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Abstract

Traditionally, access control system architectures are based on the abstract reference monitor

model proposed by Anderson, which tries to separate the access control logic from the logic of

applications.

The implementation of this model has been difficult since access control presents itself as

a crosscutting concern, i.e., it crosscuts the functionalities of applications. However, the devel-

opments of the techniques that support the separation of concerns, particularly aspect oriented

programming, have been enabling the development of systemsin which the access control code

is not scattered through the code of the application. Nevertheless, these solutions are still too

specific to a given application.

This work presents an access control framework for Java applications, named Zás, which can

be reused and that applies the abstract reference monitor proposed by Anderson. This framework

supports access control policies using different kinds of context information and allows them to

be changed at runtime. Zás was developed in the aspect oriented programming language AspectJ

and it uses Java5 annotations.

We used Zás in several small applications since its inception, so as to gain experience and in-

sight from its application. Nevertheless, to evaluate the performance and applicability of the final

version of the Zás framework prototype, we integrated it ina very large Web application called

Fénix, which brought us very interesting results, such as showing the easiness of applicating Zás

to already existing applications, and also the main caveatsand limitations of Zás.
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Resumo

As arquitecturas dos sistemas de controlo de acesso são tradicionalmente baseadas no modelo

abstracto de monitor de referência proposto por Anderson,o qual visa separar a lógica do controlo

de acesso da lógica das aplicações.

A concretização deste modelo tem sido dificultada pelo facto de o controlo de acesso se apre-

sentar como uma faceta transversal às funcionalidades dasaplicações. No entanto, os progressos

verificados nas técnicas que suportam a separação de facetas, em particular a programação orien-

tada para aspectos, têm permitido desenvolver sistemas emque o código de controlo de acesso

não é disseminado pelo código das aplicações. Porém,estas soluções são ainda concretizações

especı́ficas, para uma determinada aplicação.

Este trabalho apresenta uma plataforma de controlo de acesso para aplicações Java, designada

por Zás, que é reutilizável e que aplica o modelo abstracto de monitor de referência proposto

por Anderson. Esta plataforma suporta polı́ticas de controlo de acesso fazendo uso de diferentes

tipos de informação de contexto e permitindo a sua alterac¸ão em tempo de execução. O Zás

foi desenvolvido na linguagem de programação orientada para aspectos AspectJ e recorrendo às

anotações do Java5.

Nós aplicámos o Zás a várias aplicações pequenas desde o seu começo, de forma a ganhar

experiência e conhecimento através da sua aplicação. No entanto, para avaliar o desempenho e

aplicabilidade da versão final do protótipo da plataformaZás, nós integrámo-lo numa aplicação

Web muito grande chamada Fénix, a qual nos trouxe resultados muito interessantes, tais como

mostrar a facilidade da aplicação do Zás a aplicações já existentes, e os principais problemas e
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limitações do Zás.
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Chapter 1

Introduction

Separation of concerns, as proposed by Dijkstra [17], is a key principle in software engineering.

This principle is used for controlling the complexity of theapplications and defends that, given

a complex problem with different concerns, these concerns should be properly identified, each

addressed separately and, finally, the respective solutions integrated to produce the final result of

the solution. This principle has been pursued by access control1 system architectures, since they

are traditionally based on the abstract reference monitor proposed by Anderson [2], which in fact

tries to separate the access control logic from the logic of the application.

Bearing in mind the guidelines which state that security Information Technologies (IT) sys-

tems should be developed by a combination of security engineering and software engineering [18],

and that software engineers should not have to be concerned with security issues, and vice-versa,

the development of an application should be separated, i.e., “the security code should not be mixed

with the application code” [1].

The implementation of the abstract reference monitor has been difficult, since access control

is a crosscutting2 concern, i.e., “a security requirement that crosscuts the (business part of the)

1The “ability to permit or deny the use of an object (a passive entity, such as a system or file) by a subject (an

active entity, such as an individual or process).” [46]
2“Features of a program that are orthogonal to the main decomposition of the program [13]”.

1



2 CHAPTER 1. INTRODUCTION

application” [47].

Progresses in techniques supporting the separation of concerns, such as design patterns [49,

19, 20] and, more recently, Aspect-Oriented Programming (AOP) [26, 47, 44], enabled the de-

velopment of systems in which the access control code is not scattered through the code of the

application. Indeed, one of the advantages ofAOP is that it enables the separation of crosscut-

ting concerns from the main decomposition of the application. However, current access control

solutions using these techniques have typically not been reusable nor generic.

This thesis presents an access control framework for Java applications, named Zás3, mainly

inspired by a proposal of Laddad to modularize Java Authentication and Authorization Service

(JAAS) client code usingAOP[26]. Zás controls the invocations of methods and constructors, as

well as sets and gets of values of fields. Hence, Zás protectsmethods, and fields.

Zás supports access control policies which use different kinds of context information and

enables the change of these policies at runtime. Zás’ advantages stem mainly from the fact that

an AOP approach is used, allowing it to address some of the problemsfound in the application

of industry standards such asJAAS [29, 14, 34]. The framework was implemented in theAOP

language AspectJ [4] and it uses Java5 annotations to specify the application’s protected objects

and their access control requirements. A few importantAOP notions used throughout this thesis

are:

• join point – a well defined point in the execution of the program,

• pointcut – a set of join points, and

• advice – a piece of code that is weaved in all join points of thepointcut with which it is

associated.

We used Zás in several small applications since its inception, so as to gain experience and

insight from its application. Nevertheless, to evaluate the performance and applicability of the

3The Zás source code may be found inhttp://sourceforge.net/projects/zas/ .

http://sourceforge.net/projects/zas/
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final version of the Zás framework prototype, we integratedit in a very large Web application

called FénixR©4, which was also the main source of motivation for the creation of this framework!

Empirical results of the application of Zás to Fénix are presented in Chapter5.

Throughout this thesis, we assume that the reader is familiarized with the basic concepts of

AOPand AspectJ. Nevertheless, if that is not the case, we strongly recommend reading Laddad’s

AspectJ in Action [26].

1.1 Contributions

The main contribution of this thesis is the development of a reusable framework of aspects and

classes for application-level access control enforcementthat fully separates the functional code

from the access control code. Zás uses Java5 annotations, which augments the expressiveness of

the source code, to specify the protected objects and their access control requirements.

Other important contributions of this thesis, though not the most relevant, were related to

general contributions to theAOPand AspectJ communities, such as the detection of several bugs

in the AspectJ compiler and their registration in the corresponding bug tracking system.

Similarly, the application of Zás to a project such as Fénix is also a contribution to the com-

munity, since it focuses on the application ofAOP to a real, large application. Finally, after the

hard technical and political task of introducing aspects toFénix, with Andrew Clement’s pre-

cious help, from the AspectJ project development team, and José Pedro Pereira from Linkare, we

achieved our goal and new applications ofAOP to that project arose, such as contracts checking

(pre conditions, post conditions and invariant conditions).

4Seehttp://fenix-ashes.ist.utl.pt/FrontPage/ .

http://fenix-ashes.ist.utl.pt/FrontPage/
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1.2 Structure

The remainder of this thesis is structured as follows. Chapter2 briefly introduces the main access

control concepts and related work. Chapter3 presents a very simple toy application to show

the access control crosscutting problem and four differentapproaches to solve it, ranging from

Object-Oriented (OO) ad hoc solutions to Aspect-Oriented (AO) solutions based onJAAS and

annotations. Chapter4 presents the architecture and features of Zás and Chapter5 evaluates its

applicability. Finally, Chapter6 presents the conclusions of the research and lays out possible

directions for further work.



Chapter 2

Access control

Access control is a security service whose purpose it to guarantee the protection of resources1

against unauthorized accesses. This chapter presents the main access control concepts and the

main contributions and limitations related to the application of the abstract reference monitor.

2.1 Concepts

The development of an access control system implies the definition of an access control policy

(rules and regulations) and its enforcement through appropriate security mechanisms. Access

control models represent formally the access control policies, expressed through specific access

control languages. Ponder [16], Security Policy Language (SPL) [15] and eXtensible Access

Control Markup Language (XACML ) [35] are representative examples of this kind of language.

Traditionally, there are two access control models:

1. Mandatory Access Control (MAC) models, in which access rules are system-wide and usu-

ally fixed. While rules can change over time, users cannot influence them. These models

are commonly used in systems were rigorous access control isvery important.

1In this work we will use the term “protected object” when referring to the resource which is subject to access

control.

5
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2. Discretionary Access Control (DAC) models give the owner of the protected object the right

to determine the access control policy for that object. These systems are discretionary in

the sense that a user that was given discretionary access to aprotected object is capable of

granting access to that protected object to other users. These models are used in operating

systems like Unix, in which a user can specify the access rules to the files she owns.

Generically, a discretionary access control policy is defined by a set of authorizations, each

typically defined as a tuple(s, m, o, pred) stating that subjects may legitimately use the access

modem to access to the protected objecto if the predicatepred2 is true in the context of the

access. The access mode may represent a specific operation performed with or over the object, or

an abstract access mode, associated to a set of specific operations. Using abstract access modes

has the advantage to decrease the number of permissions within the system, since each abstract

access mode may be associated to a set of operations, insteadof simply one.

The use of predicates augments the expressiveness of the authorizations, supporting a more

fine-grained control of authorizations.

As an alternative to theMAC andDAC models, a model based on the notion of role, viz.

Role-Based Access Control (RBAC), was proposed. This model was very well received, since

the notion of roles fits well to the common notion of function in organizations.RBAC models

associate authorizations to roles performed by subjects [21]. RBAC authorization(r, m, o, pred)

states that a subject performing roler can legitimately use modem to access to the protected

object o whenever the predicatepred is true. Since subjects are not directly associated with

access modes, but indirectly through the role or roles they perform, the management of individual

privileges in the system is often only a matter of assigning the appropriate roles to each subject.

2In some models the predicate is not used and hence is assumed to be always true.



2.2. ACCESS CONTROL SYSTEM ARCHITECTURES 7

2.2 Access control system architectures

Access control system architectures are traditionally based on the abstract reference monitor pro-

posed by Anderson [2], Figure2.1. A reference monitor intercepts all access attempts from sub-

jects to the protected objects. Conceptually, a reference monitor has two main functions:

Figure 2.1: Abstract reference monitor proposed by Anderson.

1. a decider, responsible for evaluating the legitimacy of the accesses,

2. an enforcer, responsible for intercepting all access attempts and enforce the decision that

was taken.

According to this model, all access attempts are intercepted by the enforcer, which asks the

decider to determine the legitimacy of the access, searching the authorizations database.

Recently, the Organization for the Advancement of Structured Information Standards (OASIS)

has applied this model in its proposal for theXACML access control system [35]. However, im-

plementing this model has been difficult, since access control crosscuts applications functionali-

ties.

Middleware systems supply a simple solution to separate access control from the application

logic, since the decider and the enforcer may be implementedin its middle layer. Some examples



8 CHAPTER 2. ACCESS CONTROL

of systems adopting this architecture are Common Object Request Broker Architecture (CORBA),

Enterprise JavaBeans (EJB), andJAAS[29].

However, when considering application level access control requirements, these systems present

some limitations related to the authorization expressiveness they can support and the type of ob-

jects they can protect. In general, these systems do not support more expressive authorizations

with domain specific information and they can not protect applications’ specific objects, such as

specific functionalities.

Supporting the definition and enforcement of more expressive authorizations is performed

through the use of predicates. Predicates may be defined withdifferent types of specific informa-

tion from the application domain, as illustrated in Figure2.2. Using this specific information in

the definition of the predicates, makes it mandatory the decider to have access to that information

at the time of the evaluation of the legitimacy of the access.

Figure 2.2: Abstract reference monitor extended with authorizations with predicates.

Within more generic solutions, a specific module implementsthe decider and the invoker

supplies the domain specific information to the module at invocation time [38, 36]. Typically,

these solutions require that applications perform the invoker function, not avoiding the scattering

of access control code over the application code.

Alternatively, the specific module can itself obtain the domain specific information through

requests to the applications [8, 15]. This approach allows the decider to be invoked by middleware
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systems, promoting the separation between access control and application code.

However, within solutions that implement the decider within a specific module, the domain

specific information that is available to the decider is constrained by the application interface

predefined.

Additionally, protecting application specific objects constraints the separation between the

enforcer and the application logic, resulting in the scattering and in the entanglement of that code

over the application modules.

To avoid scattering enforcer code throughout the application, many techniques addressing the

problem of scattered concerns have been used, such as designpatterns, particularly the proxy

pattern [22], meta-level or reflexive architectures [1], and, more recently,AOP [9], in which our

work fits.

ThoughAOP presents potential benefits in the modularization of concerns whose implemen-

tation would be naturally scattered through the application code, there are not many examples

of its application to real cases in the literature [23, 11]. Bostrom [11] uses this paradigm to add

encryption to a healthcare database application. Viegaet al. [45] and Shah and Hill [39] apply

AOPto enforce secure coding practices.

