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Doutor José Paulo Esperança, Professor Catedrático, ISCTE-IUL
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Resume

This thesis addresses the valuation of American-style standard and barrier options in

three separate and self-contained papers:

A. Pricing and Static Hedging of American-style Options under the Jump to De-

fault Extended CEV Model

This paper prices (and hedges) American-style options through the static hedge

approach (SHP) proposed by Chung and Shih (2009) and extends the literature in

two directions. First, the SHP approach is adapted to the jump to default extended

CEV (JDCEV) model of Carr and Linetsky (2006), and plain-vanilla American-style

options on defaultable equity are priced. The robustness and efficiency of the pro-

posed pricing solutions are compared with the optimal stopping approach offered

by Nunes (2009), under both the JDCEV framework and the nested constant elas-

ticity of variance (CEV) model of Cox (1975), using different elasticity parameter

values. Second, both the SHP and the optimal stopping approaches are extended

to the valuation of American-style capped options.

B. General Put-Call Symmetry for American-style Barrier Options

This paper derives put-call symmetries for American-style single and double bar-

rier options. Using the change of numeraire technique proposed by Geman et al.

(1995) and Schroder (1999) we are able to derive these symmetries without im-
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posing previous assumptions on the process followed by the underlying asset. Our

results are tested through an extensive numerical analysis run under the constant

elasticity of variance model.

C. In-Out Parity Relations and Early Exercise Boundaries for American-style Bar-

rier Options

This paper derives new in-out parity relations for American-style puts with a down

barrier and American-style calls with an up barrier. More importantly, we also pro-

pose a novel representation for the early exercise boundary of American-style dou-

ble knock-out options in terms of the simpler optimal stopping boundary for a nested

single barrier American-style option. Therefore, we are able to extend the static

hedge portfolio approach to the valuation of American-style double barrier knock-

out options. Our results are tested through an extensive numerical analysis run

under the geometric Brownian motion (GBM) and the constant elasticity of variance

models.

JEL Classification: G13.

Keywords: American-style options; Barrier options; GBM model; CEV model; JDCEV

model.
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Resumo

Esta tese aborda a avaliação de opções de estilo Americano, com e sem barreira, em

três artigos distintos:

A. Pricing and Static Hedging of American-style Options under the Jump to De-

fault Extended CEV Model

Este artigo avalia (e faz o hedging) de opções de estilo Americano através do static

hedge approach (SHP) proposto por Chung and Shih (2009) e estende a literatura

em duas direções. Primeiramente, o SHP é adaptado ao modelo jump to default

extended CEV (JDCEV) de Carr and Linetsky (2006), e são avaliadas opções de

estilo Americano sem barreira sobre activos com possibilidade de falência. A ro-

bustez e a eficiência das soluções de avaliação propostas, são comparadas com

o optimal stopping approach de Nunes (2009), no âmbito dos modelos JDCEV e

constant elasticity of variance (CEV) de Cox (1975), considerando diferentes va-

lores para o parâmetro de elasticidade. Em segundo lugar, tanto o SHP como o

optimal stopping approach são estendidos para a avaliação de opções de estilo

Americano com um cap.

B. General Put-Call Symmetry for American-style Barrier Options

Este artigo deriva relações de simetria put-call para opções de estilo Americano

com uma e duas barreiras. Usando a técnica de mudança de numerário proposta
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por Geman et al. (1995) e Schroder (1999) estas simetrias são derivadas sem

impor restrições prévias sobre o processo estocástico seguido pelo activo subja-

cente. Os resultados são testados através de uma extensa análise numérica sob

o modelo constant elasticity of variance.

C. In-Out Parity Relations and Early Exercise Boundaries for American-style Bar-

rier Options

Este artigo deriva novas relações de paridade in-out para puts de estilo Ameri-

cano com uma barreira inferior e calls de estilo Americano com uma barreira supe-

rior. Mais importante, é proposta uma nova representação da fronteira de exercı́cio

antecipado para opções de estilo Americano com dupla barreira knock-out, em

termos da fronteira de exercı́cio óptimo de uma opção de estilo Americano com

uma só barreira. Assim sendo, o método static hedge portfolio é estendido para

a avaliação de opções de estilo Americano com dupla barreira knock-out. Os re-

sultados são testados através de uma extensa análise numérica sob os modelos

geometric Brownian motion e constant elasticity of variance.

JEL Classification: G13.

Keywords: American-style options; Barrier options; GBM model; CEV model; JDCEV

model.
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1. Introduction

This thesis addresses the valuation of American-style standard and barrier options in

three separate and self-contained papers.

The valuation of American-style option contracts remains as one of the most challeng-

ing problems in the financial economics literature, given the difficulty, if not impossibility,

of achieving elegant analytical pricing solutions as those offered in the prominent work

of Black and Scholes (1973) and Merton (1973). This problem is even enhanced when

we allow the possibility of a single or double barrier feature for the American-style op-

tion.

In this thesis, singles and doubles, knock-outs and knock-ins, American-style barrier

options, are considered. An American-style knock-out option (without rebate) becomes

worthless if the barrier is touched by the underlying asset price; otherwise, it can be

exercised at or before the expiry date. Additionally, and as pointed by Gao et al. (2000,

Footnote 15), for the knock-out event and the exercise date to be well defined, the op-

tion contract must be specified in a way such that when the asset price first touches the

barrier, the option holder has the option to either exercise or let the option contract be

knocked out. An American-style knock-in option becomes an American-style standard

option if and only if the barrier is touched by the underlying spot price, before or at, the

option’s expiry date.
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The first paper offers three contributions for the existent option pricing literature. First,

and most importantly, the static hedge portfolio (SHP) approach of Chung and Shih

(2009) for pricing American-style standard options under the geometric Brownian mo-

tion (GBM) and constant elasticity of variance (CEV) model of Cox (1975) is extended

to American-style standard and capped options under the jump to default extended

CEV (JDCEV) model of Carr and Linetsky (2006). Such extension should prove use-

ful to researchers and practitioners in corporate debt and equity derivatives markets,

because the JDCEV model is consistent with three well-known facts that have found

empirical support in the literature, namely: the existence of a negative correlation be-

tween stock returns and realized volatility (leverage effect), as observed, for instance,

by Bekaert and Wu (2000); the inverse relation between the implied volatility and the

strike price of an option contract (implied volatility skew), as documented, for example,

in Dennis and Mayhew (2002); and the empirical evidence of a positive relationship be-

tween default probabilities and equity volatility, documented, for instance, in Campbell

and Taksler (2003).

Second, the optimal stopping approach of Nunes (2009) is extended for the pricing

of American-style capped options, assuming that the recovery value associated to the

put can be paid at the default time—as in Nunes (2009, Section VII)—or at the maturity

date of the option.

Third, the SHP approach is implemented to price American-style options under the

CEV model of Cox (1975) for other values of the elasticity parameter (beta) besides

the 4/3 benchmark used by Chung and Shih (2009), thus accommodating both direct

and indirect leverage effects observed across a wide variety of options markets.

Additionally, analytical solutions are offered to efficiently compute the hedge ratios of

the European-style pricing solutions proposed by Carr and Linetsky (2006), which con-

tain an embedded credit derivative (i.e. a European-style default claim) in the case

2



of the put contracts. Given the recent market practitioners’ concerns of linking equity

derivatives markets and credit markets, such closed-form solutions should be a viable

alternative for implementing efficient schemes to jointly hedge equity and credit deriva-

tives under this class of hybrid credit-equity models.

The second paper focus on the put-call symmetry. The put-call symmetry holds when-

ever the price of a put option can be recovered from the price of a call option (and vice

versa) through a suitable change in its function arguments.

Using the same change of numéraire technique as Schroder (1999), and considering a

market structure in which the underlying asset price follows a single factor but a Marko-

vian diffusion process, Detemple (2001) derives the put-call symmetry for American-

style single knock-out options. Using this same change of numéraire technique pre-

sented in Schroder (1999) and based on two mild assumptions we are able to extend

the put-call symmetry to other types of American-style barrier options.

Our contribution to the existent literature is threefold: First, we extend the put-call sym-

metry to American-style single knock-in barrier options; Second, and more importantly,

the symmetry is extended to American-style double knock-out and knock-in options;

Third, we provide numerical results for all the put-call symmetries derived under the

CEV model of Cox (1975).

The third paper provides three important results concerning the valuation of American-

style barrier options. First, we prove a new in-out parity relation between American-

style barrier options. Second, we derive the early exercise boundary of American-

style double knock-out options in terms of the simpler exercise boundary of single

barrier American-style options. Finally, we use the previous finding to extend the SHP

approach of Chung and Shih (2009) to the valuation of American-style double barrier

knock-out options.
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Concerning our first result, it is well known that for European-style contracts, the sum of

the prices of knock-in and knock-out barrier options is equal to the price of a standard

European-style option. However, and as argued by Dai and Kwok (2004, Page 187)

or Chung et al. (2013, Page 191), such in-out barrier parity relation cannot be applied

to American-style barrier options. In this article, we extend the in-out barrier parity

relation for American-style puts with a down barrier and calls with an up barrier.

Our second theoretical contribution to the existent literature on option pricing consists

in obtaining the early exercise boundary of any American-style double barrier option

in terms of the barrier levels and as a function of the optimal stopping boundary of a

nested single barrier American-style option. The rational behind our main result is sim-

ilar to the one used, for instance, by Broadie and Detemple (1995, Theorem 1) or Gao

et al. (2000, Theorem 6) to relate the early exercise boundaries of American-style stan-

dard and single barrier option contracts. Therefore, we are able to reduce the valuation

of American-style double barrier options to the same complexity level as the one faced

to price simpler single barrier contracts. Bearing in mind that only a few numerical

methods have been proposed for pricing American-style double barrier options—as,

for instance, the trinomial method of Ritchken (1995) or the PDE schemes of Zvan

et al. (2000)—and that most of them are confined to the simpler GBM assumption of

Black and Scholes (1973) and Merton (1973), our result should be used for all option

pricing models that generate viable pricing solutions for single barrier American-style

options.

To illustrate the potential of the previous finding, we easily extend the SHP methodology

of Chung and Shih (2009) to the valuation of American-style double barrier knock-out

options.

All the new results proposed in the third paper are only based on two mild assumptions:

the existence of a risk neutral measure (i.e. on no arbitrage, in the Harrison and Pliska
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(1981) sense); and the existence of a unique, continuous and monotone early exercise

boundary that separates the continuation and exercise regions of any American-style

option contract. Therefore, our results can be applied to the whole class of single

diffusion processes discussed in Detemple and Tian (2002, Propostion 1), and even to

jump-diffusion models—but subject to the technical conditions stated in Pham (1997,

Theorem 3.2).

This thesis proceeds as follows. Chapter 2 presents the first paper. Chapter 3 presents

the second paper. Chapter 4 presents the third paper. Finally, Chapter 5 concludes.
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2. Pricing and Static Hedging of American-style

Options under the Jump to Default Extended

CEV Model∗

Abstract: This paper prices (and hedges) American-style options through the static

hedge approach (SHP) proposed by Chung and Shih (2009) and extends the literature

in two directions. First, the SHP approach is adapted to the jump to default extended

CEV (JDCEV) model of Carr and Linetsky (2006), and plain-vanilla American-style op-

tions on defaultable equity are priced. The robustness and efficiency of the proposed

pricing solutions are compared with the optimal stopping approach offered by Nunes

(2009), under both the JDCEV framework and the nested constant elasticity of vari-

ance (CEV) model of Cox (1975), using different elasticity parameter values. Second,

both the SHP and the optimal stopping approaches are extended to the valuation of

American-style capped options.

JEL Classification: G13.

Keywords: American-style options; Static hedging; CEV model; JDCEV model.
∗This paper is a joint work with José Carlos Dias and João Pedro Nunes and was submitted to the Journal of

Banking and Finance.
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2.1 Introduction

The valuation (and hedging) of American-style option contracts remains as one of the

most challenging problems in the financial economics literature, given the difficulty, if

not impossibility, of achieving elegant analytical pricing solutions as those offered in the

prominent work of Black and Scholes (1973) and Merton (1973) (hereafter, BSM). The

absence of an exact and closed-form pricing solution for the American-style put (or call,

but on a dividend-paying asset) stems from the fact that the option price and the early

exercise boundary must be determined simultaneously as the solution of the same free

boundary problem that has been set up by McKean (1965). These difficulties have thus

lead to the development of several alternative valuation methodologies, ranging from

numerical solution methods to analytical approximations, all attempting to efficiently

price a variety of financial products with early exercise features.2.1

The numerical methods include, for instance, the finite difference schemes introduced

by Brennan and Schwartz (1977), the binomial models of Cox et al. (1979) and Rendle-

man and Bartter (1979), the trinomial lattice schemes of Boyle and Tian (1999) and

Tian (1993), and the least-squares Monte Carlo scheme of Longstaff and Schwartz

(2001). Even though these numerical methods are flexible, simple to implement, and

generally convergent, they are also too time consuming and do not provide the com-

parative statics attached to an analytical representation of the option pricing solution.

One of the first analytical approximations is offered by Barone-Adesi and Whaley (1987),

using the quadratic method of MacMillan (1986), but its convergence properties are still

weak, especially for long maturity options. Johnson (1983) and Broadie and Detemple

(1996) provide lower and upper bounds for American options, but these are based on

regression coefficients that are estimated through a time-demanding calibration to a
2.1See Barone-Adesi (2005) for a general overview of the literature.
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large set of options contracts.

Carr (1998) proposes a fast and accurate randomization approach that uses Richard-

son extrapolation. Geske and Johnson (1984) approximate the American option price

through an infinite series of Bermudan-style options exercisable at a finite number of

exercise points, and use also Richardson extrapolation. Several extensions of the orig-

inal Geske-Johnson methodology have been proposed in the literature to overcome its

non-uniform convergence feature. For instance, Bunch and Johnson (1992) implement

a modified two-point Geske-Johnson scheme, Chang et al. (2007) propose a repeated-

Richardson extrapolation procedure, and Chung and Shackleton (2007) generalize the

Geske and Johnson (1984) method through a two-point scheme based not only on

the inter-exercise time dimension, but also on the time to maturity of the option con-

tract. However, one of the main disadvantages of all these extrapolation schemes is

the indetermination of the sign for the approximation error.

Kim (1990), Jacka (1991), Carr et al. (1992), and Jamshidian (1992) initiated another

stream of the option pricing literature: The so-called integral representation method.

However, the numerical efficiency of this approach depends on the specification that is

adopted for the unknown early exercise boundary. For example, Huang et al. (1996)

adopt a time consuming step function approximation, while Ju (1998) proposes a mul-

tipiece exponential representation of the early exercise boundary.

All the aforementioned studies are based on the usual lognormal assumption of BSM,

and most of them differ only in the specification adopted for the early exercise bound-

ary. Kim and Yu (1996), Detemple and Tian (2002), and Nunes (2009) constitute three

notable exceptions. The former two studies extend the integral representation method

to alternative diffusion processes. However, and in opposition to the standard geomet-

ric Brownian motion case, such an extension does not offer an analytic representation

for the integral equation representing the early exercise premium, which undermines

8



its computational efficiency. Based on the optimal stopping approach of Bensoussan

(1984) and Karatzas (1988), Nunes (2009) proposes an alternative characterization of

the standard American-style option price that is valid for any continuous representation

of the exercise boundary and for any Markovian price process describing the dynam-

ics of the underlying asset price, including the jump to default constant elasticity of

variance (JDCEV) model of Carr and Linetsky (2006).

Chung and Shih (2009) tackle the American-style option pricing problem through the

static hedge approach (hereafter, SHP) initially developed by Bowie and Carr (1994),

Derman et al. (1995), and Carr et al. (1998) for hedging European-style exotic op-

tions (in which case the boundary is known ex-ante). Bowie and Carr (1994) and

Carr et al. (1998) hedge via static positions of European-style options for a continuum

of strikes (but with the same maturity date as the exotic option), while Derman et al.

(1995) use a continuum of standard European-style options with subsequent maturities

and strikes equaling the (known) boundary until the maturity of the exotic option. The

pricing methodology proposed by Chung and Shih (2009) for valuing American-style

options combines both methods: It uses standard European-style options with multiple

strikes and multiple maturities, because the optimal exercise boundary is not known ex-

ante. This approach creates a static portfolio of European-style options whose values

match the payoff of the American-style option being hedged at expiration and along the

boundary, by applying the value-matching and smooth-pasting conditions on the early

exercise boundary.

This paper offers three contributions for the existent option pricing literature. First, and

most importantly, we generalize the SHP approach for pricing American-style standard

and capped options under the JDCEV model. Such extension should prove useful to re-

searchers and practitioners in corporate debt and equity derivatives markets, because

the JDCEV model is consistent with three well-known facts that have found empirical
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support in the literature, namely: the existence of a negative correlation between stock

returns and realized volatility (leverage effect), as observed, for instance, by Bekaert

and Wu (2000); the inverse relation between the implied volatility and the strike price of

an option contract (implied volatility skew), as documented, for example, in Dennis and

Mayhew (2002); and the empirical evidence of a positive relationship between default

probabilities and equity volatility, documented, for instance, in Campbell and Taksler

(2003).

Second, we extend the optimal stopping approach of Nunes (2009) for the pricing of

American-style capped options, assuming that the recovery value associated to the

put can be paid at the default time—as in Nunes (2009, Section VII)—or at the maturity

date of the option. Our numerical results show that the SHP methodology is more

efficient (and as accurate as) the optimal stopping approach of Nunes (2009).

Third, we implement the SHP approach to price American-style options under the con-

stant elasticity of variance (CEV) model of Cox (1975) for other values of the elasticity

parameter (beta) besides the 4/3 benchmark used by Chung and Shih (2009), thus

accommodating both direct and indirect leverage effects observed across a wide vari-

ety of options markets. As argued in Nunes (2009, page 1250), the optimal stopping

approach offers a better speed-accuracy trade-off than the pricing methodology of De-

temple and Tian (2002)—which is based on the (very time consuming) full recursive

method of Huang et al. (1996)—and the accelerated recursive scheme of Kim and Yu

(1996), for valuing option contracts under the CEV assumption. Therefore, the accu-

racy and efficiency of the SHP approach for valuing American-style options under the

CEV model will be compared against the option pricing framework proposed by Nunes

(2009).

Additionally, we offer analytical solutions to efficiently compute the hedge ratios of the

European-style pricing solutions proposed by Carr and Linetsky (2006), which contain
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an embedded credit derivative (i.e. a European-style default claim) in the case of the

put contracts. Given the recent market practitioners’ concerns of linking equity deriva-

tives markets and credit markets, such closed-form solutions should be a viable alter-

native for implementing efficient schemes to jointly hedge equity and credit derivatives

under this class of hybrid credit-equity models.

The remainder of this article is organized as follows. Section 2.2 presents a brief

summary of the JDCEV framework. Section 2.3 extends the optimal stopping and SHP

approaches for the valuation of American-style standard and capped options under the

JDCEV model. Both valuation methods are numerically tested in Section 2.4, under

both the CEV and JDCEV setups. Finally, Section 2.5 summarizes the results and

contains concluding remarks. All accessory results are relegated to the Appendix.

2.2 JDCEV model

For the analysis to remain self-contained, the next three subsections provide, respec-

tively, a brief summary of the building blocks for the general JDCEV setup, the closed-

form solutions for pricing European-style options under the time-homogeneous JDCEV

model with constant parameters, and a specialization of the JDCEV modeling architec-

ture to the classic CEV model.

2.2.1 Model setup

Carr and Linetsky (2006) construct a unified framework for the valuation of corporate

liabilities, credit derivatives, and equity derivatives as contingent claims written on a de-

faultable stock. The price of the defaultable stock is modeled as a time-inhomogeneous
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diffusion process solving the stochastic differential equation

dSt
St

= [rt − qt + λ (t, S)] dt+ σ (t, S) dWQ
t , (2.1)

with St0 > 0, and where the risk-free interest rate rt and the dividend yield qt are de-

terministic functions of time, while the instantaneous volatility of equity returns σ (t, S)

and the default intensity λ (t, S) can also be state-dependent. WQ
t ∈ R is a standard

Wiener process generating the filtration F = {Ft, t ≥ t0}, and the martingale probability

measure Q, associated to the “money market account” numéraire, is taken as given.2.2

The pricing model proposed by Carr and Linetsky (2006) can either diffuse or jump to

default. In the first case, bankruptcy occurs at the first passage time of the stock price

to 0:

τ0 := inf {t > t0 : St = 0} . (2.2)

Alternatively, the stock price can also jump to default at the first jump time

ζ̃ := inf

{
t > t0 :

1

11{t<τ0}

∫ t

t0

λ (u, S) du ≥ Θ

}
, (2.3)

of the integrated hazard process to the level drawn from an exponential random variable

Θ independent of WQ
t and with unit mean. Therefore, the time of default is simply given

by2.3

ζ = τ0 ∧ ζ̃ , (2.4)

and D = {Dt, t ≥ t0} is the filtration generated by the default indicator process Dt =

11{t>ζ}.

2.2Note that the inclusion of the hazard rate λ(t, S) in the drift of equation (2.1) compensates the stockholders
for default (with zero recovery) and insures, under the risk-neutral measure Q, an expected rate of return equal
to the risk-free interest rate. Nevertheless, such an equivalent martingale measure will not be unique because the
arbitrage-free market considered by Carr and Linetsky (2006) is incomplete in the sense that the jump to default
will not be modeled as a stopping time of F.

2.3For any two real numbers x and y, we denote by x∨ y and x∧ y, respectively, their maximum and minimum.
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As in the classical CEV model of Cox (1975), Carr and Linetsky (2006) accommodate

the leverage effect and the implied volatility skew by specifying the instantaneous stock

volatility as a power function:

σ (t, S) = atS
β̄
t , (2.5)

where β̄ < 0 is the volatility elasticity parameter and at > 0, ∀t, is a deterministic

volatility scale function. Yet, to be consistent with the empirical evidence of a posi-

tive relationship between default probabilities and equity volatility, Carr and Linetsky

(2006) further assume that the default intensity is an increasing affine function of the

instantaneous stock variance:

λ (t, S) = bt + c σ (t, S)2 , (2.6)

where c ≥ 0, and bt ≥ 0, ∀t, is a deterministic function of time.

Following the hybrid credit-equity modeling framework of Carr and Linetsky (2006),

taking Gt = Ft ∨ Dt, and assuming no default by time t0 (i.e. ζ > t0), the time-t0 value

of a European-style call (if φ = −1) or put (if φ = 1) on the stock price S, with strike

K, recovery value R (i.e. the amount that the owner of a defaulted claim receives

upon default), and maturity date T (≥ t0), can be represented by the following building

blocks:

vt0 (St0 , K, T,R;φ, η) = v0
t0

(St0 , K, T ;φ) + vDt0 (St0 , R, T ;φ, η) , (2.7)

where

v0
t0

(St0 , K, T ;φ) := EQ

[
e
−
∫ T
t0
rldl (φK − φST )+ 11{ζ>T}

∣∣∣Gt0] , (2.8)

is the option value but conditional on no default by time T , and

vDt0 (St0 , R, T ;φ, η) := EQ

[
e
−
∫ η
t0
rldl(φR)+11{ζ≤T}

∣∣∣Gt0] , (2.9)
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for η ∈ {ζ, T}. In the case of a European call, there is no recovery if the firm defaults.

However, for the European put, equation (2.9) corresponds to a recovery payment equal

to the strike (i.e. R = K), that can be paid at the default time ζ or at the maturity date

T , depending on the recovery assumption.2.4 In the latter case, equation (2.9) can be

rewritten as

vDt0 (St0 , R, T ;φ, T ) = (φR)+e
−
∫ T
t0
rldl [1− SP (St0 , t0;T )] , (2.10)

where

SP (St0 , t0;T ) := EQ
(

11{ζ>T}
∣∣Gt0) = EQ

(
e
−
∫ T
t0
λ(l,S)dl

11{τ0>T}

∣∣∣Ft0) , (2.11)

is understood as the risk-neutral probability of surviving beyond time T > t0, and is

defined in Carr and Linetsky (2006, Equation 3.1).

