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tic price impact process and define the liquidity premium as the additional return
necessary to compensate a multi-period investor for the adverse price impact of
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to the state of liquidity. We provide new empirical evidence supportive of the
model.
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I Introduction

There is ample evidence that liquidity affects asset returns. One line of research views

liquidity as a characteristic that influences returns beyond trading costs. Investing

in illiquid stocks is compensated by higher gross returns.1 Another line of research

emphasizes liquidity as a market-wide risk factor. Stocks with higher sensitivity to

innovations in aggregate liquidity have higher expected returns.2 However, there is still

a considerable debate on the precise definition and role of liquidity.3

In particular, the effect of the volatility of liquidity on stock returns is not well

understood. Using a sample of monthly returns for NYSE and AMEX stocks for the

period from 1966 to 1995, Chordia, Subrahmanyam, and Anshuman (2001) surprisingly

find that stocks with higher volatility of liquidity actually have lower returns. This

relation seems puzzling since it appears to contradict the usual risk-return tradeoff

intuition.4 Indeed, Hasbrouck (2006, p.31) suggests that their result is so surprising

that the problem may even reside in the proxies used for liquidity: “Surprisingly they

find that turnover volatility is negatively related to expected returns. This is contrary

to the notion that turnover volatility might be acting as proxy for liquidity risk.”

We offer a rational explanation for the puzzling negative relation between stock

1Several studies have documented that expected returns are decreasing in the level of liquidity,
measured by the bid-ask spread (e.g., Amihud and Mendelson (1986)), price impact (e.g., Brennan
and Subrahmanyan (1996)), turnover (e.g., Datar, Naik, and Radcliffe (1998)), or trading volume (e.g.,
Brennan, Chordia, and Subrahmanyan (1998)).

2Pástor and Stambaugh (2003) construct a market-wide liquidity factor and find that stocks whose
returns are more correlated with the aggregate liquidity factor have higher expected returns.

3Acharya and Pedersen (2005) detect the effect of liquidity both as a characteristic (return depends
on the liquidity level) and as a risk factor (return depends on the covariances between the security’s
own return and liquidity with the common liquidity factor). Korajczyk and Sadka (2008), using high
frequency data, also find that both liquidity risk and level are priced. However, Hasbrouck (2006)
proposes a new way to estimate effective spreads and using a long sample finds only weak support for
the effect of liquidity as a characteristic and no support as a risk factor.

4In a survey on liquidity and stock returns, Amihud, Mendelson, and Pedersen (2005) state that
“because liquidity varies over time, risk-averse investors may require a compensation for being exposed
to liquidity risk,” suggesting a positive relation between stock returns and the volatility of liquidity.
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returns and the volatility of liquidity and demonstrate that this negative relation is

consistent with utility-maximizing investment strategies of risk-averse investors. We

examine the relation between expected stock returns and the volatility of liquidity in a

dynamic portfolio-choice model with stochastic liquidity. Specifically, a constant relative

risk aversion (CRRA) investor allocates his wealth between a risky stock and a risk-free

asset. The stock is illiquid in the sense that trading induces adverse price impact.5 We

assume that price impact follows a stochastic mean-reverting process, thus capturing the

important empirical fact that liquidity varies through time. Because trading moves the

price against the investor, his expected utility will be lower than in the case of investing

in a perfectly liquid stock. The liquidity premium is defined as the extra return that

the illiquid stock must earn so that the investor attains the same level of utility as in

the case of a perfectly liquid stock.

We calibrate the model to empirically reasonable parameter values and numerically

solve for the investor’s optimal trading strategy and required liquidity premium. We

demonstrate that a rational risk-averse utility-maximizing investor adapts his trading

to the state of liquidity and trades large quantities in high liquidity states and small

quantities in low liquidity states. A higher liquidity volatility provides more opportunity

for the investor to time his trades and leads to a lower required liquidity premium.

Therefore, stocks with higher liquidity volatility command a lower return premium.

Hence, our analysis offers a rational explanation for the “puzzling” empirical finding on

5The liquidity of an asset is a characteristic hard to define and measure. Nonetheless, a commonly
accepted definition of liquidity states that an asset is liquid if large quantities can be traded in a
short period of time without moving the price too much. Hence, a natural measure of liquidity is the
price impact of trading. Studies using price impact as a measure of liquidity include Brennan and
Subrahmanyan (1996), Bertsimas and Lo (1998), He and Mamaysky (2005), Amihud (2002), Pástor
and Stambaugh (2003), Acharya and Pedersen (2005), and Sadka (2006). The bid-ask spread is also
accepted as a measure of liquidity and has been used in earlier studies, starting with Amihud and
Mendelson (1986). However, large blocks of shares usually trade outside the bid-ask spread (see, e.g.,
Chan and Lakonishok (1995) and Keim and Madhavan (1996)).

3



the negative relation between stock returns and the volatility of liquidity.

The intuition from our model resembles the “tax trading option” of Constantinides

and Scholes (1980). They show that stock return volatility leads to higher welfare

due to a higher probability of a realized capital loss. Their intuition is that there is

a fundamental asymmetry between capital gains and losses, in that gains are deferred

and losses realized. Therefore, stocks with higher return volatility should have lower

expected returns. Similarly, there is also a fundamental asymmetry between high and

low liquidity states, in that the investor can time his trades to avoid bad liquidity states

and trade more in good liquidity states.

We provide empirical evidence that the cross sectional negative relation between

stock returns and the volatility of liquidity, first reported in Chordia, Subrahmanyam,

and Anshuman (2001), still holds in a longer and more recent sample (NYSE and AMEX

stocks for 1963–2005), and more important, that it also holds when liquidity is proxied by

the price impact measure of Amihud (2002). We also provide new evidence that there

is time series Granger causality from price impact to trading activity. In particular,

larger (smaller) price impact leads to less (more) trading volume or turnover. This is

consistent with existing literature showing that institutional investors time their trades

according to the state of liquidity. Hence, the empirical analysis provides supporting

evidence for both the main cross sectional implication of the model and the mechanism

leading to the implication.

We analyze the relation between returns and the volatility of liquidity in a partial-

equilibrium model. This approach is similar to Constantinides (1986), Longstaff (2001),

and Jang, Koo, Liu, and Loewenstein (2007), in the sense that we solve for a liquidity

premium such that the investor is indifferent between a liquid and an illiquid stock,

given an exogenous liquidity process. Naturally, it would be more desirable to study a
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general equilibrium model with an endogenous the price impact process . However, such

a model would be intractable. The relative simplicity of our partial-equilibrium model

makes it solvable and allows us to offer a rational explanation for the negative relation

between returns and the volatility of liquidity.

Several related papers study the asset pricing effects of transaction costs, including

Heaton and Lucas (1996), Vayanos (1998), and Lo, Mamaysky, and Wang (2004). How-

ever, none of these papers analyzes the implication of stochastic liquidity on returns.

The trading strategies uncovered in our study are broadly consistent with existing re-

search on the best trading strategy for buying or selling a fixed block of shares when

there is price impact, including Bertsimas and Lo (1998), Huberman and Stanzl (2005),

He and Mamaysky (2005), and Obizhaeva and Wang (2006). However, these papers do

not analyze the effect of a stochastic price impact. Another important difference is that

we do not assume a target position that the investor has to buy or sell. Instead, our

investor optimally chooses the level of shares he desires to hold and the best investment

strategy to achieve it.

The next section presents the model. Section III shows numerical solutions. We

first consider a simplified model where price impact is constant. We then solve the full

model with stochastic liquidity and examine the implication on stock returns. Section IV

tests the robustness of the main findings by considering several extensions of the model.

Section V presents empirical tests of the model predictions. Section VI concludes.

II The Model

Consider an investor who maximizes the expected utility of terminal wealth, E[u(WT )],

where Wt is the investor’s wealth at time t and T is the terminal date. Assume that the
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investor has the constant relative risk aversion (CRRA) utility function given by

(1) u(W ) =





W 1−γ/ (1− γ) if γ > 1

ln(W ) if γ = 1

where γ represents the investor’s coefficient of relative risk aversion. At each point in

time he invests his wealth in Nt units of a risky stock and Mt units of a risk-free bond

(or money market account). The bond price, Bt, follows the discrete process

(2) Bt+1 −Bt = rBt

where r is the risk-free rate. The price of a perfectly liquid stock follows the process

(3) St+1 − St = St (µ + σεt+1) .

where the random shock εt+1 is distributed εt+1|t ∼ N(0, 1).

We now consider two departures from the standard portfolio choice problem with

perfect liquidity by introducing price impact and the irrelevance of paper wealth.

(1) Price impact. We assume that the investor has to make a price concession when

selling the stock and must pay a higher price when buying the stock. Hence, the stock is

illiquid in the sense that trading moves its price. Specifically, we consider a price impact

function similar to He and Mamaysky (2005) and Breen, Hodrick, and Korajczyk (2002).

In the absence of any other factors, the price change caused by trading is given by

(4) (St+1 − St)/St = ψt+1 (Nt+1 −Nt)

where Nt+1 − Nt represents the shares traded and ψt+1 is a positive value. Hence,
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the stock return is proportional to (signed) volume. If the investor buys the stock

(Nt+1 > Nt), he pays a higher price. If he sells (Nt+1 < Nt), he receives a lower price.

The price impact assumed here is permanent. Theoretically, this form of price impact

can be motivated by the existence of a market maker who extracts information from the

order flow and adjusts the price accordingly (as in Kyle (1985)). The empirical evidence

supports a permanent effect for large trades. For example, Holthausen, Leftwich, and

Mayers (1990) show that most of the price effect associated with block trades is per-

manent. Seppi (1992) shows that large-block trades reveal information about earnings.

