮 is the half-plane
𝒮 = {(𝜌, 𝑧)|𝜌 ≥ 0}. Carter proved non-existence of linearized vacuum perturbations near Kerr by
means of a divergence identity [45], which Robinson generalized to electrovacuum spacetimes [279].

8.4.1 Divergence identities

Considering two arbitrary solutions of the Ernst equations, Robinson was able to construct an
identity [280], the integration of which proved the uniqueness of the Kerr metric. The compli-
cated nature of the Robinson identity dashed the hope of finding the corresponding electrovacuum
identity by trial and error methods (see, e.g., [47]). The problem was eventually solved when
Mazur [228, 230] and Bunting [41] independently derived divergence identities useful for the prob-
lem at hand. Bunting’s approach, applying to a general class of harmonic mappings between
Riemannian manifolds, yields an identity, which enables one to establish the uniqueness of a har-
monic map if the target manifold has negative curvature. We refer the reader to Sections 3.2.5
and 8.4.2 (see also [49]) for discussions related to Bunting’s method.

So, consider two solutions of the Ernst equations associated to, a priori, distinct black-hole
spacetimes, each endowed with its own metric. As discussed in Section 8.3, Weyl coordinates
and conformal invariance allow us to view the Ernst equations as equations on a flat half-plane;
alternatively, they may be seen as equations for an axisymmetric field on three-dimensional flat
space. The Mazur identity (7.2) applies to the relative difference Ψ = Φ2Φ−1

1 −1 of the associated
Hermitian matrices and implies (see Section 7.1 for details and references)

Trace (Δ𝛾Ψ) = Trace⟨ℳ , ℳ†⟩, (8.24)
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where Δ𝛾 is the Laplace–Beltrami operator of the flat metric 𝛾 = 𝑑𝜌2 + 𝑑𝑧2 + 𝜌2𝑑𝜙2; also recall

that ℳ = 𝑔−1
1 𝒥 †

△𝑔2, with 𝒥 †
△ the difference between the currents.

The reduction of the EM equations with respect to the axial Killing field yields 𝜎-model equa-
tions with 𝑆𝑈(2, 1)/𝑆(𝑈(2)×𝑈(1)) target (see Section 6.4), in vacuum reduces to 𝑆𝑈(2)/𝑆(𝑈(1)×
𝑈(1)) (see Section 6.2). Hence, the above formula applies to both the stationary and axisymmetric
vacuum or electrovacuum field equations. Now, relying on axisymmetry once more, we can reduce
the previous Mazur identity to an equation on the flat half-plane (𝒮, 𝛿); integrating and using
Stokes’ theorem leads to ∫︁

𝜕𝒮
𝜌 *Trace (dΨ) =

∫︁
𝒮
𝜌Trace⟨ℳ , ℳ†⟩ 𝜂𝛿, (8.25)

where the volume form 𝜂𝛿 and the Hogde dual * are related to the flat metric 𝛿 = 𝑑𝜌2 + 𝑑𝑧2.
The uniqueness of the Kerr–Newman metric should follow now from

∙ the fact that the integrand on the right-hand side is non-negative, and

∙ the fact that the boundary at infinity on the left-hand side vanishes for two solutions with
the same mass, electric charge and angular momentum, and

∙ the expectation that the integral over the axis and horizons, where the integrand becomes
singular, vanishes for black-hole configurations with the same quotient-space structure.

In order to establish that 𝜌Trace (dΨ) = 0 on the boundary 𝜕𝒮 of the half-plane,11 one needs the
asymptotic behavior and the boundary and regularity conditions of all potentials. One expects that
𝜌Trace (dΨ) vanishes on the horizon, the axis and at infinity, provided that the solutions have the
same mass, charge and angular momentum, but no complete analysis of this has been presented
in the literature; see [318] for some partial results. Fortunately, the supplementary difficulties
arising from the need to control the derivatives of the fields disappear when the distance-function
approach described in the next Section 8.4.2 is used.

8.4.2 The distance function argument

An alternative to the divergence identities above is provided by the observation that the distance
𝑑(𝜑1, 𝜑2) between two harmonic maps 𝜑𝑎, 𝑎 = 1, 2, with negatively curved target manifold is
subharmonic [182, Lemma 8.7.3 and Corollary 8.6.4] (see also the proof of Lemma 2 in [321]
following results in [287]):

Δ𝛿𝑑(𝜑1, 𝜑2) ≥ 0 ; (8.26)

compare (4.2). Here 𝑑 is the distance function between points on the target manifold and Δ𝛿 the
flat Laplacian on R3. It turns out that the Ernst equations for the Einstein–Maxwell equations fall
in this category; in the vacuum case this is obvious, as the target space is then the two-dimensional
hyperbolic space. This is somewhat less evident for the Einstein–Maxwell Ernst map, and can be
checked by a direct calculation, or can be justified by general considerations about symmetric
spaces; more precisely this follows from [144, Theorem 3.1] after noting that the target spaces of
the maps under consideration are of non-compact type (see also [320]).