2.2.2 Pricing solutions for European-style options

For constant r, q, a, b, and c, and assuming that ζ > t0, Carr and Linetsky (2006,

Proposition 5.5) show that the t0-price of a European-style call option with strike price

K and expiry date at time T (≥ t0) is given by2.5

vt0 (St0 , K, T, 0;−1, η) = e−q(T−t0) St0 Φ+1

(
0,
k2

ρ
; δ+,

x2

ρ

)
(2.12)

−e−(r+b)(T−t0) K

(
x2

ρ

) 1
2|β̄|

Φ+1

(
− 1

2|β̄|
,
k2

ρ
; δ+,

x2

ρ

)
,

2.4Note that recovery claims with η = T and η = ζ correspond to defaultable zero-coupon bonds under fractional
recovery of treasury and fractional recovery of face value, respectively—see, for instance, Schönbucher (2003,
Section 6.1), Bélanger et al. (2004, Section 3), and Lando (2004, Section 5.7).

2.5Note that the recovery component of the European-style call, vDt0 (St0 , R, T ;−1, η), is zero, and, therefore,
vt0 (St0 ,K, T, 0;−1, η) = v0t0 (St0 ,K, T ;−1).
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whereas the t0-price of the corresponding European-style put, but conditional on no

default by time T , is given by

v0
t0

(St0 , K, T ; 1) = e−(r+b)(T−t0)K

(
x2

ρ

) 1
2|β̄|

Φ−1

(
− 1

2|β̄|
,
k2

ρ
; δ+,

x2

ρ

)
(2.13)

−e−q(T−t0) St0 Φ−1

(
0,
k2

ρ
; δ+,

x2

ρ

)
,

where

x :=
1

|β̄|
S
|β̄|
t0 , (2.14)

k :=
1

|β̄|
K |β̄|e−|β̄|(r−q+b)(T−t0), (2.15)

δ+ :=
2c+ 1

|β̄|
+ 2, (2.16)

and

ρ ≡ ρ(t0, T ) :=


a2 (T − t0) ⇐ r − q + b = 0

a2

2|β̄|(r−q+b)

(
1− e−2|β̄|(r−q+b)(T−t0)

)
⇐ r − q + b 6= 0

. (2.17)

The functions Φθ (p, y; v, λ) := Eχ2(v,λ)
(
Xp11{θX≥θy}

)
represent, for θ ∈ {−1, 1}, the trun-

cated p-th moments of a noncentral chi-square random variable X with v degrees of

freedom and noncentrality parameter λ, as defined in Carr and Linetsky (2006, Equa-

tions 5.11 and 5.12).

The time-t0 value of the recovery part of the European-style put option, to be paid at

the maturity date T , is given by equation (2.10) with

SP (St0 , t0;T ) = e−b(T−t0)

(
x2

ρ

) 1
2|β̄|

M

(
− 1

2|β̄|
; δ+,

x2

ρ

)
, (2.18)

and where M (p; v, λ) := Eχ2(v,λ) (Xp) is the p-th raw moment of a noncentral chi-square
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random variable X with v degrees of freedom and noncentrality parameter λ, as de-

fined in Carr and Linetsky (2006, Equation 5.10).

There may be, however, put option contracts paying also the fixed recovery value R, but

at the default time ζ (i.e. considering the fractional recovery of face value assumption).

Following Carr and Linetsky (2006, Equation 5.15), the value of a claim that pays R

dollars at the default time ζ is given by

vDt0 (St0 , R, T ; 1, ζ) (2.19)

= R

∫ T

t0

e−(r+b)(u−t0)

[
b

(
x2

ρ (t0, u)

) 1
2|β̄|

M

(
− 1

2|β̄|
; δ+,

x2

ρ (t0, u)

)

+c a2 S2β̄
t0 e

−2|β̄| (r−q+b)(u−t0)

(
x2

ρ (t0, u)

) 1
2|β̄|+1

M

(
− 1

2|β̄|
− 1; δ+,

x2

ρ (t0, u)

)]
du.

Remark 2.1 In all numerical computations presented in this paper, and to enhance

the efficient computation of the pricing solutions (2.12) and (2.13), we use the algorithm

recently offered by Dias and Nunes (2012) for valuing the truncated p-th moments

Φθ (p, y; v, λ), with θ ∈ {−1, 1}. The raw moments M (p; v, λ) contained in the right-

hand side of equations (2.18) and (2.19) are computed also using the same algorithm

via the identity provided by Carr and Linetsky (2006, Equation 5.13).

2.2.3 CEV model

As shown by Carr and Linetsky (2006, Remark 5.2), the (no bankruptcy and local

volatility ) standard time-homogeneous CEV model of Cox (1975) can be nested into

the aforementioned modeling framework.2.6

2.6For additional background on the CEV process, see, for instance, Cox (1975), Emanuel and MacBeth (1982),
Schroder (1989), Davydov and Linetsky (2001, 2003), Nunes (2009), Dias and Nunes (2011), and Larguinho et al.
(2013).
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Definition 2.1 The classic CEV model of Cox (1975) can be nested into the general

framework described by equations (2.1) to (2.6) through the following restrictions: rt =

r, qt = q, λ(t, S) = 0, σ(t, S) = δS
β
2
−1

t , and τ0 =∞, with δ, β ∈ R.

Remark 2.2 For all numerical experiments under the CEV assumption we adopt the

Schroder (1989) pricing solutions by expressing the time-t0 value of a European-style

call option on the asset price S, with strike K, and maturity at time T (≥ t0) in terms of

the complementary distribution function of a noncentral chi-square law. As usual, the

corresponding time-t0 value of a European-style put arises immediately if one applies

the put-call parity.

Remark 2.3 The implementation of the SHP approach for valuing American-style op-

tions under the CEV model requires the knowledge of the analytical solutions for the

hedge ratios of the corresponding European-style plain-vanilla options. Fortunately, the

necessary delta measures can be computed in closed-form and are given in Larguinho

et al. (2013).

Remark 2.4 The valuation of option prices and deltas under the CEV model requires

the computation of the noncentral chi-square distribution function. There is an ex-

tensive literature devoted to the efficient computation of this cumulative distribution

function (cdf). For all numerical computations of option prices and hedge ratios un-

der the CEV assumption we use Benton and Krishnamoorthy (2003, Algorithm 7.3) for

computing the cdf of a noncentral probability law.2.7

2.7See Larguinho et al. (2013) who have shown that this algorithm clearly offers the best speed-accuracy trade-off
for computing the cdf of a noncentral probability law in the context of the CEV model.
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2.3 Valuation of American-style options

To the authors knowledge, the valuation of American-style standard options under the

JDCEV framework is only pursued by Nunes (2009, Section VII) under an optimal stop-

ping approach, and assuming the recovery payment at the default time (i.e. η = ζ). In

this section, we extend the optimal stopping approach of Nunes (2009) for the pay-

ment of the recovery value at the maturity date T (i.e. η = T ), and for the valuation

of American-style capped options. More importantly, we also generalize the SHP ap-

proach proposed by Chung and Shih (2009) for the pricing of both standard and capped

American-style options under the JDCEV model.

2.3.1 Standard American-style contracts

Following Nunes (2009, Equation 53), and assuming that ζ > t0, the time-t0 value of

an American-style standard option under the JDCEV model, on the stock price S, with

strike K, recovery value R, and maturity date T (≥ t0), can be represented by the

following Snell envelope:

Vt0 (St0 , K, T,R;φ, η) = sup
τ∈T

{
EQ

[
e
−
∫ T∧τ
t0

rldl (φK − φST∧τ )+ 11{ζ>T∧τ}

∣∣∣Gt0] (2.20)

+EQ

[
e
−
∫ η
t0
rldl(φR)+11{ζ≤T∧τ}

∣∣∣Gt0]},
where φ ∈ {−1, 1}, η ∈ {ζ, T}, and T is the set of all stopping times (taking values

in [t0,∞]) for the enlarged filtration G = {Gt, t ≥ t0}. In the case of an American call

(φ = −1), there is no recovery if the firm defaults. However, for the American put

(φ = 1), the second expectation on the right-hand side of equation (2.20) corresponds

to a recovery payment equal to the strike (i.e. R = K) at the default time ζ or at the
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maturity date T (as long as the default event precedes both expiry and early exercise

dates).

Given that the random variable Θ is independent of F, Carr and Linetsky (2006, Equa-

tions 3.2 and 3.4) or Schönbucher (2003, Proposition 5.3 and Equation 5.32) imply that

equation (2.20) can be rewritten in terms of the restricted filtration F:

Vt0 (St0 , K, T,R;φ, η) (2.21)

= sup
τ∈T

{
EQ

[
e
−
∫ T∧τ
t0

(rl+λ(l,S))dl
(φK − φST∧τ )+ 11{τ0>T∧τ}

∣∣∣Ft0]
+11{η=T}(φR)+e

−
∫ T
t0
rldl
[
1− EQ

(
e
−
∫ T∧τ
t0

λ(l,S)dl
11{τ0>T∧τ}

∣∣∣Ft0)]
+11{η=ζ}(φR)+EQ

[∫ T∧τ

t0

e
−
∫ v
t0

(rl+λ(l,S))dl
λ(v, S)11{τ0>v}dv

∣∣∣∣Ft0]}.
Moreover, since S behaves as a pure diffusion process with respect to the filtration F,

Detemple and Tian (2002, Propositions 1 and 2) show that there exists (at each time t ∈

[t0, T ]) a critical asset price Et below (above) which the American-style put (call) price

equals its intrinsic value and, therefore, early exercise should occur. Consequently,

the optimal policy should be to exercise the American-style option when the underlying

asset price first touches its critical level. Representing the first passage time of the

underlying asset price S to its early exercise boundary {Et, t0 ≤ t ≤ T} by

τe := inf {t ≥ t0 : St = Et} , (2.22)

equation (2.21) can be restated as:

Vt0 (St0 , K, T,R;φ, η) = V 0
t0

(St0 , K, T ;φ) + V D
t0

(St0 , R, T ;φ, η) , (2.23)
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where

V 0
t0

(St0 , K, T ;φ) = EQ

[
e
−
∫ T∧τe
t0

(rl+λ(l,S))dl
(φK − φST∧τe)

+ 11{τ0>T∧τe}

∣∣∣Ft0] , (2.24)

corresponds to Nunes (2009, Equation 55), i.e. to the American-style option price

conditional on no default (before the expiry and early exercise dates), and

V D
t0

(St0 , R, T ;φ, η) (2.25)

= 11{η=T}(φR)+e
−
∫ T
t0
rldl
[
1− EQ

(
e
−
∫ T∧τe
t0

λ(l,S)dl
11{τ0>T∧τe}

∣∣∣Ft0)]
+11{η=ζ}(φR)+EQ

[∫ T∧τe

t0

e
−
∫ v
t0

(rl+λ(l,S))dl
λ(v, S)11{τ0>v}dv

∣∣∣∣Ft0] ,
represents the present value of the recovery payment made at the maturity date or at

the default time.

Next proposition decomposes the American-style option price (2.23) into its European-

style counterpart and an early exercise premium, and generalizes Nunes (2009, Propo-

sition 7) to different recovery assumptions.

Proposition 2.1 Under the JDCEV model described by equations (2.1) to (2.4), and

assuming that ζ > t0, the time-t0 value of an American-style standard option on the

stock price S, with strike K, recovery value R, and with maturity date T (≥ t0) is equal

to

Vt0 (St0 , K, T,R;φ, η) = vt0 (St0 , K, T,R;φ, η) + EEPt0 (St0 , K, T,R;φ, η) , (2.26)

where the corresponding European-style option price vt0 (St0 , K, T,R;φ, η) is given by
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equation (2.7),

EEPt0 (St0 , K, T,R;φ, η) (2.27)

=

∫ T

t0

{
e
−
∫ u
t0
rldl
[
(φK − φEu)+ − v0

u (Eu, K, T ;φ)
]
SP (St0 , t0;u)

−11{η=T}e
−
∫ u
t0
rldlvDu (Eu, R, T ;φ, T )− 11{η=ζ}v

D
u (Eu, R, T ;φ, ζ)

}
Q (τe ∈ du| Ft0) ,

is the early exercise premium of the American-style put (φ = 1) or call (φ = −1) option,

{Eu, t0 ≤ u ≤ T} is the (unknown) early exercise boundary, and functions v0
u (·), vDu (·)

and SP (·) are defined by equations (2.8), (2.9) and (2.11), respectively.

Proof. Please see Appendix A.�

As usual, the time path {Eu, t0 ≤ u ≤ T} of critical asset prices is not known ex ante. To

implement Proposition 2.1, we must first parameterize such early exercise boundary,

and maximize (with respect to those parameters) the early exercise premium (2.27).

For this purpose, the density of the first passage time τe can be easily recovered by

solving the non-linear integral equation of Nunes (2009, Equation 35) through the stan-

dard partition method proposed by Park and Schuurmann (1976).

2.3.2 SHP approach

This subsection provides an alternative pricing method to Proposition 2.1 as well as

the main theoretical contribution of this paper: The extension of the SHP approach

of Chung and Shih (2009) to the JDCEV model. Such extension is based on the fact

that the process S behaves as a pure diffusion process with respect to the filtration F.

Therefore, the usual value-matching and smooth-pasting conditions can be imposed

to equations (2.24) and (2.25), by including in the SHP portfolio the European-style

contracts (2.8) and (2.9) with different maturities and different strikes.
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As in Chung and Shih (2009), we start at the maturity date of the American-style option

and proceed backwards until the valuation date. At time T , we start our static hedge

portfolio with one unit of the European-style option (2.7) with strike K, and expiry date

at time T . Note that such long position now includes two components: One long po-

sition on the European-style contract (2.8) that assumes no default, as in Chung and

Shih (2009); but also a new long position on the recovery component (2.9), that will

ensure that the portfolio is worth the recovery value R if default occurs.

Similarly to Chung and Shih (2009), we divide the time to maturity of the option contract

into n evenly-spaced time points such that δt := (T − t0) /n. At each time ti := t0 + iδt

(for i = n−1, . . . , 1, 0), the unkown early exercise boundary Ei is matched by adding wi

units of only the no-default component (2.8) with strike equal to Ei, and maturity at time

ti+1. For each time step, the unkowns Ei and wi are found by solving simultaneously

the following two recurrence conditions:

φK −φEn−i = vtn−i (En−i, K, T,R;φ, η) +
i∑

j=1

wn−j × v0
tn−i

(En−i, En−j, tn−j+1;φ) , (2.28)

and

−φ = ∆vtn−i (En−i,K,T,R;φ,η) +
i∑

j=1

wn−j ×∆v0
tn−i

(En−i,En−j ,tn−j+1;φ), (2.29)

for i = 1, 2, ..., n, and where ∆ represents the delta (or hedge ratio) of the option.

After solving for all the unknowns Ei and wi (for i = n − 1, . . . , 1, 0), the time-t0 SHP

price of the American-style option, under the JDCEV model, is finally given by:

V shp
t0 (St0 , K, T,R;φ, η) =


V shpu
t0 (St0 , K, T,R;φ, η) ⇐ φSt0 > φEt0

φK − φSt0 ⇐ φSt0 ≤ φEt0

, (2.30)
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where

V shpu
t0 (St0 , K, T,R;φ, η) := vt0 (St0 , K, T,R;φ, η) +

n∑
j=1

wn−j × v0
t0

(St0 , En−j, tn−j+1;φ) .

(2.31)

Remark 2.5 Note that equation (2.31) constitutes only an upper bound for the true

American-style option price, and the true SHP price must be found through equation

(2.30) whenever the early exercise boundary has been crossed by the valuation date.

Under such scenario, Appendix B shows that equation (2.31) would overvalue the op-

tion contract.

Remark 2.6 To simultaneously solve the two recurrence conditions (2.28) and (2.29),

we must provide an initial guess for En−1. Following, for instance, Huang et al. (1996,

Footnote 5) and Kim and Yu (1996, Page 67), we initialize the early exercise boundary

at

En = φ

(
φK ∧ φrTK

qT

)
, (2.32)

and take En−1 = En as an initial guess.

2.3.3 Hedge ratios

As usual, the implementation of the SHP approach for valuing American-style op-

tions under the JDCEV model requires the knowledge of the analytical solutions for

the hedge ratios of the corresponding European-style plain-vanilla options. The next

proposition offers the closed-form solutions for the hedge ratios of the pricing solu-

tions proposed by Carr and Linetsky (2006), which represent a novel contribution to
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the credit and equity derivatives literature.2.8

Proposition 2.2 Let x, k, δ+, and ρ be defined as in equations (2.14), (2.15), (2.16), and

(2.17), respectively. Assume that default has not occurred by time t0 ≥ 0, that is ζ > t0,

and take St0 > 0.

i. The delta of the call option (2.12) is given by

∆vt0(St0 ,K,T,0;−1,η) = e−q(T−t0)

[
Φ+1

(
0,
k2

ρ
; δ+,

x2

ρ

)
+ 2 |β̄| x

2

ρ
p

(
k2

ρ
; 2 + δ+,

x2

ρ

)]
− K

St0
e−(r+b)(T−t0)

(
x2

ρ

) 1
2|β̄|
[
Φ+1

(
− 1

2|β̄|
,
k2

ρ
; δ+,

x2

ρ

)
(

1− |β̄| x
2

ρ

)
+ 2 |β̄| Φ̃+1

(
− 1

2|β̄|
,
k2

ρ
; δ+,

x2

ρ

)]
, (2.33)

where p(.; v, λ) is the probability density function of a noncentral chi-square distribution

with v degrees of freedom and noncentrality parameter λ, as given in Johnson et al.

(1995, Equation 29.4), and

Φ̃+1 (p, w; v, λ) := 2p
∞∑
i=0

e−
λ
2

(
λ
2

)i
(i− 1)!

Γ
(
p+ v

2
+ i, w

2

)
Γ
(
v
2

+ i
) , (2.34)

with Γ (a, z) and Γ (a) representing the upper incomplete gamma function and the Euler

gamma function given in Abramowitz and Stegun (1972, Equations 6.5.3 and 6.1.1),

respectively, for a, z ∈ R+.
2.8Even though we are concentrating our analysis on the time-homogeneous JDCEV model with constant param-

eters, it is straightforward to extend the analytical solutions of the hedge ratios proposed in Proposition 2.2 for the
time-dependent JDCEV model.
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ii. The delta of the put option conditional on no default (2.13) is given by

∆v0
t0

(St0 ,K,T ;1) =
K

St0
e−(r+b)(T−t0)

(
x2

ρ

) 1
2|β̄|
[
Φ−1

(
− 1

2|β̄|
,
k2

ρ
; δ+,

x2

ρ

)
(2.35)(

1− |β̄| x
2

ρ

)
+ 2 |β̄| Φ̃−1

(
− 1

2|β̄|
,
k2

ρ
; δ+,

x2

ρ

)]
−e−q(T−t0)

[
Φ−1

(
0,
k2

ρ
; δ+,

x2

ρ

)
− 2 |β̄| x

2

ρ
p

(
k2

ρ
; 2 + δ+,

x2

ρ

)]
,

where

Φ̃−1 (p, w; v, λ) := 2p
∞∑
i=0

e−
λ
2

(
λ
2

)i
(i− 1)!

γ
(
p+ v

2
+ i, w

2

)
Γ
(
v
2

+ i
) , (2.36)

with γ (a, z) being the lower incomplete gamma function given in Abramowitz and Ste-

gun (1972, Equation 6.5.2), for a, z ∈ R+.

iii. The delta of the recovery part of the put (2.10), under the fractional recovery of

treasury assumption, is given by

∆vDt0(St0 ,R,T ;1,T) = − R

St0
e−r(T−t0) SP (St0 , t0;T ) (2.37)1 + |β̄| x

2

ρ

(1− 1

|β̄| δ+

)
1F1

(
δ+
2

+ p+ 1, δ+
2

+ 1, x
2

2ρ

)
1F1

(
δ+
2

+ p, δ+
2
, x

2

2ρ

) − 1

 ,
where

1F1 (a, b, z) :=
∞∑
i=0

(a)i
(b)i

zi

i!
, (2.38)

is the Kummer confluent hypergeometric function of the first kind as given, for instance,

by Slater (1960, Equation 1.1.8), Abramowitz and Stegun (1972, Equation 13.1.2),

or Lebedev (1972, Equation 9.9.1), and (a)i is the Pochhammer function defined, for

example, in Abramowitz and Stegun (1972, Equation 6.1.22).

iv. The delta of the recovery part of the put (2.19), under the fractional recovery of face
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value assumption, is given by

∆vDt0(St0 ,R,T ;1,ζ) (2.39)

= R

∫ T

t0

e−(r+b)(u−t0)

[
bA

St0

(
x2

ρ (t0, u)

) 1
2|β̄|

M

(
− 1

2|β̄|
; δ+,

x2

ρ (t0, u)

)

+ca2BS2β−1
t0 e−2|β̄|(r−q+b)(u−t0)

(
x2

ρ (t0, u)

) 1
2|β̄|+1

M

(
− 1

2|β̄|
− 1; δ+,

x2

ρ (t0, u)

)]
du,

where

A := 1 + |β̄| x2

ρ (t0, u)

(1− 1

|β̄| δ+

)
1F1

(
δ+
2

+ p+ 1, δ+
2

+ 1, x2

2ρ(t0,u)

)
1F1

(
δ+
2

+ p, δ+
2
, x2

2ρ(t0,u)

) − 1

 , (2.40)

and

B := 1 + |β̄| x2

ρ (t0, u)

(1− 1

|β̄| δ+

− 2

δ+

)
1F1

(
δ+
2

+ p, δ+
2

+ 1, x2

2ρ(t0,u)

)
1F1

(
δ+
2

+ p− 1, δ+
2
, x2

2ρ(t0,u)

) − 1

 . (2.41)

Proof. The delta of the recovery parts of the put (2.10) and (2.19) involve the derivative

of the Kummer confluent hypergeometric function (2.38) with respect to z, given, for

instance, in Slater (1960, Equation 2.1.1), Abramowitz and Stegun (1972, Equation

13.4.8), or Lebedev (1972, Equation 9.9.4). The proof of the hedge ratios (2.33) and

(2.35) involves straightforward calculus and is omitted.�

Remark 2.7 Note that, under the fractional recovery of treasury assumption, the delta

of the European-style put option (2.7) is given by the sum of equations (2.35) and (2.37).

Alternatively, such hedge ratio can be easily obtained through the put-call parity

∆vt0(St0 ,K,T,R;1,T) = ∆v0
t0

(St0 ,K,T ;−1) − e
−q(T−t0), (2.42)
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which avoids the need of computing the Kummer confluent hypergeometric function

(2.38).

Remark 2.8 One of the ingredients for efficiently compute the hedge ratios offered in

Proposition 2.2 is the computation of the value function Φ̃θ (p, w; v, λ), with θ ∈ {−1, 1}.

To enhance the efficiency of the analytical formulas (2.33) and (2.35), we have adapted

the algorithm offered by Dias and Nunes (2012) for computing the series solutions

(2.34) and (2.36). Details are available upon request.

2.3.4 American-style capped contracts

Equation (2.23) can be interpreted as an American-style down-and-out option with

the down-and-out barrier set at zero (with the short-term interest rate replaced by an

intensity-adjusted short-rate, and with possible recovery at default). Therefore, the ex-

tension of the SHP approach to the valuation of equation (2.23) highlights that the SHP

method can also be easily applied to the pricing of American-style barrier options un-

der single factor diffusion processes. Such task has been successfully undertaken by

Chung et al. (2013) for American knock-in put options under the CEV model (but only

with β = 4
3
). To illustrate the extension of the SHP approach to the pricing of American-

style barrier options under the JDCEV framework, we now consider the valuation of

American-style capped call and put options.

