

Escola de Ciências Sociais e Humanas Departamento de Psicologia Social e das Organizações

Tédio na Adolescência: Estudo de adaptação e validação da "*Boredom Proneness Scale*" junto de uma amostra de adolescentes portugueses

Ana Isabel Dias Martins

Dissertação submetida como requisito parcial para obtenção do grau de Mestre em Psicologia Comunitária e Proteção de Menores

Orientador(a):

Professora Doutora Margarida Vaz Garrido, Professora Auxiliar, ISCTE- Instituto Universitário de Lisboa

Escola de Ciências Sociais e Humanas Departamento de Psicologia Social e das Organizações

Tédio na Adolescência: Estudo de adaptação e validação da "*Boredom Proneness Scale*" junto de uma amostra de adolescentes portugueses

Ana Isabel Dias Martins

Dissertação submetida como requisito parcial para obtenção do grau de Mestre em Psicologia Comunitária e Proteção de Menores

Orientador(a):

Professora Doutora Margarida Vaz Garrido, Professora Auxiliar, ISCTE- Instituto Universitário de Lisboa

Setembro, 2012

AGRADECIMENTOS

À Professora Doutora Margarida Garrido, agradeço a disponibilidade, o incentivo e o entusiasmo transmitido ao longo do desenvolvimento deste trabalho. Foi um privilégio ser sua orientanda.

À Ângela, pelo apoio, partilha e amizade desenvolvida ao longo deste percurso.

À minha família, em particular aos meus pais e ao meu irmão, agradeço a pessoa que sou e aquilo que concretizei. O vosso apoio, motivação e compreensão foram fundamentais durante todo este percurso.

Ao Diogo, pelo amor, entendimento e incentivo constantes.

Aos meus amigos, em especial à Marisa, à Micas e à Ana, que estiveram presentes em todos os momentos.

Aos meus colegas de mestrado, pelos momentos de reflexão e partilha, convívio e boa disposição.

Finalmente, agradeço ainda a todos os que contribuíram, directa ou indirectamente para a concretização deste trabalho.

Adaptação e validação da "Boredom Proneness Scale"

RESUMO

Qualquer ser humano em algum momento da sua vida poderá experienciar tédio. Contudo, o

estudo sistemático do tédio foi durante algum tempo limitado não apenas pela ausência de

uma definição consensual do construto, mas também pela ausência de instrumentos de medida

adequados (Watt & Vodanovich, 1999). Em Portugal esta temática tem sido pouco abordada,

e não existem instrumentos de medida devidamente validados.

O presente trabalho visa a validação da Escala de Propensão para o Tédio (Boredom

Proneness Scale (BPS); Farmer & Sundberg, 1986) junto de uma amostra de adolescentes

portugueses. Para tal a BPS foi traduzida e adaptada ao contexto nacional, e aplicada a uma

amostra de 215 participantes a par de um conjunto de outras escalas que medem construtos

relacionados.

A estrutura fatorial obtida foi semelhante à encontrada em estudos anteriores. No entanto é

importante salientar que a variância explicada (32.26%) é bastante inexpressiva. A análise das

qualidades psicométricas da escala revelou bons indicadores de fidelidade, sugerindo boa

consistência interna e temporal do instrumento. As correlações observadas entre a BPS e uma

medida de tédio independente sugerem validade convergente. As correlações entre a BPS, e

outros instrumentos que medem construtos relacionados, designadamente solidão, procura de

sensações e depressão, revelaram-se significativas mas modestas sugerindo a presença de

construtos distintos. Como tal, o padrão de correlações foi tomado como indicador de

validade discriminante. Finalmente a escala mostrou-se sensível a algumas variáveis que a

literatura refere como relevantes neste contexto, designadamente o género e o desempenho

académico dos inquiridos.

Palavras Chave: Tédio, Escala de Propensão para o Tédio, Validação, Adolescentes

Domínio Científico:2840 Desenvolvimento Psicossocial e da Personalidade

3120 Traços de Personalidade e Processos

2223 Escalas e Inventários de Personalidade

iv

Adaptação e validação da "Boredom Proneness Scale"

ABSTRACT

Boredom can be experienced by any human being at some point in their life. However, the

systematic study of boredom has been substantially limited both by the absence of a

consensual construct definition and by the lack of suitable measurement instruments (Watt &

Vodanovich, 1999). In Portugal, this topic has attracted little attention and there are no

validated measurement instruments to assess it.

The present work aims to validate the Boredom Proneness Scale (BPS), (Farmer & Sundberg,

1986) with a sample of Portuguese adolescents. For this purpose, BPS was translated and

adapted to the Portuguese context, and applied to a sample of 215 participants along with a

number of other scales that measure related constructs.

The factor structure obtained was similar to that found in previous studies. However it is

important to note that the variance explained (32.26%) was quite low. The analysis of the

psychometric properties of the scale showed good reliability indicators, suggesting good

internal and temporal consistency of the instrument. The correlations observed between the

BPS and an independent measure of boredom suggests convergent validity. The correlations

between the BPS and other instruments that measure related constructs, including loneliness,

depression and sensation seeking, were significant but modest, suggesting the presence of

distinct constructs. As such, these correlational patterns were taken as indicators of

discriminant validity. Finally the scale was sensitive to some variables that the literature refers

to as relevant in this context, namely gender and academic performance of the respondents.

Key Words: Boredom, Boredom Proneness Scale, Validation, Adolescents

Scientific Domain: 2840 Psychosocial & Personality Development

3120 Personality Traits & Processes

2223 Personality Scales & Inventories

V

ÍNDICE

Introdução	1
1. Enquadramento Teórico	3
1.1. Definição do problema	3
1.2. Propensão para o Tédio	5
1.3. Causas e consequências do tédio: Associações com outros construtos	6
2. Método	11
2.1. Amostra	11
2.2. Instrumentos	12
2.3. Procedimento	14
3. Resultados e Discussão	17
3.1. Validade Facial	17
3.2. Estrutura Factorial	17
3.3. Fidelidade	19
3.4. Validade de construto	21
3.5. Propensão para o Tédio em Função das Variáveis Sociodemográficas	31
4. Conclusão	33
Referências	39
Anexos	45
Anexo I. Protocolo do Estudo sobre o Tédio na Adolescência	45
Anexo II. Guião do Grupo de Discussão	53
Anexo III. Análises Descritivas das Variáveis Sociodemográficas	55
Anexo IV. Análise Factorial da BPS	63
Anexo V. Consistência Interna	99
Anexo VI. Correlações	113
Anexo VII. Testes-T e Anovas das variáveis sociodemográficas	117

ÍNDICE DE FIGURAS

ÍNDICE DE QUADROS

Quadro 1: Correlações entre a BPS e as subescalas Estimulação Interna e Externa (teste e reteste)	 20
Quadro 2: Correlações entre a BPS, as subescalas Estimulação Interna e Externa (teste e reteste) e Tédio Estado	 22
Quadro 3: Correlações entre a Escala de Solidão e a BPS e as suas subescalas (teste e reteste)	 24
Quadro 4: Correlação entre a Escala de Procura de Sensações e a BPS (teste e reteste)	 26
Quadro 5: Correlação entre a BPS e as subescalas da SSS	 26
Quadro 6: Correlação entre a BPS (reteste) e as subescalas da SSS	 27
Quadro 7: Correlação entre a Subescala de Estimulação Interna	 27
(teste e reteste) e as subescalas da SSS	
Quadro 8: Correlação entre a Subescala de Estimulação Externa	 28
(teste e reteste) e as subescalas da SSS	
Quadro 9: Correlação entre a BDI, a BPS e as Subescalas de	 29
Estimulação Interna e Externa	
Quadro 10: Correlação entre a BDI, a BPS e as Subescalas de	 29
Estimulação Interna e Externa (reteste)	

Não é o tédio a doença do aborrecimento de nada ter que fazer, mas a doença maior de se sentir que não vale a pena fazer nada.

Fernando Pessoa

Introdução

O tédio é algo inerente a todo o ser humano. No entanto, a literatura indica que o tédio depende de diferenças individuais podendo existir em cada indivíduo maior ou menor *propensão para o tédio*. Esta mesma literatura indica também que o tédio se encontra associado a um conjunto de consequências negativas, quer para o indivíduo, quer para a sociedade em geral constituindo, por isso, um tema que tem despertado um crescente interesse ao longo das últimas décadas.

O estudo sistemático do tédio foi, contudo, e durante algum tempo, limitado por ausência de uma definição coerente e universalmente aceite assim como de instrumentos de medida adequados (Vodanovich, 2003). Em Portugal, e tanto quanto sabemos, não estão disponíveis instrumentos devidamente validados para medir e estudar o tédio. Constitui, por isso, objectivo geral do presente trabalho, adaptar e validar um instrumento de avaliação do tédio, designadamente a *Escala de Propensão para o Tédio* (Boredom Proneness Scale; Farmer & Sundberg, 1986), junto de uma amostra de adolescentes portugueses.

Como objectivos específicos definimos: (1) proceder à tradução, adaptação e aplicação da *Escala de Propensão para o Tédio*; (2) analisar a sua estrutura factorial; (3) analisar as suas qualidades psicométricas, designadamente a fidelidade, através de indicadores de consistência interna e de consistência temporal, e validade, analisando as correlações entre a *Escala de Propensão para o Tédio* e um conjunto de outras escalas que medem construtos relacionados, nomeadamente *Escala de Solidão* (Russell, 1996); *Escala de Procura de Sensações* (Zuckerman, 1994); *Inventário de Depressão de Beck* (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961) e ainda com uma medida independente de tédio (Farmer & Sundberg, 1986); (3) analisar as pontuações na *Escala de Propensão para o Tédio* em função de alguns indicadores sociodemográficos.

O presente trabalho organiza-se em quatro capítulos. No primeiro capítulo apresentamos o enquadramento teórico onde definimos o conceito de tédio e propensão para o tédio, ou seja, a suscetibilidade de um indivíduo experienciar o tédio em determinada

situação. Ainda neste capítulo, identificamos algumas causas e consequências do tédio, designadamente, um conjunto de construtos e variáveis que têm sido associadas ao tédio, nomeadamente, variáveis de personalidade, afeto negativo, cognição e atenção e comportamento. Neste capítulo apresentaremos ainda evidência empírica que tem posto em evidência a relação entre o tédio, especificamente a propensão para o tédio, e outros construtos.

Num segundo capítulo é apresentada a metodologia do estudo. Neste capítulo descrevemos a amostra, de acordo com os indicadores sociodemográficos recolhidos bem como os instrumentos utilizados, designadamente, no que diz respeito à sua constituição, propriedades psicométricas e procedimentos de aplicação, cotação e interpretação. Finalmente descrevemos o procedimento utilizado no presente estudo, quer durante a realização dos grupos de discussão, quer da aplicação do questionário, referindo ainda as considerações éticas que o enquadraram.

No terceiro capítulo apresentam-se os resultados obtidos. Descreve-se, em primeiro lugar, a estrutura factorial da Escala de Propensão para o Tédio, as suas propriedades psicométricas, nomeadamente, a fidelidade, a partir de indicadores de consistência interna e temporal, e a validade de construto, aferida através das associações observadas com os restantes instrumentos utilizados. Por último serão apresentados os resultados da Escala de Propensão para o Tédio em função das variáveis sociodemográficas recolhidas.

No quarto e último capítulo são discutidos os resultados obtidos e apresentadas algumas conclusões acerca do estudo. Finalmente são descritas algumas limitações do estudo e apresentadas propostas para novos estudos nesta área.

1. ENQUADRAMENTO TEÓRICO

1.1. Definição do problema

Na perspectiva do senso comum, todos nós sabemos o que é estar entediado (Watt & Vodanovich, 1999). O tédio faz parte do nosso quotidiano, e pode ser vivenciado por qualquer ser humano em algum momento da vida. A perda de significados pessoais, o desconforto perante a vida, e a indisposição para praticar actividades que anteriormente contribuíam para o bem-estar, constituem alguns exemplos deste construto.

Na literatura, o termo tédio surge para referir um vasto leque de experiências, pelo que a ausência de uma definição coerente e universalmente aceite, a par da existência de diferentes abordagens para avaliar diversos subconjuntos de tédio, constituem fortes limitações ao seu estudo sistemático (Vodanovich, 2003).

Fisher (1993) define o tédio combinando características afectivas, cognitivas e/ou de atenção, ao afirmar que o tédio constitui "(...) um estado afectivo transitório no qual o indivíduo sente uma generalizada falta de interesse e dificuldade de concentração na actividade actual" (p. 396). O tédio aparece também definido como um estado mental, que se caracteriza pela falta de concentração e motivação para enfrentar as tarefas diárias, que geralmente se associa à depressão, ansiedade, e relacionamento interpessoal inadequado (Farhadi, Pouretemad, Asgari, & Khoshabi, 2011). O tédio pode também ser definido como um estado subjectivo de aversão e de insatisfação atribuídos a um ambiente inadequadamente estimulante, resultante de tentativas de atribuir atenção a um ambiente que não se caracteriza como interessante, juntamente com a tendência natural para remover a atenção de tal ambiente (Mikulas & Vodanovich, 1993; Todman, 2003). Para O'Hanlon (1981) o tédio é um "(...) estado único psicofísico que é de alguma forma produzido pela exposição prolongada à estimulação monótona" (p.54).

Embora as definições de tédio sejam bastante distintas, a maioria faz referência a conceitos de monotonia, repetitividade e falta de atenção e interesse. Contudo, esta abordagem negligencia o papel da percepção subjectiva do indivíduo acerca do meio (e.g., Geiwitz, 1966) e os processos de atribuição utilizados para identificar o estado emocional de um indivíduo (Mikulas & Vodanovich, 1993). A este respeito Geiwitz elucidou que "(...) as

diferenças individuais sugerem que a monotonia objectivamente definida como um atributo da situação é menos importante do que o sentimento subjectivo de repetitividade" (p. 593).

Os diferentes pontos de vista acerca do tédio, seus determinantes e consequências apontam para a sua natureza complexa (Caldwell, Darling, Pyne, & Dowdy, 1999). Por um lado, esta complexidade é causada pela sobreposição que o tédio apresenta com outros conceitos, designadamente estados ou traços intrínsecos do indivíduo como a depressão e a ansiedade (Farmer & Sundberg, 1986). Por outro lado, o tédio é frequentemente atribuído a causas externas decorrentes de determinadas condições sociais e culturais.

No que concerne à distinção entre tédio e depressão, Farmer e Sundberg (1986) afirmaram que estes conceitos podem ser diferenciados pela qualidade e intensidade de humor: "a depressão pode ser conceituada por sentimentos de tristeza ou perda pessoal, enquanto que o tédio é caracterizado por uma falta de interesse, que pode existir independentemente de tristeza" (p. 15).

Relativamente à experiência de tédio, Todman (2007) faz ainda uma importante distinção entre determinantes situacionais e individuais. Considera-se dependente da situação quando o tédio é experimentado como resultado de circunstâncias externas. Por outro lado, o tédio pode resultar de determinantes individuais, e ser entendido como uma característica da personalidade, que varia de grau de indivíduo para indivíduo.