Using this observation, the key to uniqueness is provided by the following non-standard version
of the maximum principle:

Proposition 8.1 [75, Appendix C] Let A denote the 𝑧-axis in R3, and let 𝑓 ∈ 𝐶0(R3 ∖A ) satisfy

Δ𝛿𝑓 ≥ 0 in R
3 ∖ A , in the distributional sense, (8.27)

11 A workable formula for TraceΨ is provided by (4.3) (compare [228, eq. 4.14]).
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0 ≤ 𝑓 ≤ 1, on R
3 ∖ A , (8.28)

and
lim

(𝑥,𝑦,𝑧)∈R3∖A ,|(𝑥,𝑦,𝑧)|→∞
𝑓(𝑥, 𝑦, 𝑧) = 0. (8.29)

Then
𝑓 ≡ 0, on R

3 ∖ A .

Hence, to prove uniqueness it remains to verify that 𝑑(𝜑1, 𝜑2) is bounded on R3 ∖ A , and that

𝑓(𝑥) :=
𝑑(𝜑1(𝑥), 𝜑2(𝑥))

sup𝑦 𝑑(𝜑1(𝑦), 𝜑2(𝑦))

goes to zero at infinity. The latter property follows immediately from asymptotic flatness. The
main work is thus to prove that 𝑓 remains bounded near the axis. Here one needs to keep in mind
that the (𝜌, 𝑧) coordinate system is constructed in an implicit way by PDE techniques, and that the
whole axis is singular from the PDE point of view because of factors of 𝜌 and 𝜌−1 in the equations.
In particular the associated harmonic maps tend to infinity in the target manifold when the axis
of rotation A is approached. So the proof of boundedness of 𝑓 requires considerable effort, with
the first complete analysis for non-degenerate horizons in [76]. The major challenge are points
where the axes of rotation meet the horizons. The degenerate horizons, first settled in [79], provide
supplementary difficulties. The proof of boundedness of 𝑓 near degenerate horizons proceeds
via Háj́ıček’s Theorem [135] (rediscovered independently by Lewandowski and Paw lowski [215],
see also [202]), that the near-horizon geometry of degenerate axisymmetric Killing horizons with
spherical cross-sections coincides with that of the Kerr–Newman solutions.
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[59] Chruściel, P.T., “Uniqueness of Stationary, Electro-Vacuum Black Holes Revisited”, Helv. Phys.
Acta, 69, 529–552, (1996). [gr-qc/9610010]. (Cited on pages 7 and 10.)
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[82] Chruściel, P.T. and Szybka, S.J., “Stable causality of the Pomeransky–Senkov black holes”, Adv.
Theor. Math. Phys., 15, 175–178, (2010). [arXiv:1010.0213 [hep-th]]. (Cited on page 26.)
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62 Piotr T. Chruściel, João Lopes Costa and Markus Heusler
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[136] Háj́ıček, P., “Stationary Electrovac Space-times with Bifurcate Horizon”, J. Math. Phys., 16, 518–
527, (1975). (Cited on page 20.)

[137] Harmark, T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”, Phys.
Rev. D, 70, 124002, (2004). [DOI], [arXiv:hep-th/0408141]. (Cited on page 28.)

[138] Harnad, J., Shnider, S. and Vinet, L., “Group Actions on Principal Bundles and Invariance Condi-
tions for Gauge Fields”, J. Math. Phys., 21, 2719–2724, (1980). [DOI], [ADS]. (Cited on pages 33
and 37.)

[139] Hartle, J.B. and Hawking, S.W., “Solutions of the Einstein–Maxwell equations with many black
holes”, Commun. Math. Phys., 26, 87–101, (1972). [DOI]. (Cited on page 45.)

[140] Hartmann, B., Kleihaus, B. and Kunz, J., “Axially symmetric monopoles and black holes in Einstein–
Yang–Mills–Higgs theory”, Phys. Rev. D, 65, 024027, (2001). [DOI], [arXiv:hep-th/0108129]. (Cited
on page 7.)

[141] Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972).
[DOI]. (Cited on pages 16 and 20.)

[142] Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
[DOI]. (Cited on page 7.)

[143] Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs
on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [Google Books]. (Cited
on pages 7, 8, 10, 20, and 33.)

[144] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Math-
ematics, 34, (American Mathematical Society, Providence, RI, 2001). [Google Books]. (Cited on
page 51.)