Upon exercise, the payoff of a capped option on the asset price S, with strike K, and

constant cap H, is equal to (S ∧H −K)+, for a capped call, and to (K − S ∨H)+, for

a capped put. Therefore, and as argued, for instance, by Detemple (2006, Page 89),

a capped option is equivalent to “a knock-out barrier option with rebate equal to the

option payoff at the trigger date”.
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Under the JDCEV model and assuming the automatic exercise at the constant cap

level H, the time-t0 value of an American-style capped option on the stock price S, with

strike K, and with expiry date at time T (≥ t0) can be obtained through the following

augmentation of the Snell envelope (2.20):2.9

V̄t0 (St0 , K,H, T ;φ, η) (2.43)

= sup
τ∈T

{
EQ

[
e−

∫ T∧τ∧τH
t0

rldl (φK − φST∧τ∧τH )+ 11{ζ>T∧τ∧τH}

∣∣∣Gt0]
+EQ

[
e
−
∫ η
t0
rldl
(
φ (K −H)+)+

11{ζ≤T∧τ∧τH}

∣∣∣Gt0]} ,
where

τH := inf {t > t0 : St = H} , (2.44)

is the first passage time of the underlying asset price to the cap level H, which is such

that

φH < φSt0 , (2.45)

with φ = 1 for a put option, φ = −1 for a call option, and η ∈ {ζ, T}. Since the random

variable Θ is independent of F, because S behaves as a pure diffusion process with

respect to the filtration F, and following the same steps as in Subsection 2.3.1, equation

(2.43) can be simply restated as

V̄t0 (St0 , K,H, T ;φ, η) = V̄ 0
t0

(St0 , K,H, T ;φ) + V̄ D
t0

(St0 , K,H, T ;φ, η) , (2.46)

where

V̄ 0
t0

(St0 , K,H, T ;φ) (2.47)

= EQ

[
e−

∫ T∧τ̄e∧τH
t0

(rl+λ(l,S))dl (φK − φST∧τ̄e∧τH )+ 11{τ0>T∧τ̄e∧τH}

∣∣∣Ft0] ,
2.9As usual, for call options the recovery value upon default is zero. For American-style capped puts, such

recovery value is assumed to be equal to (K − 0 ∨H)+ = (K −H)+.
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is the American-style capped option value conditional on no default, and

V̄ D
t0

(St0 , K,H, T ;φ, η) (2.48)

= 11{η=T}
(
φ (K −H)+)+

e
−
∫ T
t0
rldl
[
1− EQ

(
e−

∫ T∧τ̄e∧τH
t0

λ(l,S)dl11{τ0>T∧τ̄e∧τH}

∣∣∣Ft0)]
+11{η=ζ}

(
φ (K −H)+)+ EQ

[∫ T∧τ̄e∧τH

t0

e
−
∫ v
t0

(rl+λ(l,S))dl
λ(v, S)11{τ0>v}dv

∣∣∣∣Ft0] ,
is the present value of the recovery payment (made at the maturity date or at the default

time), and

τ̄e := inf
{
t > t0 : St = Ēφ

t

}
, (2.49)

is the optimal stopping time through the early exercise boundary
{
Ēφ
t , t0 ≤ t ≤ T

}
of

the capped put (if φ = 1) or call (if φ = −1).

Moreover, the early exercise boundary of both capped options can be easily recov-

ered from the boundary of the corresponding uncapped option, since Gao et al. (2000,

Theorem 6) and Detemple and Tian (2002, Proposition 8) have shown that

Ē1
t = Et ∨H, (2.50)

and

Ē−1
t = Et ∧H, (2.51)

for all t ∈ [t0, T ], and where {Et, t0 ≤ t ≤ T} is the early exercise boundary of the

corresponding standard American-style option. Consequently, equation (2.46) can be

simply rewritten as equation (2.23) but with τe and R replaced by τ̄e∧ τH and (K−H)+,

respectively.

Under the optimal stopping approach of Nunes (2009), the evaluation of equation

(2.46) is straightforward. First, the early exercise boundary {Et, t0 ≤ t ≤ T} is found
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via Proposition 2.1, by maximizing the early exercise premium (2.27) for R = (K−H)+

and with respect to a polynomial parameterization of the boundary. Then, the capped

boundary
{
Ēφ
t , t0 ≤ t ≤ T

}
is obtained through equations (2.50) or (2.51), and fed into

equation (2.26) with R = (K −H)+.

Under the SHP approach, the evaluation of equation (2.46) is based on two steps that

combine the Derman et al. (1995) and the Chung and Shih (2009) approaches. Again,

we divide the time to maturity of the option contract into n evenly-spaced time points

such that δt := (T − t0) /n, and ti := t0 + iδt (for i = n − 1, ..., 1, 0). But now we only

need to find the unknown early exercise boundary Ēφ
i until Ēφ

i = H, since equations

(2.50) and (2.51) imply that the remaining boundary is simply given by H.

The recurrence conditions (2.28) and (2.29) are easily adapted to the valuation of

American-style capped options:

φK − φĒφ
n−i = vtn−i

(
Ēφ
n−i, K, T, (K −H)+;φ, η

)
(2.52)

+
i∑

j=1

wn−j × v0
tn−i

(
Ēφ
n−i, Ē

φ
n−j, tn−j+1;φ

)
,

and

−φµ =

[
∆vtn−i(Ē

φ
n−i,K,T,(K−H)+;φ,η) +

i∑
j=1

wn−j ×∆v0
tn−i(Ē

φ
n−i,Ē

φ
n−j ,tn−j+1;φ)

]
µ, (2.53)

with µ = 1 while Ēφ
n−i = Eφ

n−i and µ = 0 when Ēφ
n−i = H. Finally, the time-t0 SHP price

of the American-style capped option, under the JDCEV model, is given by:

V̄ shp
t0 (St0 , K,H, T ;φ, η) =


V̄ shpu
t0 (St0 , K,H, T ;φ, η) ⇐ φSt0 > φĒφ

t0

φK − φSt0 ⇐ φSt0 ≤ φĒφ
t0

, (2.54)
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where

V̄ shpu
t0 (St0 , K,H, T ;φ, η) := vt0

(
St0 , K, T, (K −H)+;φ, η

)
(2.55)

+
n∑
j=1

wn−j × v0
t0

(
St0 , Ē

φ
n−j, tn−j+1;φ

)
.

Note that the procedure of Chung and Shih (2009) is only used until Ēφ
n−i = H; then,

the procedure of Derman et al. (1995) is applied to the remaining early exercise bound-

ary, since the boundary is known and we only have to find the weights of the hedging

portfolio. Using this two-step procedure, the valuation of American-style capped op-

tions is always faster than the valuation of standard American-style options (except for

the case when both contracts share the same exercise boundary and, hence, the CPU

time is the same).

2.4 Numerical experiments

To test the efficiency of the SHP and optimal stopping approaches under the CEV and

JDCEV frameworks, we divide the analysis in two parts: First, we consider the valua-

tion of standard American-style options; then we deal with the pricing of American-style

capped options.

2.4.1 American-style standard options

It is noteworthy to emphasize that Chung and Shih (2009) have successfully applied

the SHP approach to price (and hedge) American-style options under the lognormal

assumption of BSM and for the CEV diffusion model of Cox (1975). For the latter

model, however, they consider only the case where the elasticity parameter of the CEV
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process (β) is equal to 4/3. As observed by Schroder (1989), the prices of plain-vanilla

calls and puts under the CEV assumption with β = 4/3 are easy to compute since the

corresponding complementary noncentral chi-square distribution functions Q(.; 1, λ),

Q(.; 3, λ), and Q(.; 5, λ) can be determined using only the standard normal density and

distribution functions.

CEV model

The main goal of our first numerical experiments is to further test the accuracy and

efficiency of the SHP method for pricing American-style options under the CEV model

described in Subsection 2.2.3 by extending the analysis for any β parameter, thus

accommodating both direct and indirect leverage effects commonly observed across a

variety of options markets.

For this purpose, the pricing solutions of the SHP procedure will be compared against

the optimal stopping approach offered by Nunes (2009) for the parameter constella-

tions considered in Nunes (2009, Tables 2, 3, and 4).2.10 All numerical results in this

paper are obtained through Matlab (R2010a) running on an Intel Xeon X5680 3.33GHz

processor.

Table 2.1 reports American-style put prices with a time to maturity of six months and

assuming an elasticity parameter β = 3, while Table 2.2 values American-style call

options with an expiry date of one year, and under a CEV square root process with

β = 1.2.11 The proxy of the exact American option price (4th column) is computed

through the Crank-Nicolson finite-difference scheme with 15, 000 time intervals and

10, 000 space steps. The optimal stopping approach of Nunes (2009) is implemented
2.10The use of the Nunes (2009) valuation methodology will also allow us to compare the SHP results to be

obtained under the JDCEV model proposed in Carr and Linetsky (2006).
2.11Note that the value of an American-style call option under the CEV model can be obtained also through the

put-call symmetry offered by Schroder (1999, Corollary 1).
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with conditional minimization through the Matlab “fmincon” algorithm, and using a four

and five degree polynomial specification for the early exercise boundary (5th and 6th

columns, respectively).2.12 As suggested by Nunes (2009, page 1246), the parameters

defining the exercise policy are first estimated by discretizing both Nunes (2009, Propo-

sitions 1 and 5) using N = 24. Then, and based on this approximation for the optimal

exercise boundary, the early exercise premium is computed via Nunes (2009, Propo-

sition 6) using N = 28 time steps. The last four columns of Tables 2.1 and 2.2 contain

the American-style option prices generated by the SHP method, which is implemented

using the Matlab “fsolve” algorithm for solving the recurrence conditions (2.28) and

(2.29), subject to the restrictions described in Definition 2.1, and with n ∈ {4, 12, 24, 52}.

Accuracy is measured by the mean average absolute percentage error (over the 20

contracts considered) of each valuation approach and with respect to the exact Ameri-

can option price. Efficiency is evaluated by the total CPU time (expressed in seconds)

spent to value the whole set of contracts considered.

There are four points that are noteworthy to highlight in these two tables. First, both

methods are accurate: the mean average absolute percentage errors (MAPE) in all

tested cases are well below the typical bid-ask spread observed in the market. Sec-

ond, the SHP method with n = 12 gives similar results in terms of accuracy to the

Nunes (2009) approach with a four degree polynomial specification for the early ex-

ercise boundary, but with less than half of the computational burden. Third, the SHP

method with n = 24 gives more accurate results than the Nunes (2009) approach with

a five degree polynomial specification for the early exercise boundary, though using

a similar CPU time. Fourth, the computational expenses contained in Table 2.2 are

about half of those presented in Table 2.1 essentially due to the fact that more than half

of the American-style options evaluated in Table 2.2 are equal to their European-style
2.12The early exercise premium (2.27) is maximized subject to the terminal condition (2.32), and imposing that

the optimal exercise boundary is non-negative and non-decreasing.
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counterparts, and in these cases both methods become faster.

Tables 2.1 and 2.2 compile 40 option prices which obviously do not represent a large

enough sample to take more robust conclusions, thus giving only a preliminary flavor

of the results. Hence, to better assess the speed-accuracy trade-off between the two

methods tested we follow the guidelines of Broadie and Detemple (1996) by conduct-

ing a careful large sample evaluation of 1,250 randomly generated American-style put

option prices.

Table 2.3 reproduces the pricing errors of the optimal stopping approach of Nunes

(2009) with a five and six polynomial specification for the early exercise boundary (2nd

and 3rd columns, respectively) and the pricing errors of the SHP approach for four

different evenly-spaced time grids (the last four columns), where all the option param-

eters, with the exception of β and δ, are extracted from the same uniform distributions

as in Ju (1998, Table 3). As before, the true American-style put option price is com-

puted through the Crank-Nicolson finite-difference scheme with 15, 000 time intervals

and 10, 000 space steps.2.13 Even though both methods produce extremely accurate re-

sults, the SHP approach offers the best speed-accuracy trade-off for pricing American-

style standard options under the CEV model.

JDCEV model

Armed with the closed-form solutions of European-style options and the corresponding

hedge ratios, the implementation of the SHP approach for valuing standard American-

style options under the JDCEV model (under both recovery assumptions) follows in a
2.13It is well-known—see, for instance, Schroder (1989) or Larguinho et al. (2013)—that option pricing under the

CEV assumption is computationally expensive especially when β is close to two (the lognormal case), volatility is
low, or the time to maturity is small. For this reason, we have excluded from the original sample option contracts
with an elasticity parameter β ∈ [1.75, 2.25], thus leaving 1,085 contracts to be evaluated. Additional results, not
reported here but available upon request, show that it takes almost the same computational time to value the 165
contracts removed from the initial sample and the remaining 1,085 contracts.
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straightforward way.

To illustrate the robustness and efficiency of the proposed pricing methodology, we fo-

cus on the valuation of standard American-style puts under the JDCEV model, though

the procedure is easily adapted for valuing their counterpart calls. To the best of

our knowledge, the optimal stopping approach of Nunes (2009) is the only available

methodology, until now, for pricing plain-vanilla American-style options under the JD-

CEV model—now extended for the payment of the recovery value at the maturity date

T—, and hence it will be used as our benchmark.

Tables 2.4 and 2.5 test the efficiency of the SHP algorithm for valuing standard Amer-

ican put options under the time-homogeneous JDCEV model for different parameter

configurations borrowed from Carr and Linetsky (2006, Table 1), and assuming, re-

spectively, recovery at maturity (i.e. η = T ) and recovery at default time (i.e. η = ζ).

The 4th, 5th, and 6th columns of both tables show the European-style put option price

components obtained via equations (2.13), (2.9), and (2.7), respectively. As expected,

put options under the fractional recovery of treasury assumption are worth less than

the corresponding options under the fractional recovery of face value assumption, due

to the different discount effects over the recovery value (equal to K). The optimal stop-

ping approach of Nunes (2009) is implemented with conditional minimization, using

the Matlab “fmincon” algorithm, considering a six degree polynomial specification for

the early exercise boundary. The parameters defining the exercise policy are first esti-

mated using N = 24 time steps. Then, and based on this approximation for the optimal

exercise boundary, the early exercise premium (7th column of both tables), the Ameri-

can put option price conditional on no default before the expiry and early exercise dates

(8th column of both tables), and the present value of the recovery payment made at

the maturity date (9th column of Table 2.4) or at the default time (9th column of Table

2.5) are computed via equations (2.27), (2.24), and (2.25), respectively, using N = 28
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time steps. The standard American-style put option price contained in the 10th column

of both tables is recovered through equations (2.23) or (2.26).2.14 Finally, columns 11 to

13 of Tables 2.4 and 2.5 report the values of the American-style put given in equation

(2.30), which are obtained through the SHP procedure using again the “fsolve” algo-

rithm available in Matlab for solving the recurrence conditions (2.28) and (2.29), with

n ∈ {12, 24, 52}.

To sum up, the results computed via the SHP approach are shown to be robust along

both tables. For instance, it is possible to obtain extremely accurate option prices

(for both recovery assumptions) even using the SHP pricing procedure with only 12

evenly-spaced time points n, but with much less computational burden. As expected,

both pricing frameworks require higher CPU times to compute standard American-style

put option contracts under the fractional recovery of face value assumption, because,

in this case, one has to use a numerical integration scheme for computing equations

(2.19) and (2.25) under the optimal stopping approach, and equations (2.19) and (2.39)

under the SHP procedure.2.15

2.4.2 American-style capped options

This subsection aims to compare the optimal stopping and the SHP approaches for

pricing American-style capped put options under both the CEV and JDCEV models.

The valuation of the corresponding calls can be treated similarly.

Table 2.6 prices American-style capped put options under the CEV model using the pa-
2.14Both tables highlight that when K = 120 the put is sufficiently in-the-money, so that the time-t0 spot price

(St0 ) is already below the critical asset price Et0 , and, therefore, the standard American-style put price equals its
intrinsic value.

2.15At the expense of a higher computational burden, both valuation methodologies have been implemented
through the Gauss-Kronrod integration method, using the “quadgk” algorithm available in Matlab. Even though
there are other numerical integration schemes that may be also applied to diminish the computational effort, we do
not pursue such numerical issues here.
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rameter constellations considered in Table 2.1, but now augmented with a barrier level

H = $75. The 3rd and 4th columns of the table highlight the values obtained under the

optimal stopping approach of Nunes (2009), using equations (2.26), (2.27), and (2.50),

with R = (K−H)+, and considering a polynomial boundary specification with four and

five degrees of freedom, respectively. Columns 5 to 8 report the results obtained via

the SHP method with n ∈ {4, 12, 24, 52}, and computed through the recurrence condi-

tions (2.52) and (2.53), and equation (2.54). Again, both valuation methodologies have

been implemented subject to the restrictions described in Definition 2.1.

Table 2.7 prices American-style capped put options under the JDCEV model (with re-

covery at maturity) using the parameter constellations considered in Table 2.4 and a

barrier H = $75. The valuation of the corresponding put with recovery at the default

time (and calls with both recovery assumptions) can be treated similarly. Columns 4

to 6 value American-style capped put options using the optimal stopping approach

of Nunes (2009). The no default component (column 4) is computed using equa-

tion (2.47), and the recovery component (column 5) is computed through equation

(2.48). Finally, column 6 gives the sum of these two components obtained via equation

(2.46).2.16 The last three columns report the results obtained via the SHP method with

n ∈ {12, 24, 52}, and computed through the recurrence conditions (2.52) and (2.53), and

equation (2.54).

In summary, the tables reveal that both pricing methodologies produce results that

are almost indistinguishable, though the SHP procedure seems to be more efficient in

terms of computational burden. As expected, and as explained in Subsection 2.3.4,

the CPU time required to value these two sets of capped American-style put options

contracts under the SHP approach is smaller than the computational effort for valuing
2.16Similarly to the standard American-style put option case, when K = 120 the capped put is sufficiently in-the-

money, so that the time-t0 spot price (St0 ) is already below the critical asset price E1
t0 , and, therefore, the capped

American-style put price equals its intrinsic value.
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the corresponding standard American-style put options of Tables 2.1 and 2.4. On the

contrary, the optimal stopping approach of Nunes (2009) requires further CPU time,

since we still need to find the whole early exercise boundary of the standard American-

style put option.

2.5 Conclusions

The most important theoretical contribution of this paper is the generalization of the

SHP procedure for valuing American-style standard and capped options under the JD-

CEV model of Carr and Linetsky (2006). To accomplish this purpose, novel analytical

representations were obtained for the hedge ratios of the corresponding European-

style standard options, which can be used to jointly price equity and credit derivatives

under this general and flexible modeling framework. The SHP approach is also imple-

mented to price American-style standard and capped options under the unrestricted

CEV model, thus accommodating both direct and indirect leverage effects typically ob-

served by market practitioners. Furthermore, we extend the optimal stopping approach

of Nunes (2009) for the pricing of American-style capped options, assuming that the

recovery value associated to the put can be paid at the default time or at the maturity

date of the option.

Overall, the numerical experiments run have shown that the SHP pricing methodology

is as accurate as but (generally) faster than the optimal stopping approach, thus offer-

ing a better speed-accuracy trade-off for pricing American-style standard and capped

options under both the (single-factor) CEV and JDCEV models. Nevertheless, and as

shown by Nunes (2011, Theorem 1), the optimal stopping approach should be easier to

extend for multifactor models (incorporating, for instance, stochastic volatility) because

it only requires a numerically tractable solution for both the corresponding European-
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style option and for the transition density function of the underlying asset process.

Appendix A

This appendix proves Proposition 2.1.

Nunes (2009, Equations 57 and 60) has already shown that

V 0
t0

(St0 , K, T ;φ) = v0
t0

(St0 , K, T ;φ) + EEP 0
t0

(St0 , K, T ;φ) , (A-1)

where the first term on the right-hand side of equation (A-1) is given by equation (2.8),

and

EEP 0
t0

(St0 , K, T ;φ) (A-2)

=

∫ T

t0

e
−
∫ u
t0
rldl
[
(φK − φEu)+ − v0

u (Eu, K, T ;φ)
]
SP (St0 , t0;u)Q (τe ∈ du| Ft0) .

A similar decomposition must also be made to the recovery component (2.25), and will

be illustrated in the next lines for the case of recovery at the maturity date.2.17

Assuming that η = T and ζ > t0, equation (2.25) can be rewritten as

V D
t0

(St0 , R, T ;φ, T ) = (φR)+e
−
∫ T
t0
rldl
[
1− EQ

(
e
−
∫ T
t0
λ(l,S)dl

11{τ0>T,τe≥T}

∣∣∣Ft0)
−EQ

(
e
−
∫ τe
t0
λ(l,S)dl

11{τ0>τe,τe<T}

∣∣∣Ft0)] ,
2.17The recovery at default time case can be treated similarly, and the proof is available upon request.
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i.e.

V D
t0

(St0 , R, T ;φ, T ) (A-3)

= (φR)+e
−
∫ T
t0
rldl
[
1− EQ

(
e
−
∫ T
t0
λ(l,S)dl

11{τ0>T}

∣∣∣Ft0)
+EQ

(
e
−
∫ T
t0
λ(l,S)dl

11{τ0>T,τe<T}

∣∣∣Ft0)− EQ

(
e
−
∫ τe
t0
λ(l,S)dl

11{τ0>τe,τe<T}

∣∣∣Ft0)] ,
since 11{τe≥T} = 1− 11{τe<T}.

Equations (2.10) and (2.11), and the law of iterative expectations, imply that equation

(A-3) can be further simplified into

V D
t0

(St0 , R, T ;φ, T ) (A-4)

= (φR)+e
−
∫ T
t0
rldl
[
1− EQ

(
11{ζ>T}

∣∣Gt0)
+EQ

(
11{ζ>T,τe<T}

∣∣Gt0)− EQ
(

11{ζ>τe,τe<T}
∣∣Gt0)]

= (φR)+e
−
∫ T
t0
rldl
{

1− SP (St0 , t0;T )− EQ
[(

11{ζ>τe} − 11{ζ>T}
)

11{τe<T}
∣∣Gt0]}

= vDt0 (St0 , R, T ;φ, T )− (φR)+e
−
∫ T
t0
rldlEQ

(
11{τe<ζ<T}11{τe<T}

∣∣Gt0)
= vDt0 (St0 , R, T ;φ, T )− (φR)+e

−
∫ T
t0
rldlEQ

[
EQ
(

11{τe<ζ<T}
∣∣Gτe) 11{τe<T}

∣∣Gt0] .
Using again definition (2.11), equation (A-4) can be restated in terms of the restricted

filtration F, with respect to which the asset price process S behaves as a pure diffusion

process:

V D
t0

(St0 , R, T ;φ, T ) (A-5)

= vDt0 (St0 , R, T ;φ, T )

−(φR)+e
−
∫ T
t0
rldlEQ

{[
1− EQ

(
e−

∫ T
τe
λ(l,S)dl11{τ0>T}

∣∣∣Fτe)] 11{τe<T}

∣∣∣Ft0} .