De acordo com Sundberg e Bisno (1983), o tédio pode ser especialmente problemático durante dois períodos transitórios da vida, a adolescência e a terceira idade. Embora nos últimos anos, o tédio tenha sido objecto de investigação, especialmente em crianças e adolescentes, este fenómeno é particularmente difícil de estudar na adolescência, uma vez que surge combinado com processos de desenvolvimento e diferentes estruturas socioculturais nas quais os adolescentes estão inseridos. (Farhadi et al., 2011).

O estudo do tédio nesta fase é assim constrangido pelos múltiplos factores envolvidos nos próprios processos de desenvolvimento, designadamente, questões como sentimentos de vazio, aumento da autonomia, resistência às transformações próprias desta fase de desenvolvimento e superficialidade das relações (Caldwell et al., 1999). Além disso, comparativamente com a infância, a adolescência associa-se a um aumento do tempo livre disponível, assim como um aumento do controlo sobre esse mesmo tempo.

Neste contexto, salientamos a pertinência da adaptação e validação da Escala de Propensão para o Tédio, relembrando que que a literatura indica que o tédio se encontra associado a um conjunto de consequências negativas para o indivíduo, nomeadamente, a nível afetivo, cognitivo e comportamental e que, tanto quanto sabemos, não existe um instrumento de medida de tédio devidamente validado para a população portuguesa.

1.2. Propensão para o Tédio

A propensão para o tédio diz respeito a diferenças individuais, designadamente à susceptibilidade de um indivíduo experienciar o tédio em determinada situação. Esta temática tem recebido especial atenção no âmbito da literatura acerca de tédio, e tem sido associada a diversos problemas sociais e psicológicos.

Segundo Watt e Vodanovich (1999), propensão para o tédio constituiu um traço ou predisposição para ficar entediado, uma tendência para experienciar tédio em várias esferas do quotidiano. Os comportamentos frequentemente associados com a propensão para o tédio incluem absentismo, problemas de segurança no trabalho, isolamento ou actos de rebelião em instituições (Watt & Vodanovich, 1999). Outros estudos reportam que a propensão para o tédio se associa ainda a aumento da agressividade, hostilidade (Rupp & Vodanovich, 1997), ansiedade (Farmer & Sundberg, 1986; Gordon, Wilkinson, McGown & Jovanoska, 1997), dependência de álcool (Orcutt, 1984; Todman, 2003; Wiesbeck, Wodarz, Mauerer, Thome, Jakob, & Boening, 1996), abuso de substâncias (Paulson, Coombs, & Richardson, 1990; Samuels & Samuels, 1974) e susceptibilidade para o consumo de heroína (Serman, Zinser, Sideroff, & Baker, 1989; Todman, 2003).

A escala de propensão para o tédio (Farmer & Sundberg, 1986), foi desenvolvida como resposta à disparidade de considerações existentes relativamente à importância do tédio em diversas áreas, tais como, psicologia, educação, indústria, assim como pela escassez de pesquisas acerca deste tema. Paralelamente, esta escala procurou dar resposta a problemas de medida do conceito que, até então, era medido através de auto-avaliações ou suposições feitas por variados autores, como base nas suas considerações acerca do que poderiam constituir tarefas aborrecidas. Finalmente, esta escala procura medir a propensão para o tédio independentemente do contexto ou situação em que este é experienciado, ao contrário de outros instrumentos que procuram medir tédio em vários contextos e esferas particulares da vida do indivíduo (e.g., Escala de Tédio no Trabalho; Grubb, 1975; Escala de Tédio no Lazer; Iso-Ahola & Weissinger, 1990; Escala de Tédio de Tempo Livre; Ragheb & Merydith, 2001; e Escala de Tédio Sexual; Watt & Ewing, 1996), ou ainda integrado em subescalas de

instrumentos que procuram medir aspectos mais abrangentes (e.g., Escala de Susceptibilidade para o Tédio; Zuckerman, 1979a).

Apesar da propensão para o tédio ter sido inicialmente concebida como um construto unidimensional, actualmente o tédio é conceptualizado como um construto multidimensional (Culp, 2006). Diversos estudos realizados com a Escala de Propensão ao Tédio confirmaram a construção multidimensional a partir da identificação de factores relativamente consistentes (Ahmed, 1990; Gana & Akremi, 1998; Gordon et al., 1997; Vodanovich & Kass, 1990; Vodanovich, Wallace, & Kass, 2005, para uma revisão).

Utilizando a Escala de Propensão para o tédio, Vodanovich e Kass (1990) encontraram evidências da existência de pelo menos cinco factores subjacentes à propensão para tédio: estimulação externa, estimulação interna, respostas afectivas/ reacções emocionais, a percepção de tempo e constrangimento. O primeiro factor referido mede a necessidade de excitação, de desafios e de mudanças permanentes, enquanto o segundo se refere à capacidade do indivíduo para se manter entretido e interessado (Vodanovich & Kass, 1990). O terceiro factor mede reacções emocionais ao tédio. O quarto, mede a utilização e a percepção da passagem do tempo, e o quinto factor, a reacção à espera ou a sensação de que as actividades estão a ser constrangidas.

Numa revisão de literatura relativamente recente, Vodanovich (2003) analisa um conjunto de estudos nos quais a Escala de Propensão para o Tédio foi aplicada. A sua análise revela a existência de dois a cinco factores extraídos da Escala de Propensão para o Tédio. Esta revisão sugere ainda que dois desses factores têm sido replicados de forma consistente nas análises realizadas com esta escala: a estimulação externa e estimulação interna. Estas conclusões foram apoiadas em estudos subsequentes (e.g., Vodanovich et al, 2005).

1.3. Causas e consequências do tédio: Associações com outros construtos

Tal como anteriormente referido o tédio constitui um construto complexo e multideterminado com consequências em várias esferas do indivíduo designadamente afectivas, cognitivas, e comportamentais. Seguidamente abordaremos de forma breve as principais causas e consequências do tédio, salientando ainda as associações que a literatura refere entre o tédio, designadamente, a propensão para o tédio, e outros construtos.

Variáveis de Personalidade e Afeto Negativo

A literatura tem identificado associações entre tédio e outros construtos, designadamente, associações positivas entre a propensão ao tédio e outras variáveis de personalidade e afeto negativo, que se têm mostrado consistentes com propostas teóricas e com a própria definição de tédio.

Culp (2006) investigou as relações entre a propensão para o tédio e as principais dimensões da personalidade. De acordo com os resultados obtidos, indivíduos com alta propensão ao tédio tendem a ter menor abertura a novas experiências, a ser menos sociáveis, menos agradáveis, menos organizados e mais dispostos a manipular outras pessoas durante o contacto social.

De acordo com Gana, Deletang e Metais (2000) pontuações altas na Escala de Propensão para o Tédio associam-se ainda a uma tendência para uma maior introspecção. Por outro lado, a propensão ao tédio foi significativamente associada à impulsividade (Watt & Vodanovich, 1992b).

Outros autores referem ainda que a capacidade de lidar adaptativamente com o tédio está inversamente relacionada com a evidência de psicopatologia (Hamilton et al., 1984).

Vários autores têm sugerido que a monotonia do ambiente, quer seja percebida ou real, origina estados de tédio experienciados como desagradáveis, associados a níveis mais baixos de excitação cortical (Vodanovich, 2003).

A raiva, abordada como construto da personalidade, apresenta também uma associação com a propensão ao tédio (Dahlen, Martin, Ragan, & Kuhlman, 2004; Dahlen, Martin, Ragan, & Kuhlman, 2005; Rupp & Vodanovich, 1997). Algumas pesquisas relatam que indivíduos com maior propensão para o tédio (Rupp & Vodanovich, 1997), tendem a apresentar níveis mais elevados de raiva e agressividade. A propensão para o tédio também foi significativamente relacionada com algumas escalas do Questionário de Agressão (Buss & Perry, 1992), nomeadamente, agressão física e verbal, raiva e hostilidade.

Cognição e Atenção

Ao longo dos anos, têm sido também identificadas associações entre as pontuações obtidas na Escala de Propensão para o Tédio e a inclinação para determinadas propensões cognitivas.

Por exemplo, utilizando a Escala de Atribuição de Complexidade (Attributional Complexity Scale; Fletcher, Damilovics, Fernandez, Peterson, & Reeder, 1986), em que uma pontuação elevada aponta a tendência para utilizar descrições complexas de comportamento, Polly, Vodanovich, Watt e Blanchard (1993), relatam que pontuações significativamente mais baixas estão relacionadas com elevada propensão para o tédio.

Também, Wallace, Kass, e Stanny (2002) e Wallace, Vodanovich, e Restino (2003) constataram que uma elevada propensão para o tédio está associada a uma maior pontuação no Questionário de Falhas Cognitivas (Cognitive Failures Questionnaire; Broadbent, Cooper, Fitzgerald, & Parkes, 1982), que avalia a propensão a cometer erros na realização de tarefas comuns.

A teoria da propensão/ atenção e tédio proposta por Harris (2000), sugere que a propensão para o tédio está associada à incapacidade de regular a atenção de forma direcionada, focada e concentrada (Fisher, 1993; Hamilton, 1981; Harris, 2000). Esta teoria sugere ainda que a promoção da atenção pode reduzir a propensão de um indivíduo para experienciar o tédio.

Comportamento e Relações Interpessoais

Várias pesquisas apontam para uma relação entre o tédio e a dificuldade perante situações sociais e o estabelecimento de relações. De entre estas, destacam-se aquelas que evidenciam que uma elevada propensão para o tédio se encontra significativamente relacionada com menor sociabilidade (Leong & Schneller. 1993) e uma maior alienação (Tolor, 1989). Watt e Vodanovich (1999) indicaram também que indivíduos com pontuações elevadas na Escala de Propensão para o Tédio tendem a apresentar relações interpessoais pouco desenvolvidas. De forma convergente, McGibony e Carter (1988), referem que os indivíduos mais propensos para o tédio, tendem a ser mais inseguros, socialmente dependentes, angustiados e mais influenciados por sentimentos.

No que diz respeito ao contexto educativo, existem algumas evidências de que aqueles que são mais propensos para o tédio tendem a apresentar maior nível de insatisfação escolar (Aldrige & DeLucia, 1989; Gjesne, 1977), menor interesse e envolvimento no contexto da sala de aula (Farmer & Sundberg, 1986). Por exemplo, quando se solicitou a estudantes entediados que falassem acerca da visão que têm da escola, estes caracterizaram-na como inútil (Caldwell & Smith, 2006). Estes estudantes são também mais frequentemente avaliados pelos professores como desajustados, em comparação com outros alunos (Fogelman, 1976).

A literatura mostra ainda que o tédio tem sido correlacionado com elevado absentismo escolar (Caldwell & Smith, 2006; Irving & Parker–Jenkins, 1995), abandono escolar (Robinson, 1975; Sartoris & Vanderwell, 1981; Tidwell, 1988), e menor desempenho académico (Freeman, 1993; Maroldo, 1986; Robinson, 1975).

Vodanovich e Rupp (1999) relataram ainda que numa amostra de estudantes universitários, os indivíduos que apresentaram maior propensão para o tédio foram também os mais propensos a procrastinar. Na mesma linha, Jarvis e Seifert (2002) referem que os alunos entediados tendem a evitar mais os trabalhos escolares do que os estudantes não-entediados.

Em resumo, são vários os indicadores, de que maiores níveis de propensão para o tédio se relacionam com níveis mais baixos de sociabilidade, desempenho e adaptação em contexto educativo.

Relação com outros construtos

Alguns autores identificaram ainda correlações positivas e significativas entre a Escala de Propensão para o Tédio e outras variáveis, tais como, depressão, solidão, a falta de esperança, e orientação amotivacional (Farmer & Sundberg, 1986). É também apontado pela literatura que os indivíduos do sexo masculino tendem a apresentar resultados mais elevados na BPS que os do sexo feminino (e.g., Polly et al., 1993; Sundberg, Latkin, Farmer, & Saoud, 1991; Tolor, 1989). As relações entre propensão para o tédio e depressão encontram-se actualmente bem documentadas. Por exemplo os estudos de Blaszczynski, McConaghy, e Frankova (1990) e de Gana e Akremi (1998) relatam correlações positivas e significativas (respetivamente, r = .44, p < .001 e r = .63, p < .001), entre as pontuações da Escala de Propensão para o Tédio e as pontuações do Inventário de Depressão de Beck (Beck et al., 1961).

Russel, Peplau e Ferguson (1978) reportaram, a partir de estudos realizados com a Escala de Solidão (Russel, 1996) que a solidão está associada a sentimentos de "vazio" e "inquietação". Também Farmer e Sundberg (1986) reportaram uma correlação moderada e significativa entre a Escala de Propensão para o Tédio e a Escala de Solidão (r = .53, p < .001).

Vários autores (Farmer & Sundberg, 1986; Kass & Vodanovich, 1990; Watt & Ewing, 1996) verificaram ainda que pontuações elevadas na Escala de Propensão para o Tédio se correlacionam com pontuações elevadas na Escala de Procura de Sensações (Zuckerman, 1994). Uma manifestação provável da procura de sensações nos indivíduos que experienciam

elevada propensão para o tédio é a relação significativa observada entre as pontuações na Escala de Propensão para o Tédio e o jogo patológico (Blaszczynski et al., 1990).

As correlações reportadas entre as pontuações na Escala de Propensão para o Tédio e as pontuações em escalas que medem outros construtos, fundamentam a inclusão das escalas de depressão, solidão e procura de sensações, na validação que procuramos realizar da Escala de Propensão para o Tédio para a população portuguesa.

Os estudos que apontam para uma relação entre a propensão para o tédio e o género (Polly et al., 1993; Sundberg, et al., 1991; Tolor, 1989), assim como com o desempenho escolar (Freeman, 1993; Maroldo, 1986; Robinson, 1975), consubstanciam a inclusão destes indicadores, a par de outras variáveis sociodemográficas nas análises que iremos realizar.

2. MÉTODO

De acordo com os objectivos supramencionados, este trabalho adopta uma abordagem quantitativa, no âmbito da qual iremos desenvolver e aplicar um protocolo constituído pela Escala de Propensão para o Tédio, assim como pelas restantes escalas referidas no ponto anterior, e ainda por alguns indicadores sociodemográficos da esfera individual, familiar e educativa (ver Anexo I: Protocolo do Estudo sobre o Tédio na Adolescência).