[145] Hennig, J., Ansorg, M. and Cederbaum, C., “A universal inequality between the angular momentum
and horizon area for axisymmetric and stationary black holes with surrounding matter”, Class.
Quantum Grav., 25, 162002, (2008). [DOI], [arXiv:0805.4320]. (Cited on page 25.)

[146] Hennig, J., Cederbaum, C. and Ansorg, M., “A universal inequality for axisymmetric and stationary
black holes with surrounding matter in the Einstein-Maxwell theory”, Commun. Math. Phys., 293,
449–467, (2010). [DOI]. (Cited on page 25.)

[147] Hennig, J. and Neugebauer, G., “Non-existence of stationary two-black-hole configurations: The
degenerate case”, Gen. Relativ. Gravit., 43, 3139–3162, (2011). [DOI], [arXiv:1103.5248 [gr-qc]].
(Cited on page 25.)

[148] Herdeiro, C.A.R. and Rebelo, C., “On the interaction between two Kerr black holes”, J. High Energy
Phys., 2008(10), 017, (2008). [DOI], [0808.3941 [gr-qc]]. (Cited on page 18.)

[149] Heusler, M., “Staticity and Uniqueness of Multiple Black Hole Solutions of 𝜎-Models”, Class. Quan-
tum Grav., 10, 791–799, (1993). [DOI]. (Cited on page 33.)

[150] Heusler, M., “The Uniqueness Theorem for Rotating Black Hole Solutions of Self-gravitating Har-
monic Mappings”, Class. Quantum Grav., 12, 2021–2036, (1995). [DOI], [gr-qc/9503053]. (Cited on
pages 34 and 47.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-7

http://dx.doi.org/10.1007/BF01646202
http://adsabs.harvard.edu/abs/1974CMaPh..36..305H
http://dx.doi.org/10.1103/PhysRevD.70.124002
http://arxiv.org/abs/hep-th/0408141
http://dx.doi.org/10.1063/1.524389
http://adsabs.harvard.edu/abs/1980JMP....21.2719H
http://dx.doi.org/10.1007/BF01645696
http://dx.doi.org/10.1103/PhysRevD.65.024027
http://arxiv.org/abs/hep-th/0108129
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1007/BF02345020
http://books.google.com/books?id=QagG_KI7Ll8C
http://books.google.com/books?id=wd-sXTUGk98C
http://dx.doi.org/10.1088/0264-9381/25/16/162002
http://arxiv.org/abs/0805.4320
http://dx.doi.org/10.1007/s00220-009-0889-y
http://dx.doi.org/10.1007/s10714-011-1228-0
http://arxiv.org/abs/1103.5248
http://dx.doi.org/10.1088/1126-6708/2008/10/017
http://arxiv.org/abs/0808.3941
http://dx.doi.org/10.1088/0264-9381/10/4/014
http://dx.doi.org/10.1088/0264-9381/12/8/017
http://arxiv.org/abs/gr-qc/9503053
http://www.livingreviews.org/lrr-2012-7


Stationary Black Holes: Uniqueness and Beyond 63

[151] Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge; New York,
1996). [Google Books]. (Cited on pages 8, 12, 13, 14, 20, 31, and 46.)

[152] Heusler, M., “No-Hair Theorems and Black Holes with Hair”, Helv. Phys. Acta, 69, 501–528, (1996).
[gr-qc/9610019]. (Cited on pages 31, 33, 46, and 47.)

[153] Heusler, M., “Bogomol’nyi-type Mass Formulas for a Class of Nonrotating Black Holes”, Phys. Rev.
D, 56, 961–973, (1997). [DOI], [gr-qc/9703015]. (Cited on pages 41, 42, 43, and 44.)

[154] Heusler, M., “On the Uniqueness of the Papapetrou-Majumdar metric”, Class. Quantum Grav., 14,
L129–L134, (1997). [DOI], [gr-qc/9607001]. (Cited on pages 22 and 45.)

[155] Heusler, M., “Uniqueness Theorems for Black Hole Space-Times”, in Hehl, F.W., Metzler, R.J.K.
and Kiefer, C., eds., Black Holes: Theory and Observations, Proceedings of the 179th W.E. Heraeus
Seminar, held at Bad Honnef, Germany, 18 – 22 August 1997, Lecture Notes in Physics, 514, pp.
157–186, (Springer, Berlin; New York, 1998). [DOI]. (Cited on page 35.)

[156] Heusler, M., Droz, S. and Straumann, N., “Stability Analysis of Self-Gravitating Skyrmions”, Phys.
Lett. B, 271, 61–67, (1991). [DOI], [ADS]. (Cited on page 31.)