Considering access control, this paradigm can make easy theenforcer implementation. During

the development process, the access control code is implemented separately. However, after the

composition (the weaving process), this code is an integralpart of the application [47].

De Win [47] usesAOP for access control enforcement, analyzing Aspect-Oriented Software

Development (AOSD)-based development to the development of a secure File Transfer Protocol

(FTP) server.

Bodkin [9] analyzes the requirements ofAOPapplication to security, focusing on the expres-

siveness of the language constructs that enable the specification of join points.

More recently, Verhanneman et. al [44] proposed a prototype of a modular access control ser-

vice that can enforce expressive policies, while accounting for application-specific state, without

requiring invasive changes to the application, using CaesarJ (an aspect-oriented language) so that
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it is possible to change the policy without modifying the application. One of this prototype goals

is, like Zás, reuse. Nevertheless, it does not supply none of the advanced features provided by

Zás, which will be explained in Chapter4.

2.3 Access control in Java

The Java virtual machine can run mobile code such as applets [6]. Its initial access control model

aims to prevent unauthorized Java applications to access ormodify computer resources (for in-

stance: files). This way, within this model, the subject is defined according to the code origin - it

is a code-centric model.

JAASwas first introduced as an extension to theJ2SE(Java 2 Platform Standard Edition) De-

velopment Kit (JDK) and became part of its core with version1.4. [6]. JAASadded a new access

control model to the Java language: a user-centric model. Besides users can be subjects, protected

objects can also be specific application resources, i.e., specific application functionalities.

In JAAS, classSubject is used to represent a subject (e.g., a user) authenticated in a given

system. A subject is an aggregation of principals3, in which each principal represents one of

the different “entities” from whom the subject derives its authority, e.g., a principal may be a

username, the name of a group to which she is associated, or a role that she performs. This way,

JAASalso supports theRBAC model.

However, the defaultJAASdoes not support runtime changes to the access control policy: its

security manager, responsible for the definition of the access control policy, cannot change the

principals’ authorizations and reflect the changes into theapplication without restarting it. Addi-

tionally, JAAS does not support predicates, which limits the expressiveness of its authorizations.

Finally, it has the drawback of not allowing the separation between the enforcement code and the

application logic when we try to protect specific protected objects: the invocation of the enforcer

3“person [entity] from whom an agent’s [subject’s] authority derives”4.
4“principal”. Merriam-Webster Online Dictionary, 2007. http://www.merriam-webster.com/ (The

31st of March, 2007).

http://www.merriam-webster.com/
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must be explicitly made in the application wherever it requires access control, leading to code

scattering and to entanglement of concerns.

Laddad [26] modularized the application ofJAASusingAOP, eliminating the invasive nature

of the enforcement code. Nevertheless, this proposal presents some limitations, as we will detail

in Chapter3.

2.4 Access control in object-oriented databases

Access control models forOO Database Management Systems (DBMS) present, as specific re-

quirements, the incorporation ofOO concepts, such as, the difference between classes and class

instances, class hierarchies, composed objects and versions of objects. Inheritance and versioning

makes access control harder. For example, as pointed out by Strahorn [40], “if a given user has

access to a parent class, is there any implicit permission orrestriction on access to a child class?”.

Consequently, to address these requirements, the access control model defined and supported

by ORIONOO DBMS5 presents the following contributions [40]:

1. the identification of the access modes adapted to the systems: read, write, generate and read

definition,

2. the identification of the objects that need to be protected, where it is pointed out the separa-

tion between the class concept and the protected objects: class and the set of class instances,

3. the definition of the hierarchical relations between access modes and between protected

objects. These relations are used on the definition of implication rules of authorizations,

which allows us to obtain implicit authorizations from explicitly defined authorizations,

according to the following criteria:

(a) the hierarchical relations pre defined in the model,

5“ORION was a prototypeOO DBMSdeveloped at MCC, an American consortium by Won Kim and his group.”,

in http://web.bilkent.edu.tr/Online/oofaq/oo-faq-S-8.12.0.3.html.
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(b) authorizations defined for a class are propagated to all subclasses,

(c) authorizations of a complex object are propagated to itssub objects,

(d) authorizations defined for a generic version of an objectare propagated to all its ver-

sions (the authorizations defined specifically for a versionare applied to that version

only).

Although a variety of models addressing access control inOO DBMS have been proposed,

as pointed out by Strahorn [40], none of them have been of sufficient merit to be completely

incorporated into commercial products. As a result, each different commercial next-generation

database provides its own flavor of security. In order for these databases to become as accepted in

industry as the relation databases, the proposed models andsome new ideas need to be combined

into a standard for security in next-generation databases.

Though the focus of this work is not answering to questions like “what is the relation between

the access control specified on a method of a class whose subclasses override it”, in our opinion,

this kind of relations should be explicitly defined in the code since it augments the expressiveness

of that code and hence increases the code readability.

2.5 Conclusions

In this chapter, we present the main access control conceptsand we overview the main contribu-

tions and open problems related to the application of the abstract reference monitor, to avoid the

scattering and entanglement of the access control concernsthroughout the logic of the applica-

tion, which constitutes the problem we are addressing in this work. Finally, the chapter discussed

the additional problems that controlling accesses in object-orientation brings, such as the relation

between a class and its sub classes. Though we present a framework to modularize access con-

trol in anOO language, we did not address those problems, since we neededto clearly limit the

boundaries of our work.



Chapter 3

A toy application and possible solutions

What do the classical solutions to the access control problem look like? What are their main

drawbacks? What exactly are we trying to solve? This brief chapter attempts to hint at the

answers to these questions by proposing a very simple toy application and presenting solutions to

the access control problem using some of the techniques discussed in the previous chapter, ranging

from ad hoc solutions to the use ofJAAS improved by the use ofAOPand Java5 annotations.

3.1 Toy application

Suppose we have a simple banking system with an operation –debit() – that needs to be access

controlled,

public class Account {

private User owner;

public Account(User owner) {

this.owner = owner;

}

public void debit( float amount) {

// ...
}

}

13
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and the following access control rules,

1. Business operations are for authenticated users only, which are instances of a classUser

representing the subject. Users have their privileges in the system assigned from a set of

abstract access modes,

public class User {

private Collection<String> abstractAccessModes;

private String name;

public User(String name) {

this.name = name;

this.abstractAccessModes = new HashSet<String>();

}

public Collection<String> getAbstractAccessModes() {

return abstractAccessModes;

}

}

anddebit() requires abstract access modedebit .

The access control policy in this case would be defined by the tuple:

(authenticatedUser , debit , debit(), true).

The testing code for this example would be like:

public class Test {

public static User login() {

// for simplicity, it simply returns a new instance of user
// with the abstract access mode ‘‘debit’’.

}

public static void main(String args[]) {

User authenticatedUser = Test.login();

Account account = new Account( new User("John Doe"));

account.debit(100.0f);

}

}
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3.2 Ad hoc

In anOO ad hoc solution, methoddebit() needs an extra argument, the authenticated user, so

that it is possible for the method to evaluate the legitimacyof the access. MethodhasAbstract-

AccessMode() simply checks if the abstract access mode passed as argumentis contained in the

authenticated user abstract access modes:

public class Account {

public void debit( float amount, User authenticatedUser) {

if(!authenticatedUser.hasAbstractAccessMode("debit")) {

throw new AuthorizationException();

}

// ... as before
}

}

it is now necessary to pass the authenticated user todebit() ,

public class Test {

public static void main(String args[]) {

// ... as before
account.debit(100.0f, authenticatedUser);

}

}

This approach forces us to create non-reusable access control mechanisms from scratch. It

also leads to the scattering and entanglement of the access control code throughout the application

code requiring access control.

3.3 JAAS

Our main focus while studying existing authorization toolswasJAAS, since it is a standard for

authentication and authorization in Java [42] and an integral part of theJDK.

In JAAS, there is no need for an extra argument in methoddebit() , containing the authenti-

cated user, sinceJAASfetches the currently logged in subject through stack inspection. Therefore,
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on the callee side – methoddebit() – it would be only necessary to callcheckPermission() ,

which associates the abstract access modedebit to the method:

public class Account {

public void debit( float amount) {

AccessController.checkPermission( new BankPermission("debit"));

// ... as before
}

}

However, on the caller side – methodmain() – it is necessary to wrap the call to method

debit() inside adoAsPrivileged() invocation to which the authenticated subject1 must be

passed as argument, followed by an inline anonymous class extendingPrivilegedAction and

overriding itsrun() method, and finally by an instance of theAccessControlContext to be

tied to the specified subject and action which, when set to null, forces the instantiation of a new

AccessControlContext with an empty collection ofProtectionDomains .2

public class Test {

public static void main(String args[]) {

// ... authenticate subject and get user advice code

Subject.doAsPrivileged(authenticatedUser, new

PrivilegedAction<Test>() {

public Test run() {

account.debit(100.0f);

// it has to return something. In this case, since debit()
// is not a procedure, it returns null.
return null;

}

}, null);

}

}

public class User implements Principal {

// ...
}

1JAAS needs a special kind of subject, which means that the original authentication solution would need to be

slightly changed. However, since this is not our focus, we did not include it here.
2Seehttp://java.sun.com/j2se/1.4.2/docs/api/java/securi ty/ProtectionDomain.html .

http://java.sun.com/j2se/1.4.2/docs/api/java/security/ProtectionDomain.html
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public class BankingPermission extends BasicPermission {

// ...
}

JAAS is a good, non-ad hoc solution to the problem of supplying ourtoy application with

access control, especially in what concerns authentication. In fact,JAASauthentication model is

based on the concept of Pluggable Authentication Modules (PAM), allowing developers to easily

change from one authentication module to another, by simplychanging a policy file, without the

need to recompile the application.

However,JAASis implemented and typically applied usingOOapproaches, thus being prone

to the common problems of code scattering and tangling: as wehave seen, code must be added

to the application classes in order to implement authorization both at the callee and at the caller

code. As stated by Scott [34], JAAS requires considerable configuration effort and is by nature,

totally invasive.

Security policy files are used to specify the principals and what are their abstract access modes.

E.g., for the current example, we would need a policy file suchas:

grant Principal banking.User "authenticatedUser" {

permission test.BankingPermission "debit";

};

JAASaccess control has some weaknesses but it is still clearly a non-ad hoc solution, meaning

that developers do not have to create it from scratch. Its main advantages are that

1. it is used by the access control of the Java language itself,

2. it separates the security policy from the application code, recurring to external files defining

the principals and their abstract access modes granted,

3. it is a standard in Java.

However, JAAS access control forces changes both to the caller and to the callee code.

JAAS, thus is very intrusive. All calls to access controlled methods must to be wrapped inside
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Subject.doAsPrivileged() blocks of code, leading to reduce code legibility and increased

maintenance efforts. This drawback, combined with the (justifiability) complicated nature of

JAAS(and implementation details) makes it hard to adopt the framework in real applications.

3.4 JAAS with AspectJ

Laddad [26] addresses the intrusive nature ofJAAS and shows the potentials and strengths of

usingAOPto modularize access control.

public class Account {

public void debit( float amount) {

// ... as before
}

}

public class User implements Principal {

// ...
}

public class BankingPermission extends BasicPermission {

// ...
}

The original toy project code practically suffers from no changes with the introduction of the

access control concerns, since the access control related code is all modularized in the aspect.

