Zas — An Aspect-Oriented Access Control Framework

Paulo Zenida
Presented to the Instituto Superior d&iias do Trabalho e da Empresa
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering and Telecomnatinits

July 19, 2007






Abstract

Traditionally, access control system architectures asedban the abstract reference monitor
model proposed by Anderson, which tries to separate thesaamntrol logic from the logic of
applications.

The implementation of this model has been difficult sinceeasccontrol presents itself as
a crosscutting concern, i.e., it crosscuts the functitiealiof applications. However, the devel-
opments of the techniques that support the separation afecos, particularly aspect oriented
programming, have been enabling the development of systemich the access control code
is not scattered through the code of the application. Nbetss, these solutions are still too
specific to a given application.

This work presents an access control framework for Javaagtigins, named Zas, which can
be reused and that applies the abstract reference monipoged by Anderson. This framework
supports access control policies using different kindsamitext information and allows them to
be changed at runtime. Zas was developed in the aspectaatiprogramming language AspectJ
and it uses Javaannotations.

We used Zas in several small applications since its inoapso as to gain experience and in-
sight from its application. Nevertheless, to evaluate trégsmance and applicability of the final
version of the Zas framework prototype, we integrated & wery large Web application called
Fénix, which brought us very interesting results, suchhasving the easiness of applicating Zas

to already existing applications, and also the main cawsaddimitations of Zas.



Keywords: access control, authorization, aspect orieptegramming

ABSTRACT



Resumo

As arquitecturas dos sistemas de controlo de acesso shadrealmente baseadas no modelo
abstracto de monitor de referéncia proposto por Andersquoal visa separar a l6gica do controlo
de acesso da logica das aplicacdes.

A concretizacao deste modelo tem sido dificultada peltmfde o controlo de acesso se apre-
sentar como uma faceta transversal as funcionalidadesptiaacdes. No entanto, os progressos
verificados nas técnicas que suportam a separacao dadaem particular a programacao orien-
tada para aspectos, tém permitido desenvolver sistemagiern codigo de controlo de acesso
nao & disseminado pelo codigo das aplicacdes. Paétas solucdes sao ainda concretizacdes
especificas, para uma determinada aplicacao.

Este trabalho apresenta uma plataforma de controlo decagassaplicacdes Java, designada
por Zas, que é reutilizavel e que aplica o0 modelo abstrdetmonitor de referéncia proposto
por Anderson. Esta plataforma suporta politicas de ctintte acesso fazendo uso de diferentes
tipos de informacao de contexto e permitindo a sua aléeramm tempo de execucao. O Zas
foi desenvolvido na linguagem de programacao orientagla aspectos AspectJ e recorrendo as
anotacdes do Java

NOs aplicamos o Zas a varias aplicacdes pequena® desdu comeco, de forma a ganhar
experiéncia e conhecimento através da sua aplicacaenkanto, para avaliar o desempenho e
aplicabilidade da versao final do protétipo da platafo#aa, nds integramo-lo numa aplicacao
Web muito grande chamada Fénix, a qual nos trouxe ressltaulito interessantes, tais como

mostrar a facilidade da aplicacao do Zas a aplicac@existentes, e 0s principais problemas e



iv RESUMO

limitacOes do Zas.

Palavras-chave: controlo de acesso, autorizacao,ar@gao orientada para aspectos



Contents

Abstract [
Resumo iii
List of Figures Vil
List of Tables IX
Acronyms Xi
Acknowledgements XV
1 Introduction 1
1.1 Contributions. . . . . . . . . e 3
1.2 Structure . . . . . . e e e e 4
2 Access control 5
2.1 CONCEPLS . . . . o o e e e e e e e 5
2.2 Access control system architectures. . . . . . .. .. o oL L 7
2.3 AccesscontrolinJava. . . . . . . . . . . e 10
2.4 Access control in object-oriented databases . . . . . .. ... ... ... .. 11
25 Conclusions. . . . . . . e 12



Vi CONTENTS

3 Atoy application and possible solutions 13
3.1 Toyapplication. . . . . . . . . e e 13
3.2 AdhoC. . . . . e e e 15
3.3 JAAS L e 15
3.4 JAASwith Aspectd. . . . . . . . . e e 18
3.5 JAAS with AspectJ and annotations. . . . . . ... ... ... .. ...... 20

4 The Zas framework 23
4.1 Accesscontrolmodel . . . . . .. ... .. 23
4.2 Architecture. . . . . . . . 24
4.3 Design. . . . . e e e 26
4.4 Implementation. . . . . . . . ... e e 29
45 USage. . . . . e e e e e e 37
4.6 Features. . . . . . . . e e e 40

46.1 BasiC. .. . . . . e 41
4.6.2 Advanced . . .. . ... 45
4.6.3 FUtUre. . . . . . . e e 59

5 Evaluation and metrics 63
5.1 FeNiX . . . . o e e e 63
5.2 Analysis. . . . . .. e e e 71

5.2.1 Numberoffiles. . . . . .. . . 72
522 LOC . . . . e 73
5.2.3 Performance. . . . . . . . . e 74
5.2.4 Percentage of affected access controlled methads . . . . . . .. .. 77

525 ACRSR. . . . . . e e e 78
526 Conclusions . . . . . . . . . e 79

6 Conclusions and further work 81



List of Figures

2.1
2.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Abstract reference monitor proposed by Anderson. . . . . .. .. ... ... 7
Abstract reference monitor extended with authoriretiwith predicates. . . . . 8

The architecture of the Zas access control framework. . . . . ... ... .. 25
“Debitaccount” use casediagram.. . . . . . . . . . . .. .o e 27
Class diagram for the banking systemcase study.. . . . ... ... .. ... 28
“Debit account” case study sequence diagram.. . . . . ... .. .. ..... 30
The concept of stack of subjects.. . . . . . ... ... ... ... ... .... 60
Fénix domain level performance before and afterZas. . . . . ... ... .. 75
Fénix services level performance before and afterZzas . . . . ... ... .. 76
Fénix compilation time before and afterZas. . . . .. .. ... ........ 77

Vil



viii LIST OF FIGURES



List of Tables

4.1

5.1
5.2
5.3
5.4

Wildcards currently supportedby Zas.. . . . . .. .. .. ... ... ... .. 44
Number of files before and afterZas. . . . . ... ... ... ......... 73
Lines of code beforeand afterzas. . . . .. ... ... ... ... ...... 73
Percentage of affected access controlled methods. . . . . . . ... ... .. 78
Access Control Requirements Specification Ratio.. . . . ... .. .. .. .. 79



LIST OF TABLES



Acronyms

ACRSR

AJDT

AO

AOP

AOSD

CORBA

CPU

DAC

DBMS

DD

DML

DOM

EJB

FTP

Access Control Requirements Specification Ratio
AspectJ Development Tools

Aspect-Oriented

Aspect-Oriented Programming
Aspect-Oriented Software Development
Common Object Request Broker Architecture
Central Processing Unit

Discretionary Access Control

Database Management Systems

Domain Driven

Domain Modeling Language

Document Object Model

Enterprise JavaBeans

File Transfer Protocol

Xi



Xii ACRONYMS
HT Hyper-Threading

HTTP  HyperText Transfer Protocol

IDE Integrated Development Environment
IT Information Technologies
ITD Inter-Type Declaration

JAAS Java Authentication and Authorization Service

JAR Java ARchive

JDK J2SE(Java 2 Platform Standard Edition) Development Kit
JSF JavaServer Faces

JSP JavaServer Pages

J2SE  Java 2 Platform Standard Edition

LDAP Lightweight Directory Access Protocol

LOC Lines of Code

MAC Mandatory Access Control

NOV Net Option Value

OASIS Organization for the Advancement of Structured Informatstandards
oJB ObJect Relational Bridge

o]0 Object-Oriented

OOP  Object-Oriented Programming



ORM

PAM

RAM

RAD

RBAC

SOA

SPL

UML

XACML

XML

Object-Relational Mapping

Pluggable Authentication Modules

Random Access Memory

Resource Access Decision

Role-Based Access Control

Services Oriented Architecture

Security Policy Language

Unified Modeling Language

eXtensible Access Control Markup Language

eXtensible Markup Language

Xiii



Xiv ACRONYMS



Acknowledgements

| would like to especially thank my advisors, Manuel MenedesSequeira and Dulce Domingos,
for their guidance, expertise, and support. They kept megawktand never let me go down. |
would also like to thank José Pedro Pereira, from Linkareo &lways showed interest in my
research and with whom | had many interesting discussioostatcess control models, archi-
tectures, and techniques. To Ramnivas Laddad, though wex nest personally (only through
e-mail), a special thanks for his interest and motivatingdsovhen this research began and |
showed him my first results. To the Aspect] community in galremd to the Aspectd compiler
development team, especially Andy Clement, for helping nite some hard AspectJ compiler
problems, a deepest thanks.

| would also like to thank the insightful comments from theoaymous reviewers and au-
dience from the ICSOFR006 conference to which | have submitted an accepted paper about
Zas, since it allowed me to discuss with others the firstltesd my work, and especially to the
anonymous reviewers from the AOSID07 conference to which | have submitted a paper about
Zas which ended up being rejected, since those commengsreaty useful to improve the qual-
ity of my research. Finally, | am also very grateful to my fiymespecially my parents and my
brother, who have always helped and supported me in the tooghents, and a very, very special
thanks to my girlfriend, with whom | have learned a lot aboyself and with whom | now know

| can always count on.

XV



XVi ACKNOWLEDGEMENTS



Chapter 1

Introduction

Separation of concerns, as proposed by Dijkstrd, [is a key principle in software engineering.
This principle is used for controlling the complexity of thpplications and defends that, given
a complex problem with different concerns, these concenosild be properly identified, each
addressed separately and, finally, the respective sotuit@grated to produce the final result of
the solution. This principle has been pursued by accessatbaystem architectures, since they
are traditionally based on the abstract reference monitgppgsed by Andersor?], which in fact
tries to separate the access control logic from the logib@fipplication.

Bearing in mind the guidelines which state that securitpinfation TechnologiedT) sys-
tems should be developed by a combination of security eegimgand software engineerini],
and that software engineers should not have to be conceritledecurity issues, and vice-versa,
the development of an application should be separatedihe.security code should not be mixed
with the application code”]].

The implementation of the abstract reference monitor has bidficult, since access control

is a crosscuttingconcern, i.e., “a security requirement that crosscuts bbhsifess part of the)

1The “ability to permit or deny the use of an object (a passiviityg such as a system or file) by a subject (an

active entity, such as an individual or process}d[
2“Features of a program that are orthogonal to the main deositipn of the programi[3]”.



2 CHAPTER 1. INTRODUCTION

application” 7.

Progresses in techniques supporting the separation otomcsuch as design patterds),|
19, 20] and, more recently, Aspect-Oriented ProgrammiA@P) [26, 47, 44], enabled the de-
velopment of systems in which the access control code isgattesed through the code of the
application. Indeed, one of the advantage£\Oi is that it enables the separation of crosscut-
ting concerns from the main decomposition of the applicatidowever, current access control
solutions using these techniques have typically not beesatde nor generic.

This thesis presents an access control framework for Jgsécations, named Z&smainly
inspired by a proposal of Laddad to modularize Java Authattin and Authorization Service
(JAAS) client code usindhOP [26]. Zas controls the invocations of methods and constrects
well as sets and gets of values of fields. Hence, Zas pratesttsods, and fields.

Zas supports access control policies which use differemdskof context information and
enables the change of these policies at runtime. Zas’ aalgas stem mainly from the fact that
an AOP approach is used, allowing it to address some of the probleoml in the application
of industry standards such a8AS [29, 14, 34]. The framework was implemented in tR©OP
language Aspectd] and it uses Java annotations to specify the application’s protected olsject
and their access control requirements. A few imports@P notions used throughout this thesis

are:

e join point — a well defined point in the execution of the pragra
e pointcut — a set of join points, and

e advice — a piece of code that is weaved in all join points ofgbmtcut with which it is

associated.

We used Zas in several small applications since its inoepgo as to gain experience and

insight from its application. Nevertheless, to evaluake performance and applicability of the

3The Zas source code may be foundiip://sourceforge.net/projects/zas/


http://sourceforge.net/projects/zas/

1.1. CONTRIBUTIONS 3

final version of the Zas framework prototype, we integratdd a very large Web application
called Féeni®*, which was also the main source of motivation for the creatibthis framework!
Empirical results of the application of Zas to Fénix areganted in Chaptér.

Throughout this thesis, we assume that the reader is famnd@with the basic concepts of
AOP and AspectJ. Nevertheless, if that is not the case, we dyroegommend reading Laddad’s
AspectJ in Action 26].

1.1 Contributions

The main contribution of this thesis is the development aéwsable framework of aspects and
classes for application-level access control enforcerttattfully separates the functional code
from the access control code. Zas uses Jawanotations, which augments the expressiveness of
the source code, to specify the protected objects and tbessa control requirements.

Other important contributions of this thesis, though na thost relevant, were related to
general contributions to th®OP and AspectJ communities, such as the detection of sevegal bu
in the AspectJ compiler and their registration in the cqroesling bug tracking system.

Similarly, the application of Zas to a project such as késialso a contribution to the com-
munity, since it focuses on the applicationADP to a real, large application. Finally, after the
hard technical and political task of introducing aspect&éaix, with Andrew Clement'’s pre-
cious help, from the AspectJ project development team, aséd Bedro Pereira from Linkare, we
achieved our goal and new applicationsf@P to that project arose, such as contracts checking

(pre conditions, post conditions and invariant conditjons

4Seehttp://fenix-ashes.ist.utl.pt/FrontPage/


http://fenix-ashes.ist.utl.pt/FrontPage/

4 CHAPTER 1. INTRODUCTION

1.2 Structure

The remainder of this thesis is structured as follows. Gérdpbriefly introduces the main access
control concepts and related work. Chapsepresents a very simple toy application to show
the access control crosscutting problem and four diffeeproaches to solve it, ranging from
Object-Oriented @O) ad hoc solutions to Aspect-Orientedd) solutions based 0dAAS and
annotations. Chapter presents the architecture and features of Zas and Chapiealuates its
applicability. Finally, Chapte6 presents the conclusions of the research and lays out p®ssib

directions for further work.



Chapter 2

Access control

Access control is a security service whose purpose it toaguiae the protection of resourées
against unauthorized accesses. This chapter presentsaiheanotess control concepts and the

main contributions and limitations related to the applmabf the abstract reference monitor.

2.1 Concepts

The development of an access control system implies theitil@firof an access control policy
(rules and regulations) and its enforcement through apjat@psecurity mechanisms. Access
control models represent formally the access control @djexpressed through specific access
control languages. Pondet{], Security Policy LanguageSPL) [15] and eXtensible Access
Control Markup LanguageXACML ) [35] are representative examples of this kind of language.

Traditionally, there are two access control models:

1. Mandatory Access ContrdifAC) models, in which access rules are system-wide and usu-
ally fixed. While rules can change over time, users cannaientte them. These models

are commonly used in systems were rigorous access contrefyismportant.

LIn this work we will use the term “protected object” when meiieg to the resource which is subject to access

control.



6 CHAPTER 2. ACCESS CONTROL

2. Discretionary Access ContrdDAC) models give the owner of the protected object the right
to determine the access control policy for that object. €®stems are discretionary in
the sense that a user that was given discretionary accegzotegted object is capable of
granting access to that protected object to other usersseline@dels are used in operating

systems like Unix, in which a user can specify the access toléhe files she owns.

Generically, a discretionary access control policy is a&fiby a set of authorizations, each
typically defined as a tuplés, m, o, pred) stating that subject may legitimately use the access
modem to access to the protected objecif the predicatepred? is true in the context of the
access. The access mode may represent a specific operafmmegel with or over the object, or
an abstract access mode, associated to a set of specifitiopgrdJsing abstract access modes
has the advantage to decrease the number of permissions thighsystem, since each abstract
access mode may be associated to a set of operations, in$Eatply one.

The use of predicates augments the expressiveness of ti@iaations, supporting a more
fine-grained control of authorizations.