[157] Heusler, M., Droz, S. and Straumann, N., “Linear Stability of Einstein–Skyrme Black Holes”, Phys.
Lett. B, 285, 21–26, (1992). [DOI], [ADS]. (Cited on page 31.)

[158] Heusler, M. and Straumann, N., “The First Law of Black Hole Physics for a Class of Nonlinear
Matter Models”, Class. Quantum Grav., 10, 1299–1322, (1993). [DOI]. (Cited on pages 33 and 38.)

[159] Heusler, M. and Straumann, N., “Mass Variation Formulae for Einstein–Yang–Mills–Higgs and
Einstein-dilaton Black Holes”, Phys. Lett. B, 315, 55–66, (1993). [DOI], [ADS]. (Cited on page 38.)

[160] Heusler, M. and Straumann, N., “Staticity, Circularity, and the First Law of Black Hole Physics”,
Int. J. Mod. Phys. D, 3, 199–202, (1994). [DOI], [ADS]. (Cited on page 33.)

[161] Heusler, M., Straumann, N. and Zhou, Z.-H., “Self-Gravitating Solutions of the Skyrme Model and
their Stability”, Helv. Phys. Acta, 66, 614–632, (1993). (Cited on pages 7 and 31.)

[162] Hollands, S., Holland, J. and Ishibashi, A., “Further Restrictions on the Topology of Stationary Black
Holes in Five Dimensions”, Ann. Henri Poincare, 12, 279–301, (2011). [DOI], [arXiv:1002.0490 [gr-
qc]]. (Cited on page 27.)

[163] Hollands, S. and Ishibashi, A., “On the ‘Stationary Implies Axisymmetric’ Theorem for Ex-
tremal Black Holes in Higher Dimensions”, Commun. Math. Phys., 291, 403–441, (2009). [DOI],
[arXiv:0809.2659 [gr-qc]]. (Cited on page 27.)

[164] Hollands, S. and Ishibashi, A., “All Vacuum Near Horizon Geometries in 𝐷-dimensions with
(𝐷 − 3) Commuting Rotational Symmetries”, Ann. Henri Poincare, 10, 1537–1557, (2010). [DOI],
[arXiv:0909.3462 [gr-qc]]. (Cited on page 30.)

[165] Hollands, S., Ishibashi, A. and Wald, R.M., “A Higher Dimensional Stationary Rotating Black
Hole Must be Axisymmetric”, Commun. Math. Phys., 271, 699–722, (2007). [DOI], [gr-qc/0605106].
(Cited on pages 13 and 27.)

[166] Hollands, S. and Wald, R.M., “Stability of Black Holes and Black Branes”, arXiv, e-print, (2012).
[arXiv:1201.0463 [gr-qc]]. (Cited on page 27.)

[167] Hollands, S. and Yazadjiev, S., “Uniqueness Theorem for 5-Dimensional Black Holes with Two Axial
Killing Fields”, Commun. Math. Phys., 283, 749–768, (2008). [DOI], [0707.2775 [gr-qc]]. (Cited on
pages 19 and 29.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-7

http://books.google.com/books?id=l62FvO_qRe8C
http://arxiv.org/abs/gr-qc/9610019
http://dx.doi.org/10.1103/PhysRevD.56.961
http://arxiv.org/abs/gr-qc/9703015
http://dx.doi.org/10.1088/0264-9381/14/7/001
http://arxiv.org/abs/gr-qc/9607001
http://dx.doi.org/10.1007/978-3-540-49535-2_7
http://dx.doi.org/10.1016/0370-2693(91)91278-4
http://adsabs.harvard.edu/abs/1991PhLB..271...61H
http://dx.doi.org/10.1016/0370-2693(92)91294-J
http://adsabs.harvard.edu/abs/1992PhLB..285...21H
http://dx.doi.org/10.1088/0264-9381/10/7/008
http://dx.doi.org/10.1016/0370-2693(93)90158-E
http://adsabs.harvard.edu/abs/1993PhLB..315...55H
http://dx.doi.org/10.1142/S0218271894000289
http://adsabs.harvard.edu/abs/1994IJMPD...3..199H
http://dx.doi.org/10.1007/s00023-011-0079-2
http://arxiv.org/abs/1002.0490
http://arxiv.org/abs/1002.0490
http://dx.doi.org/10.1007/s00220-009-0841-1
http://arxiv.org/abs/0809.2659
http://dx.doi.org/10.1007/s00023-010-0022-y
http://arxiv.org/abs/0909.3462
http://dx.doi.org/10.1007/s00220-007-0216-4
http://arxiv.org/abs/gr-qc/0605106
http://arxiv.org/abs/1201.0463
http://dx.doi.org/10.1007/s00220-008-0516-3
http://arxiv.org/abs/0707.2775
http://www.livingreviews.org/lrr-2012-7
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