Sias, Starks, and Titman (2001) argue that the price pressure caused by institutional

trading tends to be permanent (information related) rather than transitory (inventory

related). Furthermore, we allow the permanent price impact to vary through time. In

other words, as the underlying market conditions change, traders and market makers

may infer different information from otherwise identical trades. This assumption is con-

sistent with the theoretical model of Saar (2001), where permanent price impacts vary

according to the underlying economic environment, and with the empirical evidence in

Chiyachantana, Jain, Jiang, and Wood (2004). Hence, our model captures the most

important aspect of trading for large investors.6

In the presence of a permanent price impact, the price of an illiquid stock thus moves

according to the sum of the two components in (3) and (4):

(5) St+1 − St = St [µ + λ + σεt+1 + ψt+1(Nt+1 −Nt)]

6Nevertheless, in reality trading may also induce an additional transitory price effect due to inventory
risk. For example, Sadka (2006), extending the methodology of Glosten and Harris (1988), decomposes
the price impact into an (informational) permanent component and a (non-informational) transitory
component. Hence, section IV extends the model to include a temporary price effect. An alternative
and also economically sensible modeling approach would be to build our benchmark model around a
time-varying temporary price impact process. Even though the computational details would change,
the economic intuition derived from the model would remain the same: randomness in (the temporary
component of) liquidity would still allow the investor to time his trades and thus decrease the required
expected return.
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The parameter λ in equation (5) represents the liquidity premium, that is, the extra

expected return that the stock must earn to compensate the investor for its illiquidity.

A natural specification for the evolution of liquidity is to assume that it fluctuates

randomly around a long-term mean. Thus, we define the following mean-reverting pro-

cess for the price impact coefficient:

(6) ψt+1 = ψ̄ + ρ(ψt − ψ̄) + ϕεψ
t+1

where ψ̄ is the long-term mean, ρ is the first-order autocorrelation, ϕ is the volatility,

and εψ
t+1 is white noise. Amihud (2002) also assumes a first-order autoregressive process

for a closely related price impact measure. Acharya and Pedersen (2005) and Pástor

and Stambaugh (2003) use second-order autoregressive processes.

The timing is as follows. One instant before choosing Nt+1, the investor observes

price S̄t+1 ≡ St[1 + µ + λ + σεt+1], and the price impact coefficient, ψt+1. The investor

then chooses Nt+1. This forms the new market price St+1. Note that the price impact

coefficient is known at the time the investor chooses the action, i.e., Nt+1 is chosen after

observing both S̄t+1 and ψt+1. The following scheme represents the timing.

t t + 1 t + 2

St −→ 1) Observe S̄t+1

2) Choose Nt+1

3) St+1 is created −→ S̄t+2

4) Wt+1 known

This can be interpreted as the investor seeing the midpoint of the bid-ask, S̄t+1, as

well as the whole demand-supply schedules (both sides of the order book) at the time

he chooses Nt+1. When the investor submits his order of Nt+1 − Nt shares, he hits an

order in the book, trading takes place, and a transaction price St+1 is recorded.
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The investor’s wealth is Wt ≡ MtBt +NtSt. Imposing a self-financing constraint, we

arrive at

(7) Wt+1 −Wt = Mt(Bt+1 −Bt) + Nt(St+1 − St).

Note that Nt+1 does not influence Wt+1 directly; it only does so indirectly through St+1.

Equation (7) implies that the trade is executed at the post-impact price St+1. The dollar

value traded in stocks, St+1(Nt+1 − Nt), is exactly absorbed by changes in the money-

market account, Bt+1(Mt+1 − Mt). Therefore, Nt+1 influences Wt+1 only by changing

the price, St+1, of the Nt shares already owned.

We replace Mt = (Wt − NtSt)/Bt and use (2) to get Wt+1 −Wt = (Wt − NtSt)r +

Nt(St+1 − St), and then (5) to arrive at

(8) Wt+1 = Wt(1 + r) + NtSt [µ + λ− r + σεt+1 + ψt+1(Nt+1 −Nt)] .

With price impact, we create an important departure from the standard model:

trading by itself changes the investor’s wealth. For example, even if we set r = 0,

µ + λ = 0, and σ = 0, simply buying more shares (Nt+1 − Nt > 0) at the post-impact

price of St+1 increases the wealth by Wt+1−Wt = Nt(St+1−St) = NtStψt+1(Nt+1−Nt).

However, this increase in wealth is only “on paper”. It can be reversed when the investor

sells the stock. Hence, we must also introduce a second restriction.

(2) Paper wealth is irrelevant. One important feature of investing in illiquid stocks

is that both the initial accumulation and the final unloading of the stock induce adverse

price movements. Therefore, we model an investor that starts without any holdings of

the stock (his initial wealth is in the form of cash): N0 = 0. Similarly, the stock holding

must be liquidated by the end of the investment horizon (T ): NT = 0. The stock will
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have to be sold because the investor only derives utility from the wealth that can be

used to pay for consumption. Hence, the investor must formulate an optimal trading

strategy constrained to starting and ending with zero shares.

The irrelevance of paper wealth is a concept also present in Bertsimas and Lo (1998)

and He and Mamaysky (2005). They define a liquidity cost as the difference between

the theoretical market value of a block of shares and the actual cash that can be realized

after accounting for the price impact of selling that block. Brunnermeier and Pedersen

(2005) further distinguish between an asset’s paper value, its orderly liquidation value,

and its distressed liquidation value.7

To summarize, the investor’s maximization problem is formulated as follows:

maximize
{Nt}T

t=0

E0[u(WT )](9)

subject to Wt+1 = Wt(1 + r) + NtSt [µ + λ− r + σεt+1 + ψt+1(Nt+1 −Nt)]

St+1 = St[1 + µ + λ + σεt+1 + ψt+1(Nt+1 −Nt)]

ψt+1 = ψ̄ + ρ(ψt − ψ̄) + ϕεψ
t+1

N0 = NT = 0

The liquidity premium, λ, is such that the maximized expected utility in (9) is the

7Constantinides (1986), Heaton and Lucas (1996), and Vayanos (1998) analyze the asset pricing
effects of transaction costs. The standard result in those papers is that while transaction costs cause
the investor to reduce the trading frequency, they induce only a negligible utility loss, i.e., transaction
costs have only a second-order effect on assets prices. However, those models produce counterfactual
low trading volume. When investors desire to trade large amounts very frequently, transaction costs
can have a significant effect. For example, Longstaff (2001) models a stock with stochastic volatility
of returns, which induces more desired trading than in the standard portfolio-choice model due to
the necessary portfolio rebalancing, thus making trading frictions relevant. Lo, Mamaysky, and Wang
(2004) demonstrate that the impact of transaction costs is very large when heterogenous investors trade
to hedge their exposure to an exogenous nontradable endowment risk. Jang, Koo, Liu, and Loewenstein
(2007) show that investors have higher trading needs under a stochastic investment opportunity set
and that trading costs can have a first-order effect. In our model, investors trade more than in the
standard portfolio-choice model because they must start and end only with cash.

10



same as that in the standard perfectly liquid case.

III Numerical Results

Given that solving the full model with stochastic price impact is a challenging optimiza-

tion problem, we first consider a simplified model with a constant price impact. We

then solve the full model with stochastic price impact and discuss the implications on

the relation between stock returns and volatility of liquidity.

A A Simplified Model with Constant Liquidity

We begin with the basic case of a constant price impact process, i.e., ψt = ψ, ∀t. The

analysis of this problem allows us to gain intuition for the properties of the model and

to verify that it produces sensible results. This analysis serves as the foundation for the

main results in section B.

1 Calibration and Solution Method

For the baseline case we calibrate the drift and volatility of the stock price process to

reflect the characteristics of very liquid stocks. During the period 1926–2002 a portfolio

of the largest (top decile) NYSE stocks had an average annual return of 11% with an

annual standard deviation of 18%. We allow the investor to trade every month and

hence set µ = 0.11/12 and σ = 0.18
√

1/12. We also set the monthly risk-free rate

to r = 0.05/12. The baseline coefficient of relative risk aversion is set at γ = 3. We

consider several levels of initial wealth W0: 104, 105, and 106. We set S0 = 1, thus

the different W0 can be interpreted as multiples of the initial stock price.8 Following

8For example, if the initial stock price is $10, W0 = 105 corresponds to an initial wealth of $1 million.
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Longstaff (2001), we consider investment horizons of either one or two years.

Several studies estimate price impact coefficients. Breen, Hodrick, and Korajczyk

(2002) report that on average a 0.1% increase in net turnover during a 5-minute interval

induces a 2.65% price increase for NYSE and AMEX listed firms and a 1.85% increase

for NASDAQ firms. Given the average shares outstanding of 10 million for NYSE and

AMEX listed firms, this corresponds to an average price impact coefficient of ψ =

2.65× 10−6. In other words, a sale of 10,000 shares in a single block (representing 0.1%

of shares outstanding in the average firm) moves the price down by 2.65%. Hasbrouck

(2006) estimates the price impact of signed dollar volume aggregated over 5-minute

intervals for a sample of 300 NYSE/Amex and Nasdaq firms. He finds that on average

a $10,000 buy order moves the price up by 28 basis points. In terms of our model, this

corresponds to an average price impact coefficient of ψ = 2.8× 10−6 for a trade of 1,000

shares in a stock priced at $10. Çetin, Jarrow, Protter, and Warachka (2006) estimate

the price impact coefficient in a regression very similar to our equation (5). Using a

sample of five liquid NYSE stocks (each stock has an option trading on the CBOE), and

considering only small transactions (they exclude trades larger than 1000 shares), they

find price impact coefficients ranging from ψ = 0.2× 10−6 to ψ = 1.3× 10−6. These can

be seen as lower limits to the magnitude of price impact. Hence, we report both the

liquidity premium and optimal trading strategies for different degrees of price impact,

ranging from ψ = 1× 10−6 to ψ = 5× 10−6 (which moves the price down by 1% to 5%

for a sale of 10,000 shares in a single block). These values of the price impact coefficient

cover a broad range of liquidity levels, from very liquid to very illiquid stocks.