As an alternative to th&AC and DAC models, a model based on the notion of role, viz.
Role-Based Access ContrdRBAC), was proposed. This model was very well received, since
the notion of roles fits well to the common notion of functiendrganizations. RBAC models
associate authorizations to roles performed by subjédls RBAC authorization(r, m, o, pred)
states that a subject performing roleean legitimately use mode: to access to the protected
objecto whenever the predicatgred is true. Since subjects are not directly associated with
access modes, but indirectly through the role or roles tlegfppm, the management of individual

privileges in the system is often only a matter of assignimegappropriate roles to each subject.

2In some models the predicate is not used and hence is assaredlwvays true.



2.2. ACCESS CONTROL SYSTEM ARCHITECTURES 7

2.2 Access control system architectures

Access control system architectures are traditionallgtas the abstract reference monitor pro-
posed by Andersor?], Figure2.1l A reference monitor intercepts all access attempts frdoa su

jects to the protected objects. Conceptually, a refereram@tor has two main functions:

e
Authorizations

) Reference
Subject Monitor

Object

Figure 2.1: Abstract reference monitor proposed by Anderso

1. a decider, responsible for evaluating the legitimacyefdccesses,

2. an enforcer, responsible for intercepting all accessmgits and enforce the decision that

was taken.

According to this model, all access attempts are intercepyethe enforcer, which asks the
decider to determine the legitimacy of the access, seag¢chamauthorizations database.

Recently, the Organization for the Advancement of Stredtunformation Standard®ASIS)
has applied this model in its proposal for tkECML access control systeri]. However, im-
plementing this model has been difficult, since access obatosscuts applications functionali-
ties.

Middleware systems supply a simple solution to separatessocontrol from the application

logic, since the decider and the enforcer may be implementiésimiddle layer. Some examples



8 CHAPTER 2. ACCESS CONTROL

of systems adopting this architecture are Common Objeat&sdroker ArchitectureJORBA),
Enterprise JavaBeang(B), andJAAS[29)].

However, when considering application level access cordgquirements, these systems present
some limitations related to the authorization expressgshey can support and the type of ob-
jects they can protect. In general, these systems do nobgupire expressive authorizations
with domain specific information and they can not protectliaptions’ specific objects, such as
specific functionalities.

Supporting the definition and enforcement of more expresaiythorizations is performed
through the use of predicates. Predicates may be definedliffeehent types of specific informa-
tion from the application domain, as illustrated in Fig@r& Using this specific information in
the definition of the predicates, makes it mandatory theddedo have access to that information

at the time of the evaluation of the legitimacy of the access.

Authorizations

Reference
Monitor

Subject — Object

Subject Object
Attributes Attributes

Figure 2.2: Abstract reference monitor extended with atglations with predicates.

Within more generic solutions, a specific module implemehésdecider and the invoker
supplies the domain specific information to the module abdation time B8, 36]. Typically,
these solutions require that applications perform thekavéunction, not avoiding the scattering
of access control code over the application code.

Alternatively, the specific module can itself obtain the damspecific information through

requests to the applications [L5]. This approach allows the decider to be invoked by middtewa



2.2. ACCESS CONTROL SYSTEM ARCHITECTURES 9

systems, promoting the separation between access conttalpgplication code.

However, within solutions that implement the decider withi specific module, the domain
specific information that is available to the decider is ¢ised by the application interface
predefined.

Additionally, protecting application specific objects stnaints the separation between the
enforcer and the application logic, resulting in the seatteand in the entanglement of that code
over the application modules.

To avoid scattering enforcer code throughout the appticatnany techniques addressing the
problem of scattered concerns have been used, such as gesigms, particularly the proxy
pattern P2], meta-level or reflexive architectured|[and, more recenthyp\OP [9], in which our
work fits.

ThoughAOP presents potential benefits in the modularization of carcamhose implemen-
tation would be naturally scattered through the applicatiode, there are not many examples
of its application to real cases in the literature;,[11]. Bostrom [L1] uses this paradigm to add
encryption to a healthcare database application. Veggd. [45] and Shah and Hill 9 apply
AOP to enforce secure coding practices.

Considering access control, this paradigm can make eagyptbecer implementation. During
the development process, the access control code is imptethseeparately. However, after the
composition (the weaving process), this code is an intgradlof the application47].

De Win [47] usesAOP for access control enforcement, analyzing Aspect-OroeBiaftware
Development AOSD)-based development to the development of a secure FilesfEnaRrotocol
(FTP) server.

Bodkin [9] analyzes the requirements ADP application to security, focusing on the expres-
siveness of the language constructs that enable the spéoifiof join points.

More recently, Verhanneman et. /] proposed a prototype of a modular access control ser-
vice that can enforce expressive policies, while accogrftin application-specific state, without

requiring invasive changes to the application, using Qdgsa aspect-oriented language) so that



10 CHAPTER 2. ACCESS CONTROL

it is possible to change the policy without modifying the kgation. One of this prototype goals
is, like Zas, reuse. Nevertheless, it does not supply nérleecadvanced features provided by

Zas, which will be explained in Chaptér

2.3 Access control in Java

The Java virtual machine can run mobile code such as appletsinitial access control model
aims to prevent unauthorized Java applications to acces®dify computer resources (for in-
stance: files). This way, within this model, the subject iBra#l according to the code origin - it
is a code-centric model.

JAAS was first introduced as an extension to J2&E(Java 2 Platform Standard Edition) De-
velopment Kit (DK) and became part of its core with versibd. [6]. JAAS added a new access
control model to the Java language: a user-centric modsidBs users can be subjects, protected
objects can also be specific application resources, i.ecifspapplication functionalities.

In JAAS, classSubject is used to represent a subject (e.g., a user) authenticagediven
system. A subject is an aggregation of principala which each principal represents one of
the different “entities” from whom the subject derives itgleority, e.g., a principal may be a
username, the name of a group to which she is associatedpta that she performs. This way,
JAAS also supports thBBAC model.

However, the defaullAAS does not support runtime changes to the access control/pitic
security manager, responsible for the definition of the s&@®ntrol policy, cannot change the
principals’ authorizations and reflect the changes intahdication without restarting it. Addi-
tionally, JAAS does not support predicates, which limits the expressagagits authorizations.
Finally, it has the drawback of not allowing the separatietw®en the enforcement code and the

application logic when we try to protect specific protectegeots: the invocation of the enforcer

3“person [entity] from whom an agent’s [subject’s] authpuierives™.
4“principal”. Merriam-Webster Online Dictionary2007. http://www.merriam-webster.com/ (The

31st of March, 2007).


http://www.merriam-webster.com/

2.4. ACCESS CONTROL IN OBJECT-ORIENTED DATABASES 11

must be explicitly made in the application wherever it regsiaccess control, leading to code
scattering and to entanglement of concerns.

Laddad P6] modularized the application dAAS usingAOP, eliminating the invasive nature
of the enforcement code. Nevertheless, this proposal pieseme limitations, as we will detail

in Chapter3.

2.4 Access control in object-oriented databases

Access control models fd@O Database Management Systerd8MS) present, as specific re-

quirements, the incorporation QfO concepts, such as, the difference between classes and class

instances, class hierarchies, composed objects and nersiobjects. Inheritance and versioning

makes access control harder. For example, as pointed outrddyodn {10, “if a given user has

access to a parent class, is there any implicit permissiogstriction on access to a child class?”.
Consequently, to address these requirements, the acaessl coodel defined and supported

by ORIONOO DBMS presents the following contributions(]:

1. the identification of the access modes adapted to thesgstead, write, generate and read

definition,

2. the identification of the objects that need to be protestdere it is pointed out the separa-

tion between the class concept and the protected objeats ahd the set of class instances,

3. the definition of the hierarchical relations between asamodes and between protected
objects. These relations are used on the definition of iraptio rules of authorizations,
which allows us to obtain implicit authorizations from eixjtly defined authorizations,

according to the following criteria:

(a) the hierarchical relations pre defined in the model,

5“ORION was a prototyp©0O DBMSdeveloped at MCC, an American consortium by Won Kim and hisigr’,
in http://web.bilkent.edu.tr/Online/oofag/oo-faq-38.0.3.html.



12 CHAPTER 2. ACCESS CONTROL

(b) authorizations defined for a class are propagated talbdllasses,
(c) authorizations of a complex object are propagated tsuibsobjects,

(d) authorizations defined for a generic version of an olgeetpropagated to all its ver-

sions (the authorizations defined specifically for a versieapplied to that version

only).

Although a variety of models addressing access contr@@DBMS have been proposed,
as pointed out by Strahornl(], none of them have been of sufficient merit to be completely
incorporated into commercial products. As a result, eatfierdnt commercial next-generation
database provides its own flavor of security. In order fos¢ghdatabases to become as accepted in
industry as the relation databases, the proposed modetsoamelnew ideas need to be combined
into a standard for security in next-generation databases.

Though the focus of this work is not answering to questidkes‘tivhat is the relation between
the access control specified on a method of a class whoseasabsloverride it”, in our opinion,
this kind of relations should be explicitly defined in the eiince it augments the expressiveness

of that code and hence increases the code readability.

2.5 Conclusions

In this chapter, we present the main access control coneepts/e overview the main contribu-
tions and open problems related to the application of theatigeference monitor, to avoid the
scattering and entanglement of the access control contemmsghout the logic of the applica-
tion, which constitutes the problem we are addressing swioirk. Finally, the chapter discussed
the additional problems that controlling accesses in ¢mdentation brings, such as the relation
between a class and its sub classes. Though we present avivetrte modularize access con-
trol in an OO language, we did not address those problems, since we needksgrly limit the

boundaries of our work.



Chapter 3

A toy application and possible solutions

What do the classical solutions to the access control pnolbd®k like? What are their main
drawbacks? What exactly are we trying to solve? This brigfptér attempts to hint at the
answers to these questions by proposing a very simple tdicappn and presenting solutions to
the access control problem using some of the techniquessdied in the previous chapter, ranging

from ad hoc solutions to the use #AS improved by the use 0AOP and Jav& annotations.

3.1 Toy application

Suppose we have a simple banking system with an operatiehitf)  — that needs to be access

controlled,

public class Account {
private User owner;

publ i ¢ Account(User owner) {
t hi s.owner = owner;

}

public void debit( float amount) {
...

}

13



14 CHAPTER 3. A TOY APPLICATION AND POSSIBLE SOLUTIONS

and the following access control rules,

1. Business operations are for authenticated users onighvane instances of a classer
representing the subject. Users have their privilegesarsiistem assigned from a set of
abstract access modes,

public class User {
privat e Collection<String> abstractAccessModes;
privat e String name;

publ i ¢ User(String name) {

t hi s.name = name;

t hi s.abstractAccessModes = new HashSet<String>();
}
publ i ¢ Collection<String> getAbstractAccessModes() {

ret urn abstractAccessModes;

anddebit()  requires abstract access matiit

The access control policy in this case would be defined byuple1t
(authenticatedUser, debit, debit(), true).

The testing code for this example would be like:

public class Test {

public static User login() {
/I for simplicity, it simply returns a new instance of user
// with the abstract access mode “debit”.

}

public static void main(String args[l) {
User authenticatedUser = Test.login();
Account account = new Account( new User("John Doe"));
account.debit(100.0f);



3.2. AD HOC 15

3.2 Adhoc

In anOO ad hoc solution, methodebit() needs an extra argument, the authenticated user, so
that it is possible for the method to evaluate the legitimafde access. MethdthsAbstract-
AccessMode() simply checks if the abstract access mode passed as argisroentained in the
authenticated user abstract access modes:

public class Account {
public void debit( float amount, User authenticatedUser) {
i f (lauthenticatedUser.hasAbstractAccessMode("debit")) {
t hr ow new AuthorizationException();

}

/I ... as before

}

it is now necessary to pass the authenticated usdsttio)

public class Test {
public static void main(String args|]) {
/... as before
account.debit(100.0f, authenticatedUser);

}

This approach forces us to create non-reusable acces®lcorchanisms from scratch. It
also leads to the scattering and entanglement of the acoesslcode throughout the application

code requiring access control.

3.3 JAAS

Our main focus while studying existing authorization towkss JAAS, since it is a standard for
authentication and authorization in Java][and an integral part of théDK.
In JAAS, there is no need for an extra argument in metthetdt() , containing the authenti-

cated user, sinc&A\ASfetches the currently logged in subject through stack icispe. Therefore,



16 CHAPTER 3. A TOY APPLICATION AND POSSIBLE SOLUTIONS

on the callee side — methabit() — it would be only necessary to calleckPermission() ,
which associates the abstract access nietie to the method:

public class Account {
public void debit( float amount) {
AccessController.checkPermission( new BankPermission("debit"));
I ... as before

However, on the caller side — methathin() - it is necessary to wrap the call to method
debit()  inside adoAsPrivileged() invocation to which the authenticated subjettust be
passed as argument, followed by an inline anonymous clasadirgPrivilegedAction and
overriding itsrun() method, and finally by an instance of thecessControlContext to be

tied to the specified subject and action which, when set th fautes the instantiation of a new
AccessControlContext with an empty collection oProtectionDomains .2
public class Test {
public static void main(String args[]) {
/I ... authenticate subject and get user advice code

Subject.doAsPrivileged(authenticatedUser, new
PrivilegedAction<Test>() {
public Test run() {
account.debit(100.0f);
/[ it has to return something. In this case, since debit()
/[ is not a procedure, it returns null.
return null;

}
Y, null);

}

public class User inplenments Principal {
...

}

LJAAS needs a special kind of subject, which means that the ofigirthentication solution would need to be

slightly changed. However, since this is not our focus, veerdit include it here.
2Seenttp://java.sun.com/j2se/1.4.2/docs/api/java/securi ty/ProtectionDomain.html


http://java.sun.com/j2se/1.4.2/docs/api/java/security/ProtectionDomain.html

3.3. JAAS 17

public ¢l ass BankingPermission ext ends BasicPermission {
...

}

JAAS is a good, non-ad hoc solution to the problem of supplyingtoyrapplication with
access control, especially in what concerns authenticaliofact, JAAS authentication model is
based on the concept of Pluggable Authentication Moduirés/), allowing developers to easily
change from one authentication module to another, by siipdyging a policy file, without the
need to recompile the application.

However,JAAS is implemented and typically applied usi@g approaches, thus being prone
to the common problems of code scattering and tangling: alsave seen, code must be added
to the application classes in order to implement authadmdioth at the callee and at the caller
code. As stated by Scott{], JAAS requires considerable configuration effort and is by nature
totally invasive.

Security policy files are used to specify the principals ahdtare their abstract access modes.
E.qg., for the current example, we would need a policy file sasch

grant Principal banking.User “"authenticatedUser" {
permission test.BankingPermission "debit";

3

JAAS access control has some weaknesses but it is still cleady-ad hoc solution, meaning

that developers do not have to create it from scratch. It&@dvantages are that

1. itis used by the access control of the Java language, itself

2. it separates the security policy from the applicationscodcurring to external files defining

the principals and their abstract access modes granted,

3. itis a standard in Java.

However, JAAS access control forces changes both to the caller and to thee acaode.

JAAS, thus is very intrusive. All calls to access controlled noeth must to be wrapped inside



18 CHAPTER 3. A TOY APPLICATION AND POSSIBLE SOLUTIONS

Subject.doAsPrivileged() blocks of code, leading to reduce code legibility and inseea
maintenance efforts. This drawback, combined with thetifjability) complicated nature of

JAAS (and implementation details) makes it hard to adopt the dxwaonk in real applications.

3.4 JAAS with Aspect]

Laddad p6] addresses the intrusive nature AS and shows the potentials and strengths of
usingAOP to modularize access control.

public class Account {
public void debit( float amount) {
/I ... as before

}
}

public class User inplenents Principal {
...

}

public cl ass BankingPermission ext ends BasicPermission {
...