In Laddad’s proposal, there is an abstract aspect that needsto be concretized later in the client

application, as will be explained later in Chapter4. That base aspect has an abstract pointcut to

be defined in specific implementations of the aspect and an abstract method returning theJAAS

Permission class associated with a given method.

public abstract aspect AbstractAuthAspect {

private Subject authenticatedSubject;

public abstract pointcut authOperations();

// authenticate subject advice code

public abstract Permission getPermission(JoinPoint.StaticPart
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joinPointStaticPart);

Object around( final Account account) :

authOperations() && ! cflowbelow(authOperations()) {

Subject.doAsPrivileged(authenticatedSubject,

new PrivilegedAction<Object>() {

public Object run() {

return proceed(account);

}

}, null);

return null;

}

before() : authOperations() {

AccessController.checkPermission(

getPermission(thisJoinPointStaticPart);

}

}

In our toy project, the previous aspect would be implementedas follows, leaving the client

code totally free from any access control related code.

public aspect BankingAuthAspect extends AbstractAuthAspect {

public pointcut authOperations() :

execution( public void Account.debit( float));

public Permission getPermission(JoinPoint.StaticPart

joinPointStaticPart) {

return new BankingPermission(joinPointStaticPart.

getSignature().getName());

}

}

AOP enables to achieve a better modularization and separation of concerns, by putting the

code related to authentication and authorization inside the aspect. However, Laddad’s proposal

assumes that each method has associated to it an abstract access mode having the same name as the

method. Therefore, it would be necessary as many abstract access modes as the protected objects

in our application. Finally, Laddad’s proposal is based on quantification, which is a problem in

AOPbecause of the difficulties in controlling the scope of the application of the aspects.
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3.5 JAAS with AspectJ and annotations

This solution uses annotations, allowing to both mark the protected objects and define the abstract

access mode required to access that protected object. Therefore, we would create an annotation,

as follows,

@Retention(RetentionPolicy.RUNTIME) public @interface

AccessControlled {

public String name();

public String actions();

public Class<Permission> permissionClass;

}

having as its elements the name and actions needed to pass to the creation of classPermission

in JAAS, and theJAAS permission class itself, needed to access the protected method. That

annotation would then simply be added next to the signature of the method we want to have under

access control,

public class Account {

@AccessControlled(name = "debit", actions = "",

permissionClass = BankingPermission.class)

public void debit( float amount) {

// ... as before
}

}

public class User {

private Collection<Permission> abstractAccessModes;

// ...
} public class BankingPermission extends BasicPermission {

// constructor with a String parameter
}

The access controller aspect would be modularized as

public abstract aspect AbstractAuthAspect {

private Subject authenticatedSubject;

public pointcut authOperations() :

execution(@AccessControlled * * .. * . * (..));
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// authenticate subject advice code

public Permission getPermission(AccessControlled ac) {

final Class permissionClass = ac.permissionClass();

final String name = ac.name();

final String actions = ac.actions();

// ... instantiate the permission with the
// ... appropriate arguments
return permission;

}

Object around( final Account account) :

authOperations() && ! cflowbelow(authOperations()) {

Subject.doAsPrivileged(authenticatedSubject,

new PrivilegedAction<Object>() {

public Object run() {

return proceed(account);

}

}, null);

return null;

}

before() : authOperations() {

AccessController.checkPermission(

getPermission(thisJoinPointStaticPart);

}

}

Since there is no abstract method in the previous solution, the implementation of the concrete

aspect is straightforward, simply being necessary a non-abstract aspect to extend it.

public aspect BankingAuthAspect extends AbstractAuthAspect {

}

Annotations add more semantics to code thus improving its quality, since it augments its

expressiveness while reducing scattering and entanglement. Annotations may be though of as

allowing the programmer to express in the code its required semantics, still oblivious of the exact

way in which these semantics will actually be implemented.
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The use of annotations to mark the access controlled methodsis beneficial since, e.g., they

force the invocation ofcheckXXX() to be executed at the beginning of the access controlled

method and never in the middle or in the end, and addresses theproblem of the separation of

concerns, since methods are marked as access controlled butdo not have any access control-

related code in their bodies.

As presented in this example,AOPtogether with annotations is a powerful technique to mod-

ularize access control. However, this solution depends on the use ofJAAS, it does not decrease its

required configuration effort, and it does not take into account predicates, i.e., access control rules

based on domain or context specific information. E.g., adding a new access control rule specify-

ing that only the owner of the account is allowed to debit thataccount is not easy to accomplish

with JAAS. Zás, as will be seen in Chapter4, solves this.



Chapter 4

The Zás framework

In this chapter we present Zás, an access control frameworkfor Java applications that applies the

abstract reference monitor proposed by Anderson. It is reusable and supports authorizations with

domain specific information.

4.1 Access control model

Generically, an authorization is defined as a tuple(s, m, o, pred) stating that subjects has the

access modem over the protected objecto if the predicatepred is true.

In this section we refine the generic authorization definition in order to meet access control

requirements of Java applications.

• Subjects: The Zás framework is not restricted to any kind of subject,i.e., subjects can

represent users, groups of users or roles, etc.

• Access modes: The Zás access control model uses the concept of abstract access mode:

abstract access modes are granted to subjects and are associated to operations that can be

done over protected objects.

• Protected objects: The Zás framework aims to protect fields and methods. The operations

23
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we can perform over fields are sets and gets and the operation we can perform over methods

is execute. To reduce the number of access control requirements we need to define, Zás also

supports their definition for classes and interfaces. Theseaccess control requirements are

propagated to all non private members of the class/interface (attributes and methods).

• Predicates: Generically, predicates are used to augment the authorizations expressive-

ness, supporting the definition of more fine-grained authorizations, restricting their appli-

cation [18]

Predicates or conditions may use different types of information, such as:

– user characteristics, e.g., name, date of birth, gender, nationality, etc.

– object characteristics (the access control depends on the content)

– external conditions, e.g., the access localization (the access control depends on the

context), previously performed accesses (the access control depends on the context

flow)

– relation between entities

This way, we split authorizations into two tuples:(s, m, pred) and(m, op, po). The first tuple

defines that subjects has the abstract access modem if pred is true. The second one defines that

any subject that has the abstract access modem can perform the operationop over the protected

objectpo. From now on, we call the fist tuple as an authorization and thesecond one as an access

control requirement.

4.2 Architecture

The architecture of Zás is based on the abstract reference monitor, as illustrated in Figure4.1.

The Zás enforcer, the main contribution of this work, is responsible for intercepting every

access to protected objects, gathering the context information necessary to the evaluation of au-
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thorizations, passing it to the decider (which can be supplied by client code), and finally for

enforcing the decision taken.

The Zás decider is responsible for deciding whether a subject can legitimately access a pro-

tected object, and for returning its decision to the enforcer, so that it may grant or deny access

from the subject to the protected object.

These functions include the following steps:

Figure 4.1: The architecture of the Zás access control framework.

1. The subject attempts an access to the protected object. The enforcer intercepts the access.

2. The enforcer collects the context information, particularly the one that the decider needs:

2a. The subject.

2b. The protected object and its usage context, e.g., the object, the method and the argu-

ments associated to the invocation of a method.
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2c. The abstract access modes required to access the protected object (specified through

Java5 annotations and Zás eXtensible Markup Language (XML ) files, and gathered

through reflection) and other architectural meta-information that the enforcer may

need.

2d. The static context in which the protected object usage has been requested, e.g., the

method containing the code that tries the access.

3. The decider gets the context information required to evaluate the legitimacy of the access.

4. The decider searches in the access control policy defined externally from the code (e.g., in

JAASpolicy files orXACML ).

5. The decider returns to the enforcer the result of its evaluation.

6. The enforcer enforces the decision that was taken:

6a. Either an exception is thrown, in the case of an access denial,

6b. or the access proceeds, otherwise.

4.3 Design

The design of the framework is presented here using extensions to the Unified Modeling Language

(UML) [37, 10] proposed by Jacobson and Wei [25], to support aspect orientation, and by Halvorsen

and Haugen [24], to represent exceptions being thrown in sequence diagrams. To simplify this

presentation, the explanations and the diagrams were applied to the toy application presented

in Chapter3.

Figure4.2 presents the use case associated to the debit of a bank account. An authenticated

user tries to debit an account. To perform that operation, though, she requires authorization. The

access control is supplied by the subsystem Zás, which in this case is a realization of the Zás
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framework in the form of an access control subsystem adaptedto the banking application. This

realization consists of:

Figure 4.2: “Debit account” use case diagram.

• the definition of the default decider (and other optional deciders specific to the application)

• the specification of the protected objects whose access should be controlled and the abstract

access modes associated to them,

• the optional external specification of the access control requirements, and

• the parametrization of the framework’s generic code with the application class representing

the subjects of access control.

In the case of the account debit, the access control may be seen as an extension to the basic

use case, providing it, in a non-invasive way, with the required access control functionalities.
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Figure 4.3: Class diagram for the banking system case study.

As can be seen in Figure4.3, the main entities in Zás, the enforcer and the decider, are

modularized respectively by the abstract and generic aspect Enforcer and by the abstract class

Decider . Zás subsystems are realized in each application by the concretization and parametriza-

tion of Enforcer , by the non-abstract class extension to the deciderDecider , and by the anno-

tation(s)AccessControlled contained or injected in the application code.

The parameter of the generic aspectEnforcer is used by client code to specify the class that

represents the subjects of access control in the application. In the banking system case, subjects

are simply instances of classUser .

The concretization of the abstract aspectEnforcer is essential to make the access control

available in the application: in AspectJ, abstract aspectshave no effect on their own. This con-
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cretization requires the client code to implement the abstract methods ofDecider , particularly

the methodcurrentSubject() , which returns the subject involved in the current access at-

tempt anddefaultAccessVerifierClass() , which defines the default decider class (this

class must be a non-abstract extension to classDecider , having one no-argument constructor),

responsible for evaluating the legitimacy of the access attempt.

Additionally, the client code must extend classDecider and implement its abstract method

currentSubjectAccessModes() , which returns a textual representation of the abstract access

modes that the subject has permission to use, which are necessary to evaluate the legitimacy of an

access attempt.

The sequence diagram in Figure4.2 represents the behavior of Zás subsystem in the case of

the debit operation. The messages are exchanged between theobjects involved in the use case,

including its extension supplied by the Zás subsystem. Thebehavior added by the subsystem

to the debit operation occurs before its invocation. This way, the invocation happens only if

the authenticated user has access, after the evaluation of the access by the decider in the Zás

subsystem (which in this case is the decider module providedby Zás framework).

4.4 Implementation

The generic aspectEnforcer has as a parameterSubject , of which the access control subjects

are supposed to be instances:

public abstract aspect Enforcer<Subject> ...

The framework may thus be parameterized with the specific type of the subject used by a given

application, in this case with classUser , as will be seen later.

The extension to the behavior of the debit account operation, extension that corresponds to the

access control concern, is defined by abefore() advice from the aspect:

// Advice name: controlTopLevelAccess
before(AccessControlled requirements) :
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Figure 4.4: “Debit account” case study sequence diagram.

topLevelAccessToControlledProtectedObjects(requirem ents)

// ... refinements in the advice definition.
{

// ...
checkAuthorization(

AccessControlRequirements.buildFrom(

requirements, ProtectedObjectKind.convertToEnum(

thisJoinPoint.getKind())),

thisJoinPoint, thisEnclosingJoinPointStaticPart,

false, false);

// ...
}
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This advice is applied to the invocation (call to a method, orset or get to the value of a field) of

the protected objects annotated withAccessControlled that are not invoked within the con-

trol flow of a similarly annotated method (topLevelAccessToControlledResources ). The

methodbuildFrom() returns a new instance of classAccessControlRequirements created

from the protected object’s annotation. That class instance represents the annotation elements’

data and is associated to the kind of protected object (method or constructor, and set or get to

the value of a field). That class represents both the elementsdata from the Zás framework access

control annotations and the access control requirements specified in the ZásXML files, which

will be presented later.

The most important part of the behavior of this advice is implemented in the methodcheck-

Authorization() : 1

private void checkAuthorization(

AccessControlRequirements requirements,

JoinPoint joinPoint, JoinPoint.StaticPart enclosingSta ticPart,

boolean isShallow, boolean inCflowOfAccessControl) {

// ...
Subject currentSubject = currentSubject();

Decider<Subject> decider = deciderClass(requirements,

joinPoint, !inCflowOfAccessControl);

String protectedObjectAbstractAccessModes =

getProtectedObjectAccessModes(requirements, joinPoin t);

decider.setCurrentSubject(currentSubject);

// ...
if (!decider.internalHasAccess(protectedObjectAbstract AccessModes,

joinPoint, enclosingStaticPart))

handleSituationWhenAccessNotGranted(joinPoint.getSt aticPart());

}

The parameterjoinPoint in the invocation of methoddeciderClass() is required so

that it is possible to register the decider and associate it to that join point (there is only one

1It is usually a good practice to define the arguments passed toa method as final. However, in this thesis, for

presentation purposes and due to the limitations in terms ofthe page width, we decided not to include them.
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instance of decider per protected object, which is created the first time that the protected object is

accessed and reused later on). The argumentisShallow control the depth of the access control

enforcement, as will be further explained in Section4.6.2.3. The argumentinCflowOfAccess-

Control controls either the decider class should be registered for the current join point or not:

the registration is performed only in top level accesses.

The methodcheckAuthorization() obtains the subject through the invocation of the ab-

stract methodcurrentSubject() , implemented in the concrete aspectBankingEnforcer ,

and obtains the protected object’s abstract access modes from the information specified in its

meta-information (e.g., in annotationAccessControlled , presented later in this section), by

invokinggetProtectedObjectAccessModes() .

In the methodcheckAuthorization() it is also necessary to obtain an instance of the de-

cider class specified in the protected object’s meta-information and invoke its methodinternal-

hasAccess() , which compares the abstract access modes expression defined in the protected

object’s access control requirements with the abstract access modes the subject has permission to

use, obtained through the invocation of the abstract methodcurrentSubjectAccessModes()

(implemented in the concrete decider (BankingDecider )), returning true only if the subject has

the required abstract access modes to access the protected object. Additionally, it invokes method

hasAccess() , optionally implemented in client code, thus enabling to perform additional access

control verifications.