2.1. Amostra

Participaram no estudo 215 estudantes, com *idades* compreendidas entre os 18 e os 28 anos (*M* = 19.77, *DP* = 1.69). A amostra é maioritariamente (78.1%), constituída por jovens do *sexo* feminino. A maior parte dos participantes são de *nacionalidade* Portuguesa (94.0%), os restantes são de nacionalidade Alemã, Americana, Angolana, Brasileira, Cabo Verdeana e Espanhola, entre outras. Parte dos inquiridos são *naturais* da Grande Lisboa (33.0%), e os restantes são oriundos de outras localidades, nomeadamente, Cabo Verde, Abrantes, Caldas da Rainha, Setúbal, Coimbra, Évora, Funchal, Faro, Luanda, Portalegre, Santarém, Torres Vedras, entre outras. A maioria dos participantes é de *etnia* caucasiana (94.4%), sendo 5.1% de outra etnia (africana, asiática, etc.). No que diz respeito à composição do *agregado familiar*, cerca de metade dos participantes indica residir com o pai e a mãe (54.9%), alguns vivem apenas com um dos progenitores (19.7%), com o companheiro(a) (6.1%), sozinhos(as) (5.6%), com outros familiares (5.2%), ou com outras pessoas (8.5%). Na generalidade, os participantes referem ter *irmãos* (83.7%), sendo que destes, 54.5% têm apenas um irmão, 17.7% dois irmãos e os restantes têm 3 ou mais irmãos.

Em relação ao *estabelecimento de ensino*, cerca de metade dos alunos estuda no ISCTE-IUL (53.0%), enquanto os restantes 47.0% estuda na FP-UL. Em relação ao *desempenho escolar*, 7.5% reportam ter obtido nos anos transatos um resultado suficiente (10 a 13 valores), 80.2% relatam ter obtido um resultado bom (14 a 17 valores) e 12.3% uma resultado muito bom (18 a 20 valores). Cerca de 85.9% dos participantes refere nunca ter *reprovado*, 9.9% reprovaram uma vez, e 4.2% reprovaram duas vezes.

2.2. Instrumentos

Foram aplicados os seguintes instrumentos: Escala de Propensão para o Tédio (*Boredom Proneness Scale*; Farmer & Sundberg, 1986), Escala de Solidão (*Loneliness Scale*, *UCLA*; Russell, 1996), Escala de Procura de Sensações (*Sensation Seeking Scale*; Zuckerman, 1994), e o Inventário de Depressão de Beck (*Beck Depression Inventory*; Beck et al., 1961) (ver Anexo I: Protocolo do Estudo sobre o Tédio na Adolescência).

Escala de Propensão para o Tédio

A Escala de Propensão para o Tédio (BPS) foi desenvolvida por Farmer e Sundberg (1986) com o intuito de medir a propensão para o tédio como uma dimensão de personalidade. Este instrumento é composto por 28 itens, tais como, "Muitas das coisas que tenho de fazer são repetitivas e monótonas", "Acho fácil manter-me entretido(a)".

Tal como na versão original da escala, alguns dos itens da escala são apresentados de forma invertida para contrariar tendências sistemáticas de resposta. A cotação da escala, implica assim a inversão dos itens 1, 7, 8, 11, 13, 15, 18, 22, 23 e 24.

Embora na versão original as respostas sejam assinaladas como "verdadeiro" ou "falso" no presente estudo, de forma semelhante a alguns estudos anteriores, as respostas foram dadas numa escala de Likert: de 1 (discordo totalmente) a 7 (concordo totalmente) para permitir maior variabilidade nos resultados (e.g., Vodanovich, Verner, & Gilbride, 1991; Watt & Ewing, 1996). Quanto maior a pontuação obtida (quanto mais a média se aproxima de 7) maior a propensão para o tédio.

A escala original apresenta níveis satisfatórios de consistência interna (α = .79) e fidelidade teste-reteste (r = .83) no intervalo de uma semana.

Tédio Estado

Adicionalmente foram ainda apresentados dois itens destinados a avaliar o *Tédio Estado* (Farmer & Sundberg, 1986) ("Sinto-me com frequência entediado/ aborrecido" e "Sinto-me com frequência satisfeito ou interessado naquilo que estou a fazer" – este último também invertido). Estes dois itens foram também utilizados por Farmer e Sundberg (1986) e tomados como uma medida independente de tédio com o objectivo de determinar a validade convergente da Escala de Propensão para o Tédio.

Escala de Solidão

A Loneliness Scale (LS) foi desenvolvida por Russell (1996) para avaliar sensações subjectivas de solidão ou isolamento social. Esta escala compreende 20 itens, como por exemplo: "Com que frequência te sentes sozinho(a)?" ou "Com que frequência te sentes isolado(a) dos outros?".

Novamente, e ao contrário da escala original, as respostas são dadas numa escala de Likert: de 1 (nunca) a 7 (sempre). Quanto maior for a pontuação obtida maior o grau de solidão.

A escala original revela elevada fidelidade, quer ao nível da consistência interna (α = .89 a .94), como de fidelidade teste-reteste (r = .73), (Russell, 1996).

Escala de Procura de Sensações

A Escala de Procura de Sensações (SSS) desenvolvida por Zuckerman (1979a) pretende aferir a tendência para procurar sensações e experiências novas, variadas e intensas, e a disposição para correr riscos com a finalidade de satisfazer tais experiências. Este instrumento contém quatro subescalas: Procura de Aventura e Emoção (*Thrill and Adventure Seeking - TAS*); Procura de Experiências (*Experience Seeking - ES*); Desinibição (*Disinhibition - DIS*); Suscetibilidade ao Tédio (*Boredom Susceptibility - BS*). Cada subescala é composta por 10 pares de afirmações (e.g., "*Gosto de ir a festas arrojadas e desinibidas; Prefiro festas calmas onde se podem ter boas conversas*"). Para cada par os inquiridos devem escolher aquela com que se identificam mais. As pontuações para cada subescala variam entre 0 e 10, conforme a selecção que o inquirido faz das frases que traduzem a dimensão em estudo.

Esta escala apresenta boas qualidades psicométricas (Carretero-Dios & Salinas, 2007; Ridgeway & Russell, 1980; Zuckerman, 1994), nomeadamente, no que diz respeito à consistência interna (α = .75 a .87).

Inventário de Depressão

Por fim, o Inventário de Depressão de Beck (BDI), desenvolvido por Beck et al. (1961), pretende medir a severidade dos episódios depressivos, incluindo sintomas e atitudes.

A BDI contém 21 itens, em cada item são apresentadas pelo menos quatro possibilidades de resposta, que variam de intensidade (numa escala de 0 a 3), tais como, "(0)

Não me sinto triste", "(1) Sinto-me triste a maior parte do tempo", "(2) Estou sempre triste", "(3) Estou tão triste ou infeliz que não consigo suportar". Deve ser identificada a frase que melhor descreve a forma como o indivíduo se tem sentido nas duas últimas semanas.

Os pontos de corte que distinguem níveis de depressão suave, moderada e severa dependem dos objectivos da aplicação do BDI (ou seja, não existem pontes de corte estandardizados). De um modo geral podem definir-se cinco intensidades da sintomatologia depressiva do seguinte modo (Beck et al., 1961): ausência de sintomatologia (0-9); sintomatologia suave (10-15); sintomatologia moderada (16-19); sintomatologia moderadamente intensa (20-29); sintomatologia grave (30-63). No presente estudo aplicámos a versão original da BDI na medida em que os estudos de validação que encontrámos para a população portuguesa eram bastante antigos.

A escala apresenta elevada fidelidade (Beck, Steer & Garbin, 1988), designadamente no que diz respeito à consistência interna ($\alpha = .73$ a .92).

A tradução e adaptação das várias escalas foram realizadas via tradução-retroversão, e aferidas por três juízes independentes. Procurou dar-se particular atenção ao significado dos itens e à familiaridade dos termos utilizados, valorizando menos a reprodução literal dos termos utilizados na versão original e mais a sua compreensão por parte da amostra portuguesa.

2.3. Procedimento

Após a tradução dos instrumentos, e sua aferição por três juízes independentes foram ainda realizados dois grupos de discussão para verificar se as instruções e os itens eram compreensíveis após a tradução realizada.

Grupos de Discussão

Participaram nestes grupos alunos do Ensino Superior num total de 5 alunos, (3 do sexo masculino e 2 do sexo feminino), com idades compreendias entre os 18-20 anos (ver Anexo II: Guião do Grupo de Discussão).

No contexto dos grupos de discussão, foi explicado o intuito do estudo, e solicitada a colaboração dos alunos, explicitando que este consistia de um questionário sobre a forma como se sentem e se comportam no dia-a-dia. De seguida foi assegurada a confidencialidade e anonimato dos dados recolhidos. Informou-se ainda que seriam os primeiros a responder ao

questionário, e que uma vez que o mesmo foi traduzido (inglês-português), pretendíamos verificar se as instruções e as questões estavam perceptíveis, ou seja, se os instrumentos foram traduzidos correctamente.

Foi ainda indicado que sempre que alguma questão estivesse pouco compreensível deveriam assinalá-la, para que no final do preenchimento do questionário pudessem ser clarificadas.

Por último, solicitava-se que após preenchido o questionário este fosse dobrado e colocado numa urna fechada. Após o consentimento dos participantes foi distribuído o protocolo com os instrumentos.

Após o preenchimento, as dúvidas ou sugestões apontadas foram registadas, e efetuadas as alterações necessárias, com vista a uma melhor compreensão dos instrumentos por parte dos participantes.

Aplicação do Questionário

A aplicação dos questionários foi realizada em contexto de sala de aula sendo para isso, solicitadas as devidas autorizações aos Docentes das turmas onde se aplicaram os questionários.

Os dados foram recolhidos de acordo com os normativos deontológicos recomendados para estudos desta natureza (consentimento informado e garantia de anonimato e confidencialidade). Note-se ainda que os dados recolhidos nunca serão tratados individualmente e a aplicação/cotação/interpretação de alguns instrumentos foi enquadrada com supervisão de um profissional habilitado, excluindo qualquer propósito de avaliação/interpretação clínica.

A participação dos alunos foi voluntária, sendo assegurado o anonimato (não sendo recolhidos qualquer tipo de dados que permitissem identificar o participante) e a confidencialidade dos dados (referido que os dados recolhidos seriam tratados globalmente e nunca de forma individualizada).

A parte inicial do questionário explicitava aos participantes o intuito do estudo, e informava que deveriam responder individualmente às questões, de forma honesta. Para permitir uma fase de reteste os participantes foram solicitados a escrever um código pessoal (um símbolo ou palavra) que lhes permitisse, numa fase subsequente, completar o estudo. Após o consentimento dos participantes foram distribuídos os instrumentos.

Não foi dado tempo limite para o preenchimento, sendo apenas apontado a título meramente indicativo, o tempo médio de resposta (20-25 minutos).

Os aplicadores estiveram sempre disponíveis para responder a qualquer dúvida acerca das questões. No final do preenchimento os questionários foram colocados em envelopes fechados.

3. RESULTADOS E DISCUSSÃO

3.1. Validade Facial

A validade facial diz respeito ao grau que os inquiridos e/ou especialistas consideram os itens apropriados para medir aquilo que realmente pretende mensurar (Shweigert, 1994).

Para além das análises que seguidamente passaremos a reportar (consistência interna, consistência temporal e validade de contruto), a análise preliminar de alguns indicadores sugerem validade facial do instrumento. Em primeiro lugar os vários itens apresentados na BPS remetem directamente para a experiência de tédio tal como definida teoricamente na literatura. Por outro lado os indicadores qualitativos recolhidos aquando a realização do grupo de discussão sugerem que, globalmente, os participantes compreenderam os itens que constituem o protocolo e directamente verbalizam interpretações das questões de forma consistente com os aspectos que estas pretendem averiguar.

3.2. Estrutura Fatorial

Escala de Propensão para o Tédio

A fim de verificar a estrutura factorial da BPS, foi realizada uma análise fatorial confirmatória, a partir do SPSS 16 (Statistical Package for the Social Sciences), utilizando o método de rotação oblíqua, mais especificamente rotação Promax.

Embora a análise fatorial confirmatória tenha como objetivo principal confirmar estruturas factoriais anteriormente obtidas, permite também determinar, entre outros aspectos, o total de variância explicada pela escala, a variância explicada por cada factor e ainda o contributo de cada item para cada um dos factores obtidos.

De acordo com o que foi reportado por pesquisas anteriores (e.g., Vodanovich, 2003; Vodanovich et al, 2005), antecipamos obter dois factores relacionados com as dimensões de estimulação interna e externa da BPS.

A análise factorial inicial utilizando os 28 itens da BPS revelou a existência de oito factores que explicam 58.78% da variância (ver Anexo IV: Análise Fatorial da BPS). No entanto, a partir do terceiro factor a variância explicada diminui de forma acentuada.

Este aspeto foi ainda confirmado através da análise do scree plot, a partir do qual se verifica que o declive da curva se atenua a partir do segundo e terceiro factor (Figura 1).

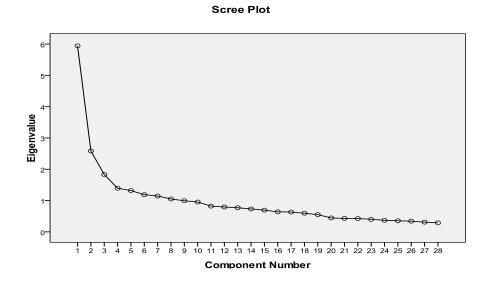


Figura 1: Scree Plot da Escala de Propensão para o Tédio

Por este motivo, repetimos a análise procedendo à extração de três factores que explicam 37% da variância. Seguidamente, excluímos os itens que apresentavam valores de saturação inferiores a .30 (itens 6 e 27), valor que é apontado em alguns estudos como critério mínimo para inclusão de itens nos fatores (e.g., Ahmed, 1990; Gordon et al., 1997), assim como itens que se apresentaram igualmente saturados (itens 1, 2 e 18) em dois ou mais factores.

De seguida procedemos à análise da consistência interna dos três factores. Uma vez que o terceiro factor era composto apenas por dois itens e apresentava uma consistência interna modesta ($\alpha = .505$), retivemos apenas os primeiros dois factores.

Por este motivo, repetimos novamente a análise utilizando os 28 itens da BPS, forçando a extração de dois factores que explicam 30.46% da variância. A análise da matriz de padrões motivou a exclusão de dois itens (15 e 17) que apresentaram valores inferiores a .30. Uma nova análise factorial forçando a extração de dois fatores (sem estes dois itens) permitiu verificar que estes explicam 32.26% da variância da escala.

O primeiro factor, composto por 19 itens, inclui os itens 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 16, 19, 20, 21, 25, 26, 27, 28 que se referem à capacidade (percebida) do indivíduo de promover actividades interessantes, de se manter entretido e interessado. De acordo com a literatura designámos este factor como Estimulação Interna. Por sua vez os itens 7, 8, 13, 18,

22, 23, 24, incluídos no segundo factor, dizem respeito à percepção de baixa estimulação do ambiente, que se reflecte numa necessidade de excitação, de desafios e mudanças permanentes. Este factor foi designado como Estimulação Externa. Salientamos ainda que esta distribuição dos itens pelos dois factores é bastante semelhante à referida na literatura, nomeadamente, ao padrão de resultados obtidos por Ahmed (1990).