}

The original toy project code practically suffers from n@aolges with the introduction of the
access control concerns, since the access control relateis all modularized in the aspect.
In Laddad’s proposal, there is an abstract aspect that rieduks concretized later in the client
application, as will be explained later in ChapterThat base aspect has an abstract pointcut to
be defined in specific implementations of the aspect and araabsnethod returning th#AAS
Permission class associated with a given method.

public abstract aspect AbstractAuthAspect {

privat e Subject authenticatedSubject;
public abstract pointcut authOperations();

/[ authenticate subject advice code

public abstract Permission getPermission(JoinPoint.StaticPart



3.4. JAAS WITH ASPECTJ 19

joinPointStaticPart);

Object around(final Account account) :
authOperations() && ! cf | owbel ow(authOperations()) {
Subject.doAsPrivileged(authenticatedSubject,
new PrivilegedAction<Object>() {
publ i c Object run() {
return proceed(account);

}
}, null);
return null;

}
bef ore() : authOperations() {

AccessController.checkPermission(
getPermission(thisJoinPointStaticPart);

In our toy project, the previous aspect would be implemeatedbllows, leaving the client

code totally free from any access control related code.

publ i c aspect BankingAuthAspect ext ends AbstractAuthAspect {
public pointcut authOperations() :
execution(public void Account.debit( fl oat));

publ i ¢ Permission getPermission(JoinPoint.StaticPart
joinPointStaticPart) {
return new BankingPermission(joinPointStaticPart.
getSignature().getName());

AOP enables to achieve a better modularization and separatioangerns, by putting the
code related to authentication and authorization insideaipect. However, Laddad’s proposal
assumes that each method has associated to it an abstess atade having the same name as the
method. Therefore, it would be necessary as many abstreessamodes as the protected objects
in our application. Finally, Laddad’s proposal is based aargification, which is a problem in

AOP because of the difficulties in controlling the scope of thpligation of the aspects.



20 CHAPTER 3. A TOY APPLICATION AND POSSIBLE SOLUTIONS

3.5 JAAS with AspectJ and annotations

This solution uses annotations, allowing to both mark tleegmted objects and define the abstract
access mode required to access that protected object.f@iteer@e would create an annotation,
as follows,

@Retention(RetentionPolicy. RUNTIME) publ i c @interface
AccessControlled {

publ i c String name();

publ i c String actions();

publ i ¢ Class<Permission> permissionClass;

having as its elements the name and actions needed to passd@ation of clasBermission

in JAAS, and theJAAS permission class itself, needed to access the protectedochefThat
annotation would then simply be added next to the signatitfeeanethod we want to have under
access control,

public class Account {
@AccessControlled(name = "debit", actions = ",
permissionClass = BankingPermission.class)
public void debit( float amount) {
/I ... as before
}
}
public class User {
privat e Collection<Permission> abstractAccessModes;
...
} public class BankingPermission ext ends BasicPermission {
/l constructor with a String parameter

The access controller aspect would be modularized as
public abstract aspect AbstractAuthAspect {
privat e Subject authenticatedSubject;

publ i c pointcut authOperations() :
execut i on(@AccessControlled * ok oxox (L))



3.5. JAAS WITH ASPECTJ AND ANNOTATIONS 21

/[ authenticate subject advice code

publ i ¢ Permission getPermission(AccessControlled ac) {
final Class permissionClass = ac.permissionClass();
final String name = ac.name();
final String actions = ac.actions();
I ... instantiate the permission with the
I ... appropriate arguments
return permission;

Object around(final Account account) :
authOperations() && ! cf | owbel ow(authOperations()) {
Subject.doAsPrivileged(authenticatedSubject,
new PrivilegedAction<Object>() {
publ i ¢ Object run() {
return proceed(account);

}
}, null);
return null;

}
bef ore() : authOperations() {

AccessController.checkPermission(
getPermission(thisJoinPointStaticPart);

Since there is no abstract method in the previous solutr@ninhplementation of the concrete
aspect is straightforward, simply being necessary a nstradi aspect to extend it.

publ i c aspect BankingAuthAspect ext ends AbstractAuthAspect {

}

Annotations add more semantics to code thus improving itdityu since it augments its
expressiveness while reducing scattering and entangkenfamotations may be though of as
allowing the programmer to express in the code its requieeassitics, still oblivious of the exact

way in which these semantics will actually be implemented.



22 CHAPTER 3. A TOY APPLICATION AND POSSIBLE SOLUTIONS

The use of annotations to mark the access controlled metadmneficial since, e.g., they
force the invocation otheckXXX() to be executed at the beginning of the access controlled
method and never in the middle or in the end, and addressgadbéem of the separation of
concerns, since methods are marked as access controlleth mdt have any access control-
related code in their bodies.

As presented in this exampleDP together with annotations is a powerful technique to mod-
ularize access control. However, this solution dependbiense ofJAAS, it does not decrease its
required configuration effort, and it does not take into act@redicates, i.e., access control rules
based on domain or context specific information. E.g., agldinew access control rule specify-
ing that only the owner of the account is allowed to debit Hatount is not easy to accomplish

with JAAS. Zas, as will be seen in Chapt&rsolves this.



Chapter 4

The Zas framework

In this chapter we present Zas, an access control framefopdava applications that applies the
abstract reference monitor proposed by Anderson. It isatdasand supports authorizations with

domain specific information.

4.1 Access control model

Generically, an authorization is defined as a tuplen, o, pred) stating that subject has the
access mode: over the protected objeotif the predicatepred is true.
In this section we refine the generic authorization definiiio order to meet access control

requirements of Java applications.

e Subjects The Zas framework is not restricted to any kind of subjéet, subjects can

represent users, groups of users or roles, etc.

e Access modesThe Zas access control model uses the concept of abstreessamode:
abstract access modes are granted to subjects and areatss$doioperations that can be

done over protected objects.

e Protected objectsThe Zas framework aims to protect fields and methods. Tleeatipns

23



24 CHAPTER 4. THE AS FRAMEWORK

we can perform over fields are sets and gets and the operagiocamperform over methods
is execute. To reduce the number of access control requittsme need to define, Zas also
supports their definition for classes and interfaces. Thesess control requirements are

propagated to all non private members of the class/inteifaitributes and methods).

e Predicates Generically, predicates are used to augment the authiomnzaexpressive-
ness, supporting the definition of more fine-grained autlations, restricting their appli-

cation [L8]

Predicates or conditions may use different types of infaionasuch as:

— user characteristics, e.g., name, date of birth, gendeonadity, etc.
— object characteristics (the access control depends orotiiernt)

— external conditions, e.g., the access localization (tleess control depends on the
context), previously performed accesses (the accessot@®&pends on the context

flow)

— relation between entities

This way, we split authorizations into two tuples; m, pred) and(m, op, po). The first tuple
defines that subjecthas the abstract access maddf pred is true. The second one defines that
any subject that has the abstract access modan perform the operatiosp over the protected
objectpo. From now on, we call the fist tuple as an authorization andgé&wend one as an access

control requirement.

4.2 Architecture

The architecture of Zas is based on the abstract referenoéon as illustrated in Figuré. 1
The Zas enforcer, the main contribution of this work, isp@ssible for intercepting every

access to protected objects, gathering the context intitmmaecessary to the evaluation of au-



4.2. ARCHITECTURE 25

thorizations, passing it to the decider (which can be segpliy client code), and finally for
enforcing the decision taken.

The Zas decider is responsible for deciding whether a stibpn legitimately access a pro-
tected object, and for returning its decision to the enfgrse that it may grant or deny access
from the subject to the protected object.

These functions include the following steps:

Subiect 1. Access attempt Zis subsystem 6b. Granted access Protected
o) / \ Object

2b. Execution
context

2a. Subject
2c. Abstract

Access modes
Enforcer o

3. hasAccess
(attributes)

1
5. Response:

true or false - _/

2d. Invocation
4 Policy context

6a. Derly access

Thi
PAP E row Context
xception

Figure 4.1: The architecture of the Zas access controldveonk.

1. The subject attempts an access to the protected objexenfhrcer intercepts the access.
2. The enforcer collects the context information, partaclyl the one that the decider needs:

2a. The subject.

2b. The protected object and its usage context, e.g., treeplbhe method and the argu-

ments associated to the invocation of a method.



26 CHAPTER 4. THE AS FRAMEWORK

2c. The abstract access modes required to access the pdotdgect (specified through
Java5 annotations and Zas eXtensible Markup Languagdl() files, and gathered
through reflection) and other architectural meta-infororathat the enforcer may

need.
2d. The static context in which the protected object usageblean requested, e.g., the
method containing the code that tries the access.

3. The decider gets the context information required touatalthe legitimacy of the access.

4. The decider searches in the access control policy defitedhally from the code (e.g., in
JAAS policy files orXACML).

5. The decider returns to the enforcer the result of its atalo.
6. The enforcer enforces the decision that was taken:

6a. Either an exception is thrown, in the case of an accesalden

6b. or the access proceeds, otherwise.

4.3 Design

The design of the framework is presented here using extensidhe Unified Modeling Language
(UML) [37, 10] proposed by Jacobson and W], to support aspect orientation, and by Halvorsen
and Haugeni4], to represent exceptions being thrown in sequence diagrdim simplify this
presentation, the explanations and the diagrams wereedptdi the toy application presented
in Chapter3.

Figure4.2 presents the use case associated to the debit of a bank acAousuthenticated
user tries to debit an account. To perform that operatiaygh, she requires authorization. The

access control is supplied by the subsystem Zas, whichisncese is a realization of the Zas



4.3. DESIGN

framework in the form of an access control subsystem addptdte banking application

realization consists of:

Banking System
Debit account

«extend»

Authenticated user Zis Subsystem

«aspect»

BankingEnforcer

Zas framework l ...... -l ]Zas
\V4

«aspect»
Enforcer

Control access

It applies the behavior of Zas
framework, as if the behavior

| was specified in the concrete

aspect. Unlike methods the
behavior (extensions), advices,
can not be overriden

Figure 4.2: “Debit account” use case diagram.

access modes associated to them,

the subjects of access control.

the optional external specification of the access contoplirements, and

27

. This

the definition of the default decider (and other optionaidecs specific to the application)

the specification of the protected objects whose accessdshewontrolled and the abstract

the parametrization of the framework’s generic code withapplication class representing

In the case of the account debit, the access control may Inease@n extension to the basic

use case, providing it, in a non-invasive way, with the regglaccess control functionalities.



28 CHAPTER 4. THE AS FRAMEWORK

«aspect»
«aspect> J BankingEnforcer
Enforcer<User> -authenticatedUser

pointcuts +currentSubject()
topLevelAccessToControlledProtectedObjects(AccessControlRequirements Decider<User>
Req) = accessToControlledProtectedObjectsForExecution(req) &&

Icflowbelow(topLevel AccessToControlledProtectedObjects()); «uses» +internalHasAccess()
accessToControlledProtectedObjectsForExecution(AccessControlled req) = f------------- +hasAccess()

(accessToControlledConstructors() |l +currentSubjectAccessModes()

accessToControlledMethods()) && @annotation(req); +setCurrentSubject()
accessToControlledMethods = +getCurrentSubject()

call(@AccessControlled !private * *..%.#(..));

methods BankingDecider<User>
+currentSubject() ThasAccess)
+currentSubjectAccessModes(
class extensions
. _| _ | The class whose methods are
<k>S — — — — — — /1] annotated. In this particular
operations case, Account.
<O — — —_— —
before( topLevelAccessToControlledProt?ctm)b'_]a:ts - /| —|— — TheA method where Athe
controlTopLevelAccess ?dee will be applied,
} i.e., where the call to
the annotated method
occurs: main(String[])
in class Test.

Figure 4.3: Class diagram for the banking system case study.

As can be seen in Figuré.3 the main entities in Zas, the enforcer and the decider, are
modularized respectively by the abstract and generic agpéarcer and by the abstract class
Decider . Zas subsystems are realized in each application by theretiration and parametriza-
tion of Enforcer , by the non-abstract class extension to the ded@eider , and by the anno-
tation(s)AccessControlled contained or injected in the application code.

The parameter of the generic aspesforcer is used by client code to specify the class that
represents the subjects of access control in the applrcaitiothe banking system case, subjects
are simply instances of classer .

The concretization of the abstract aspEoforcer is essential to make the access control

available in the application: in AspectJ, abstract aspleat® no effect on their own. This con-



4.4. IMPLEMENTATION 29

cretization requires the client code to implement the alstmethods obecider , particularly
the methodcurrentSubject() , Which returns the subject involved in the current access at
tempt anddefaultAccessVerifierClass() , which defines the default decider class (this
class must be a non-abstract extension to diessder , having one no-argument constructor),
responsible for evaluating the legitimacy of the accessmait.

Additionally, the client code must extend cla3scider and implement its abstract method
currentSubjectAccessModes() , Which returns a textual representation of the abstraesscc
modes that the subject has permission to use, which aresaegde evaluate the legitimacy of an
access attempt.

The sequence diagram in Figute2 represents the behavior of Zas subsystem in the case of
the debit operation. The messages are exchanged betweehjdoes involved in the use case,
including its extension supplied by the Zas subsystem. Qédteavior added by the subsystem
to the debit operation occurs before its invocation. Thig,whe invocation happens only if
the authenticated user has access, after the evaluatidre afccess by the decider in the Zas

subsystem (which in this case is the decider module provigieths framework).

4.4 Implementation

The generic aspeé@nforcer has as a parametBubject , of which the access control subjects
are supposed to be instances:

public abstract aspect Enforcer<Subject> ...

The framework may thus be parameterized with the specifie bfthe subject used by a given
application, in this case with classer , as will be seen later.

The extension to the behavior of the debit account operatixtension that corresponds to the
access control concern, is defined byefore()  advice from the aspect:

/I Advice name: controlTopLevelAccess
bef or e(AccessControlled requirements) :



30 CHAPTER 4. THE AS FRAMEWORK

:Enforcer<User>
:Test _

| «create»
+ J‘ :Account

{before (call (@ AccessConLrolleti HE EE) conLroleipLevelAccess

requirements = buildProtectcdbbjectRequircments()

checkAuthorization(...)

S A

getProtectedObjectAccessModes(...)

t

|

|

: authenticatedUser = currentSubject()

|

: «create» :Decider<User>

|
exception setSubject(authenticatedUser)
AuthorizationException() .
[ !hasAccess ]| \ | internalHasAccess(..) | currentSubjectAccessModes()

\
\ hasAccess(...)
\ hasAccess

7
e

debit(...)

y

-1

L)
Figure 4.4: “Debit account” case study sequence diagram.
topLevelAccessToControlledProtectedObjects(requirem ents)
/I ... refinements in the advice definition.
{
...
checkAuthorization(

AccessControlRequirements.buildFrom(
requirements, ProtectedObjectKind.convertToEnum(
t hi sJoi nPoi nt .getKind())),
t hi sJoi nPoi nt, thisEnclosingJoinPointStaticPart,

fal se, false);
...



4.4. IMPLEMENTATION 31

This advice is applied to the invocation (call to a methodsetror get to the value of a field) of
the protected objects annotated witbcessControlled that are not invoked within the con-
trol flow of a similarly annotated methotbpLevelAccessToControlledResources ). The
methodbuildFrom()  returns a new instance of classcessControlRequirements created
from the protected object’s annotation. That class ingaepresents the annotation elements’
data and is associated to the kind of protected object (rdedh@onstructor, and set or get to
the value of a field). That class represents both the elendatasfrom the Zas framework access
control annotations and the access control requiremeetsfigal in the ZasKML files, which
will be presented later.

The most important part of the behavior of this advice is enpénted in the metharheck-
-1

Authorization()

private  voi d checkAuthorization(
AccessControlRequirements requirements,

JoinPoint joinPoint, JoinPoint.StaticPart enclosingSta ticPart,
bool ean isShallow, bool ean inCflowOfAccessControl) {
...