@Privileged

public class Decider<Subject> {

public final boolean internalHasAccess(

String protectedObjectAccessModes,

JoinPoint joinpoint,

JoinPoint.StaticPart enclosingStaticPart) {

boolean result = false;

// ...
return result &&

hasAccess(protectedObjectAccessModes, joinpoint,

enclosingStaticPart);

}
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public boolean hasAccess(String protectedObjectAccessModes,

JoinPoint joinpoint, JoinPoint.StaticPart enclosingSta ticPart) {

return true;

}

}

WheninternalHasAccess() returns true, the access to the protected object proceeds im-

mediately. When it returns false,checkAuthorization() throws a runtime exception. Notice

that it is a runtime, unchecked exception, as inJAAS, therefore making it possible for Zás to be

totally non-invasive, since unchecked exceptions do not have to be declared as part of the methods

signatures.

Apart from the arguments already mentioned,hasAccess() gets also the execution (dy-

namic) and invocation (static) contexts of the access attempt.

The dynamiccontext is necessary so that the access control decision maybe based on data.

However, if the impact in the application performance is deemed too large, a future version of

the framework will possibly define two kinds of authorizations, as suggested by Laddad [28]:

AccessControlled andDataDrivenAccessControlled , together with two base deciders –

one receiving dynamic information, the other static.

It is important to notice that the classDecider and all its subclasses2 are marked as privileged

(further details are presented in Section4.6.2.4).

This is necessary because these classes often need to obtainaccess to protected objects, partic-

ularly when it is necessary to compute the value of predicates using domain specific information,

e.g., protected object’s properties. This may be a problem,since in the context of these classes,

one may access every data of a given application, therefore,this is an open issue for further inves-

tigation.

In AspectJ, pointcuts may be either named or anonymous. In general, named pointcut defi-

nitions may be overridden by definitions with the same name inderived aspects. When it is not

2Annotation@Privileged is annotated with@Inherited .
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desirable, pointcuts may be qualified as final in the base aspect or even private, when they are

seen as implementation details.

The two main pointcuts from aspectEnforcer are private, i.e., they are implementation

details and hence they cannot be overridden:

private pointcut topLevelAccessToControlledProtectedObjects(

AccessControlled requirements) :

accessToControlledProtectedObjectsForExecution(requ irements) &&

! cflowbelow(

accessToControlledProtectedObjectsForExecution(Acce ssControlled));

private pointcut accessToControlledProtectedObjectsForExecution(

AccessControlled requirements) :

(accessToControlledConstructors() ||

accessToControlledMethods()) &&

@annotation(requirements);

public pointcut accessToControlledMethods() :

call(@AccessControlled ! private * * .. * . * (..));

This is due to the fact that any change in these pointcuts may compromise the Zás subsystem.

On the contrary, derived concrete aspects ofEnforcer may override pointcutaccessTo-

ControlledMethods . For instance, aspectBankingAccessController could refine the

pointcut definition in such a way that the private methods would also be subject to access control.

By default, and since this framework is still a prototype, the used join points correspond to

invocations of methods annotated withAccessControlled : the application of advices to these

join points has the advantage of allowing one to obtain not only the dynamic context of execution,

but also the static context of invocation.3

Nevertheless, in an implementation of the framework for production, this choice is not the

most appropriate, for security reasons. Advices, in the case of invocations, are weaved in the code

that accesses the protected object. If this code is externalto the application or, for some reason,

can not be manipulated by the AspectJ compiler, the weaving of the access control advices may be

3We have already started an implementation using execution instead of call, though, in

the branch “Bzas-new-annotations”, which may be found in the Web site of the project at

http://sourceforge.net/projects/zas/ .

http://sourceforge.net/projects/zas/
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impossible, compromising the security of the application.Therefore, the Zás framework should,

by default, control the executions, since the compiler has full access to the application of which

the subsystem Zás is a part.4 Additionally, the protected object as defined in Zás is the method

itself, i.e., the execution of the method and not its invocation.

The control of method executions, not invocations, will make it harder to implement some of

the current features of the Zás framework, described in Section 4.6.2: it will no longer be possible

to obtain the static context of invocation through the implicit variablethisEnclosingJoin-

PointStaticPart , thus, the implementation of some current features from Zás will be harder.

Implementing execution side access control might require the observation and the parsing of the

Java stack trace. However, the Java stack trace does not provide the full signature of the methods

on the stack, which means it is not possible to access the method by simply parsing the stack.

The solution for this problem would include the creation of apseudo-stack, managed by Zás,

which works as an add-on to the Java stack trace, in order to augment its information. This

implementation has already begun, as detailed in Section4.6.3.

The annotationAccessControlled is used by the Zás framework to specify the meta-

information used to control the access to methods:

public @interface AccessControlled {

String value() default "#";

Class<? extends Decider> deciderClass()

default Decider.class;

Depth depth() default Depth.DEEP;

Class[] trusts() default {};

boolean inherited() default false;

boolean suspicious() default false;

}

Thevalue() element is used to declare the names of the abstract access modes required to access

to the protected objects. By default, its value is‘‘#’’ , which represents conventionally the full

signature of the protected object (though without return type).5

4Bug submitted in:http://sourceforge.net/tracker/?group_id=195589&ati d=954049 .
5Using full signatures prevents the collision of the names ofthe abstract access modes.

http://sourceforge.net/tracker/?group_id=195589&atid=954049


36 CHAPTER 4. THE ŹAS FRAMEWORK

ThedeciderClass() element is used to explicitly specify the class responsiblefor deciding

whether the access should be granted. By default, it is the classDecider . Notice that different

protected objects may define different deciders.

Thedepth() element specifies the enforcement depth, i.e., it specifies whether control access

should be performed (or not) during the flow of control of a method that has already been access

access controlled. When a methodfoo() , say, has depthSHALLOW, it is enough for the subject to

have access to the invocation offoo() , since the subject will be granted access to any protected

object, provided the access occurs within the flow of controlof that invocation offoo() . By

default, the value of this element isDEEP, since it is the most restrictive behavior and, as such, the

most secure, forcing all accesses to be controlled, at any level of the stack trace.

The trusts() element is, by default, empty. It is used to indicate the classes that have

automatic access to the protected object. It is used to explicitly declare that the protected object

trusts in those classes to access the protected object. Thisis somehow related to “exporting

features” in Eiffel [31], because in Eiffel we may restrict access of a method to a classes, similar

to what we may do in Zás with this element. When this element is used, the current subject is

not only the entity that has initiated the access attempt butalso the classes in which the protected

object trusts.

The inherited() element controls the inheritance of the access control requirements from

the type (class or interface) where the protected object wasdefined. By default, its value is false,

meaning that by default protected objects do not inherit theaccess control requirements from their

type.

Finally, suspicious() , when true, forces the access to the protected object to be performed

at any level of the stack trace, even when the access depth verification was specified asSHALLOW

at some lower point in the stack.

From a strict security point of view, all “resources” shouldbe seen as protected objects: it is

safer for the application to throw an authorization exception for all access attempts than to implic-

itly grant access from all subjects to that “resource”. However, that would forbid programmers to
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restrict the access control scope, for example, to the business layer of the application. Ideally, it

should be possible to define an abstract pointcutscopeForProtectedObjects()

// In aspect Enforcer:
public abstract pointcut scopeForProtectedObjects();

declare @method : scopeForProtectedObjects() :

@AccessControlled(" * ");

// ...

forcing this way the client code to define it appropriately toher application. The‘‘ * ’’ is a

wildcard that matches for any abstract access mode, i.e., the previous code means that all protected

objects require, at least, one abstract access mode.

However, the AspectJ language forces the usage of type patterns in Inter-Type Declaration

(ITD), not allowing the usage of pointcuts. Therefore, the generalized access control in the busi-

ness layer is considered as a best practice of Zás, but it cannot be forced by it.

4.5 Usage

In this section we will present the Zás-based solution to the implementation of the toy project

from Chapter3 with an additional access control rule, stating that only the account owner is

allowed to debit the account if she was granted permission touse the abstract access modedebit .

The first step in a Zás-based implementation of access control in some application is to identify

the protected objects whose access should be controlled. There are two different ways to do this.

One of them is invasive, consisting in annotating directly the protected objects whose access

should be controlled:

public class Account {

@AccessControlled(value = "debit",

deciderClass = BankingDecider.class)

public void debit( float amount) {

// ...
}

}
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public class Test {

// ... as before
}

The other is non-invasive. It involves usingITD to inject the necessary annotations in the access

controlled protected objects. The drawback of this approach, however, is that readability becomes

harder: the access control requirements of a protected object are not specified close to its defini-

tion. The Integrated Development Environment (IDE) we used was Eclipse6, which helps to solve

this problem since the protected object is shown with a note indicating that it is being annotated

by some aspect. Nevertheless, it is simply a note and it makesprogrammers depend on theIDE:

// In aspect Enforcer:
declare @method : Account.debit( float) :

@AccessControlled(value = "debit", deciderClass = Bankin gDecider.class);

As a second step, it is necessary on the one hand to configure the security aspects from Zás

though the parametrization, extension, and concretization of aspectEnforcer , which involves

the implementation of the abstract methodscurrentSubject() anddefaultDeciderClass() ,

and, on the other hand, at least for this particular case, thedefinition of an advice that guarantees

user authentication:

public aspect BankingEnforcer extends Enforcer<User> {

public User currentSubject() {

return SecurityContext.getCurrentSubject();

}

public Class<BankingDecider> defaultDeciderClass() {

return BankingDecider.class;

}

after() returning(User authenticatedUser) :

call( public static User Test.login()) {

SecurityContext.setCurrentSubject(authenticatedUser );

}

}

The advice shown previously executes after any successful login attempt in the application.

6Eclipsehttp://eclipse.org/ is the most usedIDE to program using AspectJ.

http://eclipse.org/
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Its implementation uses a helper class which is distributedwith the Zás framework,Security-

Context ,

public class SecurityContext {

private static InheritableThreadLocal currentThread =

new InheritableThreadLocal();

private SecurityContext() {

}

public static <Subject> Subject getCurrentSubject() {

return (Subject) currentThread.get();

}

public static <Subject> void setCurrentSubject(Subject currentSubject) {

currentThread.set(currentSubject);

}

}

This class has two methods,setCurrentSubject() , which associates a given subject with

the current thread, andgetCurrentSubject() which returns the subject associated to the cur-

rent thread.

The last step is to define a class representing the decider andextendingDecider . This

class may make use of information which is specific in the application. The classBanking-

Decider grants access to the debit operation exclusively to the owner of the account if she

was granted permission to use the abstract access modedebit , as specified in the annotation

AccessControlled of methoddebit() :

public aspect BankingDecider extends Decider<User> {

public Collection<String> currentSubjectAccessModes() {

return getCurrentSubject() == null ? new HashSet<String>() ?

getCurrentSubject().getAbstractAccessModes();

}

@Override

public boolean hasAccess(String protectedObjectAccessModes,

JoinPoint joinpoint, JoinPoint.StaticPart enclosingSta ticPart) {
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Account account = (Account) joinpoint.getTarget();

return getCurrentSubject().equals(account.getOwner());

}

}

The previous example7, usingAOP, addresses the problem of code scattering and tangling

by allowing it to modularize the crosscutting concerns intothe aspect, fully separated from the

functional code. The changes in existing code before authorization were none. The methods were

not changed in order to pass the current logged in user to calculate the user abstract access modes

and grant or deny access to protected objects based on the user instance. Zás enforcer is able to

get the required access control requirements (the subject,the protected object, and the context of

execution) and pass it to the appropriate decider module (e.g.,BankingVerifier ). Additionally,

Zás enables the specification of a more dynamic and fine grained security policy based on context

information, without increasing the code complexity.

4.6 Features

Since Zás was meant to be a Java/AspectJ framework of classes and aspects for use in Java appli-

cations, we have implemented it to address a set of requirements which are detailed next. These

requirements were born to support the separation of security concerns from the domain decom-

position of the application.

Access control languages such as Ponder [16] or XACML [35] were analyzed to drive the

process of deciding the minimum set of requirements that Zás should support. Proposals like

Laddad’s [26] or Bertino’s [7], as well as our own insight gained from the early application of

Zás to small projects, were also important sources of motivation and analysis to further refine the

requirements. Throughout this chapter, for our code examples, we assume that there is a subject

currently logged in, having the abstract access modefoo and not havingbar .

7The full code may be seen inhttp://zas.cvs.sourceforge.net/zas/banking-toy-proj ect/ .

http://zas.cvs.sourceforge.net/zas/banking-toy-project/
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4.6.1 Basic

As Laddad put it in [27], “the new Java metadata facility, a part of Java 2 Platform Standard

Edition (J2SE) 5.0, is perhaps the most significant addition to the Java language to date. By pro-

viding a standard way to attach additional data to program elements, the metadata facility has

the potential to simplify and improve many areas of application development, including configu-

ration management, framework implementation, and code generation.” The combined power of

Java5 annotations and AspectJ is leveraged by Zás, making it a very expressive access control

framework.

Annotations in Java are a powerful way to add more semantics to the Java “resources” (meth-

ods, fields, etc.). The programmer simply adds the appropriate meta-information in her programs,

i.e., the additional semantics. Those semantics is then taken into account by the Zás framework

to enforce an access control policy.