3.3. Fidelidade

Escala de Propensão para o Tédio

O conjunto de análises realizadas seguidamente procurou aferir a fidelidade da escala aplicada a uma amostra de adolescentes portugueses (ver Anexo V: Consistência Interna). No que diz respeito à consistência interna, procedeu-se ao cálculo do alfa de Cronbach, que corresponde ao procedimento mais frequentemente utilizado a que a literatura faz referência. O seu valor é calculado com base na média das intercorrelações entre todos os itens do teste (Ribeiro, 1999), em que é obtido um índice de consistência interna que apresenta valores entre 0 e 1. Geralmente é aceite que um α de 0.6 a 0.7 indica fidelidade aceitável, acima de 0.8 indica boa fidelidade, e igual ou superior a 0.95 elevada fidelidade (esta geralmente não é desejada, uma vez que poderá indicar a redundância dos itens).

Os resultados desta análise revelaram uma boa consistência interna ($\alpha = .833$), indicando uniformidade e coerência nas respostas dos participantes ao longo dos 26 itens que compõem esta versão da BPS. Não foram obtidos valores que justifiquem a exclusão de nenhum item. Estes valores de fidelidade são consistentes com os reportados na análise da versão original da BPS, na qual Farmer e Sundberg (1986) reportam uma consistência interna semelhante à do presente estudo ($\alpha = .79$).

No que diz respeito à subescala de Estimulação Interna, os valores obtidos são também indicadores de boa fidelidade ($\alpha=.849$). Não foi também pertinente eliminar nenhum item, pois o valor do alfa não sofreria um aumento considerável. A subescala de Estimulação Externa apresenta uma fidelidade aceitável ($\alpha=.690$). Optámos por manter todos os itens da subescala, uma vez que o valor do alfa não sofreria um aumento significativo com a exclusão de nenhum deles.

Uma vez que, aproximadamente uma semana depois, a BPS foi aplicada uma segunda vez a uma subamostra de 57 inquiridos, analisámos também a consistência interna deste instrumento no momento do reteste. Mais uma vez, os resultados BPS total ($\alpha = .857$)

revelaram valores que indicam boa fidelidade. A eliminação do item 27 aumentaria a consistência interna da escala ($\alpha = .868$). No entanto, como o incremento na consistência interna não seria substancial optámos por manter os 26 itens na escala.

A subescala de Estimulação Interna apresenta também, no re-teste, uma boa consistência interna ($\alpha=.850$). Não se considerou pertinente a eliminação de nenhum item, uma vez que não se traduziria num aumento significativo do valor do alfa. Da mesma forma, a subescala de Estimulação Externa, no re-teste, apresenta uma boa consistência interna ($\alpha=.824$). Todavia se o item 24 fosse eliminado o valor de alfa seria mais expressivo ($\alpha=.845$). Mais uma vez optámos por manter todos os itens.

De uma forma geral, os resultados revelam valores de consistência interna bons ou aceitáveis quer na escala total quer nas duas subescalas, sejam estes determinados no momento do teste ou do re-teste.

Seguidamente procurámos obter um indicador adicional de fidelidade e determinar a consistência temporal do instrumento (fidelidade teste-reteste) correlacionando as pontuações da Escala de Propensão para o Tédio e das suas subescalas no momento do teste e do re-teste. Para tal foi utilizado o coeficiente de correlação de Pearson (ver Anexo VI: Correlações).

Quadro 1: Correlações entre a BPS e as subescalas Estimulação Interna e Externa (teste e reteste)

		BPS total	Sub. Est. Interna	Sub. Est. Externa	BPS Total (reteste)	Sub. Est. Interna (reteste)	Sub. Est. Externa (reteste)
-	Correlação de Pearson	1	.938**	.504**	.846**	.748**	.589**
BPS total	Sig. (2-tailed) N		.000 215	.000 215	.000 57	.000 57	.000 57
	Correlação de Pearson		1	.172*	.794**	.818**	.309*
Sub. Est. Interna	Sig. (2-tailed) N			.011 215	.000 57	.000 57	.019 57
G 1 E :	Correlação de Pearson			1	.509**	.220	.832**
Sub. Est. Externa	Sig. (2-tailed) N				.000 57	.100 57	.000 57
DDC 4-4-1	Correlação de Pearson				1	.924**	.609**
BPS total (reteste)	Sig. (2-tailed) N					.000 57	.000 57
Call Est Intone	Correlação de Pearson					1	.261*
Sub. Est. Interna (reteste)	Sig. (2-tailed) N						.050 57
Call Est Estama	Correlação de Pearson						1
Sub.Est. Externa (reteste)	Sig. (2-tailed) N						

^{**.} A correlação é significativa a 0.01 (bilateral)

^{*.} A correlação é significativa a 0.05 (bilateral)

A análise do Quadro 1 permite constatar bons valores de consistência temporal, quer para a escala total da BPS quer para as duas subescalas de estimulação interna e externa.

Verifica-se assim que as pontuações da BPS total, obtidas no momento do teste e do re-teste, se encontram positiva e significativamente correlacionadas (r = .846, p < .001). Este indicador de consistência temporal da escala é também consistente com o reportado por Farmer e Sundberg (1986) no desenvolvimento da escala original (r = .83, p < .001).

Importa igualmente referir que as subescalas de Estimulação Interna e de Estimulação Externa, no teste e no re-teste, se apresentam também positiva e significativamente correlacionadas, (r = .818, p < .001; r = .832, p < .001, respectivamente).

Globalmente, e no que diz respeito à fidelidade da BPS quer os níveis de consistência interna (no momento do teste e do reteste) quer as correlações teste-reteste permitem estabelecer bons indicadores de fidelidade da escala e das suas subescalas.

3.4. Validade de construto

Escala de Propensão para o Tédio

Para determinar a validade de construto começámos por averiguar as associações existentes entre a BPS total e suas subescalas, tanto no momento de teste como no reteste (ver Quadro 1).

A correlação entre a BPS total e as subescalas de Estimulação Interna, e de Estimulação Externa apresenta-se positiva e significativa, quer no momento do teste (r = .938; p < .001; r = .504; p < .001, respectivamente), quer no re-teste (r = .924; p < .001; r = .609; p < .001, respectivamente).

Como indicador de validade convergente, e à semelhança de Farmer e Sundberg (1986), correlacionámos também a BPS total e as suas subescalas com uma medida independente de Tédio Estado, quer no momento de teste quer no re-teste (ver Quadro 2).

Quadro 2: Correlações entre a BPS, as subescalas Estimulação Interna e Externa (teste e reteste) e Tédio Estado

		BPS total	Sub. Est. Interna	Sub. Est. Externa	BPS Total (reteste)	Sub. Est. Interna (reteste)	Sub. Est. Externa (reteste)	Tédio Estado
DDG 1	Correlação de Pearson	1	.938**	.504**	.846**	.748**	.589**	.725**
BPS total	Sig. (2-tailed) N		.000 215	.000 215	.000 57	.000 57	.000 57	.000 155
Sub. Est.	Correlação de Pearson		1	.172*	.794**	.818**	.309*	.656**
Interna	Sig. (2-tailed) N			.011 215	.000 57	.000 57	.019 57	.000 155
Sub. Est.	Correlação de Pearson			1	.509**	.220	.832**	.409**
Externa	Sig. (2-tailed) N				.000 57	.100 57	.000 57	.000 155
BPS total	Correlação de Pearson				1	.924**	.609**	.402
(reteste)	Sig. (2-tailed) N					.000 57	.000 57	.098 18
Sub. Est. Interna	Correlação de Pearson					1	.261*	.149
(reteste)	Sig. (2-tailed) N						.050 57	.556 18
Sub.Est. Externa	Correlação de Pearson						1	.662**
(reteste)	Sig. (2-tailed) N							.003 18

^{**.} A correlação é significativa a 0.01 (bilateral)

Estas correlações indicam que a BPS total se correlaciona positiva e significativamente com a medida de tédio estado, embora esta correlação seja mais forte no momento de teste do que em re-teste (respectivamente, r=.725, p<.001; r=.402, p<.098). O mesmo padrão de resultados foi observado para a subescala de Estimulação Interna, que apresenta uma correlação positiva e significativa com a medida de tédio estado no momento do teste (r=.656, p<.001), mas a correlação deixa de ser significativa no momento do reteste (r=.149, p<.556). A subescala de Estimulação Externa correlaciona-se positiva e significativamente com a medida de tédio estado no momento do teste (r=.409, p<.001), e do re-teste (r=.662, p<.003).

Os resultados observados poderão ser tomados como indicadores de validade convergente na medida em que indicam associações positivas e significativas entre a BPS e uma medida de tédio diferente. As correlações entre a propensão para o tédio e o tédio estado

^{*.} A correlação é significativa a 0.05 (bilateral)

são, no entanto, mais fracas no re-teste. Este resultado poderá dever-se ao facto de estarmos a correlacionar as pontuações da BPS obtidas no reteste com uma medida de Tédio Estado obtida uma semana antes. Uma vez que a medida de Tédio Estado é composta por itens relativos à experiência de tédio "naquele" momento, é natural que este indicador apresente uma correlação mais forte com as pontuações da BPS obtidas concomitantemente do que com as pontuações da BPS obtidas uma semana depois.

Em seguida correlacionámos a BPS e suas subescalas com os restantes instrumentos aplicados. No entanto e antes de apresentarmos estes resultados, procurámos analisar a consistência interna de cada um destes instrumentos, na sua versão portuguesa, e determinar as médias e desvios padrão dos valores reportados pelos inquiridos em cada um deles.

Escala de Propensão para o Tédio e Escala de Solidão

Em relação à consistência interna da Escala de Solidão os resultados indicam elevada fidelidade da versão portuguesa da escala (α = .940). Salienta-se também, que se qualquer dos itens fosse eliminado seria obtido um valor de alpha semelhante.

Seguidamente, realizámos teste t face ao ponto médio da escala (valor 4) da Escala de Solidão (*Loneliness Scale – LS; Russell, 1996*) (1 = nunca a 7 = sempre), de modo a verificar como é que os inquiridos se posicionam face aos itens da escala.

A média de respostas dos inquiridos (M=3.01, DP=1.00), encontra-se significativamente abaixo do ponto médio da escala, t(154)=-12.2, p<.001, o que permite inferir que, de uma forma geral, a amostra apresenta um sentimento de solidão bastante moderado.

Embora a transição do ensino secundário para o contexto académico implique mudanças diversas, que incluem um corte com o modelo educativo anterior, antigos colegas e amigos e por vezes um afastamento da cidade, família, e redes de suporte social de origem, esta fase constitui também um momento para o estabelecimento de novas redes de relações, uma maior independência, e por vezes mais momentos de convívio e lazer. Assim os valores de solidão reportados não são relativamente expressivos, não sendo surpreendente que não se observem experiências extremas de sentimentos de solidão.

As correlações entre a Escala de Solidão e a BPS e suas subescalas (ver Quadro 3), quer no momento do teste quer do re-teste, apresentam-se moderadas mas positivas e

significativas (respetivamente, r = .591, p < .001 e r = .532, p < .023). Importa referir que a correlação obtida entre a BPS e a LS é muito semelhante à reportada por Farmer e Sundberg (1986) no desenvolvimento da escala original (r = .53, p < .001).

A correlação entre a LS e a subescala de Estimulação Interna é também positiva e significativa (r = .612, p < .001; r = .613, p < .007) no teste e no re-teste, respectivamente. A correlação entre a LS e a subescala Estimulação Externa é reduzida e não significativa no momento do teste (r = .139, p < .085) e inexistente no re-teste (r = -.141, p < .576).

Quadro 3: Correlações entre a Escala de Solidão e a BPS e as suas subescalas (teste e reteste)

		BPS total	BPS total (reteste)	Sub. Est. Interna	Sub. Est. Externa	Sub. Est. Interna (reteste)	Sub. Est. Externa (reteste)
	Correlação de Pearson	.591**	.532*	.612**	.139	.613**	141
Escala de Solidão	Sig. (2-tailed)	.000	.023	.000	.085	.007	.576
	N	155	18	155	155	18	18

^{**.} A correlação é significativa a 0.01 (bilateral)

A LS apresenta uma correlação mais forte com a subescala de Estimulação Interna do que a subescala de Estimulação Externa. Este resultado sugere assim que uma menor capacidade do indivíduo em manter-se entretido e interessado, estará mais correlacionada com sentimentos de solidão.

Globalmente, o padrão de associações entre a BPS e a LS indica que, quanto maior a propensão para o tédio, maior será também o sentimento de solidão reportado. No entanto, a força da correlação entre a BPS e a LS observada é apenas moderada, indicando que, embora exista uma associação entre propensão para o tédio e solidão, estamos na presença de dois construtos distintos. Assim estes resultados podem ser tomados como indicadores de validade divergente.

Escala de Propensão para o Tédio e Escala de Procura de Sensações

No que respeita à Escala de Procura de Sensações (Sensation Seeking Scale – SSS; Zuckerman, 1979a) e no seguimento das análises anteriores, começámos por aferir a sua

^{*.} A correlação é significativa a 0.05 (bilateral)

consistência interna verificando-se um valor de alfa modesto (α = .502). No entanto este valor é obtido com base em apenas quatro indicadores, que correspondem à pontuação obtida em cada subescala.

Recordando, o preenchimento desta escala pressupõe que os participantes assinalem apenas uma opção para cada par de afirmações, o que significa que em metade dos itens não são assinaladas respostas. Por este motivo não nos foi possível obter um indicador de consistência interna a partir do alfa de Cronbach para cada subescala. Note-se contudo que o moderado valor de alfa obtido com base nas quatro subescalas não é surpreendente, na medida em que as subescalas procuram medir construtos distintos, nem todos teoricamente relacionados (Suscetibilidade para o Tédio, Desinibição, Procura de Experiência e Procura de Emoção e Aventura). As correlações entre a SSS e as suas subescalas, revelam-se positivas e significativas (respectivamente, r = .492; r = .666; r = .722; r = .669, p's < .001).

De seguida determinamos a média e o desvio padrão das respostas dos inquiridos na SSS e o modo com esta média se situa face ao ponto médio da escala. Atendendo a que SSS é composta por 40 pares de itens, a pontuação máxima será 40, logo o seu ponto médio será 20,5. A média de respostas dos participantes (M = 19.57, DP = 5.14, t(154) = -2.26, p < .025) apresenta um valor muito próximo do ponto médio, o que nos permite inferir que os participantes manifestam uma tendência moderada para procurar novas sensações e experiências, e uma moderada disposição para correr riscos de forma a concretizar tais experiências. Este resultado é convergente com a literatura que refere esta característica como própria dos adolescentes (Lin & Tsai, 2002).

Em relação às subescalas da SSS, cada uma delas é composta por 10 pares de itens, logo a pontuação máxima será 10, e o ponto médio 5,5. As subescalas de Suscetibilidade para o Tédio, e Desinibição apresentam uma média significativamente abaixo do ponto médio (respectivamente, M=2.50, DP=1.87, t(154)=-19.95, p<.001; M=3.95, DP=2.18, t(154)=-8.86, p<.001). Nas subescalas Procura de Experiência e Procura de Emoção e Aventura, a média de respostas dos participantes (M=6.45, DP=1.69; M=6.68, DP=2.32, respetivamente) encontra-se significativamente acima do ponto médio (t(154)=6.98, p<.001; t(154)=6.33, p<.001, respectivamente). Assim, enquanto que de uma forma geral, os participantes manifestam susceptibilidade para o tédio e desinibição pouco expressivas, mostram uma tendência elevada para procurar novas experiências, emoção e aventura.