Subject currentSubject = currentSubject();

Decider<Subject> decider = deciderClass(requirements,
joinPoint, linCflowOfAccessControl);

String protectedObjectAbstractAccessModes =
getProtectedObjectAccessModes(requirements, joinPoin t);
decider.setCurrentSubject(currentSubject);

...
i f (!decider.internalHasAccess(protectedObjectAbstract AccessModes,
joinPaint, enclosingStaticPart))
handleSituationWhenAccessNotGranted(joinPoint.getSt aticPart());
}
The parametejoinPoint in the invocation of methodeciderClass() is required so

that it is possible to register the decider and associate ihat join point (there is only one

LIt is usually a good practice to define the arguments passadnethod as final. However, in this thesis, for

presentation purposes and due to the limitations in ternttssopage width, we decided not to include them.



32 CHAPTER 4. THE AS FRAMEWORK

instance of decider per protected object, which is credteditst time that the protected object is
accessed and reused later on). The arguis8htllow control the depth of the access control
enforcement, as will be further explained in Secto@.2.3 The argumeninCflowOfAccess-
Control controls either the decider class should be registerechéoctirrent join point or not:
the registration is performed only in top level accesses.

The methodtheckAuthorization() obtains the subject through the invocation of the ab-
stract methodturrentSubject() , Implemented in the concrete asp@enkingEnforcer
and obtains the protected object’s abstract access moalestire information specified in its
meta-information (e.g., in annotatigxccessControlled , presented later in this section), by
invoking getProtectedObjectAccessModes()

In the methodtheckAuthorization() it is also necessary to obtain an instance of the de-
cider class specified in the protected object’s meta-in&tiom and invoke its methadternal-
hasAccess() , which compares the abstract access modes expressionddefitiee protected
object’s access control requirements with the abstragsacmodes the subject has permission to
use, obtained through the invocation of the abstract methodntSubjectAccessModes|()
(implemented in the concrete decidBatkingDecider )), returning true only if the subject has
the required abstract access modes to access the proteget ddditionally, it invokes method
hasAccess() ,optionally implemented in client code, thus enabling tdqren additional access
control verifications.

@Privileged
public class Decider<Subject> {
public final bool ean internalHasAccess(
String protectedObjectAccessModes,
JoinPoint joinpoint,
JoinPoint.StaticPart enclosingStaticPart) {
bool ean result = fal se;
...
return result &&
hasAccess(protectedObjectAccessModes, joinpoint,
enclosingStaticPart);



4.4. IMPLEMENTATION 33

publ i c bool ean hasAccess(String protectedObjectAccessModes,
JoinPoint joinpoint, JoinPoint.StaticPart enclosingSta ticPart) {
return true;

}
WheninternalHasAccess() returns true, the access to the protected object proceeds im
mediately. When it returns falseheckAuthorization() throws a runtime exception. Notice

that it is a runtime, unchecked exception, agAm\S, therefore making it possible for Zas to be
totally non-invasive, since unchecked exceptions do ne¢ kabe declared as part of the methods
signatures.

Apart from the arguments already mention@dsAccess() gets also the execution (dy-
namic) and invocation (static) contexts of the access gitem

The dynamiccontext is necessary so that the access control decisiorbmagsed on data.
However, if the impact in the application performance isrded too large, a future version of
the framework will possibly define two kinds of authorizais) as suggested by Laddad]:
AccessControlled andDataDrivenAccessControlled , together with two base deciders —
one receiving dynamic information, the other static.

It is important to notice that the claBgcider and all its subclasséare marked as privileged
(further details are presented in Sectibf.2.9.

This is necessary because these classes often need toauess to protected objects, partic-
ularly when it is necessary to compute the value of predscaséng domain specific information,
e.g., protected object’s properties. This may be a probsence in the context of these classes,
one may access every data of a given application, therdfosds an open issue for further inves-
tigation.

In AspectJ, pointcuts may be either named or anonymous. riergeé named pointcut defi-

nitions may be overridden by definitions with the same nandenived aspects. When it is not

2Annotation@Privileged is annotated witi@® Inherited



34 CHAPTER 4. THE AS FRAMEWORK

desirable, pointcuts may be qualified as final in the basecagpesven private, when they are
seen as implementation details.

The two main pointcuts from aspeEnforcer are private, i.e., they are implementation
details and hence they cannot be overridden:

private pointcut topLevelAccessToControlledProtectedObjects(
AccessControlled requirements) :

accessToControlledProtectedObjectsForExecution(requ irements) &&
Icfl owbel ow(
accessToControlledProtectedObjectsForExecution(Acce ssControlled));

privat e pointcut accessToControlledProtectedObjectsForExecution(
AccessControlled requirements) :
(accessToControlledConstructors() ||
accessToControlledMethods()) &&
@annotation(requirements);
publ i c poi ntcut accessToControlledMethods() :
cal | (@AccessControlled ! private * x .. x. *(.);

This is due to the fact that any change in these pointcuts mapoomise the Zas subsystem.

On the contrary, derived concrete aspect&wforcer may override pointcuaccessTo-
ControlledMethods . For instance, aspe®&ankingAccessController could refine the
pointcut definition in such a way that the private methodslaialso be subject to access control.

By default, and since this framework is still a prototypee tised join points correspond to
invocations of methods annotated witbcessControlled  : the application of advices to these
join points has the advantage of allowing one to obtain nbt thre dynamic context of execution,
but also the static context of invocatién.

Nevertheless, in an implementation of the framework fordpition, this choice is not the
most appropriate, for security reasons. Advices, in the oagvocations, are weaved in the code
that accesses the protected object. If this code is extearthe application or, for some reason,

can not be manipulated by the AspectJ compiler, the weavitige@access control advices may be

SWe have already started an implementation using executiostead of call, though, in
the branch “Bzas-new-annotations”, which may be found in the Web site bk tproject at

http://sourceforge.net/projects/zas/


http://sourceforge.net/projects/zas/

4.4. IMPLEMENTATION 35

impossible, compromising the security of the applicatibherefore, the Zas framework should,
by default, control the executions, since the compiler lidlsatcess to the application of which
the subsystem Zas is a parAdditionally, the protected object as defined in Zas is theshad
itself, i.e., the execution of the method and not its invimsat

The control of method executions, not invocations, will makharder to implement some of
the current features of the Zas framework, described iti&eé.6.2 it will no longer be possible
to obtain the static context of invocation through the imiplvariablethisEnclosingJoin-
PointStaticPart , thus, the implementation of some current features fros\i#l be harder.
Implementing execution side access control might reqhiesobservation and the parsing of the
Java stack trace. However, the Java stack trace does nad@tbe full signature of the methods
on the stack, which means it is not possible to access theoahdiy simply parsing the stack.
The solution for this problem would include the creation gbseudo-stack, managed by Zas,
which works as an add-on to the Java stack trace, in orderdgment its information. This
implementation has already begun, as detailed in Seéti®R

The annotatiomccessControlled is used by the Zas framework to specify the meta-
information used to control the access to methods:

public @interface AccessControlled {
String value() defaul t "#%
Class<? extends Decider> deciderClass()
def aul t Decider.class;
Depth depth() defaul t Depth.DEEP;

Class[] trusts() defaul t {};
bool ean inherited() default fal se;
bool ean suspicious() default fal se;

}

Thevalue() elementis used to declare the names of the abstract accdss neguired to access
to the protected objects. By default, its value#s |, which represents conventionally the full

signature of the protected object (though without retupejy

4Bug submitted inhttp://sourceforge.net/tracker/?group_id=195589&ati d=954049 .
SUsing full signatures prevents the collision of the namethefabstract access modes.


http://sourceforge.net/tracker/?group_id=195589&atid=954049

36 CHAPTER 4. THE AS FRAMEWORK

ThedeciderClass() element is used to explicitly specify the class responsidsldeciding
whether the access should be granted. By default, it is HesDecider . Notice that different
protected objects may define different deciders.

Thedepth() element specifies the enforcement depth, i.e., it specifiesher control access
should be performed (or not) during the flow of control of a lnoet that has already been access
access controlled. When a method() , say, has deptBHALLOWIt is enough for the subject to
have access to the invocationfob() , since the subject will be granted access to any protected
object, provided the access occurs within the flow of cormfdhat invocation offoo() . By
default, the value of this elementi&ER since it is the most restrictive behavior and, as such, the
most secure, forcing all accesses to be controlled, at aey déthe stack trace.

The trusts() element is, by default, empty. It is used to indicate thesdashat have
automatic access to the protected object. It is used toattpldeclare that the protected object
trusts in those classes to access the protected object. isTek@mehow related to “exporting
features” in Eiffel 31], because in Eiffel we may restrict access of a method tossels similar
to what we may do in Zas with this element. When this elemgnised, the current subject is
not only the entity that has initiated the access attempélsatthe classes in which the protected
object trusts.

Theinherited() element controls the inheritance of the access controinagents from
the type (class or interface) where the protected objectdetined. By default, its value is false,
meaning that by default protected objects do not inheriatteess control requirements from their
type.

Finally, suspicious()  , when true, forces the access to the protected object torbmmed
at any level of the stack trace, even when the access depticatton was specified &SHALLOW
at some lower point in the stack.

From a strict security point of view, all “resources” shoblel seen as protected objects: it is
safer for the application to throw an authorization excapfor all access attempts than to implic-

itly grant access from all subjects to that “resource”. Hegrethat would forbid programmers to



4.5. USAGE 37

restrict the access control scope, for example, to the basitayer of the application. Ideally, it
should be possible to define an abstract poirdcapeForProtectedObjects()

/I In aspect Enforcer:

public abstract pointcut scopeForProtectedObjects();

declare @method : scopeForProtectedObjects() :

@AccessControlled(" *");

...
forcing this way the client code to define it appropriatelyh&r application. The¢ =" is a
wildcard that matches for any abstract access mode, iegprévious code means that all protected
objects require, at least, one abstract access mode.

However, the AspectJ language forces the usage of typermsite Inter-Type Declaration
(ITD), not allowing the usage of pointcuts. Therefore, the galimsd access control in the busi-

ness layer is considered as a best practice of Zas, butribtie forced by it.

4.5 Usage

In this section we will present the Zas-based solution ®ithplementation of the toy project
from Chapter3 with an additional access control rule, stating that onky #itcount owner is
allowed to debit the account if she was granted permissiasédhe abstract access madbit

The first step in a Zas-based implementation of accessati@msome application is to identify
the protected objects whose access should be controlleste Hne two different ways to do this.
One of them is invasive, consisting in annotating direcklg protected objects whose access
should be controlled:

public cl ass Account {
@AccessControlled(value = "debit",
deciderClass = BankingDecider.class)
public void debit( float amount) {
...

}



38 CHAPTER 4. THE AS FRAMEWORK

public class Test {
Il ... as before

The other is non-invasive. It involves usiigD to inject the necessary annotations in the access
controlled protected objects. The drawback of this apgrpacwever, is that readability becomes
harder: the access control requirements of a protectedtadnje not specified close to its defini-
tion. The Integrated Development Environmditf) we used was Eclip§ewhich helps to solve
this problem since the protected object is shown with a nudecating that it is being annotated
by some aspect. Nevertheless, it is simply a note and it makggammers depend on tHeE:

/I In aspect Enforcer:
declare @method : Account.debit( float) :
@AccessControlled(value = "debit", deciderClass = Bankin gDecider.class);

As a second step, it is necessary on the one hand to configusedurity aspects from Zas
though the parametrization, extension, and concretizaifaaspecEnforcer , which involves
the implementation of the abstract methodsentSubject() anddefaultDeciderClass() ,
and, on the other hand, at least for this particular casejdfirition of an advice that guarantees
user authentication:

public aspect BankingEnforcer ext ends Enforcer<User> {

publ i c User currentSubject() {
ret urn SecurityContext.getCurrentSubject();

}

publ i ¢ Class<BankingDecider> defaultDeciderClass() {
ret urn BankingDecider.class;

}

after() returning(User authenticatedUser) :
call (public static User Testlogin() {
SecurityContext.setCurrentSubject(authenticatedUser );

The advice shown previously executes after any successjinl httempt in the application.

SEclipsehttp://eclipse.org/ is the most usetDE to program using AspectJ.


http://eclipse.org/

4.5. USAGE 39

Its implementation uses a helper class which is distributiglal the Zas frameworkSecurity-
Context ,

public class SecurityContext {

private static InheritableThreadLocal currentThread =
new InheritableThreadLocal();

privat e SecurityContext() {
}

public static <Subject> Subject getCurrentSubject() {
return (Subject) currentThread.get();

public static <Subject> void setCurrentSubject(Subject currentSubject) {
currentThread.set(currentSubject);

}
}
This class has two methodstCurrentSubject() , Which associates a given subject with
the current thread, angktCurrentSubject() which returns the subject associated to the cur-

rent thread.

The last step is to define a class representing the decideexteddingDecider . This
class may make use of information which is specific in the iappbn. The clas®anking-
Decider grants access to the debit operation exclusively to the owhéhe account if she
was granted permission to use the abstract access debite , as specified in the annotation
AccessControlled of methoddebit()

publ i c aspect BankingDecider ext ends Decider<User> {
publ i ¢ Collection<String> currentSubjectAccessModes() {
return getCurrentSubject() == nul | ? new HashSet<String>() ?
getCurrentSubject().getAbstractAccessModes();
}
@Override
publ i c bool ean hasAccess(String protectedObjectAccessModes,
JoinPoint joinpoint, JoinPoint.StaticPart enclosingSta ticPart) {



40 CHAPTER 4. THE AS FRAMEWORK

Account account = (Account) joinpoint.getTarget();
ret urn getCurrentSubject().equals(account.getOwner());

}

The previous example using AOP, addresses the problem of code scattering and tangling
by allowing it to modularize the crosscutting concerns itite aspect, fully separated from the
functional code. The changes in existing code before aizdtorn were none. The methods were
not changed in order to pass the current logged in user talesdcthe user abstract access modes
and grant or deny access to protected objects based on thmstseice. Zas enforcer is able to
get the required access control requirements (the sultpecprotected object, and the context of
execution) and pass it to the appropriate decider modude BankingVerifier ). Additionally,

Zas enables the specification of a more dynamic and fineggaeacurity policy based on context

information, without increasing the code complexity.

4.6 Features

Since Zas was meant to be a Java/Aspectd framework of slassleaspects for use in Java appli-
cations, we have implemented it to address a set of requinesméhich are detailed next. These
requirements were born to support the separation of sgaoiicerns from the domain decom-
position of the application.

Access control languages such as Pondé} ¢r XACML [35] were analyzed to drive the
process of deciding the minimum set of requirements that stould support. Proposals like
Laddad’s 6] or Bertino’s [7], as well as our own insight gained from the early applicatd
Zas to small projects, were also important sources of ratitim and analysis to further refine the
requirements. Throughout this chapter, for our code exaspple assume that there is a subject

currently logged in, having the abstract access nfodeand not havingar .

"The full code may be seenfnitp://zas.cvs.sourceforge.net/zas/banking-toy-proj ect/ .


http://zas.cvs.sourceforge.net/zas/banking-toy-project/

4.6. FEATURES 41

46.1 Basic

As Laddad put it in 7], “the new Java metadata facility, a part of Java 2 Platfotam&ard
Edition J2SB 5.0, is perhaps the most significant addition to the Java langtmdate. By pro-
viding a standard way to attach additional data to prograamehts, the metadata facility has
the potential to simplify and improve many areas of appiwatievelopment, including configu-
ration management, framework implementation, and codergéion.” The combined power of
Javab annotations and AspectJ is leveraged by Zas, making ityaaesgressive access control
framework.

Annotations in Java are a powerful way to add more semanttitetJava “resources” (meth-
ods, fields, etc.). The programmer simply adds the apprepmata-information in her programs,
i.e., the additional semantics. Those semantics is theantako account by the Zas framework
to enforce an access control policy.