Taking advantage of the Markovian nature of the underlying price process S, the outer
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expectation on the right-hand side of equation (A-5) can be written as a convolution

against the density of the first passage time τe, yielding

V D
t0

(St0 , R, T ;φ, T ) (A-6)

= vDt0 (St0 , R, T ;φ, T )

−(φR)+e
−
∫ T
t0
rldl

∫ T

t0

[
1− EQ

(
e−

∫ T
u λ(l,S)dl11{τ0>T}

∣∣∣Su = Eu

)]
Q (τe ∈ du| Ft0)

= vDt0 (St0 , R, T ;φ, T )− (φR)+e
−
∫ T
t0
rldl

∫ T

t0

[1− SP (Eu, u;T )]Q (τe ∈ du| Ft0)

= vDt0 (St0 , R, T ;φ, T )−
∫ T

t0

e
−
∫ u
t0
rldlvDu (Eu, R, T ;φ, T )Q (τe ∈ du| Ft0) ,

where the last two lines follow from equations (2.11) and (2.10), respectively.

Combining equations (2.7), (2.23), (A-1), (A-2), and (A-6), equations (2.26) and (2.27)

arise for η = T .�

Appendix B

This appendix shows that whenever φSt0 ≤ φEt0 (for φ ∈ {−1, 1}), the standard SHP

pricing equation (2.31) would overvalue the American-style option. This is explained

by the fact that all European-style options (conditional on no default) in the replicating

portfolio (with a strike price equal to the value of the exercise boundary) would end in-

the-money until the American-style option is exercised, i.e. until the spot price touches

the early exercise boundary. On the contrary, when φSt0 > φEt0, all European-style

options included in the replicating portfolio end out-of-the-money until the American-

style option is exercised. Next proposition formalizes the aforementioned economic

rationale.
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Proposition B.1 When φSt0 ≤ φEt0, then

V shpu
t0 (St0 , K, T,R;φ, η) > Vt0 (St0 , K, T,R;φ, η) , (B-1)

for φ ∈ {−1, 1}.

Proof. Given that φSt0 ≤ φEt0, let t∗ ≤ T denote the next passage time of the asset

price S through the early exercise boundary, i.e. St∗ = Et∗. This date corresponds to

the space time point n − i∗. Replacing t0 and St0 by t∗ (or n − i∗) and St∗ ≡ En−i∗,

respectively, in equation (2.31), the value of the SHP portfolio at time t∗ is equal to

V shpu
t∗ (Et∗ , K, T,R;φ, η) = vtn−i∗ (En−i∗ , K, T,R;φ, η) (B-2)

+
n∑
j=1

wn−j × v0
tn−i∗

(En−i∗ , En−j, tn−j+1;φ) .

Note, however, that all the European-style options with expiry date at times tn−j+1, for

j = i∗ + 1, ..., n, that is all the options with a time to maturity equal to (i∗ − j + 1) × δt,

have already expired by time t∗, and, therefore, their terminal payoff has been previ-

ously reinvested until time t∗. Hence,

v0
tn−i∗

(En−i∗ , En−j, tn−j+1;φ) = (φEn−j − φSn−j+1)+
n−i∗∏

k=n−j+2

erk×δt, (B-3)

for j = i∗ + 1, ..., n, and equation (B-2) can be rewritten as

V shpu
t∗ (Et∗ , K, T,R;φ, η) = vtn−i∗ (En−i∗ , K, T,R;φ, η) (B-4)

+
i∗∑
j=1

wn−j × v0
tn−i∗

(En−i∗ , En−j, tn−j+1;φ)

+
n∑

j=i∗+1

wn−j × (φEn−j − φSn−j+1)+
n−i∗∏

k=n−j+2

erk×δt.
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Using equation (2.28), equation (B-4) can be further rewritten as

V shpu
t∗ (Et∗ , K, T,R;φ, η) = φK − φEn−i∗ (B-5)

+
n∑

j=i∗+1

wn−j × (φEn−j − φSn−j+1)+
n−i∗∏

k=n−j+2

erk×δt.

Finally, and since

φK − φEn−i∗ = Vt∗ (Et∗ , K, T,R;φ, η)

corresponds to the well known value-matching condition, then equation (B-5) becomes

V shpu
t∗ (Et∗ , K, T,R;φ, η) = Vt∗ (Et∗ , K, T,R;φ, η) (B-6)

+
n∑

j=i∗+1

wn−j × (φEn−j − φSn−j+1)+
n−i∗∏

k=n−j+2

erk×δt.

Given that φSt0 ≤ φEt0 , we have φSt < φEt for all t < t∗, which makes the last term on

the right-hand side of equation (B-6) almost surely strictly positive. Therefore,

V shpu
t∗ (Et∗ , K, T,R;φ, η) > Vt∗ (Et∗ , K, T,R;φ, η) . (B-7)

Since equation (B-7) holds at any t∗ along the early exercise boundary, equation (B-1)

follows immediately.

If t∗ > T , then all the European-style options in the replicating portfolio would end up

in-the-money, thus augmenting even further the positive difference between the option

values V shpu
t0 (St0 , K, T,R;φ, η) and Vt0 (St0 , K, T,R;φ, η).�
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Table 2.6: Prices of capped American-style put options under the CEV model (β = 3, St0 =
$100, H = $75, and T − t0 = 0.5 years)

Parameters Strike 4d Pol. 5d Pol. shp4 shp12 shp24 shp52
80 0.158 0.158 0.158 0.158 0.158 0.158

r = 7% 90 1.290 1.292 1.296 1.296 1.296 1.297
q = 3% 100 4.791 4.790 4.792 4.792 4.792 4.792
δ = 0.02 110 11.214 11.214 11.215 11.215 11.215 11.215

120 20.021 20.021 20.026 20.026 20.026 20.026
80 1.573 1.573 1.570 1.570 1.570 1.572

r = 7% 90 5.296 5.296 5.294 5.294 5.294 5.295
q = 3% 100 10.237 10.237 10.237 10.237 10.237 10.238
δ = 0.04 110 16.473 16.473 16.473 16.473 16.473 16.474

120 23.842 23.842 23.843 23.843 23.843 23.843
80 0.723 0.723 0.722 0.722 0.722 0.723

r = 7% 90 2.964 2.966 2.966 2.966 2.966 2.967
q = 0% 100 7.059 7.059 7.060 7.060 7.060 7.060
δ = 0.03 110 13.173 13.174 13.176 13.176 13.176 13.176

120 20.991 20.991 20.993 20.993 20.993 20.992
80 1.066 1.066 1.064 1.064 1.064 1.065

r = 3% 90 4.172 4.172 4.170 4.170 4.170 4.171
q = 7% 100 9.165 9.165 9.165 9.165 9.165 9.165
δ = 0.03 110 15.909 15.909 15.909 15.909 15.909 15.909

120 23.920 23.920 23.920 23.920 23.920 23.920
CPU (seconds) 99.90 117.80 7.05 23.92 53.53 145.28

Table 2.6 values capped American-style put options under the CEV model, adopting the parameter configurations
of Table 2.1. The 3rd and 4th columns show the capped American-style put prices obtained through the optimal
stopping approach, using a polynomial boundary with 4 and 5 degrees of freedom, respectively. The last four
columns report the capped American-style put prices under the SHP method, using time steps n ∈ {4, 12, 24, 52}.
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Table 2.7: Prices of capped American-style put options under the JDCEV model with recovery
at maturity (β̄ = −1, a = 20, St0 = $100, H = $75, T − t0 = 0.5 years, r = 5%, and q = 0%)

Nunes (2009) SHP approach
b c K V̄ 0

t0
V̄ D
t0

V̄t0 shp12 shp24 shp52
0.00 0.5 80 0.261 0.047 0.308 0.307 0.308 0.308
0.00 0.5 90 1.331 0.137 1.468 1.468 1.469 1.469
0.00 0.5 100 4.301 0.194 4.495 4.496 4.496 4.497
0.00 0.5 110 10.457 0.140 10.597 10.601 10.599 10.598
0.00 0.5 120 - - 20.000 20.000 20.000 20.000
0.00 1 80 0.222 0.093 0.315 0.314 0.315 0.315
0.00 1 90 1.172 0.270 1.443 1.444 1.444 1.444
0.00 1 100 4.000 0.378 4.378 4.381 4.381 4.380
0.00 1 110 10.225 0.247 10.472 10.479 10.476 10.475
0.00 1 120 - - 20.000 20.000 20.000 20.000
0.02 0.5 80 0.229 0.094 0.323 0.322 0.323 0.323
0.02 0.5 90 1.192 0.276 1.467 1.467 1.468 1.468
0.02 0.5 100 4.006 0.394 4.400 4.402 4.402 4.402
0.02 0.5 110 10.206 0.267 10.473 10.479 10.476 10.475
0.02 0.5 120 - - 20.000 20.000 20.000 20.000
0.02 1 80 0.194 0.139 0.333 0.333 0.333 0.333
0.02 1 90 1.051 0.406 1.457 1.457 1.457 1.457
0.02 1 100 3.733 0.572 4.305 4.309 4.308 4.308
0.02 1 110 10.022 0.349 10.371 10.381 10.377 10.376
0.02 1 120 - - 20.000 20.000 20.000 20.000
CPU (seconds) 190.04 21.97 71.22 288.61

Table 2.7 values capped American-style put options under a time-homogeneous JDCEV model with recovery at
maturity, adopting the parameter configurations of Table 2.4. Columns 4 to 6 contain the values offered by the
approach of Nunes (2009) for the American-style capped put option components given in equations (2.47), (2.48),
and (2.46), respectively, using a 6 degree polynomial specification for the early exercise boundary. The last three
columns of the table report the values of the capped American-style put provided by the SHP approach with
n ∈ {12, 24, 52}.
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3. General Put-Call Symmetry for American-style

Barrier Options∗

Abstract: This paper derives put-call symmetries for American-style single and double

barrier options. Using the change of numéraire technique proposed by Geman et al.

(1995) and Schroder (1999) we are able to derive these symmetries without impos-

ing previous assumptions on the stochastic process followed by the underlying asset.

Our results are tested through an extensive numerical analysis run under the constant

elasticity of variance model of Cox (1975).

JEL Classification: G13.

Keywords: American-style options; Barrier options; Put-call symmetry; CEV model.

3.1 Introduction

The put-call symmetry holds whenever the price of a put option can be recovered from

the price of a call option (and vice versa) through a suitable change in its function

arguments. This relation is important for practitioners since they can value put and call

options using the same numerical algorithm.
∗This paper is a joint work with João Pedro Nunes and José Carlos Dias.
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In the case of standard American-style options, the put-call symmetry was demon-

strated by McDonald and Schroder (1998) as well as Bjerksund and Stensland (1993)

under the geometric Brownian motion (hereafter, GBM) assumption. In the context of

diffusion models in which the drift is an arbitrary function of the asset price but the

volatility is a symmetric function of time, Carr and Chesney (1996) show that the sym-

metry also holds. Based on the change of numéraire technique proposed in Geman

et al. (1995), Schroder (1999) uses the reinvested asset price as the numéraire and

shows that the put-call symmetry holds for a very general class of models, including

models with stochastic coefficients and jumps.

The extension of the put-call symmetry for American-style single knock-out options

was achieved by Gao et al. (2000), but under the GBM assumption. Using the same

change of numéraire technique as Schroder (1999), and considering a market struc-

ture in which the underlying asset price follows a single factor but a Markovian diffu-

sion process, Detemple (2001) derives the put-call symmetry for American-style single

knock-out options.

Using the change of numéraire technique presented in Schroder (1999) and based on

two mild assumptions we are able to extend the put-call symmetry to other types of

American-style barrier options. Our two basic assumptions are: The existence of a

risk neutral measure (i.e. no arbitrage, in the Harrison and Pliska (1981) sense), and

the existence of a unique early exercise boundary that separates the continuation and

exercise regions of any American-style option contract.

Our contribution to the existent literature is threefold: First, we extend the put-call sym-

metry to American-style single knock-in barrier options; Second, and more importantly,

the symmetry is extended to American-style double knock-out and knock-in options;

Third, we provide numerical results for all the put-call symmetries derived in this paper,

under the CEV model of Cox (1975).
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This paper proceeds as follows. Section 3.2 describes the change of numéraire tech-

nique, the contract specifications and the main assumptions presented in Schroder

(1999), which allow us to prove, in Section 3.3, the put-call symmetry for American-

style barrier options. Section 3.4 applies the previous results to the CEV model of Cox

(1975), and offers numerical examples. Finally, Section 3.5 concludes.

3.2 Modelling assumptions and contract specifications

3.2.1 Modelling assumptions

Schroder (1999) uses a change of numéraire argument to derive a general parity rela-

tion between plain-vanilla American-style call and put option prices. Schroder (1999)

shows that any American-style call pricing solution can be converted, after a change of

numéraire, into an American-style put option valuation formula. His argument is valid

for a large class of diffusion and jump-diffusion pricing models. Below we state the

main assumptions and results that we borrow from Schroder (1999).

We assume throughout that the financial market is arbitrage-free and frictionless, and

that trading takes place continuously on the time-interval T := [t0, T ], for some initial

date t0 and fixed time T > t0. Uncertainty is represented by a complete probabil-

ity space (Ω,F ,Q), and the information accruing to all the agents in the economy is

described by the complete filtration F = {Ft : t ∈ T } that satisfies the usual conditions.

Furthermore,

Assumption 3.1 There exists a risk-neutral measure Q such that the relative rein-

vested price of every asset, with respect to the reinvested short-rate process (or “money-

market account” numéraire), are Q-martingales.
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Following Schroder (1999, Equations 1 and 2), if we change the numéraire from the

“money-market account” to a reinvested asset price process St exp
(∫ t

t0
qudu

)
, the prob-

ability measure Q̄ that corresponds to such new numéraire is such that

Q̄ (A| Ft0) = EQ
(
1{A}ZT

∣∣Ft0) , (3.1)

for A ∈ F , and where ZT is the Radon-Nikodym derivative dQ̄
dQ , i.e.

Zt :=
exp

(∫ t
t0

(qu − ru) du
)
St

St0
, t ∈ T , (3.2)

with S representing the asset price process, r the short rate process, and q the dividend

yield.

Based on equations (3.1) and (3.2) it is now possible to obtain Schroder (1999, Propo-

sition 1 and Corollary 1) that we simply summarize.

Proposition 3.1 Define measure Q̄ by equation (3.1), and

S̄t :=
KSt0
St

, (3.3)

with K being the strike price of the option contract. Then, the time-t0 price on an asset

with the Fτ -measurable payoff Pτ at the stopping time τ ∈ T is

EQ

[
exp

(
−
∫ τ

t0

rudu

)
Pτ

∣∣∣∣Ft0] = EQ̄

[
exp

(
−
∫ τ

t0

qudu

)
Pτ
S̄τ
K

∣∣∣∣Ft0] . (3.4)

Proof. See Schroder (1999, Proposition 1).�
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Next corollary follows from Proposition 3.1 by taking Pτ to be the intrinsic value (Sτ −K)+

of a call option.

Corollary 1 Define measure Q̄ by equation (3.1), and the process S̄t through equation

(3.3). Then, the time-t0 value of a call option on S, and with strike K, is the same, after

a change of numéraire, as the value of a put option on S̄, and with strike St0, i.e.:

EQ

[
exp

(
−
∫ τ

t0

rudu

)
(Sτ −K)+

∣∣∣∣Ft0] = EQ̄

[
exp

(
−
∫ τ

t0

qudu

)(
St0 − S̄τ

)+

∣∣∣∣Ft0] ,
(3.5)

for any stopping time τ ≤ T .

Proof. See Schroder (1999, Corollary 1).�

The left-hand side of equation (3.5) can be understood as the time-t0 price of a Eu-

ropean call on S, with strike K, and maturity at time τ , whereas the right-hand side

corresponds to a European-style put on S̄, with strike St0, and maturity at the same

time τ . Nevertheless, Schroder (1999, Page 1149) shows that Proposition 3.1 and

Corollary 1 also hold for American-style options as long as we further adopt Schroder

(1999, Assumption 2), i.e.

Assumption 3.2 Let Vt0 be the time-t0 price of an American-style option allowing the

holder to exercise and receive, at any stopping time τ ∈ T , the payoff Pτ , where P is

an adapted process. Then

Vt0 = sup
τ∈T

EQ

[
exp

(
−
∫ τ

t0

rudu

)
Pτ

∣∣∣∣Ft0] . (3.6)
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The Snell envelope (3.6) is proved by Karatzas (1988, Theorem 5.4) in a complete mar-

ket setting, and adapted by Pham (1997, Equation 1.5) to a jump-diffusion framework

(although conditional upon the specification of the market price of jump risk).

However, our main results will be further based on the existence and uniqueness of an

early exercise boundary {Bt : t ∈ T } that separates the continuation and exercise (or

stopping) regions of the American-style option contract. This should constitute a mild

assumption that is satisfied by most of the option pricing models already proposed in

the literature. Under a single factor diffusion model, Detemple and Tian (2002, Pro-

postion 1) prove the existence of the exercise boundary {Bt : t ∈ T }, which is only

a function of time (and a continuous function as long as the risk-free interest rate is

deterministic). Pham (1997, Theorems 3.2 and 4.1) extends the previous result to a

jump-diffusion model (conditional on the positiveness of the riskless interest rate cor-

rected by the jump risk). More importantly, under a very general multifactor and diffu-

sion framework (that accommodates stochastic interest rates, volatilities, and dividend

yields), Detemple and Tian (2002, Propostion 2) show that there still exists a single

exercise boundary {Bt : t ∈ T }, which now depends on time and on all the other state

variables besides the underlying asset price.3.1

Therefore, we finally assume that

Assumption 3.3 There exists a unique early exercise boundary {Bt : t ∈ T } such that

equation (3.6) can be rewritten as

Vt0 = EQ

[
exp

(
−
∫ T∧τB

t0

rudu

)
PT∧τB

∣∣∣∣Ft0] , (3.7)

where τB is the first passage time of the underlying asset price process through the
3.1This result is conditional on Detemple and Tian (2002, Assumption M), which basically imposes monotonicity

restrictions on the trajectories of the asset price, the interest rate, and the dividend yield.
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early exercise boundary {Bt : t ∈ T }.

Assumption 3.3 simply states that, for each time t ∈ T there exists a critical asset

price Bt below (above) which the American put (call) price equals its intrinsic value and

early exercise should occur. Consequently, the optimal policy should be to exercise the

American option when the underlying asset price first touches its critical level.

3.2.2 Contract specifications

In this section we state the contract specifications for all the array of American-style

options used in the remaining of this article.

American-style standard options

Using Assumption 3.3, the time-t0 value of a standard American-style put (if φ = 1) or

call (if φ = −1) option on the asset price S, with strike K, and maturity at time T (≥ t0),

is equal to

ASt0
(
St0 , K, T, r, q, B

s(φ);φ
)

(3.8)

= EQ

[
exp

(
−
∫ T∧τ

Bs(φ)

t0

rudu

)(
φK − φST∧τ

Bs(φ)

)+
∣∣∣∣Ft0] ,

where

τBs(φ) := inf
{
t ≥ t0 : φSt ≤ φB

s(φ)
t

}
, (3.9)

and Bs(φ) denotes the exercise boundary of the standard American-style option.
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American-style knock-out options

An American-style knock-out option (without rebate) becomes worthless if the single

barrier is touched by the underlying asset price; otherwise, it can be exercised at or

before the expiry date. Additionally, and as pointed by Gao et al. (2000, Footnote 15),

for the knock-out event and the exercise date to be well defined, the option contract

must be specified in a way such that when the asset price first touches the barrier, the

option holder has the option to either exercise or let the option be knocked out.

Therefore, using Assumption 3.3, the time-t0 value of an American-style down-and-out

put (if φ = 1) or call (if φ = −1) option on the asset price S, with strike K, lower barrier

level L, and maturity at time T (≥ t0), is equal to

ADOt0

(
St0 , K, L, T, r, q, B

do(φ);φ
)

(3.10)

= EQ

[
exp

(
−
∫ T∧τ

Bdo(φ)∧τL

t0

rudu

)(
φK − φST∧τ

Bdo(φ)∧τL

)+
∣∣∣∣Ft0] ,

with

τL := inf {t ≥ t0 : St ≤ L} , (3.11)

τBdo(φ) := inf
{
t ≥ t0 : φSt ≤ φB

do(φ)
t

}
, (3.12)

and where Bdo(φ) denotes the exercise boundary of the American-style down-and-out

option.

Using Assumption 3.3, the time-t0 value of an American-style up-and-out put (if φ = 1)

or call (if φ = −1) option on the asset price S, with strike K, upper barrier level U , and
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maturity at time T (≥ t0) is equal to

AUOt0

(
St0 , K, U, T, r, q, B

uo(φ);φ
)

(3.13)

= EQ

[
exp

(
−
∫ T∧τ

Buo(φ)∧τU

t0

rudu

)(
φK − φST∧τ

Buo(φ)∧τU

)+
∣∣∣∣Ft0] ,

with

τU := inf {t ≥ t0 : St ≥ U} , (3.14)

τBuo(φ) := inf
{
t ≥ t0 : φSt ≤ φB

uo(φ)
t

}
, (3.15)

and where Buo(φ) denotes the exercise boundary of the American-style up-and-out op-

tion.

Using Assumption 3.3, the time-t0 value of an American-style double knock-out put (if

φ = 1) or call (if φ = −1) option on the asset price S, with strike K, lower barrier level

L, upper barrier level U , and maturity at time T (≥ t0), is equal to

AKODBt0

(
St0 , K, L, U, T, r, q, B

ko(φ);φ
)

(3.16)

= EQ

[
exp

(
−
∫ T∧τ

Bko(φ)∧τLU

t0

rudu

)(
φK − φST∧τ

Bko(φ)∧τLU

)+
∣∣∣∣Ft0] ,

with

τBko(φ) := inf
{
t ≥ t0 : φSt ≤ φB

ko(φ)
t

}
, (3.17)

τLU := inf {t > t0 : St ≤ L or St ≥ U} , (3.18)

and where Bko(φ) denotes the exercise boundary of the American-style double knock-

out option.
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American-style knock-in options

An American-style knock-in option becomes an American-style standard option if and

only if the barrier is touched by the underlying spot price, before or at, the option’s

expiry date. Therefore, using Assumption 3.3, the time-t0 value of an American-style

down-and-in put (if φ = 1) or call (if φ = −1) option on the asset price S, with strike K,

lower barrier level L, and maturity at time T (≥ t0), is equal to

ADIt0
(
St0 , K, L, T, r, q, B

di(φ);φ
)

(3.19)

= EQ

[
exp

(
−
∫ τL

t0

rudu

)
ASτL

(
L,K, T, r, q, Bs(φ)

)
1{ τL≤T}

∣∣∣∣Ft0] ,
where the first hitting time τL is defined by equation (3.11), and Bdi(φ) denotes the

exercise boundary of the American-style down-and-in option.

Alternatively, and using equations (3.8) and (3.9), equation (3.19) can be rewritten as

ADIt0
(
St0 , K, L, T, r, q, B

di(φ);φ
)

(3.20)

= EQ

[
exp

(
−
∫ T∧γL

Bs(φ)

t0

rudu

)(
φK − φST∧γL

Bs(φ)

)+

1{ τL≤T}

∣∣∣∣∣Ft0
]
,

where

γLBs(φ) := inf
{
t ≥ τL : φSt ≤ φB

s(φ)
t

}
. (3.21)

Using Assumption 3.3, the time-t0 value of an American-style up-and-in put (if φ = 1)

or call (if φ = −1) option on the asset price S, with strike K, upper barrier level U , and

60



maturity at time T (≥ t0), is equal to

AUIt0
(
St0 , K, U, T, r, q, B

ui(φ);φ
)

(3.22)

= EQ

[
exp

(
−
∫ τU

t0

rudu

)
ASτU

(
U,K, T, r, q, Bs(φ);φ

)
1{ τU≤T}

∣∣∣∣Ft0]
= EQ

[
exp

(
−
∫ T∧γU

Bs(φ)

t0

rudu

)(
φK − φST∧γU

Bs(φ)

)+

1{ τU≤T}

∣∣∣∣∣Ft0
]
,

where τU is defined by equation (3.14),

γUBs(φ) := inf
{
t ≥ τU : φSt ≤ φB

s(φ)
t

}
, (3.23)

and Bui(φ) denotes the exercise boundary of the American-style up-and-in option.