Seguidamente apresentamos as correlações entre a BPS e suas subescalas, Estimulação externa e interna (no momento do teste e do re-teste), e a Escala de Procura de Sensações e as suas subescalas, Suscetibilidade para o Tédio, Desinibição, Procura de Experiência e Procura de Emoção e Aventura.

Ao analisar as associações entre a BPS e a SSS, verifica-se uma correlação fraca mas significativa em teste (r = .239, p < .003), e uma correlação reduzida e não significativa em re-teste (r = .294, p < .237) (ver Quadro 4).

Quadro 4: Correlação entre a Escala de Procura de Sensações e a BPS (teste e reteste)

		BPS (teste)	BPS (reteste)
	Correlação de Pearson	.239**	.294
Escala de Procura de Sensações	Sig. (2-tailed)	.003	.237
	N	155	18

^{**.} A correlação é significativa a 0.01 (bilateral)

As correlações fracas observadas entre a BPS e a Escala de Procura de Sensações não são surpreendentes, na medida em que a relação entre Propensão para o Tédio e a Procura de Sensações não é necessariamente esperada. Para entender um pouco melhor estes resultados é necessário recordar que a BPS pretende aferir a susceptibilidade do indivíduo para experienciar situações entediantes, e por outro lado a SSS procura também avaliar a procura de experiências, a atracção pela novidade e pela aventura (ver Quadros 5 e 6). No entanto, seria de prever uma associação forte entre a BPS e a subescala de Susceptibilidade para o Tédio da SSS. Para explorar de forma mais sistemática estas relações importa assim analisar as correlações entre a BPS e cada uma das subescalas da SSS.

No que se refere às correlações entre a BPS e cada uma das subescalas da SSS, verifica-se ausência de correlação com a subescala Procura de Emoção e Aventura (r = -.014, p < .863) e uma correlação significativa, ainda que fraca, com as subescalas de Desinibição (r = .198, p < .014), e Procura de Experiência (r = .167, p < .038), no momento do teste.

Quadro 5: Correlação entre a BPS (teste) e as subescalas da SSS

•		Susceptibilidade ao Tédio	Desinibição	Procura Experiências	Procura Emoção & Aventura
BPS	Correlação de Pearson	.292**	.198*	.167*	014
total	Sig. (2-tailed)	.000	.014	.038	.863
	N	155	155	155	155

^{**.} A correlação é significativa a 0.01 (bilateral)

^{*.} A correlação é significativa a 0.05 (bilateral)

Como seria de esperar a correlação mais expressiva (ainda que fraca) é observada com a subescala de Susceptibilidade ao Tédio ($r=.292,\,p<.001$). Também Farmer e Sundberg (1986) relataram correlações fracas com as subescalas de Susceptibilidade ao Tédio e Procura de Experiência, no momento de teste (respectivamente, $r=.25,\,p<.001;\,r=.05,\,p<.001$).

No momento do reteste, verifica-se ausência de correlações com as subescalas de Susceptibilidade ao Tédio (r=.129, p<.611), Procura de Experiência (r=.065, p<.798) e Procura de Emoção e Aventura (r=.164, p<.517), mas uma correlação significativa com a subescala Desinibição (r=.488, p<.040).

Quadro 6: Correlação entre a BPS (reteste) e as subescalas da SSS

		Susceptibilidade ao Tédio	Desinibição	Procura Experiências	Procura Emoção & Aventura
BPS (reteste)	Correlação de Pearson	,129	,488*	,065	,164
	Sig. (2-tailed)	,611	,040	,798	,517
	N	18	18	18	18

^{*.} A correlação é significativa a 0.05 (bilateral)

Globalmente, a inexistência ou as fracas correlações observadas entre a BPS e as subescalas da SSS não surpreendem, na medida em que a BPS e as subescalas da SSS avaliam construtos divergentes, à excepção da subescala de Susceptibilidade ao Tédio. Salienta-se a correlação significativa, ainda que fraca, entre esta subescala e a BPS, que pode ser considerada indicador de validade convergente, uma vez que se tratam de duas medidas de tédio diferentes.

Seguidamente apresentam-se as correlações entre as subescalas da BPS no momento de teste e de reteste) e as subescalas da SSS (ver Quadros 7 e 8).

Quadro 7: Correlação entre a Subescala de Estimulação Interna (teste e reteste) e as subescalas da SSS

·	,	Susceptibilidade ao Tédio	Desinibição	Procura Experiências	Procura Emoção & Aventura
Sub. Estimulação	Correlação de Pearson	,358**	,168*	,247**	,042
Interna	Sig. (2-tailed)	,000,	,036	,002	,608
	N	155	155	155	155
Sub. Estimulação	Correlação de Pearson	,226	,250	,196	,204
Interna (reteste)	Sig. (2-tailed)	.368	.317	.436	.417
	N	18	18	18	18

^{**.} A correlação é significativa a 0.01 (bilateral)

^{*.} A correlação é significativa a 0.05 (bilateral)

A subescala de Estimulação Interna apresenta uma correlação fraca mas significativa, com a subescala Susceptibilidade ao Tédio ($r=.358,\,p<.001$), Desinibição ($r=.168,\,p<.036$), e Procura de Experiência ($r=.247,\,p<.002$) no momento do teste. Contudo verifica-se inexistência de correlação no re-teste ($r=.226,\,p<.368;\,r=.250,\,p<.317;\,r=.196,\,p<.436$, respetivamente). Em relação às correlações entre a subescala de Estimulação Interna da BPS e a subescala de Procura de Emoção e Aventura da SSS são praticamente inexistentes, tanto no momento do teste como do re-teste ($r=.042,\,p<.608;\,r=.204,\,p<.417,\,$ respectivamente).

Quadro 8: Correlação entre a Subescala de Estimulação Externa (teste e reteste) e as subescalas da SSS

		Susceptibilidade ao Tédio	Desinibição	Procura Experiências	Procura Emoção & Aventura
Sub. Estimulação	Correlação de Pearson	-,071	,142	-,154	-,149
Externa	Sig. (2-tailed)	,383	,078	,057	,065
	N	155	155	155	155
Sub. Estimulação	Correlação de Pearson	-,218	,	,	-,079
Externa (reteste)	Sig. (2-tailed) N	.385 18	.005 18		.755 18

^{**.} A correlação é significativa a 0.01 (bilateral)

A subescala Estimulação Externa mostra-se apenas correlacionada com a subescala Desinibição no momento do re-teste (r = .635, p < .005), enquanto que no teste esta correlação não é significativa (r = .142, p < .078). Porém, não se correlaciona com nenhuma das restantes subescalas, Susceptibilidade ao Tédio, Procura de Experiência e Procura de Emoção e Aventura, tanto no momento do teste (r = -.071, p < .383; r = -.154, p < .057; r = -.149, p < .065) como do re-teste (r = -.218, p < .187; r = -.304, p < .220; r = -.079, p < .755).

Escala de Propensão para o Tédio e Escala de Depressão

No Inventário de Depressão de Beck (*Beck Depression Inventory - BDI; Beck et al.*, 1961) o resultado do cálculo do coeficiente de alfa para a tradução da escala realizada, revela uma boa consistência interna ($\alpha = .869$). Não se justificou a eliminação de nenhum dos itens.

A média de respostas dos inquiridos (M = 9.56; DP = 7.51) encontra-se significativamente acima do primeiro ponto de corte da escala, t(154) = .931, p < .001. Considerámos este ponto (9) na medida em que surge referenciado como primeiro indicador de intensidade da sintomatologia depressiva.

^{*.} A correlação é significativa a 0.05 (bilateral)

Desta forma, é possível inferir que em média as respostas dos participantes se situam significativamente acima do ponto de corte de ausência de sintomatologia. Não obstante estas respostas situam-se abaixo do limite inferior (10), intervalo definido como indicador de sintomatologia suave. Atendendo às características da amostra, designadamente, estudantes que concluíram o seu percurso de ensino e ingressaram na universidade, não seriam de prever indicadores generalizados de acentuada sintomatologia depressiva.

A análise das correlações observadas entre a BPS e suas subescalas (no momento de teste) e a BDI permitiu verificar que, a BPS, e a subescala Estimulação Interna apresentam uma correlação moderada com o Inventário de Depressão de Beck, no momento do teste, (respectivamente, r=.463, p<.001; r=.467, p<.001). O mesmo não sucede com a subescala Estimulação Externa, que apresenta um correlação fraca e pouco significativa (r=.140, p<.083) (ver Quadro 9).

Quadro 9: Correlação entre a BDI, a BPS e as Subescalas de Estimulação Interna e Externa

-		BPS total	Sub. Estimulação Interna	Sub. Estimulação Externa
BDI	Correlação de Pearson	.463**	,467**	.140
	Sig. (2-tailed)	.001	,001	,083
	N	155	155	155

^{**.} A correlação é significativa a 0.01 (bilateral)

As correlações observadas entre a BPS, a subescala Estimulação Interna (no momento do resteste) e a BDI, apresentam-se um pouco mais fortes (respectivamente, r = .555, p < .017; r = .718, p < .001), enquanto a correlação entre a subescala Estimulação Externa e a BDI se apresenta negativa e não significativa (r = -.342, p < .164) (ver Quadro 10).

Quadro 10: Correlação entre a BDI, a BPS e as Subescalas de Estimulação Interna e Externa (reteste)

		BPS total (reteste)	Sub. Estimulação Interna (reteste)	Sub. Estimulação Externa (reteste)
BDI	Correlação de Pearson	.555**	,718**	342
	Sig. (2-tailed)	.017	,001	,164
	N	18	18	18

^{**.} A correlação é significativa a 0.01 (bilateral)

^{*.} A correlação é significativa a 0.05 (bilateral)

^{*.} A correlação é significativa a 0.05 (bilateral)

Importa clarificar as diferenças de resultados obtidas nas correlações entre as subescalas de Estimulação Interna e Externa e a BDI, para tal é necessário recordar a definição das subescalas. Enquanto a Estimulação Interna diz respeito à capacidade do indivíduo promover actividades interessantes, de se manter entretido e interessado, a Estimulação Externa refere-se ao ambiente em que está inserido, ou seja, à percepção de baixa estimulação do ambiente e à necessidade de desafios e mudanças permanentes. Assim, faz algum sentido que a subescala de Estimulação Interna apresente uma correlação mais forte com a BDI, que pretende aferir os níveis de depressão no indivíduo.

Globalmente, os resultados indicam que quanto maior for a propensão para o tédio reportada maior será o sentimento de depressão reportado. Os resultados apresentados são congruentes com os de Farmer e Sundberg (1986), que também reportaram uma correlação moderada e significativa entre a BPS e a BDI (r = .44, p < .001).

A relação entre a BPS e a BDI era assim expectável, na medida em que o tédio e a depressão podem ser descritos como "depressões" no estado de espírito, e por vezes apresentam alguma sobreposição de sintomatologia (e.g., Farmer & Sundberg, 1986). No entanto, embora exista correlação, esta é apenas moderada, sugerindo que se tratam de construtos distintos. Desta forma, estes resultados podem ser tomados como indicadores de validade divergente.

Em resumo, os resultados das análises de correlações entre a Escala de Propensão para o Tédio, a Escala de Solidão, a Escala de Procura de Sensações e o Inventário de Depressão de Beck, obtidos neste estudo, revelam valores moderados e significativos, é de uma forma geral convergente com os resultados reportados na literatura, obtidos com a aplicação da escala original (e.g., Farmer & Sundberg, 1986).

Este padrão de resultados permite inferir que embora a propensão para tédio se correlacione com os construtos medidos por outros instrumentos, a força das correlações observadas sugere que estamos na presença de construtos distintos. Assim, estes resultados podem ser tomados como indicadores de validade divergente.

3.5. Propensão para o Tédio em Função das Variáveis Sociodemográficas

Para analisar, de uma forma mais específica, a sensibilidade da Escala de Propensão para o Tédio em função das variáveis sociodemográficas dos participantes, realizámos diferentes teste t e análises de variância, com comparações *post-hoc* (ver Anexo VII: Teste-T e Anovas das Variáveis Sociodemográficas).

Note-se que, de acordo com a literatura são esperadas diferenças em função do sexo dos inquiridos e do seu desempenho académico. Especificamente, e de acordo com a literatura os rapazes tendem a apresentar valores mais elevados de propensão para o tédio que as raparigas (e.g., Polly et al., 1993; Sundberg, et al., 1991; Tolor, 1989). Por outro lado inquiridos com menor desempenho escolar (e.g., médias escolares obtidas, número de reprovações) serão aqueles em que se esperam valores de propensão para o tédio mais elevados (e.g., Freeman, 1993; Maroldo, 1986; Robinson, 1975).

Antes de mais importa analisar os resultados globais da escala. Na Escala de Propensão para o Tédio e nas suas subescalas de Estimulação Interna e Estimulação Externa a média de respostas dos participantes encontra-se significativamente abaixo do ponto médio 4, (respectivamente, M = 3.30, DP = .68, t(214) = -15.0, p < .001; M = 3.31, DP = .82, t(214) = -12.4, p < .001; M = 3.30, DP = .89, t(214) = -11.6, p < .001). De uma forma geral, os resultados obtidos permitem inferir que os participantes apresentam uma propensão moderada para o tédio.

Tal como esperado, os resultados indicam que os inquiridos do sexo masculino apresentam valores mais elevados na BPS (M = 3.45, DP = .68) do que as inquiridas do sexo feminino (M = 3.26, DP = .68), t(213) = 1.72, p < .087, contudo estas diferenças são apenas marginais.

Estes resultados são consistentes com os de Farmer e Sundberg (1986), que também reportam pontuações mais elevadas nos inquiridos do sexo masculino do que do feminino. Importa no entanto recordar que a nossa amostra, ao contrário da de Farmer e Sundberg (1986) se apresenta um tanto desequilibrada na sua composição em função do género, incluindo bastante mais inquiridos do sexo feminino que masculino (168 e 47 respectivamente), sendo assim possível que, por este motivo, as diferenças encontradas em função do género sejam apenas marginais.

Quanto ao desempenho escolar os participantes que obtiveram, nos anos transatos, uma avaliação muito boa (18 a 20 valores) (M = 2.95, DP = .58) apresentam valores menos elevados na BPS do que os que obtiveram uma avaliação boa (14 a 17 valores) (M = 3.34, DP = .68) ou suficiente (10 a 13 valores), que manifestam valores mais elevados na BPS (M = 3.50, DP = .63), F(2, 212) = 4.524, p < .012.

De forma consistente, verificámos ainda que os inquiridos que reportam nunca ter reprovado apresentam valores mais reduzidos de propensão para o tédio (M = 3.26, DP = .65), comparativamente aos que indicam já ter reprovado (M = 3.56, DP = .79), t(212) = 2.37, p < .019.