The next snippet of code explicitly states that access to method foo() , i.e., the invocation of

the method, is restricted to subjects having the abstract access modefoo .

public class MyClass {

@AccessControlled("foo")

public void foo() {}

}

When not specified in the annotation, the abstract access mode expression corresponds to a

single abstract access mode whose name is the signature of the method, without the return type8.

Hence, the abstract access mode required to callfoo() as defined in

package mypackage;

public class MyClass {

@AccessControlled

public void foo() {}

}

is mypackage.MyClass.foo() .

8The default abstract access mode expression is defined as “#”, corresponding to the protected object signature
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With AspectJ, there is a clear distinction between setting and getting the value of fields. There

is not, however, the similar distinction between the call ofmethods that change the implicit ob-

ject’s state and methods that do not change it. Bearing this in mind, only three different annota-

tions have been defined for specifying access control: one for methods, presented before, and two

for the setting and getting of the value of fields.

package mypackage;

public class MyClass {

@AccessControlledForQuerying("readBar")

@AccessControlledForModifying("modifyBar")

protected int bar;

}

The previous example restricts reading access to fieldbar to subjects possessing the abstract

access modereadBar and the abstract access modemodifyBar to change the field’s value.

By default, Zás enforces access control only for non-private protected objects. The rationale

for this is that private “resources” are usually implementation details, and not accessible from

outside the class where they are defined (bearing in mind that, usually, it is a good practice to

make fields private resources of the class, the default behavior for controlling the access to fields

is limited). It is possible, however, to change the default behavior so that are also controlled

private “resources”. E.g.:

public aspect MyEnforcer extends Enforcer<User> {

public pointcut accessToControlledMethods() :

Enforcer<User>.accessToControlledMethods() ||

call(@AccessControlled private * * (..));

public pointcut accessToControlledFieldsSets() :

Enforcer<User>.accessToControlledFieldsSets() ||

set(@AccessControlledForModifying private * * .. * . * );

The lack of the required abstract access modes results in throwing an authorization excep-

tion. Hence, the following snippet of code results in throwing anAuthorizationException

exception:
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public class A {

@AccessControlled("bar")

public A() {}

}

Zás defines two abstract access modes with a special meaning: true , and false , whose

semantics are, granting access to any subject, and do not grant access to any subject, respectively.

Zás saves internally the relationship between the instances of the decider classes and the corre-

sponding protected objects. This improves the applicationefficiency, because instantiations occur

a single time for each protected object. These instances arethen reused each time an access to the

corresponding protected object is attempted.

4.6.1.1 Boolean expressions and wildcards

It is possible to compose abstract access modes using Boolean expressions, both statically in-code,

and in ZásXML policy files (see Section4.6.2.2). For instance, in

@AccessControlled("foo || !bar")

public void foo() {}

the abstract access mode expression requires any subject calling foo() either to have abstract

access modefoo or to lackbar .

Currently, Zás supports operators|| (or), &&(and), and! (not), as well as the use of parenthe-

ses to control evaluation order. Operators== (equivalent), and!= (not equivalent) will be added

soon.

Using Boolean expressions, the abstract access modes of a method may be easily defined as

the conjunction of the simpler methods called in its implementation. E.g., atransfer() method

on the banking system can be defined as adebit() on a source account and acredit() on a

destination account. These methods may be access controlled, and require the abstract access

modesdebit andcredit , respectively:

@AccessControlled("debit && credit")

public void transfer(Account from, Account to, float amount) {
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from.debit(amount);

to.credit(amount);

}

@AccessControlled("debit")

public void debit( float amount) {

this.balance -= amount;

}

@AccessControlled("credit")

public void credit( float amount) {

this.balance += amount;

}

The operator|| is useful in all situations where different abstract accessmodes may grant

access to the protected object, while the operator! may be used to define the forbidden abstract

access modes, i.e., the abstract access modes the subject cannot possess to be able to have access

to a protected object. E.g., in anRBAC model, an abstract access mode may reflect the textual

representation of the roles associated to a subject. Hence,the following code declares that a

subject having the roleEMPLOYEEor MANAGER, with no roleCUSTOMER, may access the access

controlled constructorAccount() :

@AccessControlled("(EMPLOYEE || MANAGER) && !CUSTOMER")

public Account(User owner, float initialBalance) {

...

}

Regular expressions [33, 41] are also possible for the composition of the abstract access

modes. Table4.1shows the currently supported wildcards.

Symbol Meaning

* 0 or more characters

+ 1 or more characters

? 0 or 1 characters

Table 4.1: Wildcards currently supported by Zás.

E.g., using
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@AccessControlled("abstr * ") public void foo() {}

any call tofoo() requires a subject having at least one abstract access mode whose name starts

with abstr (e.g.,abstr or abstract access mode ). The use of regular expressions in the

declaration of the required abstract access modes results in a disjunction. E.g., if for the previous

code there were three different abstract access modes declared asabstr1 , abstr2 andabstr3 ,

its access control requirements could be similarly defined as:

@AccessControlled("abstr1 || abstr2 || abstr3")

public void foo() {}

Wildcards can also be used when dynamically composing abstract access modes, of course.

In this case, however, they can also be used to specify multiple protected objects in a single step,

greatly reducing the number of access control requirementsone needs to specify, as shown in the

last example of Section4.6.2.2.

New wildcards could be added, as well. Bearing in mind that a programmer using Zás is

familiarized with AspectJ, the wildcards semantics shouldbe the ones in AspectJ [4]. Hence,..

should be possible in Zás, as suggested by Laddad [28].

4.6.2 Advanced

This section presents advanced, though useful features from Zás. All these features may be seen

as optional since they are not required to enable Zás’ access control capabilities. Nevertheless,

they are often useful, e.g., to control the depth of the access control enforcement.

4.6.2.1 Propagation of requirements

Zás provides a mechanism allowing access control requirements to be propagated from classes to

the corresponding non-private methods and fields, which forZás are the only controlled resources.

For instance, the access control requirements of a class maybe inherited by all its non-private

“resources”:
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@AccessControlled(value = "foo", depth = Depth.SHALLOW)

public class MyClass {

public void foo() {}

}

In this case,foo() and the implicitly defined class constructor inherit the access control

requirements from their class, i.e., calling the methodfoo() and the constructorMyClass()

require abstract access modefoo and the access control is shallowly enforced.

Similarly, it is possible to propagate access control requirements through non-private fields or

to inherit the requirements specified in the Zás’ protectedobjects types. E.g., the access control

requirements defined inMyClass are propagated to the fieldmyInt , since it has no access con-

trol annotations. This means that a read access attempt to that field requires the subject to have

the abstract access modeforGet , and shallow access control. When a write access attempt is

performed, the subject requires the abstract access modeforSet .

The field myOtherInt inherits the access control requirements from its class, namely the

depth of enforcement, but is overrides the abstract access mode required for the access, from

forGet to newForGet .

Finally, the fieldmyAnotherInt does not inherit the access control requirements from its

type, since the elementinherited is set to false.

@AccessControlledForQuerying(value = "forGet", depth = D eph.SHALLOW)

@AccessControlledForModifying("forSet")

public class MyClass {

int myInt;

@AccessControlledForQuerying(value = "newForGet", inhe rited = true)

int myOtherInt;

@AccessControlledForQuerying(value = " * ", inherited = false)

int myAnotherInt;

}

Notice that there are two different effects in propagation.The first one is static, and leads to

all non-private members of a protected object, with the exception of those marked with annotation

@NotAccessControlled , to also be access controlled. The second one is dynamic, andleads to
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all non-private members of a protected objectthat have not been explicitly marked as being either

access controlled or not access controlledto dynamically inherit the access control requirements

from their enclosing types (see Section4.6.2.2). Hence, in

@AccessControlled(value = "foo", depth = Depth.SHALLOW)

public class MyClass {

public void foo() {}

@AccessControlled

public void bar() {}

@NotAccessControlled

public void baz() {}

}

foo() inherits its access control requirements from classMyClass : the abstract access mode

namefoo and shallow access control. However,bar() , while access controlled, does not inherit

required abstract access modes fromMyClass because the elementinherited is, by default,

set to false, andbaz() remains free of any access control.

It is not be possible to propagate access control requirements to types marked as non-access

controlled. This happens in the situation where a type is explicitly annotated with@NotAccess-

Controlled .

One issue Zás does not deal with so far is the inheritance forpackages from the source code,

because AspectJ [4] does not allow the capture of package annotations and also because of the

limited nature of packages in Java, as detailed in Section4.6.2.6.

The propagation and/or inheritance of requirements is veryuseful because it decreases the

number of access control requirements one needs to specify in client applications. This feature

allows the programmer to mark only the type, causing all non-private protected objects (methods

and fields) to also be access controlled, allowing developers to say that, e.g., all accesses to type

T are restricted to users having abstract access modeAAM .

Notice that the same occurs when marking protected objects as non access controlled.

@NotAccessControlled

public class MyClass {

public void foo() {}
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@AccessControlled

public void bar() {}

}

public class MyExtendedClass extends MyClass {

public void baz() {}

}

The previous results in methodsfoo() andbaz() not to be access controlled.

Annotations

1. @AccessControlled ,

2. @AccessControlledForModifying ,

3. @AccessControlledForQuerying , and

4. @NotAccessControlled

are defined as@Inherited . Hence, they are inherited by subtypes of types annotated with

them. This means that methods and fields on subtypes of types with that annotation are subjected

to the same rules for the propagation of requirements.

4.6.2.2 Dynamic access control requirements

As indicated in the access control requirements’ annotations, the access control requirements

are simply initial requirements, which may be changeable atruntime. That is, access control

requirements are dynamic. The access control requirementsmay be set only in the code, or both

in the code and inXML . This is configured in client code, through the specificationof the access

requirements mode. E.g., in the following piece of code, theaccess control requirements could be

specified in the code only:

public aspect MyEnforcer extends Enforcer<User> {

public MyEnforcer() {

setSpecificationMode(AccessRequirementsSpecificatio nMode.IN_CODE);

}

}
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The possible modes areIN CODE, i.e., specified in Java code only, andIN CODEANDFILE ,

i.e., specified in Java andXML code (the requirements inXML override the ones in the Java

code). The default isIN CODEANDFILE :

public enum AccessRequirementsSpecificationMode {

IN_CODE, IN_CODE_AND_FILE;

}

In code, the requirements are specified using the previouslypresented access control annota-

tions. In file, there is oneXML policy file in Zás, with a known syntax and semantics that may

be used to specify the access control requirements for the “resources” that were marked, through

the access control annotations, as protected objects. The file zas-permissions-schema.xsd

in the Zás project code defines the right syntax for the ZásXML policy file. E.g.,

package mypackage;

class MyClass {

@AccessControlled

public void foo(String s) {}

}

specifies thatfoo() is access controlled and initially requires abstract access modemypackage.-

MyClass.foo(String) . It is possible to change the required abstract access mode using a Zás

XML policy file such as:

<?xml version="1.0" encoding="UTF-8"?>

<zas xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

xsi:noNamespaceSchemaLocation="zas-permissions-sche ma.xsd">

<protected-object name="mypackage.MyClass.foo(String )" type="method">

<abstract-access-modes>foo</abstract-access-modes>

</resource>

</zas>

In this case, after loading the access control policy file, the required abstract access mode for

calling foo() is no longermypackage.MyClass.foo(String) , but foo .



50 CHAPTER 4. THE ŹAS FRAMEWORK

This adds a lot of flexibility because it is possible to changethe access control requirements

for a protected object at runtime, without the need to recompile the application, since all one

needs to do is to change the ZásXML policy file.

The use of wildcards increases these capabilities, since itis possible to specify the access

control requirements at the appropriate granularity level. E.g.,

<?xml version="1.0" encoding="UTF-8"?>

<zas xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

xsi:noNamespaceSchemaLocation="zas-permissions-sche ma.xsd">

<protected-object name="mypackage.MyClass.foo()" type ="method">

<abstract-access-modes>foo</abstract-access-modes>

</protected-object>

<protected-object name="mypackage.MyClass. * " type="method">

<abstract-access-modes>bar</abstract-access-modes>

</protected-object>

<! −− When theattribute type isnot specified, it usesmethod
as default−−>

<protected-object name="mypackage. * ()">

<abstract-access-modes>baz</abstract-access-modes>

</protected-object>

</zas>

which may be found in a ZásXML policy file, states that all calls to access controlled meth-

ods without parameters within packagemypackage will require abstract access modebaz , with

the exception of those within classMyClass , which require abstract access modebar . Again,

methodMyClass.foo() is an exception, since it requires abstract access modefoo . The order

is important because Zás will always look for the first occurrence of a matching signature and

load the abstract access mode specification. This simplifiesthe algorithm that loads the access

control requirements. Additionally, it simplifies the specification of the requirements and hence

its readability.