Define xt to be the vector of state variables known at time t. The optimal solution

to problem (9) consists of: (1) a trading policy with T + 1 decision rules, {Nt(xt)}T
t=0,

i.e., a sequence of functions mapping all future possible states (xt) to the possible ac-
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tions (number of shares to hold); and (2) the value function at time 0, representing

the maximum expected utility given the state at time 0. This solution can be obtained

through dynamic programming and is sometimes called a closed-loop control (see Bert-

sekas (2000)). However, the problem can also be solved by a suboptimal method known

as the open-loop feedback control (see Bertsekas (2000)). With this method, after ob-

serving the state at time 0, the investor selects a sequence of actions as if no further

information about the state will be received in the future. Hence, the open loop is

suboptimal because it does not use the information about the state that will be avail-

able in the future, i.e., the policy is a single sequence of numbers : Nt(xt) = nt, for all

states at time t. Nevertheless, this method usually provides a good approximation to

the value function at time 0.9 Due to the specific characteristics of our problem, we use

the open-loop solution as an initial approximation and then use the optimal closed-loop

control to pin down the solution.10

2 Optimal Trading Strategy and Liquidity Premium

Let ωt ≡ NtSt/Wt denote the optimal proportion of wealth invested in the stock. Figure

1 compares three different situations: (1) the standard trading strategy for a perfectly

liquid stock (ω∗t corresponding to the optimal solution N∗
t for ψ = 0 and λ = 0); (2) the

trading strategy when there is price impact but no liquidity premium (ω∗∗t for ψ > 0 and

λ = 0); and (3) the strategy when the stock is illiquid and earns a premium (ω∗∗∗t for

ψ > 0 and λ > 0). We plot the optimal strategies along a representative path, namely

the path where the disturbance is always at its expected value, εt = 0,∀t ∈ [0, T ].

9Bertsekas (2000) states that the open-loop feedback control is a fairly satisfactory mode of control
for many problems. Carlin, Lobo, and Viswanathan (2007) use an open-loop method to solve a trading
game and study the effect of cooperation on liquidity. They argue that a closed-loop solution to their
problem is not substantially different from their main open-loop solution.

10A separate appendix with a detailed discussion of our solution procedure is available upon request.
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When the stock is perfectly liquid, the optimal equity proportion is the well-known

Merton (1969) solution, ω∗ = (µ − r)/(γσ2). The investor immediately jumps to the

optimal level and stays at that level until the last period when he liquidates his entire

stockholding. When there is price impact, it is optimal to break a trade into several

partial orders to obtain a lower average buying price or a higher average selling price.

Consequently, the strategies ω∗∗t and ω∗∗∗t show that the optimal stock holdings slowly

increase in the beginning of the investment period and then slowly decrease to zero by

the terminal date. Strategy ω∗∗t shows that with price impact (but no liquidity premium

yet), the expected proportion of wealth invested in an illiquid stock is less than the

standard Merton (1969) solution. Intuitively, with price impact the net drift of the

stock price was smaller, making it less attractive relative to the bond. Finally, when the

stock earns a higher expected return due to a liquidity premium, the investor chooses

to hold a higher equity proportion than in the previous case: ω∗∗∗t > ω∗∗t ,∀t. The

combination of the optimal trading strategy ω∗∗∗t and the liquidity premium gives the

investor the same expected utility as in the perfectly liquid case.

Table 1 presents the liquidity premium for different levels of price impact. The

investment horizon (T ) is either 12 months (panel A) or 24 months (panel B). In both

cases, the investor may trade once each month. For an initial wealth of W0 = 105

and an investment horizon of one year, the liquidity premium ranges from 3.11% (for

ψ = 1 × 10−6) to 8.89% (for ψ = 5 × 10−6) per annum. In particular, for a price

impact of ψ = 3 × 10−6, similar to the average level found in Breen, Hodrick, and

Korajczyk (2002), the required liquidity premium is 6.41% per annum. For NYSE size

sorted portfolios for 1926–2002, the average annual return on the lowest decile (18%) is

approximately 7 percentage points higher than the return on the highest decile (11%).

Since the price impact in small stocks is substantially higher than in large stocks (e.g.,
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Ghysels and Pereira (2008)), these numbers give us a rough guideline for a maximum

liquidity premium around 7%. Acharya and Pedersen (2005) decompose a total liquidity

premium of 4.6% into a liquidity risk premium (1.1%) and a liquidity level premium of

3.5%.

The liquidity premium displays several features. First, it increases with the degree

of illiquidity (or price impact, ψ). If the investor must pay a larger premium (concede a

larger discount) when buying (selling) the stock, he demands a higher expected return.

Second, the liquidity premium (λ) is a concave function of the price impact coefficient

(ψ). This concavity is consistent with the theoretical and empirical findings of Amihud

and Mendelson (1986). However, while in the model of Amihud and Mendelson (1986)

the concavity is generated by a clientele effect (investors with longer horizons require

a smaller increase in the premium of illiquid assets), the concavity uncovered here is

caused by a different reason. In our model, the investor is not constrained in the choice

of the optimal number of shares, Nt. He can respond to an increase in price impact by

demanding a higher liquidity premium, by reducing his optimal stock holdings, or both.

As figure 2 illustrates, the optimal Nt decreases with ψ. By trading less, the investor

reduces the adverse price impact of his trades. Hence, an increase in price impact leads

to a less than linear increase in the liquidity premium because the investor reduces

his total holdings of shares. The effect in our model is similar to that of proportional

transaction costs on equilibrium asset returns uncovered by Constantinides (1986) and

to the effect of fixed transaction costs in Lo, Mamaysky, and Wang (2004).

Third, an investor with more wealth demands a higher liquidity premium. Again,

there are two simultaneous effects at work (though more complex in this case). As

the top panel in figure 3 shows, increasing the initial wealth (W0) reduces the equity

proportion (ωt). Still, the reduction in ωt is not strong enough to compensate the
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increase in wealth, and therefore the actual number of shares held by the investor, Nt,

increases with wealth. Since the magnitude of price impact is proportional to changes

in Nt, a larger investor induces larger (unfavorable) price changes and requires a higher

liquidity premium. Therefore, our model suggests that large investors will tend to prefer

liquid stocks, leaving the illiquid stocks to smaller investors who require a lower liquidity

premium. This prediction has indeed been verified empirically by Falkenstein (1996).

He finds that mutual funds show an aversion to small firms and that their demand is

increasing in liquidity (measured by turnover).

Finally, a longer investment horizon leads to a smaller liquidity premium. The

bottom panel in figure 3 shows that the optimal equity proportion increases with the

investment horizon. The existence of price impact makes it optimal to trade a given

quantity through several smaller partial orders. With a longer time horizon, the in-

vestor can achieve a higher peak holding, while still trading small blocks and therefore

minimizing the adverse price impact. Furthermore, the investor enjoys the additional

stock drift for a longer period of time. The investor thus requires a smaller liquidity

premium.11

B The Model with Stochastic Liquidity

This section analyzes the full model in (9) with stochastic price impact. Our focus

is on the relation between the liquidity premium and the variability of price impact.

We demonstrate that our model offers a rational explanation for the negative relation

11As a robustness check, we also study the effect of a random investment horizon: instead of the fixed
known investment horizon, investors may face the possibility of an “emergency” liquidation of the stock.
The results (not shown and available upon request) demonstrate that the liquidity premium increases
strongly with the probability of an emergency liquidation. Uncertainty about the horizon induces a
higher required liquidity premium because a quick unplanned sale of illiquid assets can induce large
wealth losses (through the necessary price discounts the investor concedes to unwind his position in a
short period of time). Hence, our simplified model with a random horizon is consistent with the results
in Koren and Szeidl (2002) and Huang (2003).
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between expected returns and the volatility of liquidity.

1 Calibration of the Model

The price impact coefficient follows the AR(1) process in (6): ψt+1 = ψ̄+ρ(ψt−ψ̄)+ϕεψ
t+1.

We consider several parameter values that make the results directly comparable with

the basic model without stochastic liquidity. Specifically, we set the mean long-term

price impact at ψ̄ = 3 × 10−6, one of the constant price impact coefficients used in

section A. We explore several values for the volatility of liquidity, representing a range

from relatively stable (ϕ = 0.1 × ψ̄) to very volatile (ϕ = ψ̄) liquidity processes. We

consider processes with high persistence (large ρ) and low persistence (small ρ). The

risk aversion is set at γ = 3 and the initial wealth at W0 = 105. The investment horizon

is one year and the investor may trade once per month. We extend the state space

for constant price impact to include the random price impact process. The details are

described in a separate appendix available upon request.

2 Optimal Trading Strategy and Liquidity Premium

Table 2 presents the liquidity premium for different values of the volatility of liquidity.

Our results indicate that introducing a stochastic price impact reduces the liquidity

premium. The magnitude of the effect depends on the values of the conditional volatil-

ity (ϕ) and autocorrelation (ρ) parameters. For the case where ψt follows a simple

white-noise process, i.e., ρ = 0, we find that the liquidity premium decreases quite

substantially with the variance of liquidity: from the constant-liquidity benchmark case

of 6.41% per year, to 5.69% for ϕ = 0.5ψ̄, and further to 4.46% for ϕ = ψ̄. When ψt

is strongly autocorrelated, the reduction in the premium is smaller. For example, when

ρ = 0.9 the liquidity premium is 6.41% for ϕ = 0.1ψ̄, 6.29% for ϕ = 0.5ψ̄, and 6.06%
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for ϕ = ψ̄. Further, for a given liquidity volatility, the liquidity premium increases with

the autocorrelation of price impact. The effect is stronger at high levels of volatility.

The finding may seem contradictory to the usual risk-return tradeoff intuition and

therefore deserves a careful analysis. Indeed, if the trading strategy {Nt}T
t=0 was fixed,

increasing the variance of ψt would increase the variance of the stock price, thus in-

creasing the variance of terminal wealth, leading to a higher expected return to hold the

stock. However, the trading strategy is not predetermined. Nt(xt) is a state-contingent

function, namely contingent on ψt. The investor optimally chooses the number of shares

to trade at time t knowing the price impact coefficient at that moment, ψt. Hence, the

investor can adapt his trading to take advantage of periods of high liquidity (low ψ) and

to ameliorate the adverse effects of periods of low liquidity (high ψ).