Finally, using Assumption 3.3, the time-t0 value of an American-style double knock-in

put (if φ = 1) or call (if φ = −1) option on the asset price S, with strike K, lower barrier

level L, upper barrier level U , and maturity at time T (≥ t0), is equal to

AKIDBt0

(
St0 , K, L, U, T, r, q, B

ki(φ);φ
)

(3.24)

= EQ

[
exp

(
−
∫ τLU

t0

rudu

)
ASτLU

(
SτLU , K, T, r, q, B

s(φ);φ
)
1{ τLU≤T}

∣∣∣∣Ft0]
= EQ

[
exp

(
−
∫ T∧γLU

Bs(φ)

t0

rudu

)(
φK − φST∧γLU

Bs(φ)

)+

1{ τLU≤T}

∣∣∣∣∣Ft0
]
,

where τLU is defined by equation (3.18),

γLUBs(φ) := inf
{
t ≥ τL ∧ τU : φSt ≤ φB

s(φ)
t

}
, (3.25)

and Bki(φ) denotes the exercise boundary of the American-style double knock-in option.
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3.3 American-style barrier options put-call symmetry

Using the results from the previous section, i.e. without imposing any specific asset

price dynamics, we will obtain put-call symmetries for American-style single, double,

knock-in and knock-out barrier options.

3.3.1 Knock-out options

Following Detemple (2001), next two propositions deal with single barrier contracts.

Proposition 3.2 Define S̄t through equation (3.3). Under Assumptions 3.1 and 3.3, the

time-t0 value of an American-style down-and-out call option on the asset price S, with

strike K, lower barrier level L, maturity at time T (≥ t0), and exercise boundary Bdo(−1),

is the same, after a change of numéraire, as the time-t0 value of an American-style

up-and-out put option on the asset price S̄, with strike St0, upper barrier level KSt0/L,

maturity at time T (≥ t0), and exercise boundary St0K/Bdo(−1), i.e.

ADOt0

(
St0 , K, L, T, r, q, B

do(−1);−1
)

(3.26)

= AUOt0

(
K,St0 , KSt0/L, T, q, r, St0K/B

do(−1); 1
)
.

Remark 3.1 Under the geometric Brownian motion assumption, equation (3.26) was

already derived, for instance, by Gao et al. (2000, Theorem 3) or Detemple (2006,

Proposition 50).
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Proof. Applying Proposition 3.1 to equation (3.10) and using definition (3.3), then

ADOt0

(
St0 , K, L, T, r, q, B

do(−1);−1
)

(3.27)

= EQ̄

[
exp

(
−
∫ T∧τ

Bdo(−1)∧τL

t0

qudu

)(
ST∧τ

Bdo(−1)∧τL −K
)+ S̄T∧τ

Bdo(−1)∧τL

K

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧τ

Bdo(−1)∧τL

t0

qudu

)(
ST∧τ

Bdo(−1)∧τL −K
)+ St0

ST∧τ
Bdo(−1)∧τL

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧τ

Bdo(−1)∧τL

t0

qudu

)(
St0 − S̄T∧τBdo(−1)∧τL

)+
∣∣∣∣Ft0] .

Based on Corollary 1, the last line of equation (3.27) corresponds to the time-t0 price of

an American-style put option on the asset price S̄, with strike St0, and maturity at time

T . However, all first passage times contained in the last line of equation (3.27) are still

expressed in terms of S (and not S̄). Nevertheless, equations (3.3) and (3.11) can be

combined into

τL = inf {t ≥ t0 : St (KSt0/St) ≤ L (KSt0/St)} (3.28)

= inf
{
t ≥ t0 : S̄t ≥ KSt0/L

}
= τ̄L,

i.e. τL can be also understood as the first passage time of the process S̄ through the

up-barrier KSt0/L, which is represented by τ̄L.

Similarly, equations (3.3) and (3.12) can also yield a new interpretation to the stopping

time τBdo(−1):

τBdo(−1) = inf
{
t ≥ t0 : St (KSt0/St) ≥ B

do(−1)
t (KSt0/St)

}
(3.29)

= inf
{
t ≥ t0 : S̄t ≤ KSt0/B

do(−1)
t

}
= τ̄Bdo(−1) .
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Hence, τBdo(−1) can be rewritten as the first passage time of the process S̄ through the

exercise boundary KSt0/Bdo(−1), which is represented by τ̄Bdo(−1).

Finally, equations (3.27), (3.28) and (3.29) can be combined into

ADOt0

(
St0 , K, L, T, r, q, B

do(−1);−1
)

(3.30)

= EQ̄

[
exp

(
−
∫ T∧τ̄

Bdo(−1)∧τ̄L

t0

qudu

)(
St0 − S̄T∧τ̄Bdo(−1)∧τ̄L

)+
∣∣∣∣Ft0]

= AUOt0

(
S̄t0 , St0 , KSt0/L, T, q, r,KSt0/B

do(−1); 1
)
,

where the last line follows from equation (3.13). Equation (3.26) arises immediately

after noting that S̄t0 = K.�

Proposition 3.3 Let S̄t be defined by equation (3.3). Under Assumptions 3.1 and 3.3,

the time-t0 value of an American-style up-and-out call option on the asset price S,

with strike K, upper barrier level U , maturity at time T (≥ t0), and exercise boundary

Buo(−1), is the same, after a change of numéraire, as the time-t0 value of an American-

style down-and-out put option on the asset price S̄, with strike St0, lower barrier level

KSt0/U , maturity at time T (≥ t0), and exercise boundary St0K/Buo(−1), i.e.

AUOt0

(
St0 , K, U, T, r, q, B

uo(−1);−1
)

(3.31)

= ADOt0

(
K,St0 , KSt0/U, T, q, r, St0K/B

uo(−1); 1
)
.
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Proof. Applying Proposition 3.1 to equation (3.13) and using definition (3.3), then

AUOt0

(
St0 , K, U, T, r, q, B

uo(−1);−1
)

(3.32)

= EQ̄

[
exp

(
−
∫ T∧τ

Buo(−1)∧τU

t0

qudu

)(
ST∧τ

Buo(−1)∧τU −K
)+ S̄T∧τ

Buo(−1)∧τU

K

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧τ

Buo(−1)∧τU

t0

qudu

)(
ST∧τ

Buo(−1)∧τU −K
)+ St0

ST∧τ
Buo(−1)∧τU

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧τ

Buo(−1)∧τU

t0

qudu

)(
St0 − S̄T∧τBuo(−1)∧τU

)+
∣∣∣∣Ft0] .

Based on Corollary 1, the last line of equation (3.32) corresponds to the time-t0 price of

an American-style put option on the asset price S̄, with strike St0, and maturity at time

T . However, all first passage times contained in the last line of equation (3.32) are still

expressed in terms of S (and not S̄). Nevertheless, equations (3.3) and (3.14) can be

combined into

τU = inf {t ≥ t0 : St (KSt0/St) ≥ U (KSt0/St)} (3.33)

= inf
{
t ≥ t0 : S̄t ≤ KSt0/U

}
= τ̄U ,

i.e. τU can be also understood as the first passage time of the process S̄ through the

low-barrier KSt0/U , which will be denoted by τ̄U .

Similarly, equations (3.3) and (3.15) can also yield a new interpretation to the stopping

time τBuo(−1):

τBuo(−1) = inf
{
t ≥ t0 : St (KSt0/St) ≥ B

uo(−1)
t (KSt0/St)

}
(3.34)

= inf
{
t ≥ t0 : S̄t ≤ KSt0/B

uo(−1)
t

}
= τ̄Buo(−1) .
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Hence, τBuo(−1) can be rewritten as the first passage time of the process S̄ through the

exercise boundary KSt0/B
uo(−1)
t , which is represented by τ̄Buo(−1).

Finally, equations (3.32), (3.33) and (3.34) can be combined into

AUOt0

(
St0 , K, U, T, r, q, B

uo(−1);−1
)

(3.35)

= EQ̄

[
exp

(
−
∫ T∧τ̄

Buo(−1)∧τ̄U

t0

qudu

)(
St0 − S̄T∧τ̄Buo(−1)∧τ̄U

)+
∣∣∣∣Ft0]

= ADOt0

(
S̄t0 , St0 , KSt0/U, T, q, r,KSt0/B

uo(−1); 1
)
,

where the last line follows from equation (3.10). Equation (3.31) arises immediately

after noting that S̄t0 = K.�

Next proposition extends Detemple (2001) to American-style double knock-out options.

Proposition 3.4 Let S̄t be defined by equation (3.3). Under Assumptions 3.1 and 3.3,

the time-t0 value of an American-style double knock-out call option on the asset price

S, with strike K, lower barrier level L, upper barrier level U , maturity at time T (≥ t0),

and exercise boundary Bko(−1), is the same, after a change of numéraire, as the time-t0

value of an American-style double knock-out put option on the asset price S̄, with strike

St0, lower barrier level KSt0/U , upper barrier level KSt0/L , maturity at time T (≥ t0),

and exercise boundary St0K/Bko(−1), i.e.

AKODBt0

(
St0 , K, L, U, T, r, q, B

ko(−1);−1
)

(3.36)

= AKODBt0

(
K,St0 , KSt0/U,KSt0/L, T, q, r, St0K/B

ko(−1); 1
)
.
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Proof. Applying Proposition 3.1 to equation (3.16) and using definition (3.3), then

AKODBt0

(
St0 , K, L, U, T, r, q, B

ko(−1);−1
)

(3.37)

= EQ̄

[
exp

(
−
∫ T∧τ

Bko(−1)∧τLU

t0

qudu

)(
ST∧τ

Bko(−1)∧τLU −K
)+ S̄T∧τ

Bko(−1)∧τLU

K

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧τ

Bko(−1)∧τLU

t0

qudu

)(
ST∧τ

Bko(−1)∧τLU −K
)+ St0

ST∧τ
Bko(−1)∧τLU

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧τ

Bko(−1)∧τLU

t0

qudu

)(
St0 − S̄T∧τBko(−1)∧τLU

)+
∣∣∣∣Ft0] .

Based on Corollary 1, the last line of equation (3.37) corresponds to the time-t0 price

of an American-style put option on the asset price S̄ with strike St0, and maturity at

time T , but all first passage times contained in thelast line of equation (3.37) are still

expressed in terms of S (and not S̄). Nevertheless, equations (3.3) and (3.18) can be

combined into

τLU = inf {t ≥ t0 : St (KSt0/St) ≤ L (KSt0/St) or St (KSt0/St) ≥ U (KSt0/St)}

= inf
{
t ≥ t0 : S̄t ≤ KSt0/U or S̄t ≥ KSt0/L

}
= τ̄LU , (3.38)

i.e. τLU can be also understood as the first passage time of the process S̄ through the

lower barrier KSt0/U or the upper barrier KSt0/L, which will be denoted by τ̄LU .

Similarly, equations (3.3) and (3.17) can also yield a new interpretation to the stopping

time τBko(−1):

τBko(−1) = inf
{
t ≥ t0 : St (KSt0/St) ≥ B

ko(−1)
t (KSt0/St)

}
(3.39)

= inf
{
t ≥ t0 : S̄t ≤ KSt0/B

ko(−1)
t

}
= τ̄Bko(−1) .
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Hence, τBko(−1) can be rewritten as the first passage time of the process S̄ through the

exercise boundary KSt0/B
ko(−1)
t , which is represented by τ̄Bko(−1).

Finally, equations (3.37), (3.38) and (3.39) can be combined into

AKODBt0

(
St0 , K, L, U, T, r, q, B

ko(−1);−1
)

(3.40)

= EQ̄

[
exp

(
−
∫ T∧τ̄

Bko(−1)∧τ̄LU

t0

qudu

)(
St0 − S̄T∧τ̄Bko(−1)∧τ̄LU

)+
∣∣∣∣Ft0]

= AKODBt0

(
S̄t0 , St0 , KSt0/U,KSt0/L, T, q, r,KSt0/B

ko(−1); 1
)
,

where the last line follows from equation (3.16). Equation (3.36) arises immediately

after noting that S̄t0 = K.�

3.3.2 Knock-in options

Next three propositions extend the previous analysis for both single and double knock-

in options.

Proposition 3.5 Define S̄t through equation (3.3). Under Assumptions 3.1 and 3.3, the

time-t0 value of an American-style down-and-in call option on the asset price S, with

strike K, lower barrier level L, maturity at time T (≥ t0), and exercise boundary Bdi(−1),

is the same, after a change of numéraire, as the time-t0 value of an American-style

up-and-in put option on the asset price S̄, with strike St0, upper barrier level KSt0/L,

maturity at time T (≥ t0), and exercise boundary St0K/Bs(−1), i.e.

ADIt0
(
St0 , K, L, T, r, q, B

di(−1);−1
)

= AUIt0
(
K,St0 , KSt0/L, T, q, r, St0K/B

s(−1), 1
)
.

(3.41)
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Proof. Applying Proposition 3.1 to equation (3.20) and using definition (3.3), then

ADIt0
(
St0 , K, L, T, r, q, B

di(−1);−1
)

(3.42)

= EQ̄

[
exp

(
−
∫ T∧γL

Bs(−1)

t0

qudu

)(
ST∧γL

Bs(−1)
−K

)+

1{ τL≤T}

S̄T∧γL
Bs(−1)

K

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧γL

Bs(−1)

t0

qudu

)(
ST∧γL

Bs(−1)
−K

)+

1{ τL≤T}
St0

ST∧γL
Bs(−1)

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧γL

Bs(−1)

t0

qudu

)(
St0 − ST∧γL

Bs(−1)

)+

1{ τL≤T}

∣∣∣∣∣Ft0
]
.

Based on Corollary 1, the last line of equation (3.42) corresponds to the time-t0 price of

an American-style put option on the asset price S̄, with strike St0, and maturity at time

T . However, all first passage times contained in the last line of equation (3.42) are still

expressed in terms of S (and not S̄). Nevertheless, equations (3.3), (3.21) and (3.28)

can be combined and yield a new interpretation to the stopping time γBs(−1):

γLBs(−1) = inf
{
t ≥ τL : St (KSt0/St) ≥ B

s(−1)
t (KSt0/St)

}
(3.43)

= inf
{
t ≥ τ̄L : S̄t ≤ KSt0/B

s(−1)
t

}
= γ̄LBs(−1) .

Finally, equations (3.28), (3.42) and (3.43) can be combined into

ADIt0
(
St0 , K, L, T, r, q, B

di(−1);−1
)

(3.44)

= EQ̄

[
exp

(
−
∫ T∧γ̄L

Bs(−1)

t0

qudu

)(
St0 − ST∧γ̄L

Bs(−1)

)+

1{ τ̄L≤T}

∣∣∣∣∣Ft0
]

= AUIt0
(
S̄t0 , St0 , KSt0/L, T, q, r,KSt0/B

s(−1)
)
,

where the last line follows from equation (3.22). Equation (3.41) arises immediately

after noting that S̄t0 = K.�
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Proposition 3.6 Let S̄t be defined by equation (3.3). Under Assumptions 3.1 and 3.3,

the time-t0 value of an American-style up-and-in call option on the asset price S, with

strike K, upper barrier level U , maturity at time T (≥ t0), and exercise boundary Bui(−1),

is the same, after a change of numéraire, as the time-t0 value of an American-style

down-and-in put option on the asset price S̄, with strike St0, lower barrier level KSt0/U ,

maturity at time T (≥ t0), and exercise boundary St0K/Bs(−1), i.e.

AUIt0
(
St0 , K, U, T, r, q, B

ui(−1);−1
)

= ADIt0
(
K,St0 , KSt0/U, T, q, r, St0K/B

s(−1); 1
)
.

(3.45)

Proof. Applying Proposition 3.1 to equation (3.22) and using definition (3.3), then

AUIt0
(
St0 , K, U, T, r, q, B

ui(−1);−1
)

(3.46)

= EQ̄

[
exp

(
−
∫ T∧γU

Bs(−1)

t0

qudu

)(
ST∧γU

Bs(−1)
−K

)+

1{ τU≤T}

S̄T∧γU
Bs(−1)

K

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧γU

Bs(−1)

t0

qudu

)(
ST∧γU

Bs(−1)
−K

)+

1{ τU≤T}
St0

ST∧γU
Bs(−1)

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧γU

Bs(−1)

t0

qudu

)(
St0 − ST∧γU

Bs(−1)

)+

1{ τU≤T}

∣∣∣∣∣Ft0
]
.

Based on Corollary 1, the last line of equation (3.46) corresponds to the time-t0 price of

an American-style put option on the asset price S̄, with strike St0, and maturity at time

T . However, all first passage times contained in the last line of equation (3.46) are still

expressed in terms of S (and not S̄). Nevertheless, equations (3.3), (3.23) and (3.33)
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yield a new interpretation to the stopping time γU
Bs(−1):

γUBs(φ) = inf
{
t ≥ τU : St (KSt0/St) ≥ B

s(−1)
t (KSt0/St)

}
(3.47)

= inf
{
t ≥ τ̄U : S̄t ≤ KSt0/B

s(−1)
t

}
= γ̄UBs(−1) .

Finally, equations (3.33), (3.46), and (3.47) can be combined into

AUIt0
(
St0 , K, U, T, r, q, B

ui(−1);−1
)

(3.48)

= EQ̄

[
exp

(
−
∫ T∧γ̄U

Bs(−1)

t0

qudu

)(
St0 − Sγ̄U

Bs(−1)

)+

1{ τ̄U<T}

∣∣∣∣∣Ft0
]

= ADIt0
(
S̄t0 , St0 , KSt0/U, T, q, r,KSt0/B

s(−1); 1
)
,

where the last line follows from equation and (3.20). Equation (3.45) arises immediately

after noting that S̄t0 = K.�

Proposition 3.7 Let S̄t be defined by equation (3.3). Under Assumptions 3.1 and 3.3,

the time-t0 value of an American-style knock-in double barrier call option on the asset

price S, with strike K, lower barrier L , upper barrier level U , maturity at time T (≥ t0),

and exercise boundary Bki(−1), is the same, after a change of numéraire, as the time-t0

value of an American-style double knock-in put option on the asset price S̄, with strike

St0, lower barrier level KSt0/U , upper barrier level KSt0/L, maturity at time T (≥ t0),

and exercise boundary St0K/Bs(−1), i.e.

AKIDBt0

(
St0 , K, L, U, T, r, q, B

ki(−1);−1
)

(3.49)

= AKIDBt0

(
K,St0 , KSt0/U,KSt0/L, T, q, r, St0K/B

s(−1); 1
)
.
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Proof. Applying Proposition 3.1 to equation (3.24) and using definition (3.3), then

AKIDBt0

(
St0 , K, L, U, T, r, q, B

ki(−1);−1
)

(3.50)

= EQ̄

[
exp

(
−
∫ T∧γLU

Bs(−1)

t0

qudu

)(
ST∧γLU

Bs(−1)
−K

)+

1{ τLU≤T}

S̄T∧γLU
Bs(−1)

K

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧γLU

Bs(−1)

t0

qudu

)(
ST∧γLU

Bs(−1)
−K

)+

1{ τLU≤T}
St0

ST∧γLU
Bs(−1)

∣∣∣∣∣Ft0
]

= EQ̄

[
exp

(
−
∫ T∧γLU

Bs(−1)

t0

qudu

)(
St0 − ST∧γLU

Bs(−1)

)+

1{ τLU≤T}

∣∣∣∣∣Ft0
]
.

Based on Corollary 1, the last line of equation (3.50) corresponds to the time-t0 price

of an American-style double knock-in barrier put option on the asset price S̄, with strike

St0, and maturity at time T . However, all first passage times contained in the last line of

equation (3.50) are still expressed in terms of S (and not S̄). Nevertheless, equations

(3.3), (3.25) and (3.38) can be combined to yield a new interpretation to the stopping

time γLU
Bs(−1):

γLUBs(−1) = inf
{
t ≥ τLU : St (KSt0/St) ≥ B

s(−1)
t (KSt0/St)

}
(3.51)

= inf
{
t ≥ τ̄LU : S̄t ≤ KSt0/B

s(−1)
t

}
= γ̄LUBs(−1) .

Finally, equations (3.50), and (3.51) can be combined into

AKIDBt0

(
St0 , K, L, U, T, r, q, B

ki(−1);−1
)

(3.52)

= EQ̄

[
exp

(
−
∫ T∧γ̄LU

Bs(−1)

t0

qudu

)(
St0 − ST∧γ̄LU

Bs(−1)

)+

1{ τ̄LU<T}

∣∣∣∣∣Ft0
]

= AKIDBt0

(
S̄t0 , St0 , KSt0/U, T, q, r,KSt0/B

s(−1); 1
)
,
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where the last line follows from equation (3.24). Equation (3.49) arises immediately

after noting that S̄t0 = K.�

3.4 CEV Process

This section applies the previous put-call symmetries, to the constant elasticity of vari-

ance (CEV) process of Cox (1975).

The CEV process is consistent with two well known facts that have found empirical

support in the literature: the existence of a negative correlation between stock returns

and realized volatility (leverage effect), as observed, for instance, in Bekaert and Wu

(2000); and the inverse relation between the implied volatility and the strike price of

an option contract (implied volatility skew) — see, for example, Dennis and Mayhew

(2002). More importantly, being a local volatility model, the CEV diffusion is consis-

tent with a complete market setup and, therefore, allows the hedging of short option

positions only through the underlying asset.

Under the risk-neutral probability measure Q, the CEV process assumes that the asset

price (St, t ≥ 0) is described by the following stochastic differential equation:

dSt
St

= (r − q) dt+ σ (t, S) dWQ
t , (3.53)

with

σ (t, S) := δS
β
2
−1

t , (3.54)

for δ, β ∈ R and where r ≥ 0 denotes the instantaneous riskless interest rate, which is

assumed to be constant, q ≥ 0 represents the dividend yield for the underlying asset

price, and WQ
t ∈ R is a standard Brownian motion under Q, initialized at zero and
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generating the augmented, right continuous and complete filtration F = {Ft : t ≥ t0}.

To apply the change of numéraire technique in order to obtain put-call symmetries, we

first need to transform the CEV process given by equation (3.53), under the probability

measure Q, into an equivalent CEV process but under the new probability measure Q̄.

Using equation (3.3), and applying the Itô lemma and Girsanov theorem to equation

(3.53), we obtain
dS̄t
S̄t

= (q − r) dt+ δ̄S̄t
−(β2−1)dW Q̄

t , (3.55)

with

δ̄ := δ (KS0)(
β
2
−1) , (3.56)

and the following Corollaries follow easily from Propositions 3.2 to 3.7:

i. Under the CEV process the put-call option symmetry between an American-style

down-and-out call and an American-style up-and-out put is given by

ADOt0 (S0, K, β, δ, L, T, r, q;−1) = AUOt0

(
K,S0, 4− β, δ(KS0)

β
2
−1, KS0/L, T, q, r; 1

)
.

(3.57)

ii. Under the CEV process the put-call option symmetry between an American-style

up-and-out call and an American-style down-and-out put is given by

AUOt0 (S0, K, β, δ, U, T, r, q;−1) = ADOt0

(
K,S0, 4− β, δ(KS0)

β
2
−1, KS0/U, T, q, r; 1

)
.

(3.58)

iii. Under the CEV process the put-call option symmetry between an American-style
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double knock-out call and put option is given by

AKODBt0 (S0, K, β, δ, L, U, T, r, q;−1) (3.59)

= AKODBt0

(
K,S0, 4− β, δ(KS0)

β
2
−1, KS0/U,KS0/L, T, q, r; 1

)
.

iv. Under the CEV process the put-call option symmetry between an American-style

down-and-in call and an American-style up-and-in put is given by

ADIt0 (S0, K, β, δ, L, T, r, q;−1) = AUIt0

(
K,S0, 4− β, δ(KS0)

β
2
−1, KS0/L, T, q, r; 1

)
.