With the previous access control requirements, the following code would require a subject

possessing abstract access modefoo to be granted access to methodMyClass.foo() , abstract

access modebar for methodMyClass.bar() and abstract access modebaz for methodMy-
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Class2.baz() .

package mypackage;

@AccessControlled

public class MyClass {

public void foo() {}

public void bar() {}

}

package mypackage;

public class MyClass2 {

@AccessControlled

public void baz() {}

}

Using ZásXML policy files makes it possible to specify the access control rules in two dif-

ferent phases: the first, where the security engineer simplymarks the protected objects that are to

be access controlled; the second, where she specifies their access control requirements.

4.6.2.3 Depth of access control

By default, the access control is applied for all accesses toprotected objects, regardless of the

context. Regardless, namely, of the controls which have already been performed in lower levels

of the current call stack. This is usually the safest option and thus the most desirable default.

However, it may be occasionally necessary to turn off accesscontrol in the flow of control of a

given method execution.

Elementdepth of the@AccessControlled annotation represents the depth of access con-

trol. In a way that is reminiscent of copy depth, access control is applied to method execution

either in aDepth.SHALLOW or in a Depth.DEEP manner, depending on the value of this ele-

ment. Shallow access control means that if access to a methodis granted to a subject, it will also

be granted to its complete flow of control, effectivelyturning offaccess control during its execu-

tion. On the contrary, if access to a method specifying deep access control is granted to a subject,
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which is the (safe) default, it willnot be automatically granted to all other accesses to protected

objects in that method’s flow of control.

For example, in

public class A {

@AccessControlled("foo")

public void foo() {

new B().bar();

}

}

public class B {

@AccessControlled("bar")

public void bar() {

}

}

A call to A.foo() will be possible only if the subject has both the abstract access modes

foo andbar becauseA.foo() , which invokes methodbar() , requiresfoo , andB.bar() , on

its hand, requiresbar . Changing the depth toDepth.SHALLOW in the annotation offoo() , the

access control willnot be applied during the execution offoo() , which means the subject may

invokebar() throughfoo() :9

@AccessControlled(depth = Depth.SHALLOW)

public void foo() {

new B().bar();

}

Using shallow access control is generally considered dangerous. Hence, a mechanism may be

devised to short-circuit the consequences of shallow access control. If a given method declares

itself to be suspicious, its access control requirements are not turned off in the flow of control of

a method with shallow access control. For instance, in

public class A {

@AccessControlled(value = "foo", depth = Depth.SHALLOW)

public void foo() {

new B().bar();

9Notice, however, that callingbar() directly would still require the abstract access modebar .
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new C().baz();

}

}

public class B {

@AccessControlled("bar")

public void bar() {

new C().baz();

}

}

public class C {

@AccessControlled(value = "baz", suspicious = true)

public void baz() {

}

}

A call to A.foo() will fail unless the subject has the abstract access modebaz : it is not

sufficient for her to have the abstract access modefoo , sinceC.baz() is suspicious. On the

other hand, the abstract access modebar is not necessary when the call is performed in the flow

of control ofA.foo() , sinceB.bar() is unsuspecting andA.foo() ’s access control is shallow.

4.6.2.4 Bypasses

Zás provides two mechanisms to bypass access control. The first is more dangerous, and should

be used with care: methods may be annotated as privileged, i.e., as turning off all access control

within their flow of control:

@Privileged public void foo() {

// ...
}

The difference between calling a privileged method and calling a method with shallow access

control is that a call to a privileged method always succeeds, while the success of a call to a

method with shallow access control depends solely on the current subject having abstract access

mode to make the call (except when “suspicious” is used). Privileged, though very dangerous in

security terms, can be sometimes useful and even essential.The Zás framework uses them, e.g.,
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in theDecider class and its subclasses, and thus grant them full access to any protected object.

Therefore, the deciders may access domain specific information, which may be access controlled,

when the legitimacy of an access attempt requires that context information. However, this may

compromise the security of the application, since it may open security breaches and hence, further

study is required to control what the decider classes may andmay not do.

The second bypassing mechanism, trust, is more disciplinedand less dangerous. Instead of

marking methods as bypassing access control during their flow of control, regardless of the access

control requirements of the intervening protected objects, trust in specified classes is explicitly

acknowledged by the callee protected object. For example, given

public class A {

@AccessControlled("foo")

public void foo() {

new B().bar();

}

}

public class B {

@AccessControlled("bar", trusts = { A.class } )

public void bar() {

}

}

calls toA.foo() require a subject with the abstract access modefoo , as usual. However, the

call toB.bar() from within A.foo() will always succeed, sinceB.bar() trusts classA. Notice,

however, that calls from within the control flow ofB.bar() will in general be access controlled,

since trust does not propagate. This improves even further the safety of trust relationships.

4.6.2.5 Invokers

According to Bertino [7] and Thomas [43], each protected object should be able to specify the

allowed set of invokers. The idea is that each protected object should be able to specify the

“entities” that may access them. In the Zás framework, we mappedentitiesas the methods that

invoke a protected object on someone (an authenticated subject) or something (an authenticated
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system) behalf.

This is similar to trusts, though there are important differences. Conceptually, the set of in-

vokers is a way to define a workflow, i.e., to explicitly state what methods are allowed to access

one protected object and thus restricting its access to a very strict set of methods. This is accom-

plished through the explicit specification of the methods that are granted access to a protected

object: methods which are not included in the set of allowed invokers are not granted access to

that protected object (if the resource declares an empty set, that means no one is able to access it).

However, for trust, an object not belonging to the set of trusted classes can still be granted access,

depending on the subject’s abstract access modes.

They are also different in implementation terms: for trust,the protected object declares its

“trust” on objects from aclass; for the invokers, the protected object declares themethodsthat

may legitimately access it.

According to Arnold et al. [3], the elements of an annotation type are constrained by strict

rules:

1. The type of an element must either be a primitive type, aString , an enum type, another

annotation type, or aClass .

2. An element cannot declare any parameters.

3. An element cannot have a throws clause.

4. An element cannot define a type parameter.

The elementtrust() of the access control annotations is of typeClass and hence, its exis-

tence is verified in compile time. However, from the previousrules [3], it is not possible to use

the classjava.lang.reflect.Method as the type of an annotation’s element and hence the

method is specified through its fully qualified name (String ):

package mypackage;

public class A {

@Invokers({ "mypackage.A.fooLegalInvoker()" })
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public void foo() {}

public void fooLegalInvoker() {}

}

The previous code defines the methodfooLegalInvoker() as the only allowed method to

invokefoo() .

In the Zás framework, there are annotations for specifyingthe allowed invokers for the invo-

cation of methods, invokers for modifying the value of a field, and also invokers for reading the

value of a field.

In the current implementation, we assumed that it does not make sense to prevent the access

with a strict set of invokers and, at the same time, specify the required abstract access modes to

access that protected object: when a protected object declares the set of allowed invokers, only a

method belonging to that set may be granted access. Hence, the invokers annotations were kept

separated from the access control annotations and they cannot be used for a protected object at

the same time:

// Compile time error: both annotations specified.
@Invokers({"mypackage.A.fooRightInvoker()"})

@AccessControlled("foo") public void foo() {}

This feature may not be directly related to access control because it does not make any use of

the authenticated subjects, but because of its usefulness,and because it is also a way to control

whose methods are allowed to access a protected object, we included it in the Zás framework.

Due to time constraints, the current version of Zás does notsupport the specification of the

invokers in the ZásXML policy file.

4.6.2.6 Declaration of abstract access modes

The required abstract access modes for accessing the protected objects in Zás areString ’s,

which cannot be matched with the abstract access modes associated to the subject in a given

client application. Hence, it is difficult to be actually sure one is using the appropriate abstract

access modes in the definition of the access control requirements.
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The Zás framework supports the declaration of the names of the abstract access modes,

through the use of the annotation@DeclareAbstractAccessMode , whose default value is

‘‘#’’ , meaning that the protected object signatures are known by default.

@Retention(RetentionPolicy.RUNTIME) @Target(ElementT ype.TYPE)

@Inherited public @interface DeclareAbstractAccessMode {

String[] value() default "#";

}

Therefore, Zás may check if the name of an abstract access mode has been declared and, if

not, warn the programmer.

To be able to declare the abstract access modes in a given client application, we extend the

abstract aspectAbstractAccessModeDeclarationVerifier . The abstract aspect must be

parameterized with a class, created on the client code, which represents the default class where

the abstract access modes are declared. Therefore, that class must be annotated with@Declare-

AbstractAccessMode 10:

public aspect AccessModeDeclarator extends

AccessModeDeclarator<DefaultDeclarator> {

public Class<DefaultDeclarator> getDefaultDeclaratorClass() {

return DefaultDeclarator.class;

}

}

@DeclareAbstractAccessMode( { "foo", "bar" })

public class DefaultDeclarator {

}

In the previous snippet we declared the names of two abstractaccess modes:foo andbar .

The@DeclareAbstractAccessMode may only be used in two places:

1. In the default declarator class, as specified previously,which is loaded at the beginning of

the application as well as its abstract access modes, and

10This class cannot be extended because it would not be possible to load all subclasses and hence, it would not be

possible to load the abstract access modes declarations of its subclasses.



58 CHAPTER 4. THE ŹAS FRAMEWORK

2. In types containing protected objects, which are loaded at the moment an access attempt

to a protected object is performed and hence, its abstract access modes declaration may be

loaded:

package mypackage;

@DeclareAbstractAccessMode( "foo" )

public class A {

@AccessControlled("foo")

public void foo() {}

}

In the declaration of an abstract access mode, the package name cannot be included. Each

declared name has a simple name,foo in the previous example, which may be used in the class

and subclasses only, and a fully qualified namemypackage.foo . Hence, the collision of names

are avoided.

Unlike the default abstract access mode declarator, which does not require any import ab-

stract access modes statement to be used, all other abstractaccess modes declarations need to be

explicitly imported, similarly to the import of classes andpackages in Java:

package myotherpackage;

@ImportAbstractAccessModeDeclaration(mypackage.A.cl ass)

public class B {

// fully qualified name of the abstract access mode declared on A.
@AccessControlled("mypackage.A.foo")

public void foo() {}

// simple name of the abstract access mode declared on A.
@AccessControlled("foo")

public void foo(String s) {}

}

ClassB requires the import annotation (@ImportAbstractAccessModeDeclaration to

make the abstract access modes declared in classA available inB. After that statement, the de-

veloper may use the simple name of abstract access mode or itsfully qualified name, though we
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recommend the latter, to prevent names collisions.

4.6.3 Future

New features, either partially implemented or not implemented at all, as well as important changes

in the current ones, were already detected. A new version of Zás with several changes in the

current features, as well as additional features, is already being implemented, and its code may

be found in the project’s web site athttp://zas.cvs.sourceforge.net/zas/ .11 The

case study presented in Chapter5 was performed without any of the changes we present here:

1. Deal with, at least, two kinds of subjects: human subjects, represented as users, for exam-

ple, and code subjects, represented as methods – The main idea is to allow methods to be

subjects, having their own abstract access modes that grantthem privileges to access other

methods. E.g., if there was a subjects1 (an authenticated user, e.g.) that invokesfoo() in

the following example, who has the abstract access modefoo and notbar ,

public class MyClass {

@AccessControlled("foo")

public void foo() {

new MyClass2().bar();

}

}

public class MyClass2 {

@AccessControlled("bar")

public void bar() {

}

}

We get an authorization exception as the result of the accessattempt. However, a new

annotation in the Zás framework,@Privileges exists to make methods be subjects as

well:

public class MyClass {

11See the branch “Bzas-new-annotations”.

http://zas.cvs.sourceforge.net/zas/
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@AccessControlled("foo")

@Privileges("bar")

public void foo() {

new MyClass2().bar();

}

}

Hence, after the successful invocation of the methodfoo() by the subjects1, the current

subject is the methodfoo() itself, which has the required abstract access mode to legiti-

mately invokebar() . After the invocation ofbar() , the current subject iss1 again.

This is possible with the creation of a stack of subjects, Figure 4.5. Since it is important

for us not to force developers to use a specific type of class torepresent a non-method

subject, our stack of subjects is constituted by method subjects only, which are instances of

a final classMethodSubject , whose instances are created from the Zás framework, when

a method declares itself as having privileges.

Figure 4.5: The concept of stack of subjects.

This feature, however, needs further study related to who may be responsible for the attribu-

tion of the abstract access modes to methods. Should a programmer be allowed to perform

that task? Should it be the security manager, and the security manager only?

2. Depth verification – The depth feature in Zás, which controls the access control verification
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depth is limited since the depth in effect at a specific point of the stack trace is based exclu-

sively on the depth declared by the first method having accesscontrol in the current stack.