Figure 4 illustrates this “value of information” by plotting representative optimal

trading strategies under two different scenarios: (1) liquidity suddenly increases (top

panel); and (2) liquidity suddenly decreases (bottom panel). The top panel shows the

trading strategy for the representative path where εt = 0,∀t ∈ [0, 12], with the stock

becoming more liquid at time t = 9, that is, ψt = ψ̄, ∀t ∈ [0, 12] \ {9}, and ψ9 takes a

smaller value of 0.53 × 10−6, which is the minimum value in the discrete grid specified

for the price impact coefficient. In this case, the investor takes advantage of the sudden

increase in liquidity at t = 9 by selling a large block of shares at a “good price”, that is,

suffering only a small price concession (N9 is now below the corresponding share holding

for the constant-liquidity case). Further, the more likely this sudden increase in liquidity

is temporary (the lower the price impact persistence ρ) and ψt will soon revert to its

mean, the more shares the investor decides to unload (see the strategy for ρ = 0.2). On

the other hand, if the high-liquidity state is likely to persist (e.g., ρ = 0.9), we have two

countervailing effects. While it is still advantageous to sell immediately with a low price
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concession, it is now also advantageous to hold the shares longer, enjoying a positive

stock drift longer and still being able to sell without incurring too much adverse price

impact. Hence, when ψt is highly persistent, ρ = 0.9, the optimal action is to sell some

shares at t = 9, but not as much as in the ρ = 0.2 case.

The bottom panel in figure 4 shows the opposite case: a sudden decrease in liquidity

at time t = 9. We set ψ9 = 5.47×10−6, which is the maximum value in the discrete grid

specified for the price impact coefficient. The investor responds to this drop in liquidity

by delaying the sale of shares. If the spike in ψ9 is likely to be short-lived, i.e., if the

autocorrelation is low, the investor may not sell any shares at t = 9. For the case where

ρ = 0.2, the investor even tries to “manipulate” the price, that is, he buys more shares

at t = 9, pushing the price up, thus increasing the value of the shares he currently holds.

Since ψt is expected to subsequently revert back down to its mean, the investor expects

to be able to sell all the shares later without having to offer a significant price discount.

However, if the price impact coefficient is highly persistent (large ρ), thus expected to

remain high in the future, the investor delays selling the shares somewhat, but not too

much. Otherwise, he might have to sell a big block later on while still facing a high

price impact coefficient (see the strategy for ρ = 0.9).12

To summarize, our model shows that a fully rational utility maximizing investor can

take advantage of the volatility in liquidity. He is willing to hold more shares than when

liquidity is constant; equivalently, he requires a lower liquidity premium. This result

comes from the investor being able to time his trades to take advantage of periods of

12In a separate appendix (available upon request), we provide further evidence that it is the ability
to adapt the trading strategy to the liquidity state that reduces the liquidity premium. Specifically,
we solve the model using a suboptimal open-loop method, where information that will be available in
the future is not taken into consideration. This leads to a liquidity premium that increases with the
volatility of liquidity. In this case, the investor does not formulate contingent decision rules. His trading
strategy formulated at time 0 is only optimal “on average.” The investor does not take advantage of
timing his trades according to the state of liquidity. Hence, it is the fact that the investor considers all
possible future information that causes the premium to decrease in volatility.
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high liquidity and reduce the effects of periods of low liquidity.

IV Robustness and Extensions of the Model

This section checks the robustness of our main finding by examining the following ex-

tensions of the model: different degrees of risk aversion, higher trading frequency, the

existence of temporary price impact, and correlation between stock returns and liquidity.

A Degree of Risk Aversion

The coefficient of relative risk aversion was set at γ = 3 in the baseline model above,

as this is typically regarded as a reasonable value for the CRRA utility function. This

section examines the effect of different levels of risk aversion ranging from 1 (representing

the frequently used log utility) to 10 (usually considered an upper bound for reasonable

values of γ). We consider different values for the volatility parameter (ϕ) while fixing

the long-term mean and correlation of the price impact process.

Table 3 presents the resulting liquidity premium. For each level of the volatility of

liquidity, the liquidity premium decreases in risk aversion. More risk-averse investors

want to invest less in the stock and thus need to trade less. Therefore, they suffer less

adverse price impact and hence require a smaller liquidity premium.

More important, for every level of risk aversion, we observe that the liquidity pre-

mium decreases with the volatility of price impact. Furthermore, the proportional re-

duction in the premium is very similar across different levels of risk aversion. Hence, we

conclude that our main result of a negative relation between the volatility of liquidity

and the liquidity premium is robust to the level of risk aversion of the investor.
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B Analysis of the Trading Frequency

While in our baseline case investors trade only once a month, in reality they can trade

much more frequently. For example, Chan and Lakonishok (1995) study the trading of

large blocks of shares by institutional investors and find that only 20% of the trades are

completed in one day. More than half of the dollar value traded by institutions takes

four or more days of execution. Investors divide their trades into smaller partial orders

to reduce the price impact of trading. Hence, it is interesting to assess the impact of

different trading frequencies on the liquidity premium.

We modify our model to accommodate the trading patterns described in Chan and

Lakonishok (1995). Specifically, we compute a new liquidity premium for three different

trading patterns. In case 1, denoted “24 evenly spaced”, the investor can trade twice per

month, for a total of 24 evenly spaced trades during the year. This case isolates the effect

of increasing the number of trades within a given horizon. With more opportunities to

trade, the required liquidity premium should decrease. In case 2, denoted “6 beg + 6

end”, we consider daily trading, i.e., the investor can trade in the first six and last six

days of the one-year investment period, with no trading in between, thus totalling 12

trades. The investor trades once in each day, that is, his order for the day is executed

as a single trade. Case 3, denoted “12 beg + 12 end”, compounds the effects of daily

trading with more opportunities to trade: the investor can trade in the first and last 12

days, totalling 24 trades.

Table 4 shows the resulting liquidity premiums for different specifications of the price

impact process. Panel A shows the simplified model with constant liquidity. Case 1, “24

evenly spaced”, shows a decrease in the required liquidity premium. For example, for

the benchmark case of a price impact coefficient of ψ = 3× 10−6, the liquidity premium

is λ = 4.58%. This is lower than the λ = 6.41% for the monthly trading setup reported

21



in table 1 because the investor is able to split his trading into smaller packets and thus

suffer less price impact. Case 2, “6 beg + 6 end”, shows a more interesting decrease in

the liquidity premium. For example, for ψ = 3× 10−6, the liquidity premium decreases

from the benchmark λ = 6.41% to λ = 3.01%. In other words, allowing the investor

to concentrate a given number of trades in the beginning and ending of the investment

horizon, as opposed to having those trades equally spaced over the investment horizon,

reduces the liquidity premium roughly in half. Intuitively, this reduction is due to the

investor being able to build its target stock holding faster and enjoy the stock drift

longer. Case 3, “12 beg + 12 end”, shows a further decrease in the liquidity premium:

λ = 2.18%. This is lower than in case 2 because the investor can trade for twice as

many days and thus reduce the price impact of trading. Furthermore, it is also lower

than in case 1, again due to the fact that the portfolio is built faster.

From these examples it might be tempting to conclude that there is a simple way to

eliminate the liquidity costs altogether. In theory, the investor could follow a strategy

of breaking his desired quantities into very small orders of a few shares traded every

few minutes, which would induce an almost negligible price impact. However, in reality

this is not the case for two reasons. First, one must take into consideration the costs of

trading, such as brokerage fees. The costs can quickly overcome the benefits of frequent

trading. Second, our analysis here assumes the same price impact coefficient regardless

of the trading frequency. As documented in Dufour and Engle (2000), the price impact

of trading increases as the time duration between transactions decreases. Trading the

same quantity in the course of six days would induce a much larger adverse price impact

than trading it in six months. A more appropriate comparison would therefore require

a higher price impact for the daily trading setup. The resulting new liquidity premiums

in table 4 would be higher.
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Panel B in table 4 shows the full model with stochastic price impact. We fix ψ̄ =

3×10−6 and ρ = 0.5, and allow the volatility to vary from ϕ = 0.1ψ̄ to ϕ = ψ̄. The most

important observation is that the liquidity premium still decreases with the volatility

of liquidity. At low volatility, ϕ = 0.1ψ̄, the liquidity premiums for the three trading

cases are very close to the corresponding values in Panel A; the premiums then decrease

as the volatility increases to ϕ = ψ̄. The three cases show some interesting differences

regarding the speed at which the premium decreases. Specifically, the schemes with 24

trading periods (case 1 and case 3) show a faster reduction than the one with 12 trading

periods (case 2). With more discretion over when to trade, the investor is better able

to move his trades to periods of high liquidity. To summarize, we conclude that the

importance of the volatility of liquidity is robust to different trading frequencies.

C Temporary Price Impact

This section extends the baseline model to include temporary price impact. The tem-

porary price effect of a trade consists of an adverse price movement that lasts only for

that trade. Subsequently, the stock price reverts back to the level associated only with

the permanent effect.

We model both the permanent and temporary price impacts by the following equation

for the trade price (Ŝt+1):

Ŝt+1 = St[1 + µ + λ + σεt+1 + ψt+1(Nt+1 −Nt) + δ(Nt+1 −Nt)]

where the parameter δ > 0 measures the temporary price impact. The effect is propor-

tional to the quantity traded: buying increases the trade price, while selling decreases it.

We assume that market-making costs are relatively stable through time and therefore δ

23



does not depend on t.13

The timing is as follows. As in the baseline model, one instant before choosing Nt+1,

the investor observes a middle price S̄t+1 ≡ St[1 + µ + λ + σεt+1]. The price impact

coefficients, ψt+1 and δ, are also known now. The investor then chooses Nt+1. The

difference to the baseline case is that trading occurs at Ŝt+1. Immediately after the

trade, the market price reverts back to St+1 (as in equation 5).

Since the price reverts back to St+1, trading induces an immediate wealth loss cor-

responding to the block bought or sold at a, respectively, “too high” or “too low” price.