The next snippet of code explicitly states that access thoadbo() , i.e., the invocation of
the method, is restricted to subjects having the abstraeisaanodéoo .

public class MyClass {
@AccessControlled("foo")
public void foo() {}

}

When not specified in the annotation, the abstract accesg exutession corresponds to a
single abstract access mode whose name is the signature mietihod, without the return type
Hence, the abstract access mode required tdazg)l as defined in

package mypackage;

public class MyClass {
@AccessControlled
public void foo() {}

}

is mypackage.MyClass.foo()

8The default abstract access mode expression is defingdl asotresponding to the protected object signature



42 CHAPTER 4. THE AS FRAMEWORK

With Aspect], there is a clear distinction between settimhgetting the value of fields. There
is not, however, the similar distinction between the calir@thods that change the implicit ob-
ject’s state and methods that do not change it. Bearingrhisind, only three different annota-
tions have been defined for specifying access control: anaédhods, presented before, and two
for the setting and getting of the value of fields.

package mypackage;

public class MyClass {

@AccessControlledForQuerying("readBar")

@AccessControlledForModifying("modifyBar")
protected int bar;

The previous example restricts reading access to li@ldto subjects possessing the abstract
access modeeadBar and the abstract access monledifyBar to change the field’s value.

By default, Zas enforces access control only for non-peiyaotected objects. The rationale
for this is that private “resources” are usually impleméotadetails, and not accessible from
outside the class where they are defined (bearing in mind disaglly, it is a good practice to
make fields private resources of the class, the default behfav controlling the access to fields
is limited). It is possible, however, to change the defaelhdwvior so that are also controlled

private “resources”. E.g.:

public aspect MyEnforcer extends Enforcer<User> {
publ i c poi ntcut accessToControlledMethods() :
Enforcer<User>.accessToControlledMethods() ||
cal | (@AccessControlled private * * (..));
publ i c pointcut accessToControlledFieldsSets() :
Enforcer<User>.accessToControlledFieldsSets() ||
set (@AccessControlledForModifying private * x .. x. *);

The lack of the required abstract access modes resultsowitig an authorization excep-
tion. Hence, the following snippet of code results in thnogvanAuthorizationException

exception:



4.6. FEATURES 43

public class A {
@AccessControlled("bar")

public A {}
}
Zas defines two abstract access modes with a special meanieg, andfalse , whose
semantics are, granting access to any subject, and do mitagr@ess to any subject, respectively.
Zas saves internally the relationship between the instatthe decider classes and the corre-
sponding protected objects. This improves the applicafbcency, because instantiations occur
a single time for each protected object. These instancegbangeused each time an access to the

corresponding protected object is attempted.

4.6.1.1 Boolean expressions and wildcards

It is possible to compose abstract access modes using Boatpaessions, both statically in-code,
and in ZasXML policy files (see Section.6.2.3. For instance, in

@AccessControlled("foo || 'bar")

public void foo() {}
the abstract access mode expression requires any subljew ¢eo() either to have abstract
access modfo or to lackbar .

Currently, Zas supports operatdfrs (or), &&(and), and (not), as well as the use of parenthe-
ses to control evaluation order. Operaters(equivalent), and= (not equivalent) will be added
soon.

Using Boolean expressions, the abstract access modes dhadmaay be easily defined as
the conjunction of the simpler methods called in its implatagon. E.g., aransfer() method
on the banking system can be defined aekit() on a source account ancteedit() on a
destination account. These methods may be access codirafid require the abstract access
modesdebit andcredit , respectively:

@AccessControlled("debit && credit")
public void transfer(Account from, Account to, fl oat amount) {



44 CHAPTER 4. THE AS FRAMEWORK

from.debit(amount);
to.credit(amount);

}
@AccessControlled("debit")

public void debit( float amount) {
t hi s.balance -= amount;

}
@AccessControlled("credit")

public void credit( float amount) {
t hi s.balance += amount;

}

The operatolf| is useful in all situations where different abstract aceassles may grant
access to the protected object, while the operatoray be used to define the forbidden abstract
access modes, i.e., the abstract access modes the subjsat passess to be able to have access
to a protected object. E.g., in &BAC model, an abstract access mode may reflect the textual
representation of the roles associated to a subject. Hehedpllowing code declares that a
subject having the rolEMPLOYEBr MANAGERwith no roleCUSTOMERNay access the access
controlled constructofccount()

@AccessControlled("(EMPLOYEE || MANAGER) && !CUSTOMER")

publ i ¢ Account(User owner, fl oat initialBalance) {

}

Regular expressions3§, 41] are also possible for the composition of the abstract acces

modes. Tabld.1 shows the currently supported wildcards.

Symbol Meaning

* 0 or more characters
+ 1 or more characters
? 0 or 1 characters

Table 4.1: Wildcards currently supported by Zas.

E.g., using



4.6. FEATURES 45

@AccessControlled("abstr *") public void foo() {}

any call tofoo() requires a subject having at least one abstract access nfms®wame starts
with abstr (e.g.,abstr or abstract access mode ). The use of regular expressions in the
declaration of the required abstract access modes reswtdisjunction. E.g., if for the previous
code there were three different abstract access modeseltelsabstrl , abstr2 andabstr3
its access control requirements could be similarly defireed a

@AccessControlled("abstrl || abstr2 || abstr3")

public void foo() {}

Wildcards can also be used when dynamically composingatisiccess modes, of course.
In this case, however, they can also be used to specify naufinptected objects in a single step,
greatly reducing the number of access control requirenmmdseeds to specify, as shown in the
last example of Sectiof.6.2.2

New wildcards could be added, as well. Bearing in mind thataym@mmmer using Zas is
familiarized with AspectJ, the wildcards semantics shdaddhe ones in Aspectd][ Hence,..

should be possible in Zas, as suggested by Ladeidd [

4.6.2 Advanced

This section presents advanced, though useful featuresZés. All these features may be seen
as optional since they are not required to enable Zas’ acomstrol capabilities. Nevertheless,

they are often useful, e.g., to control the depth of the accestrol enforcement.

4.6.2.1 Propagation of requirements

Zas provides a mechanism allowing access control reqeinésrio be propagated from classes to
the corresponding non-private methods and fields, whicAdgrare the only controlled resources.
For instance, the access control requirements of a classmayherited by all its non-private

‘resources”™



46 CHAPTER 4. THE AS FRAMEWORK

@AccessControlled(value = "foo", depth = Depth.SHALLOW)
public class MyClass {
public void foo() {}

}

In this casefoo() and the implicitly defined class constructor inherit theessccontrol
requirements from their class, i.e., calling the metlws{) and the constructavyClass()
require abstract access mdde and the access control is shallowly enforced.

Similarly, it is possible to propagate access control negquents through non-private fields or
to inherit the requirements specified in the Zas’ protectgigcts types. E.g., the access control
requirements defined iMyClass are propagated to the fietdyint , since it has no access con-
trol annotations. This means that a read access attempattdieid requires the subject to have
the abstract access mofteGet , and shallow access control. When a write access attempt is
performed, the subject requires the abstract access fogke

The field myOtherint  inherits the access control requirements from its classyehathe
depth of enforcement, but is overrides the abstract acceske mequired for the access, from
forGet tonewForGet .

Finally, the fieldmyAnotherint  does not inherit the access control requirements from its
type, since the elemeirtherited  is set to false.

@AccessControlledForQuerying(value = "forGet", depth = D eph.SHALLOW)
@AccessControlledForModifying("forSet")
public class MyClass {

i nt mylnt;

@AccessControlledForQuerying(value = "newForGet", inhe rited =  true)
i nt myOtherint;

@AccessControlledForQuerying(value = " *" inherited = fal se)

i nt myAnotherint;
}
Notice that there are two different effects in propagatidhe first one is static, and leads to
all non-private members of a protected object, with the pttoa of those marked with annotation

@NotAccessControlled , to also be access controlled. The second one is dynamiteadsito



4.6. FEATURES 47

all non-private members of a protected objiett have not been explicitly marked as being either
access controlled or not access controlteddynamically inherit the access control requirements
from their enclosing types (see Sectib$.2.9. Hence, in

@AccessControlled(value = "foo", depth = Depth.SHALLOW)
public class MyClass {

public void foo() {}

@AccessControlled

public void bar) {}

@NotAccessControlled

public void baz() {}

foo() inherits its access control requirements from chg€lass : the abstract access mode
namefoo and shallow access control. Howeuesar() , while access controlled, does not inherit
required abstract access modes frelyClass because the elemeiniherited  is, by default,
set to false, andaz() remains free of any access control.

It is not be possible to propagate access control requirestiertypes marked as non-access
controlled. This happens in the situation where a type isi@ip annotated with@NotAccess-
Controlled

One issue Zas does not deal with so far is the inheritancedcdkages from the source code,
because Aspectd] does not allow the capture of package annotations and &sause of the
limited nature of packages in Java, as detailed in Seéti6r2.6

The propagation and/or inheritance of requirements is uegful because it decreases the
number of access control requirements one needs to spadifient applications. This feature
allows the programmer to mark only the type, causing all powate protected objects (methods
and fields) to also be access controlled, allowing devefmesay that, e.g., all accesses to type
T are restricted to users having abstract access modd .

Notice that the same occurs when marking protected objsatsmaccess controlled.

@NotAccessControlled
public class MyClass {
public void foo() {}



CHAPTER 4. THE AS FRAMEWORK

@AccessControlled
public void bar() {}

}
public class MyExtendedClass extends MyClass {

public void baz() {
}

The previous results in methoti®() andbaz() notto be access controlled.

Annotations

1. @AccessControlled
2. @AccessControlledForModifying ,
3. @AccessControlledForQuerying ,and

4. @NotAccessControlled

are defined agdInherited . Hence, they are inherited by subtypes of types annotatéd wi

them. This means that methods and fields on subtypes of tyiflethat annotation are subjected

to the same rules for the propagation of requirements.

4.6.2.2 Dynamic access control requirements

As indicated in the access control requirements’ annatatithe access control requirements

are simply initial requirements, which may be changeablauatime. That is, access control
requirements are dynamic. The access control requiremeatde set only in the code, or both
in the code and iXML . This is configured in client code, through the specificatibthe access

requirements mode. E.g., in the following piece of codegitmess control requirements could be

specified in the code only:

public aspect MyEnforcer extends Enforcer<User> {
publ i ¢ MyEnforcer() {
setSpecificationMode(AccessRequirementsSpecificatio nMode.IN_CODE);

}



4.6. FEATURES 49

The possible modes ars _CODE i.e., specified in Java code only, all_CODEANDFILE ,
i.e., specified in Java andML code (the requirements IAML override the ones in the Java

code). The default isN _CODEANDFILE :

publ i ¢ enum AccessRequirementsSpecificationMode {
IN_CODE, IN_CODE_AND FILE;

}

In code, the requirements are specified using the previguekented access control annota-
tions. In file, there is on&XML policy file in Zas, with a known syntax and semantics that may
be used to specify the access control requirements for gsatirces” that were marked, through
the access control annotations, as protected objects. [Elmadipermissions-schema.xsd
in the Zas project code defines the right syntax for the)2d& policy file. E.g.,

package mypackage;

cl ass MyClass {

@AccessControlled
public void foo(String s) {}

}

specifies thafbo() is access controlled and initially requires abstract axoesdemypackage.-
MyClass.foo(String) . It is possible to change the required abstract access nuiag a Zas
XML policy file such as:

<?xm version="1.0" encoding="UTF-8"?>

<zas xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-ins tance"
xsi:noNamespaceSchemalocation="zas-permissions-sche ma.xsd">
<protected-object name="mypackage.MyClass.foo(String )" type="method">
<abstract-access-modes>foo</abstract-access-modes>
</resource>
</zas>

In this case, after loading the access control policy file,réquired abstract access mode for

callingfoo() is no longemypackage.MyClass.foo(String) , butfoo .



50 CHAPTER 4. THE AS FRAMEWORK

This adds a lot of flexibility because it is possible to chatigeaccess control requirements
for a protected object at runtime, without the need to redtartpe application, since all one
needs to do is to change the 2&sIL policy file.

The use of wildcards increases these capabilities, sinisepibssible to specify the access
control requirements at the appropriate granularity lelzej.,

<?xm version="1.0" encoding="UTF-8"?>

<zas xmins:xsi="http://www.w3.0rg/2001/XMLSchema-ins tance"
xsi:noNamespaceSchemal.ocation="zas-permissions-sche ma.xsd">
<protected-object name="mypackage.MyClass.foo()" type ="method">

<abstract-access-modes>foo</abstract-access-modes>
</protected-object>
<protected-object name="mypackage.MyClass. *" type="method">
<abstract-access-modes>bar</abstract-access-modes>
</protected-object>

<! —— When theat t ri but e type isnot specified, it useset hod
as default——>
<protected-object name="mypackage. *()">

<abstract-access-modes>baz</abstract-access-modes>
</protected-object>

</zas>

which may be found in a Z&8ML policy file, states that all calls to access controlled meth-
ods without parameters within packaggpackage will require abstract access mobaz , with
the exception of those within classyClass , which require abstract access mdge . Again,
methodMyClass.foo()  is an exception, since it requires abstract access rfoadeThe order
is important because Zas will always look for the first ocence of a matching signature and
load the abstract access mode specification. This simplifeslgorithm that loads the access
control requirements. Additionally, it simplifies the sg@ation of the requirements and hence
its readability.

With the previous access control requirements, the fohgwéode would require a subject
possessing abstract access mfade to be granted access to methdgClass.foo() , abstract

access modbear for methodMyClass.bar()  and abstract access moblez for methodMy-



4.6. FEATURES 51

Class2.baz()

package mypackage;

@AccessControlled

public class MyClass {
public void foo() {}
public void bar) {}

}
package mypackage;

public class MyClass2 {
@AccessControlled
public void baz() {}

}
Using ZasXML policy files makes it possible to specify the access contrielsrin two dif-
ferent phases: the first, where the security engineer simphks the protected objects that are to

be access controlled; the second, where she specifies tkessacontrol requirements.

4.6.2.3 Depth of access control

By default, the access control is applied for all accessewdtected objects, regardless of the
context. Regardless, namely, of the controls which haweadly been performed in lower levels
of the current call stack. This is usually the safest optind thus the most desirable default.
However, it may be occasionally necessary to turn off acceagrol in the flow of control of a
given method execution.

Elementdepth of the @AccessControlled  annotation represents the depth of access con-
trol. In a way that is reminiscent of copy depth, access cbmrapplied to method execution
either in aDepth.SHALLOW or in a Depth.DEEP manner, depending on the value of this ele-
ment. Shallow access control means that if access to a mitlgoanted to a subject, it will also
be granted to its complete flow of control, effectivélyning offaccess control during its execu-

tion. On the contrary, if access to a method specifying deepss control is granted to a subject,



52 CHAPTER 4. THE AS FRAMEWORK

which is the (safe) default, it withot be automatically granted to all other accesses to protected
objects in that method'’s flow of control.

For example, in

public class A {
@AccessControlled("foo")
public void foo() {
new B().bar();

}
}

public class B {
@AccessControlled("bar")
public void bar() {

}

}

A call to A.foo() will be possible only if the subject has both the abstraceasanodes
foo andbar because\.foo() , which invokes methodar() , requiresfoo , andB.bar() , on
its hand, requirebar . Changing the depth tbepth. SHALLOW in the annotation ofoo() , the
access control wilhot be applied during the execution fafo() , which means the subject may
invokebar() throughfoo() :°

@AccessControlled(depth = Depth.SHALLOW)
public void foo() {
new B().bar();

}

Using shallow access control is generally considered dange Hence, a mechanism may be
devised to short-circuit the consequences of shallow acoastrol. If a given method declares
itself to be suspicious, its access control requirememtsetrturned off in the flow of control of
a method with shallow access control. For instance, in

public class A {
@AccessControlled(value = "foo", depth = Depth.SHALLOW)
public void foo() {
new B().bar();

9Notice, however, that callingar()  directly would still require the abstract access mbd .



4.6. FEATURES 53

new C().baz();

}

}
public class B {

@AccessControlled("bar")
public void bar() {
new C().baz();

}

}
public class C {

@AccessControlled(value = "baz", suspicious = true)
public void baz() {

}
}
A call to A.foo()  will fail unless the subject has the abstract access nbade it is not
sufficient for her to have the abstract access mfode, sinceC.baz() is suspicious. On the
other hand, the abstract access mbale is not necessary when the call is performed in the flow

of control ofA.foo() ,sinceB.bar() is unsuspecting andl.foo() ’saccess controlis shallow.