This means that a programmer may define deep access control verification for an access

controlled methodsubFoo() which, because it was invoked through an access controlled

methodfoo() with shallow access control verification, does not have effect, since shallow

will be in effect till the execution offoo() ends. A better solution would use a stack of

invocations, associated to the current thread, which Zás would manage. To make the im-

plementation easier and more readable, we created two new annotations,@Shallow , and

@Deep, which replace the elementdepth() in @AccessControlled . At each moment,

there would be a stack with the depth of access for each thread(by default, the stack has

always an element of type@Deep). After the verification of a given method with access

control, having one of the annotations@Deepor @Shallow , the access control verification

depth is registered on the stack, specifying that all protected objects which are accessed

from that method on, will use the depth defined in the top of thestack. The registration of

the depth of the stack must happen after verifying the access, to ensure that the execution

of the current method uses the depth defined in lower levels ofthe current stack. This im-

plementation uses a new annotation@Forced, which replaces the elementsuspicious()

from @AccessControlled , whose semantics is forcing the verification of the access for

the current method, without changing the depth in the depth stack, however, meaning that

only the current method should be checked but not any other protected object accessed

within its flow of execution. To summarize, by default any access attempt is performed in

a deep way. However, with the use of@Shallow , and@Deep, the depth of access control

for the flow of execution of a given method may be changed. Thisfeature has already been

fully implemented in the new version of Zás.

3. Authorizations policy –XACML and Ponder are powerful languages to define authoriza-

tions, and hence decider classes capable of consulting the authorizations policy written in

those languages should be provided with the Zás framework.
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4. Certified source code – TheJAAS model for certifying source code should be used as the

way to “authenticate” source code. This would greatly enforce the application security,

since external code accessing the application, which is outside the application’s developers

control, would also be subject to access control. This has not been explored at all.



Chapter 5

Evaluation and metrics

This work has focused on the use ofAOPto modularize application-level security solutions. The

use of this approach, as stated by De Win [47], requires a radical change in current development

practices, since a secure application becomes a composition of loosely coupled components from

a variety of stakeholders (business, security and so forth)that are put together in order to form an

executable artefact.

Such a change must provide developers with huge benefits. In this section we try to address

the benefits and drawbacks from the use ofAOPfor the implementation of security concerns. To

accomplish this task, we have used Zás in a very large application, called Fénix. The results are

presented next.

5.1 Fénix

Fénix is a Web application for managing academic institutions. It is composed of6210 java classes

(including almost600 domain classes, persisted to a MySQL relational database containing424

tables),2348 JavaServer Pages (JSP) files,299 XML files, and185 properties files.

Fénix has been chosen for several reasons:

1. It is representative of a large class of applications, since it is a distributed application object-

63
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oriented, Web application,

2. Its dimension is in itself a challenge to the application of Zás. If Zás can be applied with

success to Fénix, it may safely be assumed that it can be applied to a wide range of appli-

cations.

The source code of the case study may be found inhttp://zas.cvs.sourceforge.net/zas/case-

In that location, there will be two folders, one containing the latest version of the case study and

the other containing the first major application of Zás to F´enix, whose results we present in Sec-

tion 5.2.5.

Fénix uses the Struts1 and JavaServer Faces (JSF) frameworks. Domain modeling and de-

composition are supported by a Domain Modeling Language (DML) [12] which developers use

to define the static model of the domain in what may be seen as a limited textual form ofUML.

E.g.:

// ...
class net.sourceforge.fenixedu.domain.Employee extends

net.sourceforge.fenixedu.domain.DomainObject {

Boolean active;

// ...
}

class net.sourceforge.fenixedu.domain.Person extends

net.sourceforge.fenixedu.domain.Party {

// ...
}

relation EmployeePerson {

net.sourceforge.fenixedu.domain.Employee playsRole em ployee;

net.sourceforge.fenixedu.domain.Person playsRole pers on;

}

// ...

DML parser reads the domain model file and generates the domain classes, including per-

sistence code that makes use of the ObJect Relational Bridge(OJB) Object-Relational Mapping

1Seehttp://struts.apache.org/ for details.

http://zas.cvs.sourceforge.net/zas/case-study
http://struts.apache.org/
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(ORM) tool from Apache.2

Fénix has a transaction system, which is managed by code generated from theDML model.

Write transactions, which persist data, are allowed only inthe flow of control of a given service.

Hence, code outside of the flow of control of services may readdata only, thus a service must be

invoked in order to execute write operations from the data layer.

The abstract access modes from Fénix are textual representations of the system roles associ-

ated to each system user, i.e., the names of the roles. E.g., the system roleTIME TABLE MANAGER

that grants access to the management of the time tables was represented with the abstract access

modeTIME TABLE MANAGER, which corresponds to the name of the role:

public class ChangeStudentsShift extends Service {

@AccessControlled("TIME_TABLE_MANAGER")

public void run(IUserView userView, Integer oldShiftId,

Integer newShiftId, Set<Registration> registrations)

throws ExcepcaoPersistencia, FenixServiceException {

// ...
}

}

Our main goal with the application of Zás to Fénix was to minimize the changes in the existing

code. Hence, this application was a matter of replacing the existing access control related code,

with the less changes possible, and with no changes in the functionalities. This means that the

application of Zás was madea posterioriand nota priori, meaning that not all advantages of the

framework were explored in this case study.

The use of Services Oriented Architecture (SOA) lead to the duplication of the functional code

and, therefore, the Fénix project has evolved to a new more Domain Driven (DD) architecture.

Hence, the access control should be applied to the domain classes, where the system’s protected

objects are. However, we did not want to add the currently logged user as a parameter to the

domain classes, since we aimed at separating access controlcode from functional code.

Since Fénix already had its own authentication functionality, it was sufficient to develop a

2Seehttp://db.apache.org/ojb/ for details.

http://db.apache.org/ojb/
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mechanism to obtain the authenticated user associated witheach session. This is simply a matter

of defining the methodscurrentSubject() anddefaultDeciderClass() in the concrete

aspectFénixAccessController , thus implementing the corresponding abstract methods from

the abstract aspectEnforcer ,

public aspect FenixEnforcer extends

Enforcer<IUserView> {

public IUserView currentSubject() {

return AccessControl.getUserView();

}

public Class<FenixDecider> defaultDeciderClass() {

return FenixDecider.class;

}

// In Fénix we protect the executions, and not the calls
public pointcut accessToControlledMethods() :

execution(@AccessControlled ! private *
net.sourceforge.fenixedu.. * (..));

// In Fénix we protect the executions, and not the calls
public pointcut accessToControlledConstructors() :

execution(@AccessControlled ! private

net.sourceforge.fenixedu..new(..));

}

The methodcurrentSubject() was implemented as a simple invocation to the method

getUserView() from the Fénix application which returns the instance of the subject associated

to the current HyperText Transfer Protocol (HTTP) session. ThedefaultDeciderClass()

simply returned the class that implements the default decision function in Fénix:

public class FenixDecider extends Decider<IUserView> {

public Collection<String> currentSubjectAccessModes() {

final Set<String> abstractAccessModes = new HashSet<String>();

final IUserView userView = getCurrentSubject();

if (userView != null) {

for ( final RoleType roleType : userView.getRoleTypes()) {

abstractAccessModes.add(roleType.getName());

}
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}

return abstractAccessModes;

}

}

The default decider must implement the abstract methodcurrentSubjectAccessModes()

from the abstract classDecider , which iterates over the system roles associated to the current

subject, and adds its name, which is unique in the system, to the abstract access modes associated

to that subject.

About 70% of the access control related code existing in Fénix was changed to use Zás. In

most cases the change simply meant removing the access control filters from the services,

<! −− Before Źas−−>

<service>

<name>ChangeStudentsShift</name>

<implementationClass>

net.sourceforge.fenixedu.applicationTier.Servico.

sop.ChangeStudentsShift

</implementationClass>

<description />

<isTransactional>true</isTransactional>

<filterChains>

<chain name="TimeTableManagerAuthorization" />

</filterChains>

</service>

<! −− With Zás−−>

<service>

<name>ChangeStudentsShift</name>

<implementationClass>

net.sourceforge.fenixedu.applicationTier.Servico.

sop.ChangeStudentsShift

</implementationClass>

<description />

<isTransactional>true</isTransactional>

</service>

and the addition of the necessary access control annotations, either throughITD or directly to
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the protected object:

@AccessControlled("TIME_TABLE_MANAGER")

public class ChangeStudentsShift extends Service {

public void run(IUserView userView, Integer oldShiftId,

Integer newShiftId, Set<Registration> registrations)

throws ExcepcaoPersistencia, FenixServiceException {

// ...
}

}

For domain level access control, Fénix uses a bytecode manipulation mechanism in what

amounts to ad hoc weaving. Thus, Fénix implements a limitedtype of AOP in Java. Zás im-

plements essentially the same idea, though using AspectJ constructs. The advantage of using

AspectJ in terms of robustness, maintainability, expression power, etc., are considerable, as will

be discussed. Additionally, Zás is a reusable framework providing features such as shallow or

deep access control, and privileged access to protected objects which the bytecode manipulation

solution, developed in an ad hoc way, did not possess, of thatwould require considerable effort to

implement.

The conversion from the original bytecode manipulation solution to Zás involved replacing

the annotation@Checkedwith annotation@AccessControlled ,

// before Źas
@Checked("SpacePredicates.

checkIfLoggedPersonHasPermissionsToManageResponsabi lityUnits")

public void setSpaceResponsibilityInterval(YearMonthDay begin,

YearMonthDay end) {

checkSpaceResponsabilityIntersection(begin, end,

getUnit(), getSpace());

super.setBegin(begin);

super.setEnd(end);

}

// with Zás
// @Checked(”SpacePredicates.
// checkIfLoggedPersonHasPermissionsToManageResponsabilityUnits”)
@AccessControlled(deciderClass = SpacePredicates.

CheckIfLoggedPersonHasPermissionsToManageResponsabi lityUnits.class)
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// ... as before

and the creation of wrapper classes around the existing decider classes, applying thestrategy

design pattern [22],

public abstract class

PredicateBaseDecider<T extends DomainObject>

extends FenixDecider {

protected abstract AccessControlPredicate<T> getPredicate();

@Override

public boolean hasAccess(String protectedObjectAccessModes,

JoinPoint joinPoint, StaticPart enclosingStaticPart) {

return getPredicate().evaluate((T) joinPoint.getTarget());

}

}

The abstract classPredicateBaseDecider was created to simplify the integration with

the existing decider classes. The class provides an abstract methodgetPredicate() which

returns an instance of the Fénix classAccessControlPredicate responsible for evaluating

the legitimacy of the accesses. That class must be extended and its abstract method implemented

appropriately, as follows,

public class SpacePredicates {

// ...
// previously provided by F́enix.
public static final AccessControlPredicate<SpaceResponsibility>

checkIfLoggedPersonHasPermissionsToManageResponsabi lityUnits =

new AccessControlPredicate<SpaceResponsibility>() {

public boolean evaluate(SpaceResponsibility spaceResponsibility) {

spaceResponsibility.getSpace().

checkIfLoggedPersonHasPermissionsToManageSpace(

AccessControl.getPerson());

return true;

}

};

// addition because of Źas.
public class

CheckIfLoggedPersonHasPermissionsToManageResponsabi lityUnits
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extends PredicateBaseDecider<SpaceResponsibility> {

@Override protected

AccessControlPredicate<SpaceResponsibility> getPredi cate() {

return checkIfLoggedPersonHasPermissionsToManageResponsabi lityUnits;

}

}

// ...
}

During the changes related to the access control we performed in Fénix, the following limita-

tions were detected in the Zás framework:

1. controlling the access to the object returned by a method,and not the ability to invoke it.

This implies the unconditional invocation of the method andthe checking of the returned

method, naturallyafter its execution. This problem may be solved in a future versionof

the Zás framework with the creation of a new annotation, e.g., ReturnedObjectAccess-

Controlled , and the use ofaroundadvices,

2. attach different access control requirements to the samemethod, according to the different

logic names which may be used to invoke it. In Fénix, the invocation of therun() method

of a service is accomplished indirectly through the specification of the name of the service:

ServiceUtils.executeService(userView, "ChangeStudent sShift", new

Object[] { userView, oldShiftId, newShiftIf, registratio ns });

The invocable services are specified in a configuration file:

<service>

<name>ChangeStudentsShift</name>

<implementationClass>

net.sourceforge.fenixedu.applicationTier.Servico.

sop.ChangeStudentsShift

</implementationClass>

<! −− ...−−>

</service>

This limitation could be fixed through the creation of a mechanism that associates a logical
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name with a set of access control rules. A possibility is presented in the next snippet of

code, which defines that the invocation of the service using the nameChangeStudents-

Shift requires the subject to have the abstract access modefoo while the nameChange-

StudentsShift2 requiresbar ,

@AccessControlledService(

names = { "ChangeStudentsShift", "ChangeStudentsShift2" },

requirements = { @AccessControlled("foo"), @AccessContr olled("bar") }

)

public class ChangeStudentsShift extends Service {

public void run(IUserView userView, Integer oldShiftId,

Integer newShiftId, Set<Registration> registrations)

throws ExcepcaoPersistencia, FenixServiceException {

// ...
}

}

5.2 Analysis

As stated by Baldwin in [5], an AO approach is of great use because of its advantages in terms

of maintenance of code. To measure its benefit, e.g., we may use the Net Option Value (NOV)

formula. While inOO approaches, one needsN changes in order to implement or change a

crosscutting concern,

NOV = Change benefit− N × Change costs,

whereN is the number of locations in the code where that concern is reflected. InAOP, generally,

it is necessary only one change,

NOV = Change benefit− 1 × Change costs,

Also according to Baldwin [5], another huge benefit ofAOPis reusability since the improved

modularity aspects provide, make it possible for the aspectcode to be reused in several different

applications.
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That being said, we will present the results of the application ofAOPand specifically the Zás

framework to Fénix, using the following metrics:

1. Number of files

2. Lines of Code (LOC)

3. Performance

4. Percentage of affected access controlled methods

5. Access Control Requirements Specification Ratio (ACRSR)

The accuracy of this analysis is limited, though, since it did not fully replace the existing ac-

cess control mechanisms due to time constraints. Additionally, and since that the Zás framework

is for developers, this measurement accuracy is also limited because there are no other significant

experiences of the application of Zás in other applications, by developers not being the creator of

Zás. Finally, the impact of Zás in Fénix, as shown next, isnot very significative because one of

the existing access control mechanisms was already based onweaving, though an ad-hoc weaving

mechanism, and the services access control mechanism enables the separation of concerns.