For a buy trade the wealth reduces to Wt+1 = MtBt+1+NtSt+1−(Nt+1−Nt)(Ŝt+1−St+1),

while for a sell trade it reduces to Wt+1 = MtBt+1 + NtSt+1− (Nt−Nt+1)(St+1− Ŝt+1).

Both cases are nested in Wt+1 = MtBt+1 + NtSt+1 − |Nt+1 − Nt| · |Ŝt+1 − St+1|. Us-

ing the specification for Ŝt+1, subtracting Wt ≡ MtBt + NtSt, and replacing Mt =

(Wt −NtSt)/Bt, we get the wealth process for the case of both permanent and tempo-

rary price impact:

Wt+1 = Wt(1 + r) + NtSt [µ + λ− r + σεt+1 + ψt+1(Nt+1 −Nt)]− δSt(Nt+1 −Nt)
2

Hence, the investor’s problem for the case of both permanent and temporary price

13Almgren and Chriss (2000), Huberman and Stanzl (2005), and Obizhaeva and Wang (2006) consider
similar temporary price impact functions.
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impacts is the following:

maximize
{Nt}T

t=0

E0[u(WT )]

(10)

subject to

Wt+1 = Wt(1 + r) + NtSt [µ + λ− r + σεt+1 + ψt+1(Nt+1 −Nt)]− δSt(Nt+1 −Nt)
2

St+1 = St[1 + µ + λ + σεt+1 + ψt+1(Nt+1 −Nt)]

ψt+1 = ψ̄ + ρ(ψt − ψ̄) + ϕεψ
t+1

N0 = NT = 0

Table 5 shows the liquidity premium for different combinations of permanent and

temporary price impacts. We start by considering the simplified model with constant

permanent price impact. When the price impact is entirely temporary (ψ = 0, δ = 3×
10−6) rather than permanent as in the baseline model (ψ = 3×10−6, δ = 0), the liquidity

premium increases to 10.11%, which compares with 6.41% in the baseline model. Even

when the total benchmark price impact is split evenly between the permanent and

temporary components (ψ = 1.5 × 10−6, δ = 1.5 × 10−6), the premium increases to

8.37%. These results are expected: the temporary impact increases the required liquidity

premium because it causes the investor to lose wealth in each single trade.

The last three columns in Table 5 show the liquidity premium for the full model

with stochastic liquidity defined in (10). Again, the existence of temporary price impact

increases the premium. Most important, an increase in the volatility of the permanent

component (ϕ) still decreases the total required liquidity premium. The reduction in

the premium is nonetheless lower than in the benchmark case of permanent price im-

pact only. This is to be expected as the total price impact is now split between two
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components: the temporary value (δ) that is fixed through time and thus cannot be

avoided; the permanent value (ψt) that the investor can still time, but now only repre-

sents a fraction of the total cost of trading. Hence, we conclude that our main result of

a negative relation between the volatility of liquidity and stock returns is robust to the

existence of both permanent and temporary price impacts.

D Correlation between Stock Returns and Liquidity

Our baseline model assumes that liquidity is uncorrelated with stock returns. But for

some stocks, illiquidity may be negatively correlated with returns. For example, small

stocks are typically harder to sell during market downturns. Furthermore, since liquidity

is persistent, a positive shock to illiquidity predicts future high illiquidity, causing the

contemporaneous stock price to decrease in order to raise expected future returns, thus

generating a negative correlation between illiquidity and contemporaneous returns.14

This section analyzes the effect of such correlation.

Let R̄t+1 denote the stock return due to the arrival of new public information,

R̄t+1 ≡ µ + λ + σεt+1. Table 6 shows the liquidity premium for different values of

corrt(R̄t+1, ψt+1).
15 First, we observe that the liquidity premium is relatively insensitive

to this correlation. As the correlation changes from the baseline case of zero to a large

value of corrt(R̄t+1, ψt+1) = −0.3, the liquidity premium changes only by a few basis

points (less than 10bp for all the cases considered in the table). The reason for this

result is the following. Consider first the later time periods when the investor is un-

winding the portfolio. A negative correlation has two opposite effects: on the one hand,

it means that low returns will be accompanied by high price impact, which hurts the

14See, for example, Acharya and Pedersen (2005), Pástor and Stambaugh (2003), and Amihud (2002).
15We impose the correlation between R̄t+1 and ψt+1 using the method described in a separate ap-

pendix available upon request. For the stocks in our data, the correlation ranges between -0.37 and
+0.35, with a median of -0.07.
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investor during this selling phase; on the other hand, it also means that high returns will

be accompanied by low price impact, which benefits the investor. Our results suggest

that the net effect is very small. Again, this is because the investor is able to time

his trades, that is, he is able to move part of his sell orders from the bad low-R̄ and

high-ψ days to the good high-R̄ and low-ψ days. Consider now the initial time peri-

ods when the investor is building up the portfolio. Here, the investor actually benefits

from price impact as his trades increase the paper value of his current holdings. In this

case, the negative correlation means that low price impact scenarios are compensated

by higher stock returns, which benefits the investor. Therefore, we observe that a nega-

tive corrt(R̄t+1, ψt+1) actually reduces the liquidity premium, even if by just a few basis

points.

Finally, and most important, by comparing the three columns in table 6, we conclude

that the correlation between returns and liquidity, be it negative or positive, does not

change our main finding: the liquidity premium decreases with the volatility of liquidity.

The reduction in the premium is similar for all levels of correlation.

V Empirical Tests of the Model

Our model has two main testable implications. First, in the cross section, expected

stock returns should be negatively related to the volatility of liquidity. Hence, we follow

Chordia, Subrahmanyam, and Anshuman (2001)(CSA) and start by showing that stock

returns are negatively related to the volatility of price impact. Second, in the time series,

our model suggests that price impact should be negatively related to trading activity.

The fact that investors trade less (more) when there is less (more) liquidity is actually

the mechanism that generates the first cross sectional result. Therefore, the second part

of this section shows that higher price impact causes lower trading volume.
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A Cross-sectional Relation between Stock Returns and the

Volatility of Liquidity

1 Testing Methodology and Data

We follow the methodology of CSA, initially developed by Brennan, Chordia, and Sub-

rahmanyan (1998). It allows us to test whether many different stock characteristics are

related to stock returns, using the full cross section of all stocks. Specifically, we perform

the following cross-section regression each month:

(11) R∗
jt =

I∑
i=1

citZijt + ejt,

where Zijt represents characteristic i for stock j in month t. We consider two alternatives

for the dependent variable, R∗
jt. First, the simple excess return, R∗

jt = Rjt −Rft, where

Rjt is the return for stock j during month t and Rft is the risk-free rate. Second, the

risk-adjusted return using the Fama and French three-factor model, R∗
jt = Rjt − Rft −

[βjM(RMt −Rft) + βjsSMBt + βjhHMLt], where the factor loadings (βjM , βjs, βjh) are

estimated with the time-series regression Rjt − Rft = aj + βjM(rM − rf ) + βjsSMB +

βjhHML + εj using stock returns and Fama and French factors for the prior 60 months.

As in CSA, we consider the following list of characteristics:

SIZE – the log of market capitalization (in $ billions) at month t− 2.

BM – the log of the book-to-market ratio, using the previous year data.

PRICE – ln(1/Pt−2), where P is the share price.

YLD – the dividend yield, defined as
∑12

s=1 dt−1−s/Pt−2, where dt is the dividend paid

in month t.
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RET2-3 – the cumulative return
∏3

s=2(1 + Rt−s)− 1.

RET4-6 – the cumulative return
∏6

s=4(1 + Rt−s)− 1.

RET7-12 – the cumulative return
∏12

s=7(1 + Rt−s)− 1.

The basic data consists of monthly information for NYSE and AMEX common stocks

for the period from 1963 to 2005. Returns, volume, prices, dividends, and shares out-

standing are from CRSP and book values are from Compustat. To be included in the

sample for a given month, a stock had to satisfy the following filters as in Pástor and

Stambaugh (2003) and Acharya and Pedersen (2005). First, its price had to be between

$5 and $1000. Second, it had to have at least 15 days of returns and volume in that

month. Also, we discarded the first and last month of trading for each stock. To correct

for outliers in each month, we exclude all stocks whose SIZE, BM, PRICE, or YLD is

smaller than the 0.5 percentile or greater than the 99.5 percentile. This yields an average

number of 1558 stocks per month. Panel A in Table 7 provides summary statistics on

firm characteristics. The log transformations described above correct the considerable

skewness of the raw data. The key variables are similar to those used in CSA.

2 Trading Activity

We first follow CSA and examine the relation between average stock returns and trading

activity measured by the following variables:

DVOL – the log of dollar trading volume during month t− 2 (in $ millions).

CV(DVOL) – the log of the coefficient of variation (ratio of standard deviation to the

mean) of dollar volume computed over t− 37 to t− 2.

TURN – the log of share turnover during month t− 2.
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CV(TURN) – the log of the coefficient of variation of turnover computed over t − 37

to t− 2.

While DVOL and TURN capture the effect of the level of liquidity on expected stock

returns, CV(DVOL) and CV(TURN) are included to uncover the relation between stock

returns and the volatility of liquidity. Table 8 shows the results. Consistent with the

findings reported in CSA, the level of dollar volume and turnover have a significant

negative effect on both excess and risk-adjusted returns. The estimated coefficients for

the key variables of interest — CV(DVOL) and CV(TURN) — remain negative and

highly significant both statistically and economically. This suggests that the negative

relation between expected stock returns and the volatility of liquidity (based on measures

of trading activity) is not specific to CSA’s sample period (1963-1995). Instead, it is a

persistent feature of the data, robust to a longer and more recent sample period.

3 Price Impact

This section tests whether expected stock returns are also negatively related to the

volatility of liquidity when liquidity is measured by price impact. We use the price

impact measure introduced by Amihud (2002) — the ratio of absolute return to dollar

volume. For each stock, we compute the monthly averages of the daily ratios of absolute

return to dollar volume (times 106). We then use two different ways to characterize the

level and volatility of this price impact series.

First, in line with CSA, we compute the following characteristics:16

PI-level – the log of price impact at month t− 2.