Especificamente os participantes que nunca reprovaram (M = 3.26, DP = .65), evidenciam valores mais baixo na BPS do que os que reprovaram uma vez (M = 3.59, DP = .76) ou duas vezes (M = 3.61, DP = .88), F(2,213) = 3.306, p < .039.

Relativamente às restantes variáveis sociodemográficas, nomeadamente, idade, nacionalidade, etnia, naturalidade, número de irmãos e composição do agregado familiar, as análises realizadas não permitiram observar impactos significativos destas variáveis nos valores da BPS reportados.

Em resumo, as pontuações obtidas na Escala de Propensão para o Tédio, em função das variáveis demográficas apresentam um contributo importante para estabelecer a qualidade da escala que pretendemos adaptar.

De forma congruente com os resultados reportados na literatura (e.g., Freeman, 1993; Maroldo, 1986; Polly et al., 1993; Robinson, 1975; Sundberg, et al., 1991; Tolor, 1989) os resultados acima reportados indicam que a BPS permite discriminar variáveis relativas ao género e desempenho académico dos participantes, indicando nomeadamente que indivíduos do sexo masculino e indivíduos com desempenho académico menos elevado (medido através das notas escolares e número de reprovações reportadas) são mais propensos ao tédio. Estes resultados sugerem assim que a versão da Escala de Propensão para o Tédio aqui apresentada é sensível a variáveis teoricamente relevantes no estudo da susceptibilidade de um indivíduo experienciar tédio.

4. CONCLUSÃO

No presente trabalho apresentamos um estudo de adaptação e validação da Escala de Propensão para o Tédio para uma amostra de adolescentes portugueses.

Este estudo fundamenta-se na necessidade de avaliar a propensão para o tédio, que, de acordo com a literatura, se apresentada associada a um conjunto de consequências negativas, quer na esfera individual (nível afetivo, cognitivo e comportamental), quer para a sociedade em geral. Este estudo é particularmente importante na adolescência, uma vez que o tédio pode ser especialmente problemático nesta fase de desenvolvimento (Sundberg e Bisno, 1983).

A revisão de literatura realizada revelou que embora exista um consenso acerca da necessidade de avaliar a propensão para o tédio, o seu estudo foi durante algum tempo limitado pela inexistência de uma definição universalmente aceite, assim como, constrangido pela ausência de instrumentos de medida adequados.

Embora existam atualmente um conjunto de instrumentos destinados a medir o tédio em vários contextos e esferas particulares da vida do indivíduo (e.g., Escala de Tédio no Trabalho; Grubb, 1975; Escala de Tédio no Lazer; Iso-Ahola & Weissinger, 1990; Escala de Tédio de Tempo Livre; Ragheb & Merydith, 2001; e Escala de Tédio Sexual; Watt & Ewing, 1996), ou ainda integrados como subescalas de instrumentos que procuram medir aspectos mais abrangentes (e.g., Escala de Suscetibilidade para o Tédio; Zuckerman, 1979a), a Escala de Propensão para o Tédio (Farmer & Sundberg, 1986) é referida na literatura como o instrumento mais adequado para medir a propensão para o tédio.

Este destaque fundamenta-se por um lado, no facto do instrumento medir a propensão para o tédio como uma dimensão geral de personalidade e por outro, no facto de desde o seu desenvolvimento em 1986, ter sido aplicado em diversos estudos, em diferentes contextos e ter sido alvo de vários estudos de validação.

Desta forma, atendendo à relevância da temática e à inexistência de um instrumento de medida de tédio adaptado e validado para a população portuguesa, tornou-se pertinente a sua concretização.

A adaptação e validação deste instrumento pretende constituir uma etapa preliminar para a adequada avaliação da propensão para o tédio em contexto nacional.

No que respeita aos resultados a médio e longo prazo, este trabalho ambiciona contribuir para o desenvolvimento da investigação sobre o tédio em Portugal, nomeadamente, no que se refere ao tédio em adolescentes.

Globalmente, é nossa expectativa que o presente trabalho se constitua como um instrumento inicial de consciencialização para a importância do estudo sistemático do tédio na adolescência, particularmente, no que se refere à adequada avaliação da propensão para o tédio nesta fase de desenvolvimento, com o intuito de desenvolver estratégias de intervenção devidamente fundamentadas.

Relativamente aos objetivos específicos do presente estudo, pensamos ter concretizado um primeiro passo no processo de adaptação de um instrumento vastamente utilizado em contexto internacional, nomeadamente, através da obtenção de indicadores preliminares da sua qualidade, a partir da análise de alguns indicadores psicométricos.

Para além da validade facial que parece caraterizar o instrumento em questão, sugerida a partir dos dados recolhidos durante os grupos de discussão, os resultados das análises estatísticas realizadas permitem observar a presença de alguma qualidade psicométrica.

Em primeiro lugar destacamos que, a análise factorial confirmatória realizada, tal como a análise factorial exploratória realizada ao instrumento original e suas sucessivas replicações, permitiu observar a existência de dois factores, Estimulação Interna e Estimulação Externa largamente documentados na literatura (Gana & Akremi, 1998; Vodanovich & Kass, 1990; Vodanovich, Watt, & Piotrowski, 1997).

Destacamos ainda que, de uma forma geral, a estrutura factorial obtida, e a distribuição dos itens pelos factores é semelhante à encontrada em vários estudos, designadamente, à proposta de Ahmed (1990). No entanto é importante salientar que a variância explicada pela solução factorial obtida (32.26%) é bastante inexpressiva.

A análise das qualidades psicométricas da Escala de Propensão para o Tédio e das suas subescalas, Estimulação Interna e Externa, revelou bons indicadores de fidelidade, quer no que diz respeito à consistência interna (aferida através do cálculo do alfa de Cronbach), como à consistência temporal (obtida através de correlações teste-reteste). Destacamos ainda, que estes valores de fidelidade são semelhantes aos reportados na análise da versão original da Escala de Propensão para o Tédio (Farmer e Sundberg, 1986).

No que respeita a validade de construto, os resultados obtidos a partir da análise das correlações entre a Escala de Propensão para o tédio e as suas subescalas (Estimulação Interna e Estimulação Externa) e uma medida independente de Tédio Estado (Farmer & Sundberg, 1986) podem ser considerados indicadores de validade convergente, na medida em que evidenciam correlações positivas e significativas entre diferentes medidas de tédio.

Quanto às correlações entre a Escala de Propensão para o Tédio, e outros instrumentos que medem construtos relacionados, designadamente a solidão (*Escala de Solidão*; Russell,

1996), procura de sensações (*Escala de Procura de Sensações*; Zuckerman, 1994), e depressão (*Inventário de Depressão de Beck*; Beck, et al., 1961) os resultados obtidos são congruentes com os resultados reportados por Farmer e Sundberg (1986).

Globalmente, estes resultados sugerem que embora a propensão para o tédio se correlacione com construtos medidos por outros instrumentos, estas correlações são relativamente modestas. Neste sentido estas correlações sugerem a presença de construtos distintos e, tal como outros autores, interpretamos estes resultados como indicadores de validade discriminante.

Finalmente, testámos a sensibilidade da escala relativamente a algumas variáveis sociodemográficas, a fim de verificar o poder discriminativo da escala em relação a algumas variáveis que a literatura refere como relevantes neste contexto, designadamente o género (e.g., Polly et al., 1993; Sundberg, et al., 1991; Tolor, 1989) e o desempenho académico (e.g., Freeman, 1993; Maroldo, 1986; Robinson, 1975) dos inquiridos.

Estas análises revelaram, tal como a literatura faria prever, que a versão da Escala de Propensão para o Tédio aqui desenvolvida permite efectivamente discriminar variáveis relativas ao género e desempenho académico dos participantes, designadamente que os inquiridos do sexo masculino e os inquiridos com menor desempenho académico (notas mais baixas e maior número de reprovações) são os que reportam valores mais elevados de propensão para o tédio.

Apesar do presente trabalho concretizar o seu objetivo principal, designadamente, a adaptação e validação da Escala de Propensão para o Tédio, não podemos deixar de considerar algumas das suas limitações e de tecer algumas recomendações para investigação e aplicação futura da escala.

Primeiramente importa referir que este trabalho constitui, tanto quanto sabemos, a primeira tentativa de validação da Boredom Proneness Scale em língua portuguesa pelo que a adaptação e validação do instrumento exigiu uma primeira etapa de tradução da escala a partir da sua versão original em língua inglesa.

Embora a tradução realizada tenha sido aferida por dois juízes independentes e de alguma forma validada aquando a realização dos grupos de discussão, uma nova revisão por parte de um painel de especialistas poderia eventualmente permitir a introdução de ajustamentos à versão portuguesa. O mesmo tipo de constrangimento pode ser apontado aos restantes instrumentos utilizados neste estudo, para a maioria dos quais a versão portuguesa da escala não existe ou é já bastante antiga.

Por outro lado, a comparação dos dados aqui obtidos com os reportados na literatura nem sempre é linear. Efectivamente, os estudos realizados com a Escala de Propensão para o Tédio, apresentam alguma variabilidade, nomeadamente, no que diz respeito à composição das amostras utilizadas, ao tipo de variáveis que estes estudos procuram medir, e até à própria escala de resposta.

Esta variabilidade poderá constituir um contributo teórico e empírico importante, mas limita as considerações tecidas a partir da comparação dos resultados obtidos em vários estudos. Por exemplo, a dimensão da amostra e a sua proveniência variam consideravelmente de estudo para estudo. A escala foi aplicada junto de uma amostra Australiana (N= 345; Gordon et al., 1997), Canadiana (N= 154; Ahmed, 1990), Francesa (N= 270; Gana & Akremi, 1998), e Americana (N=385; Vodanovich & Kass, 1990; N= 201; Vodanovich et al, 1997). Por outro lado, alguns investigadores aplicaram a BPS na sua versão de resposta 'verdadeiro-falso' (Ahmed, 1990; Farmer & Sundberg, 1986; Gana & Akremi, 1998), enquanto outros utilizaram escalas de Likert de 7 pontos (Gordon et al, 1997; Vodanovich & Kass, 1990).

Por este motivo, poderia ser interessante realizar comparações mais sistemáticas entre os resultados do presente estudo e os reportados em estudos realizados em países diferentes, de forma a identificar potenciais padrões de semelhanças e diferenças numa abordagem transcultural.

Seria ainda importante em estudos futuros, realizados com a presente versão dos itens, testar outros formatos de resposta à Escala de Propensão para o Tédio, designadamente 'verdadeiro-falso'.

No que diz respeito à composição da amostra, e atendendo a que grande parte dos estudos anteriores aplicou a Escala de Propensão para o Tédio junto de amostras de estudantes universitários, também poderia ser relevante a aplicação da escala a jovens em outros contextos, nomeadamente, a uma amostra de jovens do mesmo escalão etário mas não integrados no sistema académico, a uma amostra de jovens mais novos a frequentar o ensino obrigatório ou ainda a amostras oriundas de populações não normativas, tais como, adolescentes com perturbação de comportamento, historial de abuso de substâncias, etc. Além disso, e atendendo a que o género dos inquiridos se mostrou associado aos níveis de propensão para o tédio reportados, a composição da amostra, que se apresenta um pouco desequilibrada no presente estudo, deverá incluir um número semelhante de inquiridos do sexo masculino e do sexo feminino.

Considera-se também que a variância explicada pelos dois factores que constituem a escala (32.26%) é bastante modesta e um pouco aquém dos valores reportados nos estudos de validação da escala noutros contextos.

Note-se, no entanto que as análises anteriormente realizadas a esta escala por outros autores não são absolutamente equivalentes. Por exemplo, alguns estudos consideraram como critério de inclusão dos itens nos factores o valor 0.30 (Ahmed, 1990; Gordon et al, 1997), porém outros consideraram o valor 0.40 (Vodanovich & Kass, 1990). Igualmente diversos foram os tipos de rotações utilizadas na análise factorial, designadamente, rotação oblíqua e rotação ortogonal.

Assim, em estudos futuros, seria importante reanalisar os presentes dados, ou recolher novos dados junto de uma nova amostra e realizar outro tipo de análises, nomeadamente, de natureza exploratória, que permitam confirmar (ou não) a estrutura factorial proposta.

Atendendo a que a literatura indica que o tédio também pode ser particularmente problemático na terceira idade (Sundberg & Bisno, 1983), seria também um desafio futuro aferir a Escala de Propensão para o Tédio para este grupo etário.

Em resumo, esperamos que o presente estudo de validação da Escala de Propensão para o Tédio para uma amostra de adolescentes portugueses se constitua como um contributo importante para o estabelecimento de uma linha de investigação sobre o tédio em Portugal. Não obstante algumas limitações identificadas e outras que eventualmente se venham a constatar, é nossa expectativa que a versão da Escala de Propensão para o Tédio que aqui apresentamos possa ser objecto de estudos futuros que permitam melhorar e melhor estabelecer a sua qualidade. No entanto, e como objectivo último, o desenvolvimento de uma medida de propensão para o tédio devidamente validada para o contexto nacional poderá permitir o estudo sistemático do tédio na população adolescente e o desenvolvimento de estratégias de intervenção fundamentadas, que permitam prevenir e minimizar o tédio experienciado neste grupo bem como as consequências negativas frequentemente associadas à experiência de tédio.

Adaptação e validação da "Boredom Proneness Scale"

REFERÊNCIAS

- Ahmed, S. M. S. (1990). Psychometric properties of the boredom proneness scale. *Perceptual and Motor Skills*, 71, 963–966.
- Aldridge, M., & DeLucia, R. C. (1989). Boredom: The academic plague of first year students. *Journal of the Freshman Year Experience*, 1(2), 43-56.
- Beck, A. T., Steer, R.A., & Garbin, M.G. (1988) Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. *Clinical Psychology Review*, 8, 77-100.
- Beck, A. T., Ward, C. H., Mendelson, M., Mock, I., & Erbaugh, I. (1961). An inventory for measuring depression. *Archives of General Psychiatry*, 4, 561–571.
- Blaszczynski, A., Mc Conaghy, N., & Frankova, A. (1990). Boredom proneness in pathological gambling. *Psychological Reports*, 67, 35–42.
- Broadbent, D. E., Cooper, P. F., Fitzgerald, P., & P arkes, K. R. (1982). The Cognitive Failures Questionnaire (CFQ) and its correlates. *British Journal of Clinical Psychology*, 21, 1-16.
- Buss, A. H., & Perry, M. (1992). The Agression Questionnaire. *Journal of Personality and Social Psychology*, 63, 452-459.
- Caldwell, L. L., & Smith, E. A. (2006). Leisure as a context for youth development and delinquency prevention. *The Australian and New Zealand Journal of Criminology*, 39, 398–418.
- Caldwell, L. L., Darling, N., Payne, L. L., & Dowdy, B. (1999). Why are you bored. An examination of psychological and social control causes of boredom among adolescents. *Journal of Leisure Research*, *31*, 103–121.
- Carretero-Dios, H. and Pérez, C. (2007). Standards for the development and review of instrumental studies: Considerations about test selection in psychological research.

 International Journal of Clinical and Health Psychology, 7, 863-882.
- Culp, N. A. (2006). The relations of two facets of boredom proneness with the major dimensions of personality. *Personality and Individual Differences*, 41, 999–1007.