5.2.1 Number of files

The total number of files in the project before and after the application of Zás, see Table5.1, is

one of the possible ways to evaluate the quantity of changes that one needs to do in order to apply

Zás.

The application of the framework allowed to reduce the number of files, still keeping the same

functionalities and access control level. Decreasing the total number of files is important since

the smaller the application, the smaller will be the maintenance effort. In this case, however, the

reduction in the total number of files was not meaningful.
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Fénix

File Before Zás Diff

Java 6210 6205 −5

Aspect 0 1 +1

XML 299 299 0

Properties 185 185 0

Total 6133 6108 −4

Table 5.1: Number of files before and after Zás.

5.2.2 LOC

As we can see in Table5.2, the solution based on Zás allowed to decrease the total number of

lines of code, making the application easier to maintain andmanage.

Fénix

File Before Zás Diff

Java 756061 757287 +1226

Aspect 0 39 +39

XML 78401 76103 −2298

Properties 32425 32425 0

Total 866887 865854 −1033

Table 5.2: Lines of code before and after Zás.

Nevertheless, the application increased in terms of Java code since most access control in the

access control filters associated to the Fénix services were removed from theXML and added in

the Java code.

Since Zás did not fully replace the existing access controlfilters and there are dependencies

between them (an access control filter in Fénix is often composed by several other filters), many
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lines of code and the corresponding Java files were not removed.3

The use of theAOPfeatures such asITD makes the capabilities of theIDE the developers use

very important. E.g., the AspectJ Development Tools (AJDT) plugin for Eclipse, which shows

when a given piece of code is advised by an aspect is of extremeuse and almost a requirement

for AOP programmers. However, we faced several problems with the memory required by the

AspectJ compiler to build the application in Eclipse. Therefore, we added the access control

requirements for each protected object directly with the protected object, instead of usingITD

to inject the access control requirements, and hence be ableto look at the source code and know

exactly what is the access control requirements for each protected object.

5.2.3 Performance

To measure the impact of using Zás in the application performance, the execution and compile

times were compared.

The compile time was obtained by calculating the average of the elapsed time of30 indepen-

dent compilations. The execution time was obtained by calculating the average of the elapsed time

of 30 executions of a small test application which invokes repeatedly methods which are subject

of access control either in the domain level and on the services level. The number of invocations

varied from150 to 2250, with a step of150, for the domain level, and from50 to 750, with a50

step, for the services level.

These tests tried to measure the gap between both solutions,and the repetition of each ex-

periment with an increasing number of invocations tried to verify if a potential gap gets better

throughout the time.

The tested methods were chosen randomly, among all methods that started using Zás as the

access control mechanism. These methods were chosen because they did not take much time

while being executed to not affect the performance analysisof the access control mechanisms.

3We expect to greatly decrease the number of lines and files in Fénix, though, when the existing access control

mechanisms are fully replaced by the Zás framework.
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One better approach for choosing the tested methods would include a previous study of the

most used services and functionalities from the system and test those specific services according

to its use and thus provide a more concrete vision of the global impact in the system as a whole.

This previous study, however, would be hard to accomplish ina short period of time and hence

was not performed.

The tests were performed in an Intel Pentium IV Hyper-Threading (HT) with 3.06 GHz and2

GiB of Random Access Memory (RAM) memory.

5.2.3.1 Protected domain

The tested method simply sets the code of a given course. The solution before Zás presents a

better performance, especially with a small number of invocations, as may be seen in Figure5.1.
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Figure 5.1: Fénix domain level performance before and after Zás.

The solution based on Zás is affected with its initialization, thus making a significant different

after the first invocations to the domain method which, however, tends to decrease throughout the

time.
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5.2.3.2 Protected services

The service we chose simply returns the homepage of the currently logged in user, if there is one

or creates a new homepage for that user. Figure5.2summarizes the results.
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Figure 5.2: Fénix services level performance before and after Zás.

The solution based on Zás is faster, especially when comparing accesses for users not having

access to the protected object. Throughout the time, however, the differences tend to become

smaller.

5.2.3.3 Compilation performance

The compile time has a direct impact on the development. Figure5.3presents the results.

Compiling a very big application such as Fénix with aspectsis a problem in what concerns the

compilation time. With aspects, the application took about71 seconds longer due to the weaving

process, which corresponds to an increase of about30%.

Since the Zás framework modularizes only non functional requirements, the normal develop-

ment process in Fénix could use the compilation of the functional code, using the Java compiler,
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Figure 5.3: Fénix compilation time before and after Zás.

therefore having smaller cycles of coding, compilation andtests. The compilation with Aspects

would be relegated to the regression tests and to the occasions where the access control itself

would be in development or maintenance.

5.2.4 Percentage of affected access controlled methods

As stated by Lopes in [30], “one way of measuring the code tangling is by counting the num-

ber of methods affected by aspect code”. The number of affected methods in the total shows

how much access control-related code was necessary for eachapplication and thus represent how

difficult was to add access control-related concerns for each application. For the total of meth-

ods we have counted the number of methods in those classes that were supposed to have access

control. Table5.3summarizes the results.

The access control functionalities were implemented in about 70% of the situations (1422

methods requiring authorization versus 1021 methods for security purposes implemented with

Zás). With the new development philosophy within Fénix, the domain will become richer and
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Fénix

Layer To control With Zás

Domain 153 153

Service 1269 868

Total 1422 1021

Table 5.3: Percentage of affected access controlled methods.

security concerns will be added there, closely to the data. We have implemented a considerable

part of the access controlled methods to conclude that Zás addresses the majority of the situations

requiring access control enforcing.

5.2.5 ACRSR

TheACRSRis a metric we propose to measure the effort for the specification of the access control

requirements for each application. This ratio relates the number of access control requirements

rules specified with the number of affected points. This metric is a percentage in which, the higher

its value, the greater the effort of the access control requirements specification. The formula for

this metric is as follows:

ACRSR= 100 ×

Number of Rules
Affected Methods

Due to the limitations in terms of using theAJDT plugin capabilities to show the developer the

methods that are being advised and which ones are being annotated, we decided to mark directly

the protected objects with the access control annotations.Nevertheless, in an early application of

Zás to Fénix, in February, we both directly annotated the protected objects and usedITD to specify

the protected objects and its access control requirements.Table5.4summarizes the results.

This early application of Zás to Fénix lead us to some interesting conclusions. E.g., there was

a bug with the order of annotations injection, which has beensubmitted to the AspectJ compiler
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Fénix

Number of rules 637

Affected methods 921

ACRSR 69.2%

Table 5.4: Access Control Requirements Specification Ratio.

community4. This bug forced us to directly mark the non access controlled “resources”, since

it is not possible to control the order of the annotations injection. We expect theACRSR to

improve when that bug is fixed and we are able to control the order of the annotations injection.

Additionally, there were services inside package such ascoordinator in which only a user

having the abstract access modeMANAGERcould execute. Those classes could be refactored to the

packagemanager , thus greatly reducing the effort for the specification of access control rules.

5.2.6 Conclusions

From the evaluation analysis we performed in this section, we believe that Zás has potential to be

the dominant access control mechanism in Fénix and to fullyreplace the existing mechanisms,

since it permits to use a single access control model, in boththe services and domain layers of the

application, which is something we desire in Fénix.

The main problems we detected with the use ofAOPin Fénix were related to the performance

of the system: executing code, in which the Zás-based version presented better performance in

the services layer, but a worse performance in the domain layer, and the compilation time which,

however, when used to implement non-functional requirements, as what happens with Zás, may

be solved with different compilation processes: the normaldevelopment process in Fénix could

use the compilation of the functional code, using the Java compiler, therefore having smaller

cycles of coding, compilation and tests. The compilation with Aspects would be relegated to the

regression tests and to the occasions where the access control itself would be in development or

4Bug169699, https://bugs.eclipse.org/bugs/show_bug.cgi?id=16969 9.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=169699
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maintenance.

The specification of the protected objects and their access control requirements through as-

pects that inject those requirements have the advantage of the non-invasiveness. However, for

very large projects, in which the use of theIDE features is difficult or even impossible, adding

the access control annotations close to the protected objects is a better choice, since it adds more

expressiveness to the code. Additionally, the compilationtime tends to increase with the injection

of annotations, especially when using wildcards in the definition of the pointcuts, and it also gets

harder to control the scope of the affected resources.

Since Zás is a framework, it hides the implementation details from the developers who use

it. Therefore, earning new capabilities and knowledge related toAOP by the technical team is

not a requirement, since the team just need to use Java constructs – annotations – to specify the

protected objects’ access control requirements. We based these ideas in our experience from the

application of Zás to Fénix, which is in production at ISCTE5, since February of2007.

Nevertheless, the application of Zás to Fénix requires more study and analysis, namely in what

concerns the use of the Zás framework advanced features. That will be relegated to further work.

5Instituto Superior de Ciências do Trabalho e da Empresa –http://iscte.pt/ .

http://iscte.pt/


Chapter 6

Conclusions and further work

In this work a newAO access control framework based on the abstract reference monitor [2] was

proposed. To add authorization concepts in existing applications, the Zás framework explores

the capability to specify meta-information through the usage of Java5 annotations andXML .

It does so in an easy, expressive and non-invasive way. Even though the framework is at its

early stage of development, it has already shown the potential for the use ofAOP to modularize

access control, making it simple to implement, support and configure, and even more flexible.

Zás is also dynamic, allowing changes in runtime to the access control requirements associated to

the protected objects. The framework usage, whose development was motivated by a proposal by

Laddad [26], reduces the scattering of the code all over the application, as well as its entanglement

with the functional code.

De Win et al. [48] criticize AspectJ to implement security concerns, ironically due to its

excessive flexibility, because security is a very rigid and strict concept. Under this point of view,

Zás is very similar to AspectJ, because it is also very, perhaps too much, flexible: its misuse may

lead to security leaks. Due to this reason, it is necessary a deeper study and analysis, namely to

the best practices and potentially new requirements to implement in order to control the flexibility

of Zás in client applications.

In the near future, we intend to improve the framework, supplying more technical documen-

81
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tation and a manual of best practices, bearing in mind the insight gained with its application to

several applications. Nevertheless, some points requiring further investigation have already been

identified. How does Zás behaves when other crosscutting concerns are implemented using as-

pects? How do we deal with potential conflicts between different aspects, particularly if those

have the potential of affecting the access control? Nakajima and Tamai [32] have proposed a

technical analysis to verify the coherence between the authorizations policy and the application

code. The proposal, however, assumes that the policies are static. How could that technique be

applied in the case of dynamic policies, as allowed by Zás? Currently, authorizations are specified

in Java code. It is important that, in the future, the authorizations are specified using a domain

specific language, such asXACML .

The framework deals with the inheritance of access control requirements defined in classes

and interfaces to their fields and methods. However, it does not deal with questions related to

the extension of classes and with the implementation of interfaces, i.e., with the polymorphism

inherent toOO applications. Should a subclass redefine freely the access control requirements

of a method that overrides the ones from the base class? Should it, if necessary, release that

method of any access control? Should it use, by default, the access control requirements defined

on the super method, or the ones defined in the current method,i.e., should the access control

requirements be defined as a disjunction between the access control requirements defined on the

super method and the ones defined in the current method? Should the access control requirements

associated to methods be treated as their pre-conditions?

Currently, Zás does not address any of the previous questions. It may support all or at least

some of them in the future, helping the programmer to decide what to do in each situation, through

the introduction of new types of meta-information about theaccess control requirements, such

as@OverrideAccessControl to state that a methodfoo() , overridden in a given subclass,

fully replaces any access control requirements defined on its super method,@InheritsAccess-

Control to inherit the access control requirements from the super method, causing a disjunction

between the requirements defined on super and on the current method, and@RefineAccess-
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Control to cause a conjunction between the access control requirements defined on both meth-

ods, leading to any attempt to the method on the extending class to require the access control

requirements both from the super method and from the method itself.
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