16Our model does not provide guidance on econometric issues, namely on the frequency and window
over which the volatility of price impact should be measured. Our choice here follows CSA and Amihud
(2002). Nonetheless, our findings are robust to different measuring frequencies and even to assuming
that investors have perfect foresight and know the future volatility of price impact (results available
upon request).
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CV(PI-level) – the log of the coefficient of variation of price impact computed over

t− 37 to t− 2.

Second, we fit an AR(1) specification as in (6) to the price impact series. However, we

are faced with the following econometric issue: while an AR(1) is a stationary process,

Amihud’s measure has dollar volume in the denominator and is thus nonstationary (due

to inflation, at least). Therefore, following Pástor and Stambaugh (2003) and Acharya

and Pedersen (2005), before fitting the AR(1) process, we first scale the price impact

series through (mt−1/m1) × PIt, where PI is Amihud’s measure and m is the total

market value of all stock included in the sample. While this transformation corrects to

some extent the nominal increase in the denominator of Amihud’s measure, it does not

necessarily correct for the secular increase in share volume over the sample period. As

documented extensively in Lo and Wang (2000), even turnover is not stationary during

our sample period. Following these authors, we abstain from further transformations

of the price impact series, and instead use rolling windows of five years to perform our

analysis. Specifically, for each stock and at each month t, we estimate an AR(1) over

a 60-month rolling window (from t − 61 to t − 2). We then use the estimated mean

(ψ̄) as a proxy for the price impact level at month t and use the estimated conditional

standard deviation (ϕ) as a proxy for the volatility of liquidity at month t. Hence, we

include the following characteristics in equation (11):

PI-ψ̄ – the log of the unconditional mean of price impact (ψ̄ in equation (6)).

PI-ϕ – the log of the conditional volatility of price impact (ϕ in equation (6)).

PI-ρ – the autocorraletion of price impact (ρ in equation (6)).

Panel C in Table 7 reports summary statistics for the price impact variables. Both

measures of the level of price impact (PI-level and PI-ψ̄) share similar moment charac-
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teristics. The measures of volatility (CV(PI-level) and PI-ϕ) also exhibit similar cross-

sectional distributions. The price impact has an average first-order autocorrelation of

0.65 with a standard deviation of 0.15.

Table 9 reports the Fama-MacBeth estimates for regression (11) using price impact

as a proxy for liquidity. We find that liquidity related variables, as well as all other

firm characteristics, have the same signs and similar magnitudes as in the case based

on trading activity. As expected, both measures of price impact (PI-level and PI-ψ̄)

have a positive effect on expected stock returns. More important, both measures of the

volatility of liquidity (CV(PI-level) and PI-ϕ) have a negative effect on expected stock

returns, implying that a higher volatility of liquidity is associated with a lower expected

stock return. The estimated coefficients suggest that the negative effect of the volatility

of liquidity on risk-adjusted returns is statistically and economically significant. The

evidence on excess returns is slightly weaker. While the conditional standard devia-

tion (PI-ϕ) remains statistically significant, the t-statistic on the coefficient of variation

CV(PI-level) is slightly below conventional test levels.

In addition to the negative relation between the liquidity premium and the volatility

of liquidity, our numerical analysis in section III also implies that the liquidity premium

increases in the autocorrelation of price impact (ρ). The results in Table 9 suggest that

the effect of the autocorrelation on returns is statistically insignificant. There are at

least two possible reasons. First, the empirical estimate of the autocorrelation varies in

a narrow range between 0.5 to 0.7 within one standard deviation. For small changes in

ρ, the increase in the liquidity premium is small. This makes it difficult to empirically

detect the true effect of the autocorrelation on the liquidity premium. Second, there are

measurement errors in estimating the persistence of price impact. This measurement

error emerges as the result of the econometric issues in estimating the AR(1) process
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for the Amihud’s measure as discussed above.

Overall, our empirical analysis based on measures of price impact provides support-

ing evidence on the negative relation between expected stock returns and volatility of

liquidity. This finding is consistent with the results based on using measures of trading

activity as proxies for liquidity.

B Time-series Relation on Liquidity and Trading Activity

In our model, the investor is able to time his trades according to the state of liquidity

(this is the crucial feature that generates a negative cross-section relation between ex-

pected returns and the volatility of liquidity). Empirically, we thus expect to observe

time-series causality from liquidity to trading activity. In particular, we expect higher

illiquidity (higher price impact) to lead to less trading.

One potential approach to test this hypothesis would be to analyze detailed infor-

mation on individual trades by large investors. Some studies have used proprietary

databases on institutional investors to investigate related questions. We therefore start

by reviewing some of the existing literature on institutional investors. While these

papers do not directly test our hypothesis, they do find supporting evidence. An alter-

native approach is to test the hypothesis using the time series of liquidity and trading

activity observed in the market. We follow this approach and provide new evidence that

price impact Granger causes trading activity.

1 Existing Literature on Institutional Investors

Some empirical evidence that investors adapt their trading to the state of liquidity

comes from the survey by Economides and Schwartz (1995). They assess asset managers

demand for immediacy by surveying traders of US equity funds. The vast majority (77%)
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of respondents say they delay trades in hope of finding a better price for 25 to 75% of

their trades (their table 3). Further, at least 51% of traders sometimes do not adjust

their portfolios because the market is too illiquid (their table 14).

Keim and Madhavan (1997) find that transaction costs incurred by institutional

investors depend on their investment style: “value traders have lower costs than index

traders, who in turn have lower costs than technical traders”. They argue that indexers

and technical traders have a strong demand for immediacy, while value traders “may

incur lower costs because of more patient trading strategies involving limit or working

orders”. Christoffersen, Keim, and Musto (2006) reach similar conclusions: “active

managers, despite the presumably higher information content of their trades, trade at

lower cost than index managers.” They conclude that “active managers add value both

through patient trading and informed stock-picking.”

Foster, Gallagher, and Looi (2005) study transactions from Australian equity man-

agers and conclude that “institutional investors are aware of liquidity in the market”

and “choose to trade at times where the market is more accepting of unusually large

flows”. Lipson and Puckett (2007) analyze proprietary institutional trading data and

also find that “institutions who already wished to sell decide to sell more actively as

markets are rising and those who already wished to buy decide to buy more actively as

markets are falling”. They thus infer that institutions have “trading strategies based on

long term price movements that also seek to minimize implementation costs by selling

(buying) when there is increased demand (supply)”.

Chordia, Roll, and Subrahmanyam (2001) find that market liquidity declines and

trading activity slows on Fridays, while Tuesdays display the opposite pattern. They

rationalize the persistence of such day-of-the-week regularities with the adage that “liq-

uidity begets liquidity”: “although a return anomaly is subject to arbitrage forces, a
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liquidity anomaly is self-perpetuating; that is, as agents find out about such an anomaly,

they will avoid trading in illiquid periods, which will further reduce liquidity in those

periods.” In other words, it is rational for investors to move their trades, at least to

some extent, from less liquid to more liquid days.

Hence, existing research on institutional investors suggests that they do adjust their

trades to the state of liquidity in order to minimize transaction costs.

2 Vector Autoregression Results

We now directly test for causality between liquidity and trading activity. While our

model provides one rationale for causality from price impact to trading activity, one

should actually expect the data to show bidirectional causality. Several theoretical

models predict a negative correlation between volume and illiquidity. In Kyle (1985),

informed trading increases with uninformed trading, while illiquidity (Kyle’s lambda)

decreases with uninformed trading. Hence, higher volume is associated with lower illiq-

uidity. Admati and Pfleiderer (1988) and Foster and Viswanathan (1990) extend Kyle’s

model by allowing uninformed liquidity traders to have some discretion over when they

trade. Both papers predict that trading costs are low when trading volume is high.

Therefore, to allow bidirectional causal effects, we estimate a Vector Autoregression

(VAR) for liquidity and trading activity, controlling for other relevant variables.17

We analyze time series data on the same sample of stocks as in the previous section,

but with a daily frequency since we are interested in detecting very short term rela-

tions. At each day t, we aggregate all stocks into a “market” portfolio and compute the

following quantities:

17Several papers, including Hasbrouck (1991), Hiemstra and Jones (1994), Chordia, Roll, and Sub-
rahmanyam (2001), Chordia, Sarkar, and Subrahmanyam (2005a), and Chordia, Sarkar, and Subrah-
manyam (2005b), have studied the time-series relation between several measures of liquidity, trading
activity, and returns. However, they do not analyze the causality from liquidity to trading volume.
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PrcImpactt := 1
N

∑N
i=1 PIit, is the measure of portfolio price impact, where N is the

total number of stocks trading on day t and PIit is the price impact (ratio of

absolute return to dollar volume) of stock i on that day.

DVolumet :=
∑N

i=1 Vit, is the portfolio total dollar volume, where Vit represents the

dollar volume of stock i.

Turnovert :=
∑N

i=1 witVit, is the portfolio weighted-average turnover, where wit the

weight of firm i based on its market capitalization.

RetVolatt := r2
pt, measures current market volatility, where rpt is the portfolio value-

weighted return.

RetPost := max(rpt, 0) is the positive market returns.

RetNegt := min(rpt, 0) is the negative market returns.

This definition of price impact for a portfolio (PrcImpact) follows Amihud (2002).

Return volatility typically leads to more volume (e.g., Gallant, Rossi, and Tauchen

(1992)). The decomposition of current returns into their positive (RetPos) and negative

(RetNeg) components allows for a nonlinear relation between volume and returns, i.e.,

volume can be high both in positive and negative return days (see Chordia, Roll, and

Subrahmanyam (2001)). Since a VAR model requires stationary series, we transform

all the variables by taking logarithms and subtracting a four-week moving average (e.g.,

Ghysels and Pereira (2008)). Standard Augmented Dickey-Fuller tests reject a unit root

in the transformed series.