(3.60)

v. Under the CEV process the put-call option symmetry between an American-style

up-and-in call and an American-style down-and-in put is given by

AUIt0 (S0, K, β, δ, U, T, r, q;−1) = ADIt0

(
K,S0, 4− β, δ(KS0)

β
2
−1, KS0/U, T, q, r; 1

)
.

(3.61)

vi. Under the CEV process the put-call option symmetry between an American-style

double knock-in call and put option is given by

AKIDBt0 (S0, K, β, δ, L, U, T, r, q;−1) (3.62)

= AKIDBt0

(
K,S0, 4− β, δ(KS0)

β
2
−1, KS0/U,KS0/L, T, q, r; 1

)
.

3.4.1 Valuation procedures

To test empirically the symmetry relations i to vi, we need a viable valuation method to

price the array of American-style contracts involved. The static hedging approach of

Chung and Shih (2009) (hereafter, SHP), allows us to value all types of American-style
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contracts needed.

Under the CEV model assumption, standard American-style options are valued through

the Chung and Shih (2009) procedure—enhanced by the Ruas et al. (2012a) extension

to other values of the elasticity parameter (beta) besides 4
3
—and using closed-form

solutions for the hedge ratios of the corresponding European-style options. American-

style down-and-out puts and up-and-out calls are priced using the SHP extension (for

American-style capped options) offered in Ruas et al. (2012a). American-style up-and-

out puts and down-and-out calls are priced using the Chung et al. (2009) procedure.

American-style knock-in options are valued using the algorithm offered by Chung et

al. (2013), but with greeks (deltas and thetas) generalized for β 6= 4
3
. American-style

double knock-out options are valued using the Ruas et al. (2012b) procedure.

The SHP method is implemented with 52 time steps, and all computations are obtained

via Matlab (2009a) running on an Intel Core 2 Duo E8500 3.16GHz processor.

3.4.2 Numerical results

To run our numerical experiments under the CEV assumption, we borrow parameters

values from Davydov and Linetsky (2001), namely: the time-t0 underlying asset price

is St0 = 100; different moneyness levels are considered by letting the strike price K ∈

{95, 100, 105}; the lower barrier is L = 90, and the upper barrier is set at U = 120;

β ∈ {2, 1, 0,−2,−4,−6}, and δ is selected so that the initial instantaneous volatility

σ(t0, S) = 25% is the same across the different CEV processes; the time to maturity is

set at 6 months, i.e. T−t0 = 0.5 years. We change the riskless interest rate in Davydov

and Linetsky (2001) from r = 10% to r = 5% and the dividend yield from q = 0% to

q = 7%, since the original values for these parameters would lead the American-style

options to degenerate into European-style options.
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Tables 3.1 to 3.4 apply the put-call symmetry for single barrier knock-out and knock-in

options. In all these tables, columns 1 to 5 contain the parameters values considered

for each call contract, and column 6 shows the results for the American-style call under

analysis. Columns 7 to 11 contain the parameters values for the corresponding put

contract that follows from the put-call symmetry, and column 12 shows the American-

style put prices obtained through the put-call symmetry.

Table 3.5 implements the put-call symmetry between double knock-out call / put op-

tions. Columns 1 to 6 contain the parameters values considered for each call con-

tract, and column 7 presents the American-style call prices. Columns 8 to 13 contain

the parameters values for the corresponding put contract that follows from the put-call

symmetry, and column 14 shows the result for the American-style put prices, obtained

via the put-call symmetry.

Tables 3.1 to 3.5 show that the prices for American-style barrier options are very sensi-

tive to changes in the value of the beta parameter (specially for the knock-in barriers).

In several cases, the difference in option values when moving from β = 2 (i.e when the

CEV model degenerates into the GBM model) to β = −6 is higher than 50%.

3.5 Conclusions

Using the change of numéraire technique proposed by Geman et al. (1995) and used

by Schroder (1999), we are able to derive the put-call symmetry for American-style sin-

gle and double barrier options without imposing a previous assumption on the stochas-

tic process followed by the underlying asset price. Our results are validated by applying

the proposed symmetries to the CEV model.
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4. In-Out Parity Relations and Early Exercise Bound-

aries for American-style Barrier Options∗

Abstract: This paper derives new in-out parity relations for American-style puts with

a down barrier and American-style calls with an up barrier. More importantly, we also

propose a novel representation for the early exercise boundary of American-style dou-

ble knock-out options in terms of the simpler optimal stopping boundary for a nested

single barrier American-style option. Therefore, we are able to extend the static hedge

portfolio approach to the valuation of American-style double barrier knock-out options.

Our results are tested through an extensive numerical analysis run under the geometric

Brownian motion and the constant elasticity of variance models.

JEL Classification: G13.

Keywords: American-style options; Barrier options; In-out parity; Early exercise bound-

ary.
∗This paper is a joint work with João Pedro Nunes and José Carlos Dias.
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4.1 Introduction

This paper provides three important results concerning the valuation of American-style

barrier options. First, we prove a new in-out parity relation between American-style bar-

rier options. Second, we derive the early exercise boundary of American-style double

knock-out options in terms of the simpler exercise boundary of single barrier American-

style options. Finally, we use the previous finding to extend the static hedge portfolio

(hereafter, SHP) approach of Chung and Shih (2009) to the valuation of American-style

double barrier knock-out options.

Concerning our first result, it is well known that for European-style contracts, the sum of

the prices of knock-in and knock-out barrier options is equal to the price of a standard

European-style option. However, and as argued by Dai and Kwok (2004, Page 187)

or Chung et al. (2013, Page 191), such in-out barrier parity relation cannot be applied

to American-style barrier options. In this article, we extend the in-out barrier parity

relation for American-style puts with a down barrier and calls with an up barrier, and

show that the missing link between knock-in, knock-out, and standard options is simply

the value of a non-deferrable rebate.

Our second theoretical contribution to the existent literature on option pricing consists

in obtaining the early exercise boundary of any American-style double barrier option

in terms of the barrier levels and as a function of the optimal stopping boundary of a

nested single barrier American-style option. The rational behind our main result is sim-

ilar to the one used, for instance, by Broadie and Detemple (1995, Theorem 1) or Gao

et al. (2000, Theorem 6) to relate the early exercise boundaries of American-style stan-

dard and single barrier option contracts. Therefore, we are able to reduce the valuation

of American-style double barrier options to the same complexity level as the one faced

84



to price simpler single barrier contracts. Bearing in mind that only a few numerical

methods have been proposed for pricing American-style double barrier options—as,

for instance, the trinomial method of Ritchken (1995) or the PDE schemes of Zvan et

al. (2000)—and that most of them are confined to the simpler geometric Brownian mo-

tion assumption of Black and Scholes (1973) and Merton (1973) (hereafter, GBM), our

result should be used for all option pricing models that generate viable pricing solutions

for single barrier American-style options.

To illustrate the potential of the previous finding, we easily extend the SHP methodology

of Chung and Shih (2009) to the valuation of American-style double barrier knock-out

options. The SHP approach was initially developed by Bowie and Carr (1994), Derman

et al. (1995), and Carr et al. (1998) for hedging European-style exotic options, and then

adapted by Chung and Shih (2009), and Chung et al. (2013) to the pricing of standard

and single barrier knock-in American-style options, respectively. For this purpose, a

static portfolio of European-style options (with multiple strikes and multiple maturities)

is created with weights that ensure its value matches the payoff of the option being

hedged at expiration and along the (unknown) early exercise boundary as well as along

the (known) knock-in boundary. However, for double knock-out barrier American-style

options, three different boundaries would have to be met until the expiry date of the

contract. Hence, our results greatly simplify the pricing of double knock-out barrier

options since we simply rely on the valuation of a single barrier contract.

All the new results proposed in this paper are only based on two mild assumptions:

the existence of a risk neutral measure (i.e. on no arbitrage, in the Harrison and Pliska

(1981) sense); and the existence of a unique, continuous and monotone early exercise

boundary that separates the continuation and exercise regions of any American-style

option contract. Therefore, our results can be applied to the whole class of single

diffusion processes discussed in Detemple and Tian (2002, Propostion 1), and even to
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jump-diffusion models—but subject to the technical conditions stated in Pham (1997,

Theorem 3.2).

This paper proceeds as follows. Section 4.2 presents the main assumptions adopted

as well as the notation used throughout the paper. Section 4.3 derives the in-out parity

for American-style barriers options, and Section 4.4 offers a simpler representation for

the early exercise boundary of American-style double knock-out barrier options. Sec-

tion 4.5 implements the previous results under both the GBM assumption and the con-

stant elasticity of variance (CEV) model of Cox (1975), and through the SHP approach.

Finally, Section 4.6 concludes.

4.2 Modelling assumptions

Our main modelling assumptions are borrowed from Schroder (1999). We assume

throughout that the financial market is frictionless, and that trading takes place contin-

uously on the time-interval T := [t0, T ], for some initial date t0 and fixed time T > t0.

Uncertainty is represented by a complete probability space (Ω,F ,Q), where the infor-

mation accruing to all the agents in the economy is described by the complete filtration

F = {Ft : t ∈ T } that satisfies the usual conditions, and

Assumption 4.1 There exists a risk-neutral measure Q such that the relative rein-

vested price of every asset, with respect to the reinvested short-rate process (or “money-

market account”numeraire), is a Q-martingale.

Furthermore, and since this paper deals with the valuation of American-style options,

we further adopt Schroder (1999, Assumption 2), i.e.
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Assumption 4.2 Let Vt0 be the time-t0 price of an American-style option allowing the

holder to exercise and receive, at any stopping time τ ∈ T , the payoff Vτ , where V is

an adapted process. Then

Vt0 = sup
τ∈T

EQ

[
exp

(
−
∫ τ

t0

rudu

)
Vτ

∣∣∣∣Ft0] , (4.1)

where r is the risk-free (and possibly time-dependent) short rate process.

The Snell envelope (4.1) is proved by Karatzas (1988, Theorem 5.4) in a complete mar-

ket setting, and adapted by Pham (1997, Equation 1.5) to a jump-diffusion framework

(although conditional upon the specification of the market price of jump risk).

However, our main results will be further based on the existence and uniqueness of an

early exercise boundary {Bt : t ∈ T } that separates the continuation and exercise (or

stopping) regions of the American-style option contract. This should constitute a mild

assumption that is satisfied by most of the option pricing models already proposed in

the literature. Under a single factor diffusion model, Detemple and Tian (2002, Pro-

postion 1) prove the existence of the exercise boundary {Bt : t ∈ T }, which is only a

function of time (and a continuous function, as long as the risk-free interest rate is

deterministic). Pham (1997, Theorems 3.2 and 4.1) extends the previous result to a

jump-diffusion model (conditional on the positiveness of the riskless interest rate cor-

rected by the jump risk).

Therefore, we finally assume that4.1

Assumption 4.3 There exists a unique and continuous exercise boundary {Bt : t ∈ T }
4.1For x, y ∈ R, we denote by x ∨ y and x ∧ y, respectively, their maximum and minimum.
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such that equation (4.1) can be rewritten as

Vt0 = EQ

[
exp

(
−
∫ T∧τB

t0

rudu

)
VT∧τB

∣∣∣∣Ft0] , (4.2)

where τB is the first passage time of the underlying asset price process through the

early exercise boundary.

Assumption 4.3 simply states that, for each time t ∈ T there exists a critical asset price

Bt below (above) which the American-style put (call) price equals its intrinsic value and

early exercise should occur. Consequently, the optimal policy should be to exercise

the American-style option when the underlying asset price first touches its critical level.

Therefore, Assumption 4.3 yields the following representation for the time-t0 value of a

standard American-style put (if φ = 1) or call (if φ = −1) option on the asset price S,

with strike K, and maturity at time T (≥ t0):

ASt0
(
St0 , K, T,B

s(φ);φ
)

= EQ

[
exp

(
−
∫ T∧τ

Bs(φ)

t0

rudu

)(
φK − φST∧τ

Bs(φ)

)+
∣∣∣∣Ft0] ,

(4.3)

where

τBs(φ) := inf
{
t ≥ t0 : φSt ≤ φB

s(φ)
t

}
, (4.4)

and Bs(φ) denotes the early exercise boundary of the standard American-style put (if

φ = 1) or call (if φ = −1), with φSt0 > φB
s(φ)
t0 .

The valuation of the standard American-style contracts described by equations (4.3)

and (4.4) is already well established in the literature for several single factor and mul-

tifactor option pricing models. Under the usual lognormal assumption underlying the

GBM process, several accurate analytical approximations have been proposed, such

as the randomization approach of Carr (1998), or the integral representation method

of Kim (1990), Jacka (1991), Carr et al. (1992), and Jamshidian (1992). For alterna-
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tive, but still single factor, diffusion processes, Kim and Yu (1996) extend the integral

representation method, Nunes (2009) proposes an optimal stopping approach based

on the density of the first passage time τBs(φ), and Chung and Shih (2009) adopted the

SHP approach offered by Bowie and Carr (1994), Derman et al. (1995), and Carr et

al. (1998). For multifactor option pricing models, the literature is more sparse but,

nevertheless, Detemple and Tian (2002) adapt the integral representation method,

Medvedev and Scaillet (2010) implement an extremely efficient asymptotic expansion

that accommodates stochastic interest rates and stochastic volatility, and Nunes (2011)

extends the optimal stopping approach to deal with stochastic interest rates.

The purpose of the present paper is essentially to reduce the valuation of American-

style single and double barrier options, under any single factor pricing model, to the

same complexity level as the one faced with the already well-established solution of

equation (4.3).

4.3 In-out parity for American-style barrier options

For European-style barrier options, it is well known that the sum of the prices of down-

and-in and down-and-out barrier options is equal to the price of the corresponding

standard European-style option. However, and as argued, for instance, by Dai and

Kwok (2004, Page 187) or Chung et al. (2013, Page 191), such in-out barrier parity

relation cannot be simply transposed to American-style barrier options. For instance,

a portfolio consisting of a down-and-in and a down-and-out American-style put always

dominates the corresponding American-style but plain-vanilla put option. Along the

barrier, the American-style knock-in becomes equal to the standard American-style

put. Since the holder of the portfolio has the right to exercise the American-style knock-

out, the portfolio value is greater than the standard American-style put price exactly in
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the amount of its intrinsic value. For European-style options this is not true, since the

holder of the portfolio cannot exercise the European-style knock-out along the barrier.

In this section we extend the in-out barrier parity relation for American-style puts with a

down barrier and calls with an up barrier. For these contracts, our results follow easily

because we are able to relate their early exercise boundaries to the optimal stopping

boundaries of the corresponding American-style standard contracts.4.2

4.3.1 Puts with a down barrier

The goal now is to relate the prices of American-style down-and-out and down-and-in

puts.

Starting with the knock-out contract, an American-style knock-out option (without re-

bate) becomes worthless if the single barrier is touched by the underlying asset price;

otherwise, it can be exercised at or before the expiry date.4.3 Additionally, and as

pointed by Gao et al. (2000, Footnote 15), for the knock-out event and the exercise

date to be well defined, the option contract must be specified in a way such that when

the asset price first touches the barrier, the option holder has the option to either exer-

cise or let the option be knocked out. Therefore, and using Assumption 4.3, the time-t0

value of an American-style down-and-out put (if φ = 1) or call (if φ = −1) option on the

asset price S, with strike K, lower barrier level L, and maturity at time T (≥ t0), is equal
4.2For the American-style put (call) with an up (down) barrier this is not possible because its early exercise bound-

ary never matches the optimal stopping boundary of the corresponding standard American-style option (except at
the maturity date). The early exercise boundary shifts upwards (downwards) for the American-style up-and-out
(down-and-out) put (call) option, when compared to the corresponding American-style standard put (call).

4.3Unless stated otherwise, and following Gao et al. (2000, Page 1788), it is assumed in the remainder of this
article that there is no rebate. Moreover, for valuation purposes, rebates can always be detached from the barrier
option contract and dealt with via equations (4.11) or (4.28).
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to

ADOt0

(
St0 , K, L, T,B

do(φ);φ
)

(4.5)

= EQ

[
exp

(
−
∫ T∧τ

Bdo(φ)∧τL

t0

rudu

)(
φK − φST∧τ

Bdo(φ)∧τL

)+
∣∣∣∣Ft0] ,

where

τL := inf {t ≥ t0 : St ≤ L} , (4.6)

τBdo(φ) := inf
{
t ≥ t0 : φSt ≤ φB

do(φ)
t

}
, (4.7)

Bdo(φ) represents the exercise boundary of the American-style down-and-out put (if

φ = 1) or call (if φ = −1), and φSt0 > φB
do(φ)
t0 .

Concerning the knock-in contract, an American-style knock-in option becomes a stan-

dard American-style option if and only if the barrier is touched by the underlying spot

price before the option’ expiry date. Therefore, and using again Assumption 4.3, the

time-t0 value of an American-style down-and-in put (if φ = 1) or call (if φ = −1) option

on the asset price S, with strike K, lower barrier level L, and maturity at time T (≥ t0)

is given by

ADIt0
(
St0 , K, L, T,B

di(φ);φ
)

(4.8)

= EQ

[
exp

(
−
∫ τL

t0

rudu

)
ASτL

(
L,K, T,Bs(φ);φ

)
1{ τL≤T}

∣∣∣∣Ft0] ,
where the first hitting time τL is defined by equation (4.6), Bdi(φ) represents the exercise

boundary of the American-style down-and-in put (if φ = 1) or call (if φ = −1), and φSt0 >

φB
di(φ)
t0 . Based on equation (4.3), it is possible to obtain the following decomposition

for the price of an American-style down-and-in put.

91



Proposition 4.1 Under Assumptions 4.1 and 4.3, and if

∂B
s(1)
t

∂t
≥ 0, (4.9)

then the time-t0 value of an American-style down-and-in put option on the asset price

S, with strike K, lower barrier level L, and maturity at time T (≥ t0) is equal to

ADIt0
(
St0 , K, L, T,B

di(1); 1
)

(4.10)

= EQ

[
exp

(
−
∫ T∧τ

Bs(1)

t0

rudu

)(
K − ST∧τ

Bs(1)

)+

1{τL≤τBs(1) , τL≤T}

∣∣∣∣Ft0]
+EQ

[
exp

(
−
∫ τL

t0

rudu

)
(K − L)+

1{τL>τBs(1) , τL≤T}

∣∣∣∣Ft0] ,
where the first passage times τL and τBs(1) are defined by equations (4.6) and (4.4),

respectively, while Bdi(1) represents the unknown exercise boundary of the American-

style down-and-in put.

Proof. See Appendix C.�

Remark 4.1 Equation (4.10) requires the early exercise boundary of the American-

style put to be a nondecreasing function of time. Under the simpler GBM assumption,

Jacka (1991, Proposition 2.2.2) has already proved equation (4.9). Additionally, Gao

et al. (2000, Appendix B.3) have shown that equation (4.9) only requires the standard

American-style option price to satisfy a value matching condition. Therefore, equation

(4.9) does not constitute a too restrictive assumption.

Remark 4.2 Equation (4.10) decomposes the American-style down-and-in put price

into two components: A pseudo-standard American-style put (but conditional on the

knock-in event to occur before the first early exercise and expiry dates), and a rebate
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of the option’s intrinsic value at the knock-in date (if this date is between the first early

exercise and expiry dates).

To relate equations (4.5) and (4.10) through equation (4.3), we still need two more

ingredients. First, the time-t0 value of a down rebate (K − L)+ paid at the first passage

time through the barrier L, will be given by

RDt0 (St0 , K, L, T ) = EQ

[
exp

(
−
∫ τL

t0

rudu

)
(K − L)+

1{τL<T}

∣∣∣∣Ft0] , (4.11)

where τL is still defined by equation (4.6). Note that equation (4.11) simply requires

the knowledge of the first passage time density through the barrier (and not through

the exercise boundary), which—as shown, for instance, by Kuan and Webber (2003,

Equation 4)—can be recovered from the probability distribution of the underlying asset

price.

Second, the following relationship between the early exercise boundaries of American-

style down-and-out and standard puts will be used.

Proposition 4.2 Under Assumptions 4.1 and 4.3, and if equation (4.9) is satisfied,

then the early exercise boundary of an American-style down-and-out put option with

strike K, lower barrier level L (< K), and maturity at time T (≥ t0), is equal to

B
do(1)
t = L ∨Bs(1)

t , (4.12)

for t ∈ T , and where Bs(1) represents the early exercise boundary of the corresponding

standard American-style put (on the same underlying asset, with the same strike and

identical maturity).

Remark 4.3 Equation (4.12) is already proved by Broadie and Detemple (1995, The-
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orem 1) or Gao et al. (2000, Theorem 6) but under the GBM assumption. Proposition

4.2 simply extends Gao et al. (2000, Theorem 6) to other asset price processes for

which the exercise boundaries Bdo(1) and Bs(1) exist, and the latter is a nondecreasing

function of calendar time.

Proof. See Appendix D.�

Next proposition contains the new in-out parity for American-style puts with a down

barrier.

Proposition 4.3 Under Assumptions 4.1 and 4.3, for L < K, and if equation (4.9) is

satisfied, then

ADOt0

(
St0 , K, L, T,B

do(1); 1
)

(4.13)

= ASt0
(
St0 , K, T,B

s(1); 1
)
− ADIt0

(
St0 , K, L, T,B

di(1); 1
)

+RDt0 (St0 , K, L, T ) ,

where the left-hand side of equation (4.13) is given by equation (4.5), while the first,

second and third terms on the right-hand side are defined by equations (4.3), (4.8) and

(4.11), respectively.

Proof. We prove the above result by showing that the value of the portfolio on the right

hand-side of equation (4.13) always matches the value of the American-style down-

and-out put at any point of its optimal exercise boundary
{
B
do(1)
t : t ∈ T

}
. For this

purpose, we divide the analysis into three mutually exclusive cases. In the first case

(Case A), Bs(1)
t > L and Bdo(1)

t = B
s(1)
t , for any t ∈ T , turning the American-style down-

and-out put into a standard American-style put option. In the second case (Case B),

the early exercise boundary
{
B
s(1)
t : t ∈ T

}
is intersected by the lower barrier level L.
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Finally, in the third case (Case C), Bs(1)
t < L, ∀t ∈ T , and the American-style down-

and-out put is exercised at the first passage time through the barrier level L.

Case A If the exercise boundary of the standard American-style put Bs(1) is always

above the lower barrier L, then Proposition 4.2 implies that Bdo(1)
t = B

s(1)
t , for all

t ∈ T . Consequently, and since an American-style option is worth its intrinsic

value on its early exercise boundary, the following two value matching conditions

are obtained for all t ∈ T :

ADOt

(
B
do(1)
t , K, L, T,Bdo(1); 1

)
=
(
K −Bdo(1)

t

)+

, (4.14)

ASt

(
B
do(1)
t , K, T,Bs(1); 1

)
=
(
K −Bdo(1)

t

)+

. (4.15)

Hence, we just need to prove that

ADIt

(
B
do(1)
t , K, L, T,Bdi(1); 1

)
= RDt

(
B
do(1)
t , K, L, T

)
(4.16)

for equation (4.13) to hold. However, since the lower barrier L is always below

B
s(1)
t , the stopping time τL can only occur after τBs(1), meaning that the American-

style down-and-in put will be exercised immediately at τL; i.e., for τL > τBs(1),

equation (4.10) can be rewritten as

ADIt
(
St, K, L, T,B

di(1); 1
)

(4.17)

= EQ

[
exp

(
−
∫ τL

t0

rudu

)
(K − L)+

1{ τL≤T}

∣∣∣∣Ft0] ,
which is exactly the same as equation (4.11). Since equation (4.17) holds for any

St, it also holds for St = B
do(1)
t , and equation (4.16) follows.