4.6.2.4 Bypasses

Zas provides two mechanisms to bypass access control. rEBhésfmore dangerous, and should
be used with care: methods may be annotated as privilegedas. turning off all access control
within their flow of control:

@Privileged public void foo() {
...

}

The difference between calling a privileged method andragphh method with shallow access
control is that a call to a privileged method always succeedsle the success of a call to a
method with shallow access control depends solely on theusubject having abstract access
mode to make the call (except when “suspicious” is usedyilBged, though very dangerous in

security terms, can be sometimes useful and even essértimlzas framework uses them, e.g.,



54 CHAPTER 4. THE AS FRAMEWORK

in theDecider class and its subclasses, and thus grant them full accesy fwatected object.
Therefore, the deciders may access domain specific infamathich may be access controlled,
when the legitimacy of an access attempt requires that xbim@rmation. However, this may
compromise the security of the application, since it maynageurity breaches and hence, further
study is required to control what the decider classes mayraydnot do.

The second bypassing mechanism, trust, is more discipanddess dangerous. Instead of
marking methods as bypassing access control during theiofilcontrol, regardless of the access
control requirements of the intervening protected objdctsst in specified classes is explicitly
acknowledged by the callee protected object. For exampleng

public class A {
@AccessControlled("foo")
public void foo() {
new B().bar();

}
}

public class B {
@AccessControlled("bar", trusts = { A.class } )
public void bar() {

}
}
calls toA.foo() require a subject with the abstract access nfode as usual. However, the
calltoB.bar() fromwithinA.foo() will always succeed, sindgbar() trusts clasg. Notice,
however, that calls from within the control flow Bfbar()  will in general be access controlled,

since trust does not propagate. This improves even furtleesdfety of trust relationships.

4.6.2.5 Invokers

According to Bertino J] and Thomas43], each protected object should be able to specify the
allowed set of invokers. The idea is that each protectedcolsjeould be able to specify the
“entities” that may access them. In the Zas framework, wepedentitiesas the methods that

invoke a protected object on someone (an authenticatedahoj something (an authenticated



4.6. FEATURES 55

system) behalf.

This is similar to trusts, though there are important défezes. Conceptually, the set of in-
vokers is a way to define a workflow, i.e., to explicitly stateavmethods are allowed to access
one protected object and thus restricting its access toyastect set of methods. This is accom-
plished through the explicit specification of the methoda @hire granted access to a protected
object: methods which are not included in the set of allowstkers are not granted access to
that protected object (if the resource declares an emptjhsgimeans no one is able to access it).
However, for trust, an object not belonging to the set ofted€lasses can still be granted access,
depending on the subject’s abstract access modes.

They are also different in implementation terms: for trikg protected object declares its
“trust” on objects from alass for the invokers, the protected object declaresrtirethodghat
may legitimately access it.

According to Arnold et al. §], the elements of an annotation type are constrained bst stri

rules:

1. The type of an element must either be a primitive typgtrimg , an enum type, another

annotation type, or @lass .
2. An element cannot declare any parameters.
3. An element cannot have a throws clause.
4. An element cannot define a type parameter.

The elementrust()  of the access control annotations is of tyflass and hence, its exis-
tence is verified in compile time. However, from the previoules [3], it is not possible to use
the clasgava.lang.reflect.Method as the type of an annotation’s element and hence the
method is specified through its fully qualified nansgring ):

package mypackage;
public class A {
@Invokers({ "mypackage.A.fooLegallnvoker()" })



56 CHAPTER 4. THE AS FRAMEWORK

public void foo() {}
public voi d fooLegallnvoker() {}

}

The previous code defines the methoolegalinvoker() as the only allowed method to
invokefoo()

In the Zas framework, there are annotations for specifytegallowed invokers for the invo-
cation of methods, invokers for modifying the value of a fieddd also invokers for reading the
value of a field.

In the current implementation, we assumed that it does n&ersanse to prevent the access
with a strict set of invokers and, at the same time, speciéyréyuired abstract access modes to
access that protected object: when a protected objectrdsdlze set of allowed invokers, only a
method belonging to that set may be granted access. Hemcmvittkers annotations were kept
separated from the access control annotations and thepicharused for a protected object at

the same time:

/I Compile time error: both annotations specified.

@Invokers({"mypackage.A.fooRightinvoker()"})

@AccessControlled("foo") public void foo() {}

This feature may not be directly related to access contrcdibee it does not make any use of
the authenticated subjects, but because of its usefulaedspecause it is also a way to control
whose methods are allowed to access a protected objectclueéd it in the Zas framework.

Due to time constraints, the current version of Zas doesuapport the specification of the

invokers in the Za XML policy file.

4.6.2.6 Declaration of abstract access modes

The required abstract access modes for accessing the tecbtelgjects in Zas arString s,
which cannot be matched with the abstract access modesiatssboto the subject in a given
client application. Hence, it is difficult to be actually surne is using the appropriate abstract

access modes in the definition of the access control reqaitesn



4.6. FEATURES 57

The Zas framework supports the declaration of the namesefabstract access modes,
through the use of the annotati@DeclareAbstractAccessMode , whose default value is
“#” , meaning that the protected object signatures are knowretau.

@Retention(RetentionPolicy. RUNTIME) @Target(ElementT ype.TYPE)
@Inherited publ i ¢ @interface DeclareAbstractAccessMode {
String[] value() defaul t "#%

Therefore, Zas may check if the name of an abstract accede has been declared and, if
not, warn the programmer.

To be able to declare the abstract access modes in a given application, we extend the
abstract aspe@bstractAccessModeDeclarationVerifier . The abstract aspect must be
parameterized with a class, created on the client code,hwkjresents the default class where
the abstract access modes are declared. Therefore, thantlest be annotated wi@Declare-

AbstractAccessMode 1%

public aspect AccessModeDeclarator ext ends
AccessModeDeclarator<DefaultDeclarator> {
publ i ¢ Class<DefaultDeclarator> getDefaultDeclaratorClass() {
ret urn DefaultDeclarator.class;

@DeclareAbstractAccessMode( { "foo", "bar" })
public cl ass DefaultDeclarator {

}

In the previous snippet we declared the names of two absicaetss modegoo andbar .

The @DeclareAbstractAccessMode ~ may only be used in two places:

1. In the default declarator class, as specified previousiich is loaded at the beginning of

the application as well as its abstract access modes, and

10This class cannot be extended because it would not be pessildad all subclasses and hence, it would not be

possible to load the abstract access modes declaratiotsssoficlasses.



58 CHAPTER 4. THE AS FRAMEWORK

2. In types containing protected objects, which are loadetleamoment an access attempt
to a protected object is performed and hence, its abstraesaenodes declaration may be

loaded:

package mypackage;

@DeclareAbstractAccessMode( "foo" )
public class A {
@AccessControlled("foo")
public void foo() {}

}

In the declaration of an abstract access mode, the package cennot be included. Each
declared name has a simple narfoe, in the previous example, which may be used in the class
and subclasses only, and a fully qualified nanypackage.foo . Hence, the collision of names
are avoided.

Unlike the default abstract access mode declarator, whoels dhot require any import ab-
stract access modes statement to be used, all other alzstcasts modes declarations need to be
explicitly imported, similarly to the import of classes apackages in Java:

package myotherpackage;

@ImportAbstractAccessModeDeclaration(mypackage.A.cl ass)

public class B {

/[ fully qualified name of the abstract access mode declared.o
@AccessControlled("mypackage.A.foo")

public void foo() {}

/I simple name of the abstract access mode declared on A.

@AccessControlled("foo")
public void foo(String s) {}

}
ClassB requires the import annotatio@{mportAbstractAccessModeDeclaration to
make the abstract access modes declared in glassilable inB. After that statement, the de-

veloper may use the simple name of abstract access modefalhitqualified name, though we



4.6. FEATURES 59

recommend the latter, to prevent names collisions.

4.6.3 Future

New features, either partially implemented or not impletadrat all, as well as important changes
in the current ones, were already detected. A new versionasfwdith several changes in the
current features, as well as additional features, is ayrémthg implemented, and its code may
be found in the project’'s web site attp://zas.cvs.sourceforge.net/zas/ 1 The

case study presented in Chapiewas performed without any of the changes we present here:

1. Deal with, at least, two kinds of subjects: human subjeefesented as users, for exam-
ple, and code subjects, represented as methods — The maiisitteallow methods to be
subjects, having their own abstract access modes that tiemtprivileges to access other
methods. E.g., if there was a subjett(an authenticated user, e.g.) that invokes) in

the following example, who has the abstract access rfumdeand notbar

public class MyClass {
@AccessControlled("foo")
public void foo() {
new MyClass2().bar();
}

}
public class MyClass2 {

@AccessControlled("bar")
public void bar() {

}

We get an authorization exception as the result of the acttsspt. However, a new
annotation in the Zas frameworl@Privileges  exists to make methods be subjects as
well:

public class MyClass {

11See the branch “Bas-new-annotations”.


http://zas.cvs.sourceforge.net/zas/

60

CHAPTER 4. THE AS FRAMEWORK

@AccessControlled("foo")

@Privileges("bar")

public void foo() {
new MyClass2().bar();

}

Hence, after the successful invocation of the metloo¢) by the subject1, the current
subject is the methofbo() itself, which has the required abstract access mode ta-legit

mately invokebar() . After the invocation obar() , the current subject isl again.

This is possible with the creation of a stack of subjectsuféd.5. Since it is important

for us not to force developers to use a specific type of clagepgeesent a hon-method
subject, our stack of subjects is constituted by methodestbpnly, which are instances of
a final classviethodSubject , whose instances are created from the Zas framework, when

a method declares itself as having privileges.

Stack of subjects

MyClass2.bar()

Methods

MyClass.foo()

testUser } User

Figure 4.5: The concept of stack of subjects.

This feature, however, needs further study related to whpbreaesponsible for the attribu-
tion of the abstract access modes to methods. Should a proggabe allowed to perform

that task? Should it be the security manager, and the sgouaibager only?

2. Depth verification — The depth feature in Zas, which aalstthe access control verification



4.6. FEATURES 61

depth is limited since the depth in effect at a specific poiithe stack trace is based exclu-
sively on the depth declared by the first method having aco@ssol in the current stack.
This means that a programmer may define deep access contf@at®n for an access
controlled methodubFoo() which, because it was invoked through an access controlled
methodfoo() with shallow access control verification, does not havecgfi@nce shallow
will be in effect till the execution ofoo() ends. A better solution would use a stack of
invocations, associated to the current thread, which Zagdvmanage. To make the im-
plementation easier and more readable, we created two negtadions,@Shallow , and
@Deep which replace the elemedépth() in @AccessControlled . At each moment,
there would be a stack with the depth of access for each tl{lgadefault, the stack has
always an element of typ@Deep. After the verification of a given method with access
control, having one of the annotatio@Deepor @Shallow , the access control verification
depth is registered on the stack, specifying that all pteteobjects which are accessed
from that method on, will use the depth defined in the top ofstlaek. The registration of
the depth of the stack must happen after verifying the actesnsure that the execution
of the current method uses the depth defined in lower levellseoturrent stack. This im-
plementation uses a new annotat@forced, which replaces the elemesispicious()

from @AccessControlled , whose semantics is forcing the verification of the access fo
the current method, without changing the depth in the dejaitks however, meaning that
only the current method should be checked but not any otheegied object accessed
within its flow of execution. To summarize, by default any egx attempt is performed in
a deep way. However, with the use @fShallow , and@Deep the depth of access control
for the flow of execution of a given method may be changed. T#atire has already been

fully implemented in the new version of Zas.

3. Authorizations policy XACML and Ponder are powerful languages to define authoriza-
tions, and hence decider classes capable of consultingither&ations policy written in

those languages should be provided with the Zas framework.



62 CHAPTER 4. THE AS FRAMEWORK

4. Certified source code — TRAAS model for certifying source code should be used as the
way to “authenticate” source code. This would greatly ecdothe application security,
since external code accessing the application, which sEdeithe application’s developers

control, would also be subject to access control. This habeen explored at all.



Chapter 5

Evaluation and metrics

This work has focused on the useA®P to modularize application-level security solutions. The
use of this approach, as stated by De Wiri]| requires a radical change in current development
practices, since a secure application becomes a compositioosely coupled components from
a variety of stakeholders (business, security and so ftht)are put together in order to form an
executable artefact.
Such a change must provide developers with huge benefithisliséction we try to address

the benefits and drawbacks from the us@0fP for the implementation of security concerns. To
accomplish this task, we have used Zas in a very large atjglic called Fénix. The results are

presented next.

5.1 Fenix

Fénix is a Web application for managing academic instingi It is composed @210 java classes
(including almost00 domain classes, persisted to a MySQL relational databagaioong424
tables),2348 JavaServer Page3sh files, 299 XML files, andl185 properties files.

Fénix has been chosen for several reasons:

1. Itisrepresentative of a large class of applicationgesitis a distributed application object-

63



64 CHAPTER 5. EVALUATION AND METRICS
oriented, Web application,

2. Its dimension is in itself a challenge to the applicatibZas. If Zas can be applied with
success to Fénix, it may safely be assumed that it can beedgpla wide range of appli-

cations.

The source code of the case study may be fouldkpn//zas.cvs.sourceforge.net/zas/case-
In that location, there will be two folders, one containihg tatest version of the case study and
the other containing the first major application of Zas &mix; whose results we present in Sec-
tion5.2.5

Fénix uses the Strutsand JavaServer Face3SH frameworks. Domain modeling and de-
composition are supported by a Domain Modeling Langu&gél() [17] which developers use
to define the static model of the domain in what may be seeniastad textual form ofUML.
E.Q.

...
class net.sourceforge.fenixedu.domain.Employee ext ends
net.sourceforge.fenixedu.domain.DomainObject {

Boolean active;
...

}
class net.sourceforge.fenixedu.domain.Person ext ends
net.sourceforge.fenixedu.domain.Party {

...

}

relation EmployeePerson {
net.sourceforge.fenixedu.domain.Employee playsRole em ployee;
net.sourceforge.fenixedu.domain.Person playsRole pers on;

...

DML parser reads the domain model file and generates the donaaises| including per-

sistence code that makes use of the ObJect Relational B(iig# Object-Relational Mapping

1Seehttp://struts.apache.org/ for details.


http://zas.cvs.sourceforge.net/zas/case-study
http://struts.apache.org/

5.1. FENIX 65

(ORM) tool from Apaché.

Fénix has a transaction system, which is managed by codeaed from théeOML model.
Write transactions, which persist data, are allowed ontyheflow of control of a given service.
Hence, code outside of the flow of control of services may ke only, thus a service must be
invoked in order to execute write operations from the dagara

The abstract access modes from Fénix are textual repetisers of the system roles associ-
ated to each system user, i.e., the names of the roles. lilegystem rol@IME_TABLEMANAGER
that grants access to the management of the time tables praseated with the abstract access
modeTIME_TABLE MANAGERvhich corresponds to the name of the role:

public  cl ass ChangeStudentsShift ext ends Service {
@AccessControlled("TIME_TABLE_MANAGER")
public void run(lUserView userView, Integer oldShiftld,
Integer newsShiftld, Set<Registration> registrations)
t hr ows ExcepcaoPersistencia, FenixServiceException {

In...

}

Our main goal with the application of Zas to Fénix was toimize the changes in the existing
code. Hence, this application was a matter of replacing tietieg access control related code,
with the less changes possible, and with no changes in tratidmalities. This means that the
application of Zas was madeposterioriand nota priori, meaning that not all advantages of the
framework were explored in this case study.

The use of Services Oriented Architectus&XA) lead to the duplication of the functional code
and, therefore, the Fénix project has evolved to a new maradn Driven DD) architecture.
Hence, the access control should be applied to the domasadawhere the system’s protected
objects are. However, we did not want to add the currentlgéaguser as a parameter to the
domain classes, since we aimed at separating access aaydeofrom functional code.