- Dahlen, E. R., Martin, R. C., Ragan, K., & Kuhlman, M. (2004). Boredom proneness in anger and aggression: Effects of impulsiveness and sensation seeking. *Personality and Individual Differences*, *37*, 1615–1627.
- Dahlen, E. R., Martin, R. C., Ragan, K., & Kuhlman, M. (2005). Driving anger, sensation seeking, impulsiveness, and boredom proneness in the presdiction of unsafe driving. *Accident Analysis & Prevention*, *37*, 341–348.
- Farhadi, A., Pouretemad, H-R., Asgari, A., & Khoshabi, K. (2011). Factor structure of boredom in Iranian adolescents. *International Journal of the Computer, the Internet and Management*, 19, 5.1–5.5.
- Farmer, R., & Sundberg, N. D. (1986). Boredom Proneness: The development of and correlates of a new scale. *Journal of Personality Assessment*, 50, 4–17.
- Fisher, C. D. (1993). Boredom at work: A neglected concept. *Human Relations* 46, 395–417.
- Fletcher, G. J. O., Damilovics, P., Fernandez, G., Peterson, D., & Reeder, G. (1986). Attributional complexity: Na individual differences measures. *Journal of Personality and Social Psychology*, 51, 875-884.
- Folgeman, K. (1976). Bored eleven-year-olds. British Journal of Social Work, 6, 201-211.
- Freeman, J. (1993). Boredom, high ability and achievement. In V. P. Varma (Ed.), *How an why children fail* (pp. 29-40). London: Jessica Kingsley.
- Gana, K., & Akremi, M., (1998). L'echelle de disposition à l'énnui (ede): adaption Française et validation du boredom proneness scale (bp). *L'année psychologique*, *98*, 429–450.
- Gana, K., Deletang, B., & Metais, L. (2000). Is boredom proneness associated with introspectiveness? *Social Behavior and Personality: An International Journal*, 28, 499-504.
- Geiwitz, P. (1966). Structure of boredom. *Journal of Personality and Social Psychology*, 3, 592-600.
- Gjesne, T. (1977). General satisfaction and boredom at school as a function of the pupul's personality characteristics. *Scandinavian Journal of Educational Research*, 21,113-146.

- Gordon, A., Wilkinson, R., McGown, A., & Jovanoska, S. (1997). The psychometric properties of the Boredom Proneness Scale: An examination of its validity. *Psychological Studies*, 42, 85-97.
- Grubb, E. A. (1975). Assembly line boredom and individual differences in recreational participation. *Journal of Leisure Research*, 7, 256-269.
- Hamilton, J. A., Haier, R. J. & Buchsbaum, M. S. (1984). Intrinsic enjoyment and boredom coping scales: Validation with personality, evoked potencial and attention measures. *Personality and Individual Differences*, *5*, 183–193.
- Harris, M. B. (2000). Correlates and characteristics of boredom proneness and boredom. *Journal of Applied Social Psychology*, 30, 576-598.
- Irving, B. A., & Parker-Jenkins, M. (1995). Tackling truancy: An examination of persistent non-attendance amongst disaffected school pupils and positive support strategies. *Cambridge Journal of Education*, 25, 225-235.
- Iso-Ahola, S. E., & Weissinger, E. (1990). Perceptions of boredom in leisure: Conceptualization reliability, and validity of the Leisure Boredom Scale. *Journal of Leisure Research*, 22, 1–17.
- Jarvis, S., & Seifert, T. (2002). Work avoidance as amanifestation of hostility, helplessness, and boredom. *Alberta Journal of Educational Research*, 48, 174–187.
- Kass, S., & Vodanovich, S. (2001). State-trait boredom: Relationship to absenteeism, tenure, and job satisfaction. *Journal of Business and Psychology*, *16*, 317–327.
- Leong, F. T., & Shneller, G. R. (1993). Boredom proneness: Temperamental and cognitive components. *Personality and Individual Differences*, 14, 233-239.
- Lin, S. S. J., & Tsai, C. (2002). Sensation seeking and Internet dependence of Taiwanese school adolescents. *Computers in Human Behavior*, 18, 411–426.
- Maroldo, G. K. (1986). Shyness, boredom, and grade point average among college students. *Psychological Reports*, 59, 395-398.
- McGiboney, G. W., & Carter, C. (1988). Boredom proneness and adolescents' personalities. *Psychological Reports*, 63, 395-398.
- Mikulas, W. L., & Vodanovich, S. J. (1993). The essence of boredom. *The Psychological Record*, 43, 3-12.

- O'Hanlon, J. F. (1981). Boredom: Pratical consequences and a theory. *Acta Psychologica*, 49, 53-82.
- Orcutt, J. D. (1984). Contrasting effects of two kind of boredom on alcohol use. *Journal of Drug Issues*, *14*, 161–173.
- Paulson, M. J., Coombs, R. H. & Richardson, M. A. (1990). School performance, academic aspirations, and drug use among children and adolescents. *Journal of Drug Education*, 20, 289–303.
- Polly, L. M., Vodanovich, S. J., Watt, J. D., & Blanchard, M. J. (1993). The effects of attributional processes on boredom proneness. *Journal of Social Behavior and Personality*, 8, 123–132.
- Ragheb, M. G., & Merydith, S. P. (2001). Development and validation of a unidimensional scale measuring free time boredom. *Leisure Studies*, 20, 41–59.
- Ribeiro, J.L.P. (1999). Escala de Satisfação com o Suporte Social (ESSS). *Análise Psicológica*, 3(17), 547-558.
- Ridgeway, D., & Russell, J. A. (1980). Reliability and validity of the sensation seeking scale: psychometric problems in form V. *Journal of Consulting and Clinical Psychology*, 48, 41-57.
- Robinson, W. P. (1975). Boredom at school. *British Journal of Educational Psychology*, 45, 141–152.
- Rupp, D. E., & Vodanovich, S. J. (1997). The role of boredom proneness in self-reported anger and aggression. *Journal of Social Behavior and Personality*, 12, 925–936.
- Russel, D., Peplau, L. A., & Ferguson, M. L. (1978). Developing a measure of loneliness. *Journal of Personality Assessment*, 42, 290-294.
- Russell, D. W. (1996). UCLA Loneliness Scale (Version 3): Reliability, validity, and factor structure. *Journal of Personality Assessment*, 66, 20–40.
- Samuels, D. J., & Samuels, M. (1974). Low self-concept as a cause of drug abuse. *Journal of Drug Education*, 4, 421-438.
- Sartoris, P. C., & Vanderwell, A. R. (1981). Student reasons for withdrawing from the University of Alberta: 1978-79. *Canadian Counsellor*, 15, 168-174.

- Schweigert, W. (1994) Research Methods and Statistics for Psychology. Brooks/Cole Publishing Company.
- Serman, J. E., Zinser, M. C., Sideroff, S. I., & Baker, T. B. (1989). Subjective dimensions of heroine urges: Influence of heroine-related and affectively negative stimuli. *Addictive Behaviors*, 14, 611–623.
- Sundberg, N. D., & Bisno, H. (1983, April). *Boredom at life transitions adolescence and old age*. Paper presented at the meetings of the Western Psychological Association, San Francisco, CA.
- Sundberg, N. D., Latkin, C. A., Farmer, R. F., & Saoud, J. (1991). Boredom in young adults: Gender and cultural comparisons. *Journal of Cross-Cultural Psychology*, 22, 209–223.
- Tidwell, R. (1988). Dropouts speak out: Qualitative data on early school departures. *Adolescence*, 23, 939-954.
- Todman, M. (2003). Boredom and psychotic disorders: cognitive and motivational issues. *Psychiatry*, 66, 146–167.
- Todman, M. (2007). *Psychopathology and boredom: A neglected association*. Paper presented at the International Conference on Psychology, Athens, Greece
- Tolor, A. (1989). Boredom as related to alienation, assertiveness, internal expectancy, and sleep patterns. *Journal of Clinical Psychology*, *45*, 260–265.
- Vodanovich, S. J. (2003). Psychometric measures of boredom: A review of the literature. *Journal of Psychology*, 137, 569–593.
- Vodanovich, S. J., & Kass, S. J. (1990). A factor analytic study of the boredom proneness scale. *Journal of Personality Assessment*, 55, 115–123.
- Vodanovich, S. J., Wallace, J. C., & Kass, S. J. (2005). A confirmatory approach to the Boredom Proneness Scale: evidence for a two-factor form. *Journal of Personality Assessment*, 85, 295–303.
- Vodanovich, S. J., Watt, J. D., & Piotrowski, C. (1997). Boredom proneness in African-American college students: A factor analytic perspective. *Education*, 118, 229–236.

- Wallace, J. C., Kass, S. J., & Stanny, C. J. (2002). The cognitive failures questionnaire revisited: dimensions and correlates. *The Journal of General Psychology*, 129, 238–256.
- Wallace, J. C., Vodanovich, S. J., & Restino, B. M. (2003). Predicting cognitive failures from boredom proneness and daytime sleepiness scores: an investigation within military and undergraduate samples. *Personality and Individual Differences*, *34*, 635–644.
- Watt, J. D., & Ewing, J. E. (1996). Toward the development and validation of a measure of sexual boredom. *Journal of Sex Research*, *33*, 57–66.
- Watt, J. D., & Vodanovich, S.J. (1992a). An examination of race and gender differences in boredom proneness. *Journal of Social Behavior and Personality*, 7, 169-175.
- Watt, J. D., & Vodanovich, S. J. (1999). Boredom proneness and psychosocial development. *The Journal of Psychology*, 133, 303–314.
- Wiesbeck, G. A., Wodarz, N., Mauerer, C., Thome, J., Jakob, F., & Boening, J. (1996). Sensation seeking, alcoholism and dopamine activity. *European Psychiatry*, 11, 87–92.
- Zuckerman, M. (1979a). Sensation seeking: Beyond the optimal level of arousal. Hillsdale, NJ: Erlbaum.
- Zuckerman, M. (1994). Behavioural Expressions and Biosocial Bases of Sensation Seeking. Cambridge: Cambridge University Press.

ANEXOS

ANEXO I. PROTOCOLO DO ESTUDO SOBRE O TÉDIO NA ADOLESCÊNCIA

Estabelecimento de ensino:
Estudo sobre o tédio e os comportamentos de risco na adolescência
No âmbito do Mestrado em Psicologia Comunitária e Protecção de Menores do ISCTE -
Instituto Universitário de Lisboa, estamos a realizar um trabalho sobre o tédio na
adolescência. Neste sentido vimos solicitar a sua colaboração.
Nas páginas que se seguem encontras um conjunto de questões, com as respectivas
instruções de preenchimento. Com estas questões pretendemos conhecer a tua opinião
sobre alguns aspectos relacionados com a tua vida. Neste sentido, pedimos que sejas
sincero(a) nas tuas respostas e que respondas a todas as questões que te apresentamos.
Lembramos-te que as tuas respostas são confidenciais e que não existem respostas certas
nem erradas. A tua participação é <u>voluntária</u> , sendo assegurada a <u>confidencialidade e</u>
anonimato dos teus dados pessoais e das tuas respostas.
Obrigado pela sua colaboração
Dados Demográficos

Sexo	☐ Feminino ☐ Masculino		Idade	
Naturalidade (localidade onde nasceu)		_	Nacionalidade	
Etnia	□ Caucasiana (branca)□ Africana□ Cigana□ Hispânica□ Asiática□ Outra. Qual?		Com que <u>adultos</u> vive	□ Pai e Mãe□ Só Pai ou só Mãe□ Sozinho(a)□ Companheiro(a)□ Outros familiares□ Outros
Qual o seu desempenho	2º/3º Ciclo □ 2/3 □ 3/4 □ 4	4/5	Tem irmãos?	□ Não □ Sim Quantos?
escolar	Secundário □ 10/13 □ 14/17 □	18/20	Alguma vez reprovou?	□ Não □ Sim Quantas vezes?

(Escala de Propensão para o Tédio)

Lê atentamente as seguintes instruções antes de responder. Seguem-se um conjunto de afirmações relativamente às quais as pessoas se sentem de forma diferente. Por favor indica com uma X em que grau discordas ou concordas com cada uma delas. Se alguma das afirmações não se aplicar totalmente ao teu caso, procura escolher a alternativa de resposta que mais próxima esteja da realidade. Para cada afirmação dá apenas uma resposta. Por favor certifica-te que respondeste a todas as afirmações.	Discordo Totalmente			Vão Concordo nem Discordo		Concordo Totalmente
1.Tenho facilidade em concentrar-me nas minhas actividades	<u>ة</u>	2		4	5 6	5 7
2.Enquanto estou a trabalhar preocupo-me frequentemente com outras coisas	1			_	_	5 7
3.0 tempo parece que passa sempre muito devagar				_	5 6	_
4. Muitas vezes dou por mim num beco sem saída sem saber o que fazer				_	_	5 7
5.Muitas vezes fico preso(a) a situações em que tenho de fazer coisas sem qualquer sentido					_	5 7
6.Ter de ver vídeos caseiros ou fotos de viagens de outras pessoas aborrece-me muito	1			_	_	5 7
7.Tenho projectos em mente e coisas para fazer o tempo todo				_	_	5 7
8.Acho fácil manter-me entretido(a)				_	_	5 7
9.Muitas das coisas que tenho de fazer são repetitivas e monótonas			_	_	_	5 7
10.Preciso de mais estímulo para seguir em frente do que a maioria das pessoas				_	_	5 7
11.Tenho prazer na maioria das coisas que faço					_	5 7
12.Raramente fico entusiasmado(a) com o meu trabalho						5 7
13.Em qualquer situação, encontro geralmente coisas para ver/fazer para me manter interessado(a)	1	2	3	4	5 6	5 7
14.A maior parte do tempo apenas ando por aí sem fazer nada	-			_	_	5 7
15.Sou bom (boa) a esperar pacientemente			_	_	_	5 7
16.Encontro-me muitas vezes sem nada para fazer com o meu tempo				_		5 7
17.Em situações em que tenho de esperar, como por exemplo numa fila, fico muito inquieto(a)				_		5 7
18. Muitas vezes acordo com novas ideias	1	2	3	4	5 6	5 7
19.Será muito difícil para mim encontrar um emprego suficientemente interessante	1	2	3	4	5 6	5 7
20.Gostava de ter coisas mais desafiantes para fazer na minha vida	1	2	3	4	5 6	5 7
21. Sinto que estou a trabalhar a maior parte do tempo abaixo das minhas capacidades	1	2	3	4	5 6	5 7
22.Muitas pessoas diriam que eu sou uma pessoa criativa ou imaginativa	1	2	3	4	5 6	5 7
23.Tenho tantos interesses que não tenho tempo para me dedicar a tudo	1	2	3	4	5 6	5 7
24.De todos os meus amigos, sou o(a) que realiza as mesmas actividades há mais tempo	1	2	3	4	5 6	5 7
25.Excepto quando faço algo excitante/perigoso, sinto-me meio(a) morto(a) e aborrecido(a)	1	2	3	4	5 6	5 7
26.São necessárias muitas mudanças e muita variedade para me manter realmente feliz	1	2	3	4	5 6	5 7
27.Parece que a televisão e os filmes passam sempre a mesma coisa, é monótono	1	2	3	4	5 6	5 7
28.Quando era mais novo(a) encontrava-me muitas vezes em situações monótonas e cansativas	1	2	3	4	5 6	5 7
29.Sinto-me com frequência entediado/aborrecido	1	2	3	4	5 6	5 7
30. Sinto-me com frequência satisfeito(a) ou interessado(a) naquilo que estou a fazer	1	2	3	4	5 6	5 7