Case B If L ∈
[
B
s(1)
t0 , B

s(1)
T

]
, and since Bs(1)

t is a nondecreasing function of t, then there
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exists a unique t∗ :=
{
t ∈ T : B

s(1)
t = L

}
. For any time t ≤ t∗, L > B

s(1)
t , and

Proposition 4.2 implies that Bdo(1)
t = L ∨ Bs(1)

t = L, yielding the following value

matching condition:

ADOt

(
L,K,L, T,Bdo(1); 1

)
= K − L. (4.18)

Moreover, equation (4.11) can be restated as

RDt (L,K,L, T ) = K − L, (4.19)

and we just need to prove that

ASt
(
L,K, T,Bs(1); 1

)
= ADIt

(
L,K,L, T,Bdi(1); 1

)
, (4.20)

for equation (4.13) to hold. But equation (4.20) arises immediately because the

American-style down-and-in option is knocked-in at the lower barrier L, becoming

a standard American-style put option. For any t > t∗, we have B
s(1)
t > L, and

equation (4.13) follows by using the same arguments as presented in Case A.

Case C Finally, if Bs(1)
t < L, ∀t ∈ T , then Proposition 4.2 ensures that Bdo(1)

t = L ∨

B
s(1)
t = L. Therefore, we can use the same arguments as in Case B, for t ≤ t∗, to

show that equations (4.18), (4.19), and (4.20) yield equation (4.13).

4.3.2 Calls with an up barrier

As in the previous subsection, it is also possible to relate the prices of American-style

up-and-out and up-and-in calls. Starting with the former contract, and using again

Assumption 4.3, the time-t0 value of an American-style up-and-out put (if φ = 1) or call
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(if φ = −1) on the asset price S, with strike K, upper barrier level U , and maturity at

time T (≥ t0) will be represented by

AUOt0

(
St0 , K, U, T,B

uo(φ);φ
)

(4.21)

= EQ

[
exp

(
−
∫ T∧τ

Buo(φ)∧τU

t0

rudu

)(
φK − φST∧τ

Buo(φ)∧τU

)+
∣∣∣∣Ft0] ,

where

τU := inf {t ≥ t0 : St ≥ U} , (4.22)

τBuo(φ) := inf
{
t ≥ t0 : φSt ≤ φB

uo(φ)
t

}
, (4.23)

Buo(φ) denotes the exercise boundary of the American-style up-and-out put (if φ = 1)

or call (if φ = −1), and it is assumed that φSt0 > φB
uo(φ)
t0 . Similarly, the time-t0 value of

an American-style up-and-in put (if φ = 1) or call (if φ = −1) on the asset price S, with

strike K, upper barrier U , maturity at time T (≥ t0), and early exercise boundary Bui(φ),

will be written as

AUIt0
(
St0 , K, U, T,B

ui(φ);φ
)

(4.24)

= EQ

[
exp

(
−
∫ τU

t0

rudu

)
ASτU

(
U,K, T,Bs(φ);φ

)
1{ τU≤T}

∣∣∣∣Ft0] ,
assuming that φSt0 > φB

ui(φ)
t0 .

To relate equations (4.21) and (4.24) for φ = −1, we take advantage of the following

relationship—proved, for instance, by Gao et al. (2000, Theorem 5) under the GBM

process, although it simply requiresBs(−1) to be a nonincreasing function of t—between

the optimal stopping boundaries of up-and-out and plain-vanilla American-style calls:

B
uo(−1)
t = U ∧Bs(−1)

t , (4.25)
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for t ∈ T . Using the same reasoning as in the previous subsection, next proposition

offers an in-out parity for American-style calls with an up barrier.

Proposition 4.4 Under Assumptions 4.1 and 4.3, for U > K, and if

∂B
s(−1)
t

∂t
≤ 0, (4.26)

then

AUOt0

(
St0 , K, U, T,B

uo(−1);−1
)

(4.27)

= ASt0
(
St0 , K, T,B

s(−1);−1
)
− AUIt0

(
St0 , K, U, T,B

ui(−1);−1
)

+RUt0 (St0 , K, U, T ) ,

where the left-hand side of equation (4.27) is given by equation (4.21), the first two

terms on the right-hand side of equation (4.27) are given by equations (4.3) and (4.24),

respectively, while

RUt0 (St0 , K, U, T ) := EQ

[
exp

(
−
∫ τU

t0

rudu

)
(U −K)+

1{τU≤T}

∣∣∣∣Ft0] (4.28)

is the time-t0 value of the up rebate (U −K)+ paid at the first passage time through

the barrier U .

Remark 4.4 Again, note that equation (4.28) simply requires the knowledge of the first

passage time density through the barrier U (and not through the exercise boundary).

Proof. The proof of Proposition 4.4 is similar to the one presented for Proposition 4.3,

and is available upon request.

98



4.4 Exercise boundaries for American-style double knock-

out options

The literature on the valuation of American-style double barrier options is even more

sparse than for single barrier contracts. To the authors knowledge, only a few numerical

methods have been proposed for pricing American-style double barrier options—as, for

instance, the trinomial method of Ritchken (1995) or the PDE schemes of Zvan et al.

(2000)—and most of them are confined to the simpler GBM assumption.

In this section, we derive the early exercise boundary of American-style double knock-

out options from the optimal stopping boundaries of American-style but single barrier

options. Therefore, the novel results presented in Propositions 4.5 and 4.6 should re-

duce the valuation of American-style double knock-out options to the same complexity

level as the one faced when pricing single barrier American-style option contracts.

An American-style double knock-out option becomes worthless if one of the two barri-

ers is touched by the underlying asset price; otherwise, it can be exercised at or before

the expiry date. Additionally, and following again Gao et al. (2000, Footnote 15), for

the knock-out event and the exercise date to be well defined, the option contract must

be specified in a way such that when the asset price first touches any of the barriers,

the option holder has the option to either exercise or let the option be knocked out.

Therefore, and using Assumption 4.3, the time-t0 value of an American-style double

knock-out option on the asset price S, with strike K, lower barrier level L (< K), upper

barrier level U (> K), and maturity at time T (≥ t0), is equal to

AKODBt0

(
St0 , K, L, U, T,B

ko(φ);φ
)

(4.29)

= EQ

[
exp

(
−
∫ T∧τ

Bko(φ)∧τLU

t0

rudu

)(
φK − φST∧τ

Bko(φ)∧τLU

)+
∣∣∣∣Ft0] ,
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where φ = 1 for a put option, φ = −1 for a call option, Bko(φ) is the (unknown) early

exercise boundary of the American-style double knock-out option,

τBko(φ) := inf
{
t ≥ t0 : φSt ≤ φB

ko(φ)
t

}
, (4.30)

and

τLU := inf {t > t0 : St ≤ L or St ≥ U} , (4.31)

is the first passage time of the asset price to one of the two barriers.

Next proposition recovers the put early exercise boundary Bko(1) from the one associ-

ated to the simpler American-style up-and-out put option.

Proposition 4.5 Under Assumptions 4.1 and 4.3, and if

∂B
uo(φ)
t

∂t
≥ 0, (4.32)

then the early exercise boundary Bko(1) of an American-style double knock-out put

option on the asset price S, with strike K, lower barrier level L, upper barrier level U ,

and maturity at time T , is equal to

B
ko(1)
t = L ∨Buo(1)

t , (4.33)

for all t ∈ T , where B
uo(φ)
t denotes the exercise boundary of the American-style up-

and-out put option defined in equation (4.21), and L < K < U .

Proof. We prove Proposition 4.5 by contradiction, showing that arbitrage is possible

if equation (4.33) does not hold. For this purpose, we divide the analysis into three

mutually exclusive cases.
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Case A First, we assume that Buo(1)
t > L, for all t ∈ T , i.e. the exercise boundary

of the American-style up-and-out put is always above the lower barrier of the

double knock-out put option. Furthermore, suppose that Bko(1)
t > B

uo(1)
t . Then, at

St = B
ko(1)
t , equation (4.29) implies that

AKODBt

(
B
ko(1)
t , K, L, U, T,Bko(1); 1

)
= K −Bko(1)

t , (4.34)

and

AKODBt

(
B
ko(1)
t , K, L, U, T,Bko(1); 1

)
< AUOt

(
B
ko(1)
t , K, U, T,Buo(1); 1

)
, (4.35)

since the point Bko(1)
t is a possible, but not optimal, exercise policy for the Ameri-

can up-and-out put defined in equation (4.21).4.4

To show that the scenario B
ko(1)
t > B

uo(1)
t cannot prevail as it would generate

arbitrage opportunities, we form a self-financed portfolio V by going long ω units

of the double barrier option, while financing this position by going short one unit

of the up-and-out put. Hence, ω must be such that the time-t value of the portfolio

is zero, i.e.

Vt = ω × AKODBt

(
B
ko(1)
t , K, L, U, T,Bko(1); 1

)
(4.36)

−AUOt

(
B
ko(1)
t , K, U, T,Buo(1); 1

)
= 0.

Note that inequality (4.35) implies that the solution of equation (4.36) must be

such that ω > 1.

We maintain this portfolio until our short position, i.e. the one unit of the up-and-

4.4Note that Bko(1)t < U because the upper barrier level U is shared by both the single barrier and the double
barrier puts.

101



out put, is exercised at its optimal boundary, is knocked-out, or expires; that is

until time

τV := τBuo(1) ∧ τU ∧ T, (4.37)

where the first passage times τU and τBuo(1) are defined by equations (4.22) and

(4.23), respectively. Consequently, we have three possible final payouts for our

self-financed portfolio. First, if τV = τU , both put options are knocked-out and the

terminal payoff of the portfolio equals

VτU = ω × 0− 0 = 0. (4.38)

Second, if τV = T , then

VT = ω × (K − ST )+ − (K − ST )+ ≥ 0, (4.39)

since ω > 1, and an arbitrage opportunity exists for ST < K. Third, if τV = τBuo(1),

then both options are exercised,

Vτ
Buo(1)

= ω ×
(
K − Sτ

Buo(1)

)
−
(
K − Sτ

Buo(1)

)
> 0, (4.40)

because ω > 1, and again a riskless profit is available.

In summary, if Bko(1)
t > B

uo(1)
t , arbitrage is possible, and since Bko(1)

t < B
uo(1)
t can-

not happen also—as it would mean that the double knock-out put would be more

expensive than the up-and-out put—then we must have that Bko(1)
t = B

uo(1)
t =

L ∨Buo(1)
t , for all t ∈ T where Buo(1)

t > L.

Case B If L ∈
[
B
uo(1)
t0 , B

uo(1)
T

]
, and since B

uo(1)
t is a nondecreasing function of t, then

there exists a unique t∗ :=
{
t ∈ T : B

uo(1)
t = L

}
.

For any time t ≥ t∗, we face the same situation as in Case A (i.e. Buo(1)
t > L), and
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hence it follows that we must have Bko(1)
t = B

uo(1)
t = L ∨Buo(1)

t .

For t < t∗, and given that Bko(1)
t∗ = L, we can only have Bko(1)

t > L, if the optimal

exercise boundary Bko(1)
t is decreasing in t. However, and using the same argu-

ment as Gao et al. (2000, Appendix B.3), i.e. differentiating (with respect to time)

the value matching condition (4.34), then it follows that

∂B
ko(1)
t

∂t
≥ 0, (4.41)

as long as ∂AKODBt
∂t

≤ 0. Therefore, Bko(1)
t > L cannot happen, and since we

must have Bko(1)
t ≥ L for all t ∈ T , then Bko(1)

t = L = L ∨Buo(1)
t for t < t∗.

Case C Finally, we just have to consider the scenario where B
uo(1)
t < L, for all t ∈ T ,

and hence Buo(1)
T < L. Since we must have Bko(1)

t ≥ B
uo(1)
t but also Bko(1)

t ≥ L, for

all t ∈ T , then it easy to see that Bko(1)
T = L. For t < T , and given that Bko(1)

T = L,

we can only have Bko(1)
t > L if the optimal exercise boundary Bko(1)

t is decreasing

in t. However, equation (4.41) rules out such possibility, and, consequently, we

must have Bko(1)
t = L = L ∨Buo(1)

t for all t ∈ T .

Finally, Proposition 4.6 writes the call early exercise boundary Bko(−1) in term of the

simpler one associated to an American-style down-and-out call option.

Proposition 4.6 Under Assumptions 4.1 and 4.3, and if

∂B
do(−1)
t

∂t
≤ 0, (4.42)

then the early exercise boundary Bko(−1) of an American-style double knock-out call

option on the asset price S, with strike K, lower barrier level L, upper barrier level U ,
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and maturity at time T , is equal to

B
ko(−1)
t = U ∧Bdo(−1)

t , (4.43)

for all t ∈ T , where Bdo(−1)
t denotes the exercise boundary of the American-style down-

and-out call option defined in equation (4.5), and L < K < U .

Proof. The proof of Proposition 4.6 is similar to the one presented for Proposition 4.5,

and is available upon request.

Equipped with Propositions 4.5 and 4.6, we can now price American-style double bar-

rier knock-out options as long as we have a viable valuation method for American-

style standard options as well as the knowledge of the optimal exercise boundaries for

American-style up-and-out puts or down-and-out calls.

4.5 Numerical results

To test numerically Propositions 4.3, 4.4, 4.5 and 4.6, we need a pricing method that

can cope with the valuation of the different types of contracts involved in such novel

results. The SHP approach will provide a viable methodology under single-factor pric-

ing models, namely under the GBM assumption, under the CEV process, and even

under the jump to default extended CEV model of Carr and Linetsky (2006)—as re-

cently shown by Ruas et al. (2012a). Nevertheless, and to allow the comparison with

the previous literature on the pricing of American-style barrier options, our numerical

analysis will be restricted to the GBM and CEV frameworks.
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4.5.1 Further model assumptions and valuation procedures

Under the risk-neutral probability measure Q, the CEV model assumes that the asset

price (St, t ≥ t0) is described by the following stochastic differential equation:

dSt
St

= (r − q) dt+ σ (t, S) dWQ
t , (4.44)

with

σ (t, S) := δS
β
2
−1

t , (4.45)

for δ, β ∈ R, and where r ≥ 0 denotes the instantaneous riskless interest rate, which is

assumed to be constant, q ≥ 0 represents the dividend yield for the underlying asset

price, and WQ
t ∈ R is a standard Brownian motion under Q, initialized at zero and

generating the augmented, right continuous and complete filtration F = {Ft : t ≥ t0}. In

the particular case β = 2, equations (4.44) and (4.45) yield the GBM process.

Under the above assumptions, standard American-style options are valued through the

Chung and Shih (2009) procedure—enhanced by the Ruas et al. (2012a) extension to

other values of the elasticity parameter (beta) besides 4
3
—and using closed-form so-

lutions for the hedge ratios of the corresponding European-style options. American-

style down-and-out puts and up-and-out calls are priced using the SHP extension

(for American-style capped options) offered in Ruas et al. (2012a). The valuation of

the rebates (4.11) and (4.28) is made through closed-form solutions for the particular

case β = 2, and using the Derman et al. (1995) procedure for any other beta value.

American-style down-and-in puts and up-and-in calls are valued using the algorithm

offered by Chung et al. (2013), but with greeks (deltas and thetas) generalized for

β 6= 4
3
.4.5

4.5The analytical solutions, for any value of beta, for the thetas of the binary options required by the Chung et al.
(2013) scheme are available upon request.
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To value American-style double knock-out options using Propositions 4.5 and 4.6,

we propose a simple extension to the Chung et al. (2009) procedure for the pricing

of American-style up-and-out puts and down-and-out calls. The procedure is imple-

mented in two steps and illustrated below for American-style double knock-out put op-

tions (the call option case follows similarly). First, we must obtain the early exercise

boundary of the American-style up-and-out put (or down-and-out call); then, the valu-

ation of American-style double knock-out options follows easily from Propositions 4.5

and 4.6, as described in the following lines.

We divide the time to maturity of the option contract into n evenly-spaced time points

such that δt := (T − t0) /n. At each time ti := t0 + iδt (for i = n− 1, . . . , 1, 0), the knock-

out boundary conditions on the barriers as well as the value-matching and smooth-

pasting conditions on the early exercise boundary imply the solution of following three

recurrence conditions:

K −Bko(1)
n−i = EStn−i

(
B
ko(1)
n−i , K, T ; 1

)
(4.46)

+
i∑

j=1

wn−j × EStn−i
(
B
ko(1)
n−i , B

ko(1)
n−j , tn−j+1; 1

)
+

i∑
j=1

gn−j × EStn−i
(
B
ko(1)
n−i , U, tn−j+1;−1

)
,

0 = EStn−i (U,K, T ; 1) (4.47)

+
i∑

j=1

wn−j × EStn−i
(
U,B

ko(1)
n−j , tn−j+1; 1

)
+

i∑
j=1

gn−j × EStn−i (U,U, tn−j+1;−1) ,
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and

−1{
B
ko(1)
n−i =B

uo(1)
n−i

} =

[
∆
EStn−i

(
B
ko(1)
n−i ,K,T ;1

) +
i∑

j=1

wn−j ×∆
EStn−i

(
B
ko(1)
n−i ,B

ko(1)
n−j ,tn−j+1;1

)

+
i∑

j=1

gn−j ×∆
EStn−i

(
B
ko(1)
n−i ,U,tn−j+1;−1

)
]
1{

B
ko(1)
n−i =B

uo(1)
n−i

}, (4.48)

where ESt (St, K, T ;φ) represents the time-t price of an European-style put (if φ = 1)

or call (if φ = −1) on the asset price S, with strike K, and maturity at time T (≥ t).4.6

Finally, the time-t0 SHP price of the American-style double knock-out put option, under

the CEV model, is given by:

AKODBshp
t0

(
St0 , K, L, U, T,B

ko(1); 1
)

= ESt0 (St0 , K, T ; 1) (4.49)

+
n∑
j=1

wn−j × ESt0
(
St0 , B

ko(1)
n−j , tn−j+1; 1

)
+

n∑
j=1

gn−j × ESt0 (St0 , U, tn−j+1;−1) .

In the remaining of the article, all computations involving the SHP method are based

on 100 time steps (i.e. n = 100), and all numerical results are obtained through Matlab

(R2009a) running on an Intel Core 2 Duo E8500 3.16GHz processor.

4.5.2 Results under the GBM assumption

Under the GBM assumption, we borrow the model’ parameters from Gao et al. (2000)

to construct Tables 4.1 and 4.2. Namely, we let St0 ∈ {42.5, 45, 47.5} (time-t0 asset

price), K = 45 (strike price), r = 4.88% (interest rate), σ = 20% (constant volatility), and

(T − t0) ∈ {0.25, 0.5, 0.75, 1} (time to expiration in years).

4.6Note that it is only necessary to compute the recurrence relation (4.48) while Bko(1)n−i = B
uo(1)
n−i ; i.e. equation

(4.48) is automatically satisfied if Bko(1)n−i = L.
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Table 4.1 tests the in-out parity offered by Propositions 4.3 and 4.4, and is divided into

three Panels (A, B and C) that correspond to the three cases shown in the proof of

Proposition 4.3. Under Proposition 4.3, we set q = 0% (dividend yield) and L = 35

(lower barrier level) for Panel A; q = 0% and L = 40 for Panel B; q = 7% and L = 37.5

for Panel C. Under Proposition 4.4, we take q = 7% and U = 60 (upper barrier level) for

Panel A; q = 7% and U = 50 for Panel B; q = 3% and U = 52.5 for Panel C. Columns

4 through 6 price a down-and-out, a standard, and a down-and-in American-style put,

respectively, using the SHP approach. Column 7 shows the value of the “down rebate”

(4.11), while column 8 checks Proposition 4.3 by presenting the difference between

both sides of equation (4.13). Similarly, columns 10 through 12 price an up-and-out, a

standard, and an up-and-in American-style call, respectively, using the SHP approach.

Column 13 shows the value of the “up rebate” (4.28), and column 14 checks Proposition

4.4 by presenting the difference between both sides of equation (4.27). As expected,

columns 8 and 14 show that both in-out parities are strictly satisfied by all contracts.

Table 4.2 implements Propositions 4.5 and 4.6, and prices American-style double

knock-out options. Under Proposition 4.5, we set U = 50 for all contracts, while the

lower barrier levels and the dividend yields are the same as those considered in Table

4.1 for Proposition 4.3. Under Proposition 4.6, we let L = 40 for all contracts, while the

upper barrier levels and the dividend yields are the same as those considered in Table

4.1 for Proposition 4.4. Column 5 contains the prices of American-style up-and-out

puts, whose early exercise boundary is then used in Proposition 4.5 to implement the

SHP approach. Columns 6 and 7 value American-style double knock-out puts using

the Ritchken (1995) method with 2 million time steps, and the SHP approach pro-

posed, respectively.4.7 Column 8 checks Proposition 4.5 by presenting the difference

between the Ritchken (1995) and the SHP prices. Similarly, column 8 shows the values
4.7As pointed by Gao et al. (2000, Page 1805) the problem with the Ritchken (1995) method is that as the asset

price approaches the barrier, the number of time steps required to value the knock-out option goes to infinity. This
feature renders this numerical method difficult to apply. For the case under analysis (double barriers), the problem
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for American-style down-and-out calls, whose early exercise boundary is then used in

Proposition 4.6. Columns 12 and 13 value American-style double knock-out calls us-

ing the Ritchken (1995) method (with 2 million time steps), and the SHP approach

proposed, respectively. Finally, column 14 checks Proposition 4.6 by presenting the

difference between the Ritchken (1995) and the SHP prices.

The results displayed in Tables 4.1 and 4.2 are remarkable. Even though the Ritchken

(1995) and SHP schemes used to compute American-style option prices are subject to

convergence and discretization errors, respectively, columns 8 and 14 of Tables 4.1 and

4.2 show that Propositions 4.3, 4.4, 4.5, and 4.6 hold for all contracts: The maximum

difference obtained is equal to only 0.3 cents of a dollar. Concerning the CPU time

(shown, in seconds, on the last line of Tables 4.1 and 4.2), note that Propositions 4.5

and 4.6 greatly enhance the efficiency associated to the valuation of American style

double knock-out options: the SHP procedure proposed is about 508 times faster than

the trinomial tree method of Ritchken (1995).

4.5.3 Results under the CEV assumption

Under the CEV assumption, we let St0 = 100, K ∈ {95, 100, 105}, r = 6%, β ∈ {1, 3},

σ (t0, St0) = 0.2, and (T − t0) ∈ {0.5, 1} years.

Table 4.3 tests the in-out parity given by Propositions 4.3 and 4.4, and is divided into

three Panels (A, B and C) that corresponds to the three cases contained in the proof of

Proposition 4.3. Under Proposition 4.3, we let q = 3% and L = 70 for Panel A; q = 3%

and L = 87.5 for Panel B; q = 9% and L = 80 for Panel C. Under Proposition 4.4, we set

q = 9% and U = 140 for Panel A; q = 9% and U = 115 for Panel B; q = 3% and U = 120

is more serious since we have to deal with two barriers. To overcome the non-smooth convergence of the option
price under this method, we use a very large number of time steps: 2 million.
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for Panel C. Columns 5 through 7 price a down-and-out, a standard, and a down-and-

in American-style put, respectively, using the SHP approach. Column 8 shows the

value of the “down rebate” (4.11), while column 9 checks Proposition 4.3 by presenting

the difference between both sides of equation (4.13). Similarly, columns 11 through

13 price an up-and-out, a standard, and an up-and-in American-style call, respectively,

column 14 shows the value of the “up rebate” (4.28), and column 15 checks Proposition

4.4 by presenting the difference between both sides of equation (4.27). Again, columns

9 and 15 show that Propositions 4.3 and 4.4 are strictly satisfied by all contracts.