The VAR model is thus

yt = C +
L∑

l=1

Alyt−l + εt,
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where y is a vector consisting of the five variables defined above: PrcImpact, Trading

(either DVolume or Turnover), RetVolat, RetPos, and RetNeg. To account for doc-

umented seasonal regularities in trading (e.g., Chordia, Sarkar, and Subrahmanyam

(2005a)), each row in the matrix C includes a constant plus 4 dummies for day-of-the-

week and 11 dummies for calendar month. The matrices Al represent the coefficients

to be estimated. There are 10,780 daily observations. We determine the number of

lags in the VAR (L) using the Akaike Information Criterion and the Schwarz Bayesian

Information Criterion, choosing the smaller value when the two criteria give different

results. In all cases reported below, we use five lags (L = 5).18

Table 10 shows Granger causality tests for four different specifications. The table

shows the F-statistics and corresponding P-values for a test on whether the five co-

efficients associated with the five lags of a given variable (yi
(t−l)) are jointly zero in a

particular equation of the VAR (yj). If the null is rejected, we may infer that there is

Granger causality from variable yi to yj. On the left panel, trading activity is measured

by dollar volume. The first two columns are for a simple VAR with only two equations:

price impact and dollar volume. There is evidence of strong bidirectional causality. Vol-

ume Granger causes price impact (F = 34.4, P < 0.01) and price impact also Granger

causes volume (F = 5.2, P < 0.01). To correct potential biases due to missing vari-

ables, the next two columns present the full model with five equations. The evidence

for bidirectional causality remains very strong. In particular, we find that price impact

Granger causes dollar trading volume (F = 4.1, P < 0.01). The other three variables

(RetVolat, RetPos, and RetNeg) also help to forecast volume and liquidity (all F tests

are strongly significant). The right side panel of the table measures trading activity by

turnover. The results are similar to dollar volume. Again, we find evidence of bidirec-

18We confirm that with five lags the estimated residuals in each VAR equation are not autocorrelated.
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tional causality at conventional test levels. In particular, price impact Granger causes

turnover (F = 2.2, P = 0.05, in the VAR with five equations.)

To better analyze the effect of liquidity on trading activity, figure 5 shows Impulse

Response Functions (IRF) for those two variables. The IRF shows the response of one

variable to a one-time, one standard-deviation, positive impulse (“shock”) to another

variable. Even though the figure shows the response of just the two variables of interest

(liquidity and trading), those responses are computed using the full VAR with five

variables. The top panels in the figure show IRFs when trading activity is measured

by dollar volume. The top left panel shows that price impact decreases when there is

a positive shock to volume. More important, consistent with the implication from our

model, the right panel shows that volume decreases when there is a positive innovation

to price impact (solid thick line). The increase in price impact leads to a decrease

in dollar volume over the next 5 days. The two bottom panels show the IRFs when

trading is measured by turnover. The results are very similar, though slightly weaker.

In particular, the bottom right panel shows that a positive innovation to price impact

leads to less turnover over the next 4 or 5 days.19

Overall, these results show that there is Granger causality from price impact to

trading activity. Together with the existing empirical evidence on institutional investors

reviewed above, they support the hypothesis that investors trade less (more) when the

market is more (less) illiquid.

19The IRF uses orthogonal innovations and thus its results are sensitive to the ordering of the vari-
ables. As noted in Chordia, Sarkar, and Subrahmanyam (2005a), one approach is to place the variables
according to the order in which they influence the other variables. In our case, given the results from
the model and from the literature reviewed above, the presumption is that liquidity influences trading,
which suggests that price impact should be placed before trading activity.
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VI Conclusion

We offer a rational explanation for the negative relation between expected stock returns

and the volatility of liquidity first documented in Chordia, Subrahmanyam, and An-

shuman (2001). While this finding may seem puzzling given the standard risk-return

tradeoff intuition, our model demonstrates that it is consistent with the optimal behav-

ior of a risk-averse utility-maximizing investor. The key feature of the model is that the

investor can adapt his trading strategy to take advantage of periods of high liquidity and

to ameliorate the effects of periods of low liquidity. Consequently, for a given level of

average liquidity, investors actually benefit from volatility around that level of liquidity.

This result is robust to several different parameterizations and model extensions.

Furthermore, we provide new empirical evidence that price impact Granger causes

trading volume in the time series. This evidence supports the main prediction of the

model — the liquidity premium decreases with the volatility of liquidity because in-

vestors adapt their trading strategy to the state of liquidity.
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Table 1: Liquidity Premium with Constant Liquidity

Liquidity premiums (λ) for different combinations of price impact (ψ) and initial wealth (W0). The

liquidity premium is the annual additional return (drift), in percentage points, the investor requires

to hold the illiquid stock. In panel A, the investment horizon is one year with monthly rebalancing

(T = 12 months); in panel B, two years (T = 24 months). All other parameters are set at the baseline

values in section III.

Panel A: Horizon = 1 year

Price impact ψ (×10−6)
W0 1 2 3 4 5
104 1.02 1.34 1.61 1.85 2.08
105 3.11 4.91 6.41 7.71 8.89
106 13.66 20.41 25.54 29.78 33.47

Panel B: Horizon = 2 years

Price impact ψ (×10−6)
W0 1 2 3 4 5
104 0.68 0.80 0.89 0.97 1.05
105 1.42 1.99 2.52 2.97 3.47
106 5.33 8.18 10.5 12.43 14.08

Table 2: Liquidity Premium with Stochastic Liquidity

Liquidity premium, in percentage points per year, when the price impact follows the mean-reverting

process in (6). The long-term mean is ψ̄ = 3 × 10−6, the initial wealth is W0 = 105, and the horizon

is one year with monthly rebalancing (T = 12 months). All other parameters are set at the baseline

values in section III.

Volatility

Correlation ϕ = 0.1ψ̄ ϕ = 0.5ψ̄ ϕ = 0.75ψ̄ ϕ = ψ̄
ρ = 0.00 6.39 5.69 5.07 4.46
ρ = 0.20 6.39 5.79 5.26 4.74
ρ = 0.50 6.40 5.94 5.54 5.15
ρ = 0.90 6.41 6.29 6.23 6.06
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Table 3: Liquidity Premium for Different Degrees of Risk Aversion

This table shows the liquidity premium for different degrees of risk aversion (γ) for the full model with

stochastic liquidity, with fixed ψ̄ = 3 × 10−6 and ρ = 0.5, and ϕ taking different values. The initial

wealth is W0 = 105, the horizon is one year with monthly rebalancing (T = 12 months), and all other

parameters are set at the baseline values in section III.

Volatility

Risk Aversion ϕ = 0.1ψ̄ ϕ = 0.5ψ̄ ϕ = ψ̄
γ = 1 12.81 12.08 10.94
γ = 2 8.30 7.74 6.77
γ = 3 6.40 5.94 5.15
γ = 5 4.59 4.29 3.69
γ = 10 2.98 2.81 2.44
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Table 4: Liquidity Premium for Alternative Trading Patterns

Liquidity premiums (λ) for different trading schemes. Panel A shows the simplified model with constant

liquidity, for several price impact coefficients (ψ). Panel B shows the full model with stochastic liquidity,

with fixed ψ̄ = 3×10−6 and ρ = 0.5, and with ϕ taking different values. Each panel shows three different

trading patterns: (case 1) “24 evenly spaced”, the investor trades twice per month, for a total of 24

evenly spaced trades; (case 2) “6 beg + 6 end”, he trades in the first 6 days and last 6 days of the

year, totalling 12 trades; (case 3) “12 beg + 12 end”, he trades in the first and last 12 days, totalling

24 trades. In all cases the horizon is one year, the initial wealth is W0 = 105, and all other parameters

are set at the baseline values in section III.

Panel A: Model with constant liquidity

Price impact ψ (×10−6)
Trades 1 3 5
(Case 1) 24 evenly spaced 2.37 4.58 6.17
(Case 2) 6 beg + 6 end 1.42 3.01 4.36
(Case 3) 12 beg + 12 end 0.95 2.18 3.08

Panel B: Model with random liquidity

Volatility

Trades ϕ = 0.1ψ̄ ϕ = 0.5ψ̄ ϕ = ψ̄
(Case 1) 24 evenly spaced 4.45 2.53 0.49
(Case 2) 6 beg + 6 end 3.00 2.83 2.46
(Case 3) 12 beg + 12 end 2.16 1.50 0.37
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Table 5: Liquidity Premium with Permanent and Temporary Price Impact

Liquidity premium, in percentage points per year, when there is both permanent and temporary price

impact according to the model in (10). Each row shows the premium for different combinations of the

permanent (ψ) and temporary (δ) effects. For the simplified model with constant liquidity in column

3, the constant ψ is set at the long-term mean (ψ̄) for that row. For the full model with stochastic

liquidity in columns 4–6, we fix ρ = 0.5 and allow ψ̄ and ϕ to vary as indicated in the table. The initial

wealth is W0 = 105, the horizon is one year with monthly rebalancing (T = 12 months), and all other

parameters are set at the baseline values in section III.

Model with Model with random liquidity
Price impact (×10−6) constant liquidity Volatility

Permanent Temporary (ψ = ψ̄) ϕ = 0.1ψ̄ ϕ = 0.5ψ̄ ϕ = ψ̄

ψ̄ = 0 δ = 3 10.11 — — —
ψ̄ = 1.5 δ = 1.5 8.37 8.36 8.27 8.01
ψ̄ = 3 δ = 0 6.41 6.40 5.94 5.15
ψ̄ = 3 δ = 1.5 11.50 9.97 9.75 9.18

Table 6: Liquidity Premium with Correlation between Stock Returns and
Liquidity

Liquidity premium, in percentage points per year, when the stock return due to public information (R̄)

is correlated with price impact. The premiums are for the full model with stochastic liquidity with

ψ̄ = 3× 10−6, ρ = 0.5, and different ϕ values as indicated in the table. The initial wealth is W0 = 105,

the horizon is one year with monthly rebalancing (T = 12 months), and all other parameters are set at

the baseline values in section III.

Volatility

corrt(R̄t+1, ψt+1) ϕ = 0.1ψ̄ ϕ = 0.5ψ̄ ϕ = ψ̄
0.1 6.40 5.97 5.15
0.0 6.40 5.94 5.15

-0.1 6.38 5.91 5.11
-0.3 6.35 5.88 5.06
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Table 7: Descriptive Statistics

Times-series averages of cross-sectional statistics for a monthly average of 1558 NYSE and AMEX

stocks. The sample is from Jan/1966 to Dec/2005. The variables are as described in the text.