Since Fénix already had its own authentication functiibpat was sufficient to develop a

2Seehttp://db.apache.org/ojb/ for detalils.


http://db.apache.org/ojb/

66 CHAPTER 5. EVALUATION AND METRICS

mechanism to obtain the authenticated user associatecdagtinsession. This is simply a matter
of defining the methodsurrentSubject() and defaultDeciderClass() in the concrete
aspecfFenixAccessController , thus implementing the corresponding abstract methoas fro
the abstract aspeEnforcer

publ i c aspect FenixEnforcer ext ends
Enforcer<lUserView> {

publ i c IUserView currentSubject() {
return AccessControl.getUserView();

}

publ i ¢ Class<FenixDecider> defaultDeciderClass() {
return FenixDecider.class;

}

/I In Fénix we protect the executions, and not the calls

publ i c poi ntcut accessToControlledMethods() :
execut i on(@AccessControlled ! private =

net.sourceforge.fenixedu.. *(.);

/I In Fénix we protect the executions, and not the calls
publ i c pointcut accessToControlledConstructors() :
execut i on(@AccessControlled ! private

net.sourceforge.fenixedu..new(..));

The methodcurrentSubject() was implemented as a simple invocation to the method
getUserView()  from the Fénix application which returns the instance efghbject associated
to the current HyperText Transfer Protoc®lTTP) session. ThelefaultDeciderClass()
simply returned the class that implements the default @ecisinction in Fénix:

public cl ass FenixDecider ext ends Decider<IUserView> {
publ i ¢ Collection<String> currentSubjectAccessModes() {

final Set<String> abstractAccessModes = new HashSet<String>();
final IUserView userView = getCurrentSubject();
i f (userView != nul ') {

for (final RoleType roleType : userView.getRoleTypes()) {
abstractAccessModes.add(roleType.getName());



5.1. FENIX 67

}

ret ur n abstractAccessModes;

The default decider must implement the abstract metho@ntSubjectAccessModes()
from the abstract clag3ecider , which iterates over the system roles associated to therurr
subject, and adds its name, which is unigue in the systerhetalistract access modes associated
to that subject.

About 70% of the access control related code existing in Fénix was@bé to use Zas. In
most cases the change simply meant removing the accesslddters from the services,

<! —— Before As——>
<service>
<name>ChangeStudentsShift</name>
<implementationClass>
net.sourceforge.fenixedu.applicationTier.Servico.
sop.ChangeStudentsShift
</implementationClass>
<description />
<isTransactional>true</isTransactional>
<filterChains>
<chain name="TimeTableManagerAuthorization" />
<[filterChains>
</service>

<! —— With Zas ——>

<service>
<name>ChangeStudentsShift</name>
<implementationClass>

net.sourceforge.fenixedu.applicationTier.Servico.
sop.ChangeStudentsShift

</implementationClass>
<description />
<isTransactional>true</isTransactional>

</service>

and the addition of the necessary access control annagagaher throughTD or directly to



68 CHAPTER 5. EVALUATION AND METRICS

the protected object:

@AccessControlled("TIME_TABLE_MANAGER")
public class ChangeStudentsShift ext ends Service {
public void run(lUserView userView, Integer oldShiftld,
Integer newsShiftld, Set<Registration> registrations)

t hr ows ExcepcaoPersistencia, FenixServiceException {
...

For domain level access control, Fénix uses a bytecodepulation mechanism in what
amounts to ad hoc weaving. Thus, Fénix implements a lintigpd of AOP in Java. Zas im-
plements essentially the same idea, though using Aspentitroots. The advantage of using
Aspectd in terms of robustness, maintainability, expogspower, etc., are considerable, as will
be discussed. Additionally, Zas is a reusable framewodyiding features such as shallow or
deep access control, and privileged access to protectedtshyhich the bytecode manipulation
solution, developed in an ad hoc way, did not possess, ofwtbald require considerable effort to
implement.

The conversion from the original bytecode manipulatiorusoh to Zas involved replacing
the annotatior@Checkedwith annotation@AccessControlled

/I before As
@Checked("SpacePredicates.
checklfLoggedPersonHasPermissionsToManageResponsabi lityUnits")
public voi d setSpaceResponsibilitylnterval(YearMonthDay begin,
YearMonthDay end) {
checkSpaceResponsabilityIntersection(begin, end,
getUnit(), getSpace());
super .setBegin(begin);
super .setEnd(end);
}
/I with Zas
/I @Checked("SpacePredicates.
/I checklfLoggedPersonHasPermissionsToManageResbitihdanits”)
@AccessControlled(deciderClass = SpacePredicates.
ChecklfLoggedPersonHasPermissionsToManageResponsabi lityUnits.class)



5.1. FENIX 69
/I ... as before

and the creation of wrapper classes around the existingleleciasses, applying ttstrategy
design pattern{2],

public abstract class
PredicateBaseDecider<T ext ends DomainObject>
ext ends FenixDecider {

protected abstract AccessControlPredicate<T> getPredicate();
@Override
publ i c bool ean hasAccess(String protectedObjectAccessModes,
JoinPoint joinPoint, StaticPart enclosingStaticPart) {
ret urn getPredicate().evaluate((T) joinPoint.getTarget());

The abstract clasBredicateBaseDecider was created to simplify the integration with
the existing decider classes. The class provides an abstetbodgetPredicate() which
returns an instance of the Fénix classcessControlPredicate responsible for evaluating
the legitimacy of the accesses. That class must be extemdieitsaabstract method implemented

appropriately, as follows,

public class SpacePredicates {
...
I previously provided by &nix.
public static final AccessControlPredicate<SpaceResponsibility>
checklfLoggedPersonHasPermissionsToManageResponsabi lityUnits =
new AccessControlPredicate<SpaceResponsibility>() {
publ i c bool ean evaluate(SpaceResponsibility spaceResponsibility) {
spaceResponsibility.getSpace().
checklfLoggedPersonHasPermissionsToManageSpace(
AccessControl.getPerson());
return true;

2
/[ addition because ofé&5.
public class
ChecklfLoggedPersonHasPermissionsToManageResponsabi lityUnits



70 CHAPTER 5. EVALUATION AND METRICS

ext ends PredicateBaseDecider<SpaceResponsibility> {
@Override protected
AccessControlPredicate<SpaceResponsibility> getPredi cate() {
ret urn checklfLoggedPersonHasPermissionsToManageResponsabi lityUnits;

During the changes related to the access control we pertbimmieenix, the following limita-

tions were detected in the Zas framework:

1. controlling the access to the object returned by a methid,not the ability to invoke it.
This implies the unconditional invocation of the method &mel checking of the returned
method, naturallyafter its execution. This problem may be solved in a future versibn
the Zas framework with the creation of a new annotation, BggurnedObjectAccess-

Controlled , and the use ofiroundadvices,

2. attach different access control requirements to the saatbod, according to the different
logic names which may be used to invoke it. In Fénix, the éatmn of therun() method
of a service is accomplished indirectly through the speatific of the name of the service:

ServiceUtils.executeService(userView, "ChangeStudent sShift", new
Object[] { userView, oldShiftld, newShiftlf, registratio ns });

The invocable services are specified in a configuration file:

<service>
<name>ChangeStudentsShift</name>
<implementationClass>
net.sourceforge.fenixedu.applicationTier.Servico.
sop.ChangeStudentsShift
</implementationClass>
< - ——>

</service>

This limitation could be fixed through the creation of a methkan that associates a logical



5.2. ANALYSIS 71

name with a set of access control rules. A possibility is g@mésd in the next snippet of
code, which defines that the invocation of the service usiegiemeChangeStudents-
Shift requires the subject to have the abstract access modwhile the nameChange-
StudentsShift2 requireshar ,

@AccessControlledService(

names = { "ChangeStudentsShift', "ChangeStudentsShift2" 1
requirements = { @AccessControlled("foo"), @AccessContr olled("bar") }
)
public cl ass ChangeStudentsShift ext ends Service {

public voi d run(lUserView userView, Integer oldShiftld,
Integer newsShiftld, Set<Registration> registrations)
t hr ows ExcepcaoPersistencia, FenixServiceException {

...

5.2 Analysis

As stated by Baldwin inf], an AO approach is of great use because of its advantages in terms
of maintenance of code. To measure its benefit, e.g., we nayhesNet Option ValueNOV)
formula. While inOO approaches, one needs changes in order to implement or change a

crosscutting concern,
NOV = Change benefit N x Change costs

whereN is the number of locations in the code where that concerrilexcted. INAOP, generally,

it is necessary only one change,
NOV = Change benefit 1 x Change costs

Also according to Baldwind], another huge benefit @OP is reusability since the improved
modularity aspects provide, make it possible for the aspedé to be reused in several different

applications.



72 CHAPTER 5. EVALUATION AND METRICS

That being said, we will present the results of the applicatif AOP and specifically the Zas

framework to Fénix, using the following metrics:

1. Number of files

2. Lines of Codel(OC)

3. Performance

4. Percentage of affected access controlled methods

5. Access Control Requirements Specification RaAiGRSR)

The accuracy of this analysis is limited, though, sincedtmidt fully replace the existing ac-
cess control mechanisms due to time constraints. Additigrzend since that the Zas framework
is for developers, this measurement accuracy is also lihéeause there are no other significant
experiences of the application of Zas in other applicatjdny developers not being the creator of
Zas. Finally, the impact of Zas in Fénix, as shown nexhasvery significative because one of
the existing access control mechanisms was already basedawing, though an ad-hoc weaving

mechanism, and the services access control mechanisnesnhélseparation of concerns.

5.2.1 Number of files

The total number of files in the project before and after thaliegtion of Zas, see Table.1, is
one of the possible ways to evaluate the quantity of charigg®he needs to do in order to apply
Zas.

The application of the framework allowed to reduce the nunobéles, still keeping the same
functionalities and access control level. Decreasing olted humber of files is important since
the smaller the application, the smaller will be the maiatere effort. In this case, however, the

reduction in the total number of files was not meaningful.



5.2. ANALYSIS 73
Fénix
File Before ZzZas Diff
Java 6210 6205 =5
Aspect 0 1 +1
XML 299 299 0
Properties 185 185 0
Total 6133 6108 —4

Table 5.1: Number of files before and after Zas.

5.2.2 LOC

As we can see in Tablg.2, the solution based on Zas allowed to decrease the totabeuof

lines of code, making the application easier to maintainraadage.

Fénix
File Before Zas Diff
Java 756061 757287 41226
Aspect 0 39 +39
XML 78401 76103 —2298
Properties 32425 32425 0
Total 866887 865854 —1033

Table 5.2: Lines of code before and after Zas.

Nevertheless, the application increased in terms of Jasla smce most access control in the
access control filters associated to the Fénix services reenoved from th&ML and added in
the Java code.

Since Zas did not fully replace the existing access coffiltets and there are dependencies

between them (an access control filter in Fénix is often amsagd by several other filters), many



74 CHAPTER 5. EVALUATION AND METRICS

lines of code and the corresponding Java files were not reddove

The use of théOP features such d3D makes the capabilities of thBE the developers use
very important. E.g., the AspectJ Development To&3T) plugin for Eclipse, which shows
when a given piece of code is advised by an aspect is of exttsmand almost a requirement
for AOP programmers. However, we faced several problems with theongerequired by the
AspectJ compiler to build the application in Eclipse. Tliere, we added the access control
requirements for each protected object directly with thatgmted object, instead of usingD
to inject the access control requirements, and hence bealadek at the source code and know

exactly what is the access control requirements for eadieqted object.

5.2.3 Performance

To measure the impact of using Zas in the application peréorce, the execution and compile
times were compared.

The compile time was obtained by calculating the averagheétapsed time df0 indepen-
dent compilations. The execution time was obtained by ¢atiicig the average of the elapsed time
of 30 executions of a small test application which invokes repa#igtmethods which are subject
of access control either in the domain level and on the sesv®vel. The number of invocations
varied from150 to 2250, with a step ofl50, for the domain level, and from0 to 750, with a 50
step, for the services level.

These tests tried to measure the gap between both soluéindghe repetition of each ex-
periment with an increasing number of invocations tried eoify if a potential gap gets better
throughout the time.

The tested methods were chosen randomly, among all methatistarted using Zas as the
access control mechanism. These methods were chosen édhaysdid not take much time

while being executed to not affect the performance anabfdise access control mechanisms.

3We expect to greatly decrease the number of lines and fileéniixFthough, when the existing access control

mechanisms are fully replaced by the Zas framework.



5.2. ANALYSIS 75

One better approach for choosing the tested methods wocllgdie a previous study of the
most used services and functionalities from the systemestdhiose specific services according
to its use and thus provide a more concrete vision of the ¢lofzact in the system as a whole.
This previous study, however, would be hard to accomplish gort period of time and hence
was not performed.

The tests were performed in an Intel Pentium IV Hyper-Thieg¢HT) with 3.06 GHz and2
GiB of Random Access MemoryrRAM) memory.

5.2.3.1 Protected domain

The tested method simply sets the code of a given course. dibgasn before Zas presents a

better performance, especially with a small number of iationis, as may be seen in Figuré.

8 | | I I
o S Before no access—— ||
: ! ! Before with access -%--
i i Z&s no access- ¥ -
6F v A Zas with access-0- ]
e — — -
E ? ? ?
© A SR SR -
£ g | |
] L = -
[k | |
2F e e D R -
X B . Seg. 3
I RSSO SR BoBoBeg.gigen. -
SNEUKL R e ¥ |
0 500 1000 1500 2000 2500

Number of invocations

Figure 5.1: Fénix domain level performance before and Zihs.

The solution based on Zas is affected with its initialiaatithus making a significant different
after the first invocations to the domain method which, havelends to decrease throughout the

time.



76 CHAPTER 5. EVALUATION AND METRICS

5.2.3.2 Protected services

The service we chose simply returns the homepage of thentlyrtegged in user, if there is one

or creates a new homepage for that user. Fiusummarizes the results.

400 T T T T I i I

? ? ? ? Before no access——
30 X 7 Before with access -+
o i i 3 Z&s No access- X -
300\ T A o Zas with access-H- T

250

200

Time [ms]

150
100
50

0

0 100 200 300 400 500 600 700 800
Number of invocations

Figure 5.2: Fénix services level performance before ated Z&s.

The solution based on Zas is faster, especially when camgpaccesses for users not having
access to the protected object. Throughout the time, hawtwe differences tend to become

smaller.

5.2.3.3 Compilation performance

The compile time has a direct impact on the development.reigi3 presents the results.
Compiling a very big application such as Fénix with aspecgsproblem in what concerns the
compilation time. With aspects, the application took abduseconds longer due to the weaving
process, which corresponds to an increase of akwit
Since the Zas framework modularizes only non functionalirements, the normal develop-

ment process in Fénix could use the compilation of the foned code, using the Java compiler,



5.2. ANALYSIS 77

500 T T T T i

450

400

350

300

Time [s]

250

200

- j j j j j

Number of attempt
Figure 5.3: Fénix compilation time before and after Zas.

therefore having smaller cycles of coding, compilation tegls. The compilation with Aspects
would be relegated to the regression tests and to the oosagibere the access control itself

would be in development or maintenance.

5.2.4 Percentage of affected access controlled methods

As stated by Lopes in3[J], “one way of measuring the code tangling is by counting tbenn
ber of methods affected by aspect code”. The number of affectethods in the total shows
how much access control-related code was necessary foapatibation and thus represent how
difficult was to add access control-related concerns foh eguplication. For the total of meth-
ods we have counted the number of methods in those clasgesdiesupposed to have access
control. Tables.3summarizes the results.

The access control functionalities were implemented inua®% of the situations1{22
methods requiring authorization versus 1021 methods fourig purposes implemented with

Zas). With the new development philosophy within Fénhe tlomain will become richer and



78 CHAPTER 5. EVALUATION AND METRICS

Fénix

Layer | To control With Zas

Domain 153 153
Service 1269 868
Total 1422 1021

Table 5.3: Percentage of affected access controlled mgthod

security concerns will be added there, closely to the data.h#e implemented a considerable
part of the access controlled methods to conclude that @@®ases the majority of the situations

requiring access control enforcing.