(Escala de Solidão)

As seguintes afirmações descrevem como as pessoas às vezes se sentem. Para cada afirmação, por favor indica a frequência (e.g. <u>nunca a sempre</u>), com que te sentes de acordo com o que está escrito, assinalando com uma X no espaço destinado.				Às Vezes		Sempre
1.Com que frequência sentes que estás em sintonia com as pessoas que estão à tua volta?	1	2	3	4	5	6 7
2.Com que frequência sentes que não tens companhia?	1	2	3	4	5	6 7
3.Com que frequência sentes que não tens ninguém com quem contar?	1	2	3	4	5	6 7
4. Com que frequência te sentes sozinho(a)?	1	2	3	4	5	6 7
5.Com que frequência te sentes parte de um grupo de amigos?	1	2	3	4	5	6 7
6.Com que frequência sentes que tens muitas coisas em comum com as pessoas que te rodeiam?	1	2	3	4	5	6 7
7.Com que frequência sentes que já não estás próximo de ninguém?	1	2	3	4	5	6 7
8.Com que frequências sentes que os teus interesses e ideias não são partilhadas pelos que te rodeiam?	1	2	3	4	5	6 7
9.Com que frequência te sentes extrovertido(a) e amigável?	1	2	3	4	5	6 7
10.Com que frequência te sentes próximo(a) das pessoas?	1	2	3	4	5	6 7
11.Com que frequência te sentes deixado(a) de fora?	1	2	3	4	5	6 7
12.Com que frequência sentes que as tuas relações com os outros não têm significado?	1	2	3	4	5	6 7
13.Com que frequência sentes que ninguém te conhece bem?	1	2	3	4	5	6 7
14.Com que frequência te sentes isolado dos outros?	1	2	3	4	5	6 7
15.Com que frequência sentes que consegues arranjar companhia quando queres?	1	2	3	4	5	6 7
16.Com que frequência sentes que existem pessoas que realmente te compreendem?	1	2	3	4	5	6 7
17.Com que frequência te sentes tímido(a)?	1	2	3	4	5	6 7
18.Com que frequência sentes que as pessoas estão à tua volta mas que não estão contigo?	1	2	3	4	5	6 7
19.Com que frequência sentes que existem pessoas com quem podes falar?	1	2	3	4	5	6 7
20.Com que frequência sentes que tens pessoas com quem podes contar?	1	2	3	4	5	6 7

(Escala de Procura de Sensações)

Para cada questão por favor indica qual das opções melhor descreve o que gostas ou a forma como te sentes. Quando for difícil escolher, escolhe a opção que te descreve melhor. Coloca uma X no quadrado)
correspondente	
Gosto de ir a festas arrojadas e desinibidas; Prefiro festas calmas onde se podem ter boas conversas;	
2.Existem alguns filmes que eu gosto de ver duas ou até três vezes; Não suporto ver um filme que já vi uma vez;	
3.Gostaria de ser um montanhista; Não consigo perceber as pessoas que arriscam a vida subindo montanhas;	
4.Não gosto de nenhum odor corporal; Gosto de alguns odores corporais;	
5.Aborreço-me de ver sempre as mesmas caras; Gosto do conforto de estar rodeado de pessoas familiares;	
6.Gosto de explorar uma cidade desconhecida por mim próprio(a), mesmo que me perca Eu prefiro ter um guia quando estou num sítio que não conheço;	_
7.Não gosto de pessoas que fazem/dizem coisas só para chocar ou chatear os outros; Quando consigo antecipar tudo o que uma pessoa vai dizer/fazer, de certeza que a pessoa deve ser uma seca;	
8.Geralmente não gosto de filmes em que consigo prever o que vai acontecer mais para a frente; Não me importo de ver um filme onde consigo antecipar o que vai acontecer a seguir;	
9.Já experimentei haxixe/marijuana ou gostava de experimentar; Nunca experimentei haxixe/marijuana;	
10.Não gostava de experimentar nenhuma droga com efeitos estranhos ou perigosos para mim; Gostaria de experimentar algumas drogas que produzem alucinações;	_
11.Uma pessoa sensata evita actividades perigosas; Às vezes gosto de fazer coisas um pouco assustadoras;	
12.Não gosto de pessoas que estão sempre a trocar de namorado(a). Gosto da companhia e pessoas que trocam de namorado(a) muitas vezes	
13.Descobri que os estimulantes me fazem sentir desconfortável; Gosto de ficar "pedrado(a)" (beber álcool ou fumar haxixe/marijuana);	
14.Gosto de provar novas comidas que nunca experimentei antes; Gosto de pedir pratos que conheço, de forma a evitar desapontamentos e desprazeres;	
15.Gosto de ver filmes caseiros ou fotografias de viagens; Ver filmes caseiros de outras pessoas ou fotografias de viagens, aborrece-me tremendamente;	
16.Gostava de fazer <i>Ski</i> Aquático; Não gostaria de fazer <i>Ski</i> Aquático;	_
17.Gostaria de experimentar fazer <i>Surf</i> ; Não gostaria de experimentar fazer <i>Surf</i> ;	
18.Gostaria de fazer uma viagem, sem planos ou horários definidos; Quando viajo gosto de planear cuidadosamente os percursos e horários;	
19.Prefiro ter como amigos pessoas que tenham os pés bem assentes no chão; Gosto de fazer amigos em alguns grupos alternativos como artistas ou "punks";	
20.Não gostava de aprender a pilotar um avião; Gostava de aprender a pilotar um avião;	
21.Prefiro a superfície da água do que as profundezas; Gostaria de aprender a fazer mergulho;	

22.Gostava de conhecer pessoas que fossem homossexuais (homem ou mulher); Fico longe de pessoas que suspeito serem "gays ou lésbicas";	
23.Gostava de experimentar saltar de paraquedas; Nunca tentaria saltar de um avião, com ou sem paraquedas;	
24.Prefiro amigos que sejam imprevisíveis e excitantes; Prefiro amigos que sejam previsíveis e de confiança;	_
25.Não estou interessado(a) em experimentar coisas só por experimentar; Gosto de experiências /sensações novas /excitantes mesmo que assustadoras, alternativas ou ilegais.	
26.A essência de uma boa arte é a sua clareza, simetria na forma e harmonia nas cores; Encontro às vezes beleza no contraste das cores, nas formas irregulares e em pinturas modernas;	_
27.Gosto de passar tempo em ambiente familiar e caseiro; Fico inquieto(a), se tiver de ficar por casa por muito tempo;	
28.Gosto de mergulhar da prancha mais alta; Não gosto da sensação de estar na prancha mais alta (nem de chegar perto)	
29.Gosto de sair com membros do sexo oposto que são fisicamente atraentes; Gosto de sair com membros do sexo oposto que partilhem os meus valores;	
30.Bebidas pesadas estragam uma festa porque as pessoas se tornam barulhentas e descontroladas; Manter os copos cheios é a chave para uma boa festa;	_
31.O maior pecado social é ser rude; O maior pecado social é ser aborrecido;	
32.Uma pessoa deve ter uma experiência sexual considerável antes de casar; É melhor se duas pessoas casadas iniciarem a vida sexual juntas;	_
33. Mesmo que tivesse muito dinheiro, não me juntaria a pessoas ricas e superficiais como as do "jet set"; Consigo imaginar-me a procurar prazeres pelo mundo fora com o "jet set";	
34.Gosto de pessoas espertas e espirituosas, mesmo que por vezes insultem outras pessoas; Não gosto de pessoas que se divertem à custa de magoar os sentimentos de outros;	_
35.No geral existe demasiado sexo nos filmes; Gosto de ver a maior parte das cenas "sexy" dos filmes;	
36.Sinto-me melhor depois de ter bebido um bocado; Algo está errado com as pessoas que precisam de beber para se sentirem bem;	
37.As pessoas deviam vestir-se de acordo com determinado padrão de bom gosto, asseio e estilo; As pessoas deviam vestir-se como querem, mesmo que o resultado seja por vezes estranho;	
38.Velejar longas distâncias com um pequeno barco á vela, é imprudente; Gostaria de velejar uma longa distância num pequeno mas bem construído barco à vela;	
39.Não tenho paciência com pessoas chatas ou aborrecidas; Encontro quase sempre qualquer coisa de interessante nas pessoas com quem converso;	
40.Descer uma montanha esquiando a grande velocidade, é uma boa maneira de acabar magoado; Acho que iria gostar muito da sensação de descer uma montanha esquiando a alta velocidade	

(Inventário de Depressão de Beck)

Para terminar vamos apresentar-te grupos de 4 opções relativas a estados de espirito. Para cada grupo escolhe a frase que melhor descreve(m) a maneira como te tens sentido nas duas últimas semanas, incluindo hoje. <u>Assinala com uma X o número (0, 1, 2 ou 3)</u> que se encontra após a frase que escolheste. Por favor lê todas as frases de cada grupo antes de fazeres a tua escolha.

que escolheste. Por favor lê todas as frases de cada grupo antes de fazeres a tua escolha.	
1.0. Não me sinto triste	0
1.1. Sinto-me triste a maior parte do tempo	1
1.2. Estou sempre triste	2
1.3. Estou tão triste ou infeliz que não consigo suportar	3
2.0. Não estou desanimado quanto ao futuro	0
2.1. Sinto-me mais desanimado quanto ao futuro do que habitualmente	1
2.2. Não tenho esperança que as coisas se resolvam para mim	2
2.3. Não tenho esperança no meu futuro e penso que só pode piorar	3
3.0. Não me sinto um fracasso	0
3.1. Falhei mais do que devia	1
3.2. Quando olho para trás o que vejo é um monte de fracassos	2
3.3. Acho que, como pessoa, sou um fracasso total	3
4.0. Tiro prazer das coisas de que gosto como sempre tirei	0
4.1. Não tiro tanto prazer das coisas como costumava tirar	1
4.2. Tiro muito pouco prazer das coisas de que costumava gostar	2
	3
	0
5.1. Sinto-me culpado(a) por muitas coisas que fiz ou que deveria ter feito	1
5.2. Sinto-me culpado(a) na maior parte do tempo	2
5.3. Sinto-me permanentemente culpado(a)	3
6.0. Não acho que esteja a ser punido(a)	0
6.1. Acho que posso ser punido(a)	1
6.2. Estou à espera de ser punido(a)	2
	3
	0
7.1. Perdi a confiança em mim mesmo(a)	1
7.2. Estou decepcionado(a) comigo mesmo(a)	2
	3
	0
8.1. Sou mais crítico(a) comigo mesmo(a) do que costumava ser	1
8.2. Critico-me por todas as minhas falhas	2
8.3. Culpo-me por tudo o que de mal que me acontece	3
	0
9.1. Tenho ideias de me matar, mas não as executaria	1
9.2. Gostaria de me matar	2
9.3. Matava-me se tivesse oportunidade	3
10.0. Não choro mais do que é costume	0
10.1. Choro mais do que costumava	1
·	2
	3
	0
11.1. Sinto-me mais inquieto(a) e agitado(a) do que o costume	1
	2
1 11 9 11	3
, ,	0
12.1. Estou menos interessado(a) noutras pessoas ou coisas do que costumava estar	1
12.2. Perdi a maior parte do interesse por outras pessoas ou coisas	2
12.3. É difícil interessar-me por qualquer coisa	3
	0
13.1. Acho mais difícil tomar decisões do que o costume	1
13.2. Tenho muito mais dificuldade em tomar decisões do que costumava ter	2
	3
amountains our torner, quantains deviated	J

14.0. Sinto que não sou um(a) inútil	0
14.1. Não me considero tão útil e valioso(a) como antes	1
14.2. Sinto-me inútil quando me comparo com outras pessoas	2
14.3. Sinto-me completamente inútil	3
15.0. Tenho tanta energia como sempre tive	0
15.1. Tenho menos energia do que costumava ter	1
15.2. Não tenho energia suficiente para fazer grande coisa	2
15.3. Não tenho energia suficiente para fazer qualquer coisa, seja o que for	3
16.0. Não sofri nenhuma alteração do meu padrão de sono	0
16.1a. Durmo um pouco mais do que habitual	1
16.1b. Durmo um pouco menos que o habitual	1
16.2a. Durmo bastante menos do que o habitual	2
16.2b. Durmo bastante mais que o habitual	2
16.3a. Durmo a maior parte do dia	3
16.3b. Acordo 1 a 2 horas mais cedo e não consigo voltar a adormecer	3
17.0. Não ando mais irritável do que é costume	0
17.1. Ando mais irritável do que é costume	1
17.2. Ando muito mais irritável do que é costume	2
17.3. Ando permanentemente irritável	3
18.0. Não notei nenhuma mudança no meu apetite	0
18.1a. Tenho um pouco menos de apetite do que é costume	1
18.1b. Tenho um pouco mais de apetite do que é costume	1
18.2a. Tenho muito menos apetite do que antes	2
18.2b. Tenho muito mais apetite do que antes	2
18.3a. Não tenho apetite nenhum	3
18.3b. Tenho um desejo constante de comer	3
19.0. Consigo concentrar-me tão bem como sempre	0
19.1. Não consigo concentrar-me tão bem como de costume	1
19.2. É difícil manter a minha atenção, nalguma coisa, por muito tempo	2
19.3. Noto que não me consigo concentrar em nada	3
20.0. Não estou mais cansado(a) ou fatigado(a) do que o costume	0
20.1. Canso-me ou fatigo-me mais do que o costume	1
20.2. Estou demasiado cansado(a) ou fatigado(a) para fazer muitas das coisas que costumava fazer	2
20.3. Estou demasiado cansado(a) ou fatigado(a) para fazer a maior parte das coisas que costumava fazer	3
21.0. Não notei qualquer mudança recente no meu interesse por sexo	0
21.1. Estou menos interessado(a) por sexo do que costumava	1
21.2. Estou muito menos interessado(a) por sexo, agora	2
21.3. Perdi completamente o interesse por sexo	3

OBRIGADA PELA TUA COLABORAÇÃO!!!!

Adaptação e validação da "Boredom Proneness Scale"

ANEXO II. GUIÃO DO GRUPO DE DISCUSSÃO

Data:	Hora:	Sala: C 404	Duração:
-------	-------	-------------	----------

Nº de participantes:	Sexo:	Idade:	Ano de escolaridade:
1			
2			
3			
4			
5			

- ✓ No decorrer de um estudo sobre o tédio e comportamentos associados, solicitamos a vossa colaboração, que se traduz em responder a um questionário sobre a forma como se sentem e