Table 4.4 implements Propositions 4.5 and 4.6, and prices American-style double

knock-out options using our two-step procedure. Under Proposition 4.5, we let U = 110

for all contracts, while the lower barrier levels and the dividend yields are the same as

those considered in Table 4.3 for Proposition 4.3. Under Proposition 4.6, we take

L = 90 for all contracts, while the upper barrier levels and the dividend yields are the

same as those considered in Table 4.3 for Proposition 4.4.

Column 6 of Table 4.4 contains the values of the American-style up-and-out puts whose

early exercise boundary is then used in column 7 to price American-style double knock-

out puts through equations (4.46) to (4.49). Similarly, columns 10 and 11 price down-

and-out as well as double knock-out American-style calls, respectively, through the

same SHP scheme. Note that, in Panel A of Table 4.4, the values of the double knock-

out options are identical to the prices of the nested single barrier contracts because

the early exercise boundary of the nested up-and out put (down-and-out call) is always

above (below) the down (up) barrier level.
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4.6 Conclusions

This paper provides three main contributions to the existent literature on option pricing.

First, we derive new in-out parity relations for American-style puts with a down barrier

and American-style calls with an up barrier. Second, and more importantly, we propose

a novel representation for the early exercise boundary of American-style double knock-

out options in terms of its barrier levels and as a function of the simpler optimal stopping

boundary of a single barrier American-style option. Hence, we are able to reduce the

valuation of American-style double barrier options to the same complexity level as the

one faced to price the nested single barrier contracts. Finally, we extend the SHP

approach, for the first time to the authors knowledge, to the valuation of American-style

double barrier knock-out options.

All the previous results are based on only two mild assumptions: The absence of ar-

bitrage, and the existence and uniqueness of an early exercise boundary for each

American-style option contract that is also a continuous and monotone function of cal-

endar time. Therefore, our results can be applied to the valuation of American-style sin-

gle and double barrier options under several single factor diffusion and jump-diffusion

option pricing models. We run an extensive numerical study—covering a large range of

single and double barrier option contracts that can be used as a benchmark for future

empirical analysis—and successfully validate all our results under both the GBM and

CEV processes.

Appendix C

This appendix proves Proposition 4.1.
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Using equation (4.3), equation (4.8) can be rewritten, for φ = 1, as

ADIt0
(
St0 , K, L, T,B

di(1); 1
)

(C-1)

= EQ

{
exp

(
−
∫ τL

t0

rudu

)
EQ

[
exp

(
−
∫ T∧θ

Bs(1)

τL

rudu

)(
K − ST∧θ

Bs(1)

)+
∣∣∣∣FτL]

1{ τL≤T}
∣∣Ft0} ,

where

θBs(1) := inf
{
t ≥ τL : St ≤ B

s(1)

t

}
. (C-2)

Clearly, equations (4.4) and (C-2) imply that

θBs(1) = τBs(1) ∨ τL, (C-3)

as long as Bs(1)

t is a nondecreasing function of time: If τL < τBs(1), then θBs(1) = τBs(1) =

τBs(1) ∨ τL; otherwise, Bs(1)
τ
Bs(1) > L, and θBs(1) = τL = τBs(1) ∨ τL only if L ≤ B

s(1)
τL , i.e. if

B
s(1)
τL ≥ B

s(1)
τ
Bs(1) .

Combining equations (C-1) and (C-3), then

ADIt0
(
St0 , K, L, T,B

di(1); 1
)

(C-4)

= EQ

{
exp

(
−
∫ τL

t0

rudu

)
1{ τL≤T}

EQ

[
exp

(
−
∫ T∧τ

Bs(1)

τL

rudu

)(
K − ST∧τ

Bs(1)

)+

1{ τL≤τBs(1)}

∣∣∣∣FτL]∣∣∣∣Ft0}
+EQ

{
exp

(
−
∫ τL

t0

rudu

)
1{ τL≤T}

EQ

[
exp

(
−
∫ T∧τL

τL

rudu

)
(K − ST∧τL)+

1{ τL>τBs(1)}

∣∣∣∣FτL]∣∣∣∣Ft0} .
Using the tower law, and because T ∧ τL = τL for the second term on the right-hand

side of equation (C-4), then equation (4.10) follows immediately.�
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Appendix D

This appendix proves Proposition 4.2.

Next lines follow closely the proof of Gao et al. (2000, Theorem 6), but without imposing

any specific asset price process. We consider three mutually exclusive cases.

First, if L < B
s(1)
t , for ∀t ∈ T , then Bdo(1)

t = B
s(1)
t = L∨Bs(1)

t because the down-and-out

put will be exercised before it is knocked-out, and is, therefore, equivalent to a standard

American-style put.

Second, if L > B
s(1)
t , for ∀t ∈ T , then B

do(1)
t = L = L ∨ Bs(1)

t since the put option hits

the barrier in-the-money (as L < K) and, therefore, it is preferable to exercise than to

let the option be knocked out.

Third, if L ∈
[
B
s(1)
t0 , B

s(1)
T

]
, and since Bs(1)

t is a nondecreasing function of t, then there

exists a unique t∗ :=
{
t ∈ T : B

s(1)
t = L

}
. In the time-interval [t∗, T ], Bs(1)

t > L and

B
do(1)
t = B

s(1)
t = L ∨ Bs(1)

t because the down-and-out put will be exercised before it is

knocked-out. In the time-interval [t0, t
∗], L > B

s(1)
t and Bdo(1)

t = L = L ∨ Bs(1)
t because

it is preferable to exercise the in-the-money down-and-out put than to let it be knocked

out.�
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Table 4.1: In-out parity for American-style options under the GBM model (K = 45; σ = 0.2;
r = 4.88%)

American-style put American-style call
St0 T − t0 L ADO AS ADI RD P4.3 U AUO AS AUI RU P4.4

Panel A

42.5 0.25 35 3.001 3.001 0.449 0.449 0.000 60 0.705 0.705 0.006 0.006 0.000
42.5 0.5 35 3.413 3.413 1.449 1.449 0.000 60 1.249 1.249 0.151 0.151 0.000
42.5 0.75 35 3.716 3.716 2.225 2.225 0.000 60 1.659 1.659 0.470 0.470 0.000
42.5 1 35 3.957 3.957 2.798 2.798 0.000 60 1.992 1.992 0.848 0.848 0.000
45 0.25 35 1.571 1.571 0.099 0.099 0.000 60 1.675 1.676 0.044 0.044 0.000
45 0.5 35 2.104 2.104 0.617 0.617 0.000 60 2.292 2.292 0.456 0.456 0.000
45 0.75 35 2.472 2.472 1.190 1.190 0.000 60 2.733 2.733 1.040 1.040 0.000
45 1 35 2.757 2.757 1.683 1.683 0.000 60 3.081 3.082 1.603 1.603 0.000

47.5 0.25 35 0.715 0.715 0.018 0.018 0.000 60 3.197 3.197 0.227 0.227 0.000
47.5 0.5 35 1.220 1.220 0.242 0.242 0.000 60 3.734 3.734 1.135 1.134 0.000
47.5 0.75 35 1.586 1.586 0.606 0.606 0.000 60 4.136 4.136 2.025 2.025 0.000
47.5 1 35 1.875 1.875 0.979 0.978 0.000 60 4.460 4.460 2.750 2.750 0.000

Panel B

42.5 0.25 40 2.996 3.001 2.596 2.591 0.000 50 0.703 0.705 0.437 0.435 0.000
42.5 0.5 40 3.339 3.413 3.246 3.171 0.000 50 1.215 1.249 1.072 1.038 0.000
42.5 0.75 40 3.535 3.716 3.621 3.440 0.000 50 1.552 1.659 1.541 1.434 0.000
42.5 1 40 3.664 3.957 3.894 3.601 0.000 50 1.791 1.992 1.907 1.706 0.000
45 0.25 40 1.570 1.571 1.088 1.088 0.000 50 1.665 1.676 1.308 1.298 0.000
45 0.5 40 2.080 2.104 1.859 1.835 0.000 50 2.191 2.292 2.118 2.016 0.000
45 0.75 40 2.391 2.472 2.322 2.240 0.000 50 2.493 2.733 2.629 2.389 0.000
45 1 40 2.603 2.757 2.654 2.499 0.000 50 2.693 3.082 3.011 2.622 0.000

47.5 0.25 40 0.715 0.715 0.375 0.375 0.000 50 3.144 3.197 2.920 2.867 0.000
47.5 0.5 40 1.213 1.220 0.981 0.974 0.000 50 3.480 3.734 3.624 3.371 0.000
47.5 0.75 40 1.551 1.586 1.421 1.386 0.000 50 3.661 4.136 4.075 3.599 0.000
47.5 1 40 1.796 1.875 1.755 1.676 0.000 50 3.775 4.460 4.420 3.735 0.000

Panel C

42.5 0.25 37.5 3.378 3.389 1.790 1.779 0.000 52.5 0.822 0.824 0.257 0.255 0.000
42.5 0.5 37.5 4.028 4.102 3.230 3.155 0.000 52.5 1.507 1.530 1.014 0.991 0.000
42.5 0.75 37.5 4.477 4.670 4.115 3.922 0.000 52.5 2.021 2.107 1.708 1.623 0.000
42.5 1 37.5 4.804 5.152 4.764 4.416 0.000 52.5 2.419 2.604 2.295 2.110 0.000
45 0.25 37.5 1.885 1.888 0.613 0.610 0.000 52.5 1.876 1.884 0.920 0.912 0.000
45 0.5 37.5 2.673 2.701 1.777 1.748 0.000 52.5 2.632 2.700 2.099 2.031 0.000
45 0.75 37.5 3.232 3.325 2.667 2.573 0.000 52.5 3.141 3.333 2.931 2.739 0.000
45 1 37.5 3.654 3.848 3.358 3.164 0.000 52.5 3.510 3.868 3.579 3.221 0.000

47.5 0.25 37.5 0.917 0.918 0.171 0.171 0.000 52.5 3.447 3.478 2.385 2.355 0.000
47.5 0.5 37.5 1.663 1.673 0.894 0.884 0.000 52.5 4.078 4.248 3.716 3.547 0.000
47.5 0.75 37.5 2.238 2.282 1.640 1.595 0.000 52.5 4.481 4.866 4.543 4.158 0.000
47.5 1 37.5 2.696 2.802 2.285 2.180 0.000 52.5 4.762 5.395 5.173 4.541 0.000

CPU 5.81 11.11 12.31 0.00 5.36 11.30 12.40 0.00

Table 4.1 tests, under the GBM model, the in-out parity given in Propositions 4.3 and 4.4 for American-style options. Columns 1, 2 and 3 show
the asset price, the time to expiration, and lower barrier level, respectively. Under Proposition 4.3, the dividend yield is q = 0% for Panels A
and B, and q = 7% for Panel C. Columns 4 through 7 implement equations (4.5), (4.3), (4.8) and (4.11), respectively, using the SHP approach.
Column 8 checks Proposition 4.3 by presenting the difference between both sides of equation (4.13). Column 9 shows the upper barrier level
used in Proposition 4.4. Under Proposition 4.4, the dividend yield is q = 7% for Panels A and B, and q = 3% for Panel C. Columns 10
through 13 implement equations (4.21), (4.3), (4.24) and (4.28), respectively, using the SHP approach. Column 14 checks Proposition 4.4 by
presenting the difference between both sides of equation (4.27). Finally, the last line gives the CPU time in seconds taken to value the whole
set of contracts considered.
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Table 4.2: American-style double knock-out options under the GBM model (K = 45; σ = 0.2;
r = 4.88%)

American-style put American-style call
St0 T − t0 L U AUO R95 P4.5 diff L U ADO R95 P4.6 diff

Panel A

42.5 0.25 35 50 2.996 2.996 2.996 0.000 40 60 0.645 0.645 0.645 0.000
42.5 0.5 35 50 3.348 3.348 3.348 0.000 40 60 0.976 0.976 0.976 0.001
42.5 0.75 35 50 3.538 3.538 3.538 0.000 40 60 1.143 1.141 1.143 0.001
42.5 1 35 50 3.645 3.645 3.645 0.000 40 60 1.239 1.237 1.239 0.002
45 0.25 35 50 1.544 1.545 1.544 0.000 40 60 1.662 1.662 1.662 0.000
45 0.5 35 50 1.938 1.938 1.937 0.000 40 60 2.175 2.175 2.175 0.000
45 0.75 35 50 2.120 2.120 2.120 0.000 40 60 2.453 2.452 2.453 0.001
45 1 35 50 2.215 2.217 2.215 -0.001 40 60 2.620 2.619 2.620 0.001

47.5 0.25 35 50 0.616 0.616 0.616 0.000 40 60 3.194 3.194 3.194 0.000
47.5 0.5 35 50 0.862 0.863 0.862 0.000 40 60 3.687 3.687 3.687 0.000
47.5 0.75 35 50 0.969 0.969 0.969 0.000 40 60 3.991 3.991 3.991 0.000
47.5 1 35 50 1.022 1.022 1.022 0.000 40 60 4.186 4.186 4.186 0.001

Panel B

42.5 0.25 40 50 2.996 2.991 2.992 0.000 40 50 0.645 0.643 0.643 0.000
42.5 0.5 40 50 3.348 3.278 3.278 0.001 40 50 0.976 0.944 0.945 0.001
42.5 0.75 40 50 3.538 3.383 3.385 0.002 40 50 1.143 1.054 1.055 0.002
42.5 1 40 50 3.645 3.421 3.424 0.003 40 50 1.239 1.093 1.096 0.002
45 0.25 40 50 1.544 1.544 1.544 0.000 40 50 1.662 1.651 1.652 0.000
45 0.5 40 50 1.938 1.914 1.915 0.000 40 50 2.175 2.075 2.075 0.001
45 0.75 40 50 2.120 2.049 2.050 0.001 40 50 2.453 2.229 2.230 0.002
45 1 40 50 2.215 2.099 2.100 0.000 40 50 2.620 2.286 2.287 0.001

47.5 0.25 40 50 0.616 0.616 0.616 0.000 40 50 3.194 3.141 3.141 0.000
47.5 0.5 40 50 0.862 0.856 0.856 0.000 40 50 3.687 3.438 3.439 0.001
47.5 0.75 40 50 0.969 0.942 0.943 0.000 40 50 3.991 3.546 3.548 0.002
47.5 1 40 50 1.022 0.973 0.974 0.001 40 50 4.186 3.585 3.587 0.003

Panel C

42.5 0.25 37.5 50 3.384 3.373 3.373 0.000 40 52.5 0.755 0.754 0.754 0.000
42.5 0.5 37.5 50 4.034 3.959 3.959 0.000 40 52.5 1.206 1.184 1.184 0.001
42.5 0.75 37.5 50 4.473 4.282 4.283 0.001 40 52.5 1.470 1.395 1.397 0.002
42.5 1 37.5 50 4.790 4.456 4.458 0.002 40 52.5 1.649 1.502 1.504 0.002
45 0.25 37.5 50 1.859 1.856 1.856 0.000 40 52.5 1.869 1.862 1.862 0.000
45 0.5 37.5 50 2.505 2.477 2.477 0.000 40 52.5 2.570 2.502 2.503 0.000
45 0.75 37.5 50 2.891 2.800 2.801 0.000 40 52.5 3.011 2.824 2.825 0.001
45 1 37.5 50 3.152 2.976 2.975 -0.001 40 52.5 3.321 2.986 2.988 0.002

47.5 0.25 37.5 50 0.795 0.795 0.795 0.000 40 52.5 3.475 3.445 3.445 0.000
47.5 0.5 37.5 50 1.204 1.194 1.194 0.000 40 52.5 4.200 4.030 4.030 0.000
47.5 0.75 37.5 50 1.431 1.395 1.395 0.000 40 52.5 4.709 4.330 4.331 0.001
47.5 1 37.5 50 1.580 1.502 1.502 0.000 40 52.5 5.089 4.484 4.484 0.001

CPU 26.73 7567.17 14.89 26.28 7751.90 13.92

Table 4.2 tests Propositions 4.5 and 4.6 under the GBM model. Columns 1 through 4 show the asset price, the time to expiration, the lower
barrier level, and the upper barrier level, respectively. Under Proposition 4.5, the dividend yield is q = 0% for Panels A and B, and q = 7%
for Panel C. Columns 5 through 7 implement equation (4.21), the Ritchken (1995) method with 2 million time steps, and equation (4.49),
respectively. Column 8 checks Proposition 4.5 by presenting the difference between columns 6 and 7. Columns 9 and 10 show the lower and
upper barrier levels used in Proposition 4.6. Under Proposition 4.6, the dividend yield is q = 7% for Panels A and B, and q = 3% for Panel
C. Columns 11 through 13 implement equation (4.5), the Ritchken (1995) method with 2 million time steps, and equation (4.49), respectively.
Column 14 checks Proposition 4.6 by presenting the difference between columns 12 and 13. Finally, the last line gives the CPU time in seconds
taken to value the whole set of contracts considered.
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Table 4.4: American-style double knock-out options under the CEV model (St0 = 100; r = 6%;
σ (t0, St0) = 0.2)

American-style put American-style call
K β T − t0 L U AUO P4.5 L U ADO P4.6

Panel A

95 3 0.5 70 110 2.582 2.582 90 140 6.675 6.675
100 3 0.5 70 110 4.402 4.402 90 140 4.563 4.563
105 3 0.5 70 110 6.673 6.673 90 140 2.973 2.973
95 3 1 70 110 3.463 3.463 90 140 6.922 6.922

100 3 1 70 110 5.016 5.016 90 140 5.316 5.316
105 3 1 70 110 6.849 6.849 90 140 4.030 4.030
95 1 0.5 70 110 2.724 2.724 90 140 6.677 6.677

100 1 0.5 70 110 4.467 4.467 90 140 4.504 4.504
105 1 0.5 70 110 6.680 6.680 90 140 2.830 2.830
95 1 1 70 110 3.674 3.674 90 140 6.893 6.893

100 1 1 70 110 5.135 5.135 90 140 5.196 5.196
105 1 1 70 110 6.882 6.882 90 140 3.811 3.811

Panel B

95 3 0.5 87.5 110 2.582 2.415 90 115 6.675 6.674
100 3 0.5 87.5 110 4.402 4.378 90 115 4.563 4.535
105 3 0.5 87.5 110 6.673 6.673 90 115 2.973 2.786
95 3 1 87.5 110 3.463 2.866 90 115 6.922 6.922

100 3 1 87.5 110 5.016 4.832 90 115 5.316 5.106
105 3 1 87.5 110 6.849 6.849 90 115 4.030 3.362
95 1 0.5 87.5 110 2.724 2.472 90 115 6.677 6.677

100 1 0.5 87.5 110 4.467 4.419 90 115 4.504 4.493
105 1 0.5 87.5 110 6.680 6.680 90 115 2.830 2.717
95 1 1 87.5 110 3.674 2.892 90 115 6.893 6.893

100 1 1 87.5 110 5.135 4.863 90 115 5.196 5.067
105 1 1 87.5 110 6.882 6.878 90 115 3.811 3.324

Panel C

95 3 0.5 80 110 3.420 3.385 90 120 8.204 8.107
100 3 0.5 80 110 5.536 5.511 90 120 5.867 5.737
105 3 0.5 80 110 8.036 8.018 90 120 3.994 3.796
95 3 1 80 110 5.003 4.727 90 120 9.377 8.912

100 3 1 80 110 6.879 6.692 90 120 7.591 6.916
105 3 1 80 110 8.914 8.791 90 120 6.013 5.042
95 1 0.5 80 110 3.579 3.521 90 120 8.184 8.106

100 1 0.5 80 110 5.617 5.579 90 120 5.790 5.692
105 1 0.5 80 110 8.064 8.039 90 120 3.829 3.691
95 1 1 80 110 5.246 4.840 90 120 9.309 8.908

100 1 1 80 110 7.026 6.763 90 120 7.434 6.883
105 1 1 80 110 8.981 8.816 90 120 5.746 4.983

CPU 2,798.87 1,607.51 2,898.60 1,727.81

Table 4.4 tests Propositions 4.5 and 4.6 under the CEV model. Columns 1 through 5 show the strike price, the beta value, the time to expiration,
the lower barrier level, and the upper barrier level, respectively. Under Proposition 4.5, the dividend yield is q = 3% for Panels A and B, and
q = 9% for Panel C. Columns 6 and 7 implement equations (4.21) and (4.49), respectively. Columns 8 and 9 show the lower and upper barrier
levels used in Proposition 4.6. Under Proposition 4.6, the dividend yield is q = 9% for Panels A and B, and q = 3% for Panel C. Columns 10
and 11 implement equations (4.5) and (4.49), respectively. Finally, the last line gives the CPU time in seconds taken to value the whole set of
contracts considered.
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5. Conclusion

This thesis provides important results concerning the valuation of standard and barrier

American-style options in three separate articles.

The most important theoretical contribution of the first paper is the generalization of the

SHP procedure for valuing American-style standard and capped options under the JD-

CEV model of Carr and Linetsky (2006). To accomplish this purpose, novel analytical

representations were obtained for the hedge ratios of the corresponding European-

style standard options, which can be used to jointly price equity and credit derivatives

under this general and flexible modeling framework. The SHP approach is also imple-

mented to price American-style standard and capped options under the unrestricted

CEV model, thus accommodating both direct and indirect leverage effects typically ob-

served by market practitioners. Furthermore, we extend the optimal stopping approach

of Nunes (2009) for the pricing of American-style capped options, assuming that the

recovery value associated to the put can be paid at the default time or at the maturity

date of the option. Overall, the numerical experiments run have shown that the SHP

pricing methodology is as accurate as but (generally) faster than the optimal stopping

approach, thus offering a better speed-accuracy trade-off for pricing American-style

standard and capped options under both the (single-factor) CEV and JDCEV models.

In the second paper, using the change of numéraire technique proposed by Geman et

al. (1995) and used by Schroder (1999), we are able to derive the put-call symmetry
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for American-style single and double barrier options without imposing a previous as-

sumption on the stochastic process followed by the underlying asset price. Our results

are validated by applying the proposed symmetries to the CEV model.

Finally, the third paper provides three main contributions to the existent literature on

option pricing. First, we derive new in-out parity relations for American-style puts with

a down barrier and American-style calls with an up barrier. Second, and more impor-

tantly, we propose a novel representation for the early exercise boundary of American-

style double knock-out options in terms of its barrier levels and as a function of the

simpler optimal stopping boundary of a single barrier American-style option. Hence,

we are able to reduce the valuation of American-style double barrier options to the

same complexity level as the one faced to price the nested single barrier contracts.

Finally, we extend the SHP approach, for the first time to the authors knowledge, to the

valuation of American-style double barrier knock-out options. We run an extensive nu-

merical study—covering a large range of single and double barrier option contracts that

can be used as a benchmark for future empirical analysis—and successfully validate

all our results under both the GBM and CEV processes.
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Schönbucher, Philipp J., 2003, Credit Derivatives Pricing Models (Wiley, New York).

Schroder, M., 1989, Computing the Constant Elasticity of Variance Option Pricing For-

mula, Journal of Finance 44, 211–219.

Schroder, M., 1999, Changes of Numeraire for Pricing Futures, Forwards, and Options,

Review of Financial Studies 12, 1143–1163.

Slater, L., 1960, Confluent Hypergeometric Functions (Cambridge University Press).

Tian, Y., 1993, A modified lattice approach to option pricing, Journal of Futures Markets

13, 563–577.

126



Zvan, R., K. Vetzal, and P. Forsyth, 2000, PDE Methods for Pricing Barrier Options,

Journal of Economic Dynamics and Control 24, 1563–1590.

127