5.25 ACRSR

TheACRSRIs a metric we propose to measure the effort for the specdicaf the access control
requirements for each application. This ratio relates tnalver of access control requirements
rules specified with the number of affected points. This ro&tra percentage in which, the higher
its value, the greater the effort of the access control requents specification. The formula for

this metric is as follows:

Number of Rules
Affected Methods

Due to the limitations in terms of using tAeIDT plugin capabilities to show the developer the

ACRSR= 100 x

methods that are being advised and which ones are beingaedpive decided to mark directly
the protected objects with the access control annotatiegertheless, in an early application of
Zas to Fénix, in February, we both directly annotated tio¢geted objects and us€rD to specify
the protected objects and its access control requiremEadtée 5.4 summarizes the results.

This early application of Zas to Fénix lead us to some gg#ng conclusions. E.g., there was

a bug with the order of annotations injection, which has bseédymitted to the AspectJ compiler



5.2. ANALYSIS 79

Fénix

Number of rules| 637
Affected methods 921
ACRSR 69.2%

Table 5.4: Access Control Requirements Specification Ratio

community. This bug forced us to directly mark the non access conttdilesources”, since

it is not possible to control the order of the annotationgétipn. We expect th&CRSR to
improve when that bug is fixed and we are able to control therasfithe annotations injection.
Additionally, there were services inside package suchoasdinator  in which only a user
having the abstract access madeNAGERould execute. Those classes could be refactored to the

packagemanager , thus greatly reducing the effort for the specification afess control rules.

5.2.6 Conclusions

From the evaluation analysis we performed in this sectianbelieve that Zas has potential to be
the dominant access control mechanism in Fénix and to fefyace the existing mechanisms,
since it permits to use a single access control model, inthetkervices and domain layers of the
application, which is something we desire in Fénix.

The main problems we detected with the us&OP in Fénix were related to the performance
of the system: executing code, in which the Zas-basedoremiesented better performance in
the services layer, but a worse performance in the domaer,lapd the compilation time which,
however, when used to implement non-functional requirdmers what happens with Zas, may
be solved with different compilation processes: the normeskelopment process in Fénix could
use the compilation of the functional code, using the Javapiler, therefore having smaller
cycles of coding, compilation and tests. The compilatiothwispects would be relegated to the

regression tests and to the occasions where the acceselatseatf would be in development or

4Bug 169699, https://bugs.eclipse.org/bugs/show_bug.cgi?id=16969 9.


https://bugs.eclipse.org/bugs/show_bug.cgi?id=169699

80 CHAPTER 5. EVALUATION AND METRICS

maintenance.

The specification of the protected objects and their acoaissat requirements through as-
pects that inject those requirements have the advantadesafdn-invasiveness. However, for
very large projects, in which the use of tHeE features is difficult or even impossible, adding
the access control annotations close to the protectedtshigea better choice, since it adds more
expressiveness to the code. Additionally, the compilaiioe tends to increase with the injection
of annotations, especially when using wildcards in the dedimof the pointcuts, and it also gets
harder to control the scope of the affected resources.

Since Zas is a framework, it hides the implementation tefeam the developers who use
it. Therefore, earning new capabilities and knowledgeteeldao AOP by the technical team is
not a requirement, since the team just need to use Java ectisstr annotations — to specify the
protected objects’ access control requirements. We basse ideas in our experience from the
application of Zas to Fénix, which is in production at ISETsince February af007.

Nevertheless, the application of Zas to Fénix requiresastudy and analysis, namely in what

concerns the use of the Zas framework advanced features wilhbe relegated to further work.

SInstituto Superior de Ciéncias do Trabalho e da Emprestép/iscte.pt/


http://iscte.pt/

Chapter 6

Conclusions and further work

In this work a newAO access control framework based on the abstract referencganf’] was
proposed. To add authorization concepts in existing agiptios, the Zas framework explores
the capability to specify meta-information through thegesaf Javab annotations ancKML .

It does so in an easy, expressive and non-invasive way. Ehargh the framework is at its
early stage of development, it has already shown the patdotithe use ofAOP to modularize
access control, making it simple to implement, support amtfigure, and even more flexible.
Zas is also dynamic, allowing changes in runtime to the sgcentrol requirements associated to
the protected objects. The framework usage, whose develojpras motivated by a proposal by
Laddad 6], reduces the scattering of the code all over the applinatie well as its entanglement
with the functional code.

De Win et al. [4€] criticize AspectJ to implement security concerns, iraflic due to its
excessive flexibility, because security is a very rigid amttsconcept. Under this point of view,
Zas is very similar to AspectJ, because it is also very, g@stioo much, flexible: its misuse may
lead to security leaks. Due to this reason, it is necessagepet study and analysis, namely to
the best practices and potentially new requirements todmpht in order to control the flexibility
of Zas in client applications.

In the near future, we intend to improve the framework, syipgl more technical documen-

81



82 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

tation and a manual of best practices, bearing in mind thghhgained with its application to
several applications. Nevertheless, some points reguiurther investigation have already been
identified. How does Zas behaves when other crosscuttingetos are implemented using as-
pects? How do we deal with potential conflicts between difielaspects, particularly if those
have the potential of affecting the access control? Nakapgmd Tamai 2] have proposed a
technical analysis to verify the coherence between theoaizttions policy and the application
code. The proposal, however, assumes that the policiesae dHow could that technique be
applied in the case of dynamic policies, as allowed by Zas?ddtly, authorizations are specified
in Java code. It is important that, in the future, the auttadions are specified using a domain
specific language, such Z&CML .

The framework deals with the inheritance of access cont@lirements defined in classes
and interfaces to their fields and methods. However, it de¢sieal with questions related to
the extension of classes and with the implementation offextes, i.e., with the polymorphism
inherent toOO applications. Should a subclass redefine freely the acaggsot requirements
of a method that overrides the ones from the base class? &hpifl necessary, release that
method of any access control? Should it use, by default,dbess control requirements defined
on the super method, or the ones defined in the current mettleodshould the access control
requirements be defined as a disjunction between the acoesslaequirements defined on the
super method and the ones defined in the current method?dhewdccess control requirements
associated to methods be treated as their pre-conditions?

Currently, Zas does not address any of the previous qumsstib may support all or at least
some of them in the future, helping the programmer to decit o do in each situation, through
the introduction of new types of meta-information about #fteess control requirements, such
as @OverrideAccessControl to state that a metholdo() , overridden in a given subclass,
fully replaces any access control requirements defineds@ujer method@InheritsAccess-
Control to inherit the access control requirements from the supénade causing a disjunction

between the requirements defined on super and on the curethbd) and@RefineAccess-



83

Control to cause a conjunction between the access control requitsrdefined on both meth-
ods, leading to any attempt to the method on the extendirgs ¢arequire the access control

requirements both from the super method and from the metkel. i



84

CHAPTER 6. CONCLUSIONS AND FURTHER WORK



Bibliography

[1] Massimo Ancona, Walter Cazzola, and Eduardo B. Ferrandeeflective authorization
systems: Possibilities, benefits and drawbacks. In J. \dtekC. D. Jensen, editoiSecure
Internet Programmingvolume 1603 ol_ecture Notes in Computer Sciengages 35-50.
Springer-Verlag, 19991, 9

[2] James P. Anderson. Computer security technology pteystudy. Technical Report Volume
II, Electronic Systems Division, Air Force Systems Commardnscom Field, Bedford,
October 19721, 7, 81

[3] Ken Arnold, James Gosling, and David HolmesThe Java Programming Language
Addison-Wesley, Upper Saddle River, New Jersey, USA, 4itioed August 200555

[4] Aspect] Team. The Aspectd project at Eclipse.org. Weje pf2006-04-16]2, 45, 47

[5] Carliss Baldwin. The power of modularity: The financiainsequences of computer and
code architecture. IRroceedings of the 5th international conference on Aspeetted

software developmemntages 1-1, Bonn, Germany, March 2006.

[6] Abhijit Belapurkar. Java authorization internals — adgd tour of the Java 2 platform and
JAAS authorization architectures. Web publication, Ma@£2Q010

[7] Elisa Bertino. Data hiding and security in an objectentied database system.8th IEEE
International Conference on Data Engineerjngages 338—-347, Phoenix, Arizona, USA,
1992.40, 54

85



86 BIBLIOGRAPHY

[8] K. Beznosov. Engineering Access Control for Distributed Enterprise Agadions PhD
thesis, Engineering Access Control for Distributed EntegoApplications, Miami, Florida,
2000.8

[9] Ron Bodkin. Enterprise security aspects. Rroceedings of the AOSD Technology for
Application-level Security Workshppancaster, UK, 20049

[10] Grady Booch, James Rumbaugh, and Ivar Jacobfba.Unified Modeling Language User
Guide Addison-Wesley, 200126

[11] G. Bostrom. Database encryption as an asped®rdeeedings of the AOSD Technology for
Application-level Security Workshop (AOSDSEC,@4ncaster, UK, 20049

[12] Joao Cachopo and Rito Silva. Combining software @matienal memory with a domain
modeling language to simplify web application developmdntACM International Con-
ference Proceeding Series, edi@th International Conference on Web Engineeripgges
297 — 304, New York, NY, UYSA, 200654

[13] Soma Chaudhuri. Colloquium series spring 2005, 202606-11-09].1

[14] Michael Coté. JAAS book: Java authentication and axigation. Originally written for
publication by Manning, [2006-04-16}.

[15] Carlos Nuno da Cruz Ribeiro.Uma Plataforma para Pdticas de Autorizaéo para
Organiza@es PhD thesis, Universidade Técnica de Lisboa - InstitutpeBior Técnico,
2002.5, 8

[16] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Mo8loman. The ponder policy
specification language. 2nd International Workshop on Policies for Distributed ®yss

and NetworksBristol, U.K., January 20015, 40

[17] Edsger Wybe DijkstraA Discipline of ProgrammingPrentice Hall, Inc., 1st edition edition,
October 19761



BIBLIOGRAPHY 87

[18] Dulce Domingos. Controlo de Acesso em Fluxos de Trabalho Adapis PhD thesis,
Department of Informatics, University of Lisbon, DecemB605. DI/FCUL TR-05-261,
24

[19] Eduardo B. Fernandez. Patterns for operating systenesa control. 19th Conference on

Pattern Languages of Programs (PILqR2002.2

[20] Eduardo B. Fernandez and John C. Sinibaldi. More patésr operating systems access
control. InEuro Pattern Languages of Programs (PLoRD03.2

[21] David F. Ferraiolo, D. Richard Kuhn, Ramaswamy Chanubrali, and John Barkley. Role
Based Access Control (RBAC). Web page, March 2006. [20068]36

[22] Erich Gamma, Richard Helm, Ralph Johnson, and JohrsMks. Design Patterns: Ele-
ments of Reusable Object-Oriented Softwdi@94.9, 69

[23] S. Gao, Y. Deng, H. Yu, X. He, K. Beznosov, and K. Coopepplying aspect-orientation
in designing security systems. Rroceedings of 16th International Conference on Software

Engineering and Knowledge Engineering (SEKE;@Banff, Alberta, Canada, 2004.

[24] Oddleif Halvorsen and @ystein Haugen. Proposed rantditir exception handling in UML 2
sequence diagrams. Rroceedings of the 2006 Australian Software Engineeringf@ence
(ASWEC'06)2006.26

[25] Ivar Jacobson and Pan-Wei N@ispect-Oriented Software Development with Use Cases
Addison-Wesley, 200426

[26] Ramnivas LaddadAspectd in ActionManning, Greenwich, Connecticut, USA, 2023 3,
11,18 40,81

[27] Ramnivas Laddad. AOP@Work AOP and metadata: A perfattim part 1). Web publica-
tion, March 200541



88 BIBLIOGRAPHY
[28] Ramnivas Laddad. Personal communication, 2345

[29] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, aRbland Schemers. User authenti-
cation and authorization in the Ja¥platfom. InProceedings of the 15th Annual Computer

Security Applications Conferend@hoenix, Arizona, USA, December 1999.8

[30] Cristina Videira Lopes.D: A Language Framework for Distributed ProgrammindghD

thesis, College of Computer Science, Northeastern Untyet®97.77

[31] Bertrand Meyer.Object-Oriented Software ConstructioRrentice Hall, New Jersey, USA,
2nd edition, March 200036

[32] Shin Nakajima and Tetsuo Tamai. Formal specificatioth amalysis of JAAS framework.
In Proceedings of the 2006 International Workshop on Softviargineering for Secure
Systemgpages 59-64, Shanghai, China, May 2006. ACM, ACM Prgss.

[33] Dana Nourie and Mike McCloskey. Regular expressiors e Java programming lan-
guage, August 2001. Updated April 20024

[34] Scott Oaks.Java Security O'Reilly, 2nd edition, 20052, 17

[35] OASIS. eXtensible Access Control Markup Language XACWMersion 2.0. Technical
report, OASIS, 20055, 7, 40

[36] B. Broom P. Ashley, M. Vandenwauver. A uniform approdclsecuring unix applications
using SESAME. IrProceedings of the 3rd ACISP Conferenpages 24-35, 1998.

[37] James Rumbaugh, Ivar Jacobson, and Grady Bodhk.Unified Modeling Language Ref-
erence Manual Addison-Wesley, 199826

[38] Tatyana Ryutov and Clifford Neuman. The specificatiod @nforcement of advanced se-
curity policies. InProceedings of the Conference on Policies for Distributgst&ns and
Networks (POLICY 2002Monterey, California, 200238



BIBLIOGRAPHY 89

[39] V. Shah and F. Hill. An aspect-oriented security fraroekv In Proceedings of DARPA
Information Survivability Conference and Exposition (BEX'03), volume 2, pages 143—
145, Washington, DC, USA, 20083.

[40] Chris Strahorn. Security in next-generation databagde Proceedings of Citeseer Digital
Libraries, nov 1998.11, 12

[41] Sun Microsystems, Inc. Java 2 platform SE 5.0 API: Pattéass. [2006-04-16}44
[42] Sun Microsystems, Inc. Java technology: Security &iedJava platform. [2006-04-1615

[43] Roshan K. Thomas and Ravi S. Sandhu. Discretionarysaccentrol in object-oriented
databases: Issues and research directionBrdoeedings of the 16th NIST-NCSC National

Computer Security Conferengeages 63—74, Baltimore, MD, September 1993.

[44] Tine Verhanneman, Frank Piessens, Bart De Win, Eddyéirpand Wouter Joosen. A mod-
ular access control service for supporting applicatioeesir policies. IEEE Distributed
Systems Onling(6), June 20062, 9

[45] J. Viega, J. T. Bloch, and P. Chandra. Applying aspe@nted programming to security.
Cutter IT Journa) 2001.9

[46] Wikipedia, the Free Encyclopedia. Access control.0@d0-29].1

[47] Bart De Win. Engineering application-level security through aspedented software de-
velopment PhD thesis, Department of Computer Science, Catholic étsity of Leuven,

Leuven, Belgium, 20042, 9, 63

[48] Bart De Win, Frank Piessens, and Wouter Joosen. HowseésAOP and what can we do
about it? InProceedings of the 2006 international workshop on Softvesagineering for
secure systempages 27-34, New York, NY, USA, 2006. ACM Pre8s4.



90 BIBLIOGRAPHY

[49] Joseph Yoder and Jason Barcalow. Architectural pattéar enabling application security.
In PLoP’97, Proceedings of the 4th Conference on Patterns uagg of Programming
1997.2



	Abstract
	Resumo
	List of Figures
	List of Tables
	Acronyms
	Acknowledgements
	Introduction
	Contributions
	Structure

	Access control
	Concepts
	Access control system architectures
	Access control in Java
	Access control in object-oriented databases
	Conclusions

	A toy application and possible solutions
	Toy application
	Ad hoc
	JAAS
	JAAS with AspectJ
	JAAS with AspectJ and annotations

	The Zás framework
	Access control model
	Architecture
	Design
	Implementation
	Usage
	Features
	Basic
	Advanced
	Future


	Evaluation and metrics
	Fénix
	Analysis
	Number of files
	LOC
	Performance
	Percentage of affected access controlled methods
	ACRSR
	Conclusions


	Conclusions and further work