Mean St.Dev. Median

A: Firm Characteristics
SIZE -1.770 1.887 -1.790
BM -0.277 0.689 -0.212
PRICE -2.753 0.935 -2.917
YLD 2.562 3.052 1.926
RET2-3 0.027 0.163 0.014
RET4-6 0.038 0.197 0.022
RET7-12 0.077 0.295 0.046

B: Measures of Trading Activity
DVOL 1.602 2.298 1.727
CV(DVOL) -0.401 0.449 -0.417
TURN -3.535 0.992 -3.462
CV(TURN) -0.570 0.410 -0.586

C: Measures of Liquidity
PI-level -1.584 1.954 -1.615
CV(PI-level) -0.575 0.353 -0.590
PI-ψ̄ -1.681 1.849 -1.636
PI-ϕ -1.610 0.450 -1.606
PI-ρ 0.655 0.150 0.665
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Table 8: Fama-MacBeth Regression Estimates for Volume and Turnover

Fama-MacBeth regressions of stock returns on firm characteristics. For each panel, the dependent

variable is excess returns in the first column and Fama-French risk-adjusted returns in the second

column. The independent variables are as described in the text. The sample is from Jan/1966 to

Dec/2005. All coefficients are multiplied by 100. T-statistics are in parenthesis.

A: Volume B: Turnover
Excess Ret. Risk-adj. Ret. Excess Ret. Risk-adj. Ret.

interc 0.972 -0.011 -0.033 -1.439
[2.47] [-0.04] [-0.06] [-4.35]

SIZE 0.039 0.069 -0.092 -0.116
[0.72] [1.78] [-3.05] [-4.56]

BM 0.232 0.106 0.236 0.11
[4.39] [2.44] [4.44] [2.51]

PRC 0.083 -0.052 0.071 -0.065
[0.85] [-0.61] [0.73] [-0.76]

YLD -0.007 0.001 -0.005 0.005
[-0.44] [0.13] [-0.33] [0.44]

RET2-3 0.837 0.754 0.838 0.761
[3.13] [2.73] [3.13] [2.75]

RET4-6 1.129 1.14 1.113 1.109
[4.65] [4.74] [4.58] [4.60]

RET7-12 1.072 0.829 1.052 0.79
[7.70] [5.06] [7.56] [4.83]

DVOL -0.124 -0.184 — —
[-2.58] [-5.19]

CV(DVOL) -0.269 -0.375 — —
[-3.89] [-5.38]

TURN — — -0.135 -0.199
[-2.78] [-5.53]

CV(TURN) — — -0.309 -0.372
[-4.94] [-5.63]
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Table 9: Fama-MacBeth Regression Estimates for Price Impact

Fama-MacBeth regressions of stock returns on firm characteristics. For each panel, the dependent

variable is excess returns in the first column and Fama-French risk-adjusted returns in the second

column. The independent variables are as described in the text. The sample is from Jan/1966 to

Dec/2005. All coefficients are multiplied by 100. T-statistics are in parenthesis.

A: Simple PI B: AR(1) parameters
Excess Ret. Risk-adj. Ret. Excess Ret. Risk-adj. Ret.

interc 0.6 -0.537 0.583 -0.459
[1.51] [-2.11] [1.67] [-1.61]

SIZE 0.021 0.055 0.006 0.029
[0.40] [1.27] [0.09] [0.59]

BM 0.223 0.085 0.207 0.066
[3.91] [1.82] [3.46] [1.33]

PRC -0.016 -0.164 0.06 -0.044
[-0.21] [-2.29] [0.79] [-0.60]

YLD 0.013 0.027 0.014 0.025
[0.73] [2.10] [0.77] [1.92]

RET2-3 0.719 0.543 0.485 0.346
[2.32] [1.81] [1.51] [1.11]

RET4-6 0.970 0.885 0.830 0.796
[3.57] [3.35] [2.95] [2.93]

RET7-12 1.018 0.794 1.205 1.021
[6.25] [4.62] [6.71] [5.67]

PI-level 0.104 0.136 — —
[2.42] [3.54]

CV(PI-level) -0.129 -0.227 — —
[-1.45] [-2.63]

PI-ψ̄ — — 0.093 0.114
[1.97] [2.50]

PI-ϕ — — -0.147 -0.269
[-2.16] [-3.90]

PI-ρ — — 0.032 -0.182
[0.18] [-1.03]
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Table 10: Granger Causality Tests from VAR Model

We estimate a VAR(5) with up to five variables: PrcImpact, Trading (either DVolume or Turnover),

RetVolat, RetPos, and RetNeg. Each pair of numbers in the table (F-statistic and corresponding P-

value) tests the null hypothesis that the five coefficients associated with the row variable are jointly

zero in the VAR equation denoted in the top of the block. On the left (right) panel, trading activity is

measured by dollar volume (turnover). The first two columns in each panel are for a simpler VAR with

only two variables: price impact and trading activity. We compute “market” time series by aggregating

NYSE and AMEX common stocks. The sample has 10,780 daily observations from 1963 to 2005.

Trading = Dollar Volume Trading = Turnover
F-stat P-val F-stat P-val F-stat P-val F-stat P-val

Eqn: PrcImpact
PrcImpact 227.7 0.00 186.1 0.00 272.5 0.00 221.3 0.00
Trading 34.4 0.00 32.0 0.00 23.3 0.00 22.9 0.00
RetVolat 4.1 0.00 3.6 0.00
RetPos 4.7 0.00 4.8 0.00
RetNeg 39.1 0.00 41.4 0.00

Eqn: Trading
PrcImpact 5.2 0.00 4.1 0.00 2.8 0.02 2.2 0.05
Trading 636.1 0.00 535.4 0.00 628.7 0.00 528.7 0.00
RetVolat 7.0 0.00 7.6 0.00
RetPos 24.9 0.00 24.1 0.00
RetNeg 21.9 0.00 14.3 0.00

Eqn: RetVolat
PrcImpact 3.0 0.01 4.4 0.00
Trading 1.1 0.36 1.2 0.33
RetVolat 1.7 0.13 1.4 0.22
RetPos 12.3 0.00 13.2 0.00
RetNeg 0.8 0.54 0.7 0.59

Eqn: RetPos
PrcImpact 9.0 0.00 14.5 0.00
Trading 3.0 0.01 1.5 0.19
RetVolat 9.2 0.00 10.4 0.00
RetPos 91.1 0.00 86.3 0.00
RetNeg 118.3 0.00 115.9 0.00

Eqn: RetNeg
PrcImpact 3.8 0.00 5.0 0.00
Trading 2.0 0.08 2.5 0.03
RetVolat 12.7 0.00 11.7 0.00
RetPos 24.7 0.00 25.6 0.00
RetNeg 67.0 0.00 66.8 0.00
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Figure 1: Optimal Trading Strategy Along a Representative Path

Optimal percentage of wealth invested in an illiquid stock. The perfectly liquid case (ψ = 0) is given

by ω∗ = (µ − r)/(γσ2). The strategy ω∗∗ is the optimal solution when there is price impact (ψ > 0),

but the liquidity premium is set to zero (λ = 0). The third strategy ω∗∗∗, determined jointly with

a positive liquidity premium λ, allows the investor to attain the same level of expected utility as in

the first case, even though now there is price impact (ψ > 0). These are closed-loop solutions for the

representative path where εt = 0,∀t ∈ [0, T ]. The initial wealth is W0 = 105, the price impact coefficient

is ψ = 3 × 10−6, the investment horizon is one year with monthly rebalancing (T = 12 months), and

all other parameters are set at the baseline values in section III.
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Figure 2: Optimal Trading Strategy for Different Levels of Price Impact

Each line represents the optimal number of shares N∗∗∗
t for a different coefficient of price impact ψ as

noted in the legend. They are the closed-loop solutions for the representative path where εt = 0,∀t ∈
[0, T ] The initial wealth is W0 = 105 and the investment horizon is 1 year with monthly rebalancing

(T = 12 months). All other parameters are set at the baseline values in section III.
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Figure 3: Optimal Trading Strategies for Different Parameters

Each line represents the optimal percentage of wealth invested in the illiquid stock when the stock

is earning the optimal liquidity premium (strategy ω∗∗∗). These are closed-loop solutions for the

representative path where εt = 0, ∀t ∈ [0, T ]. In the first plot, each line assumes a different initial wealth

W0, as noted in the legend. The investment horizon is 1 year with monthly rebalancing (T = 12). The

second plot compares the optimal strategies for two different investment horizons, 1 year (T = 12) and

2 years (T = 24), both with monthly rebalancing. The initial wealth is W0 = 105. In both panels the

price impact is ψ = 3× 10−6 and all other parameters are set at the baseline values in section III.
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Figure 4: Examples of Trading Strategies with Liquidity Shocks

Each line represents the optimal closed-loop trading strategy under a representative path where εt = 0.

In the first panel, the stock experiences a sudden increase in liquidity at time 9: ψ9 = 0.53 × 10−6

and ψt = ψ̄, ∀t ∈ [0, 12] \ {9}. The second panel displays the reverse, a sudden decrease in liquidity:

ψ9 = 5.47 × 10−6. The price impact coefficient ψt follows the mean-reverting process in (6) with

ψ̄ = 3 × 10−6, ϕ = ψ̄, and ρ as in the legend. In the “base” case liquidity is constant, ψt ≡ ψ̄. In

all cases, the stock is not earning a liquidity premium, λ = 0. The initial wealth is W0 = 105, the

investment horizon is one year with monthly rebalancing (T = 12 months), and all other parameters

are set at the baseline values in section III.
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Figure 5: Impulse Response Functions

The top (bottom) panels show Impulse Response Functions (IRF) when trading is measured by dollar

volume (turnover). Even though the figure shows the response of just the two variables of interest (price

impact and trading), those responses are computed with the full VAR with 5 variables, as detailed in

the text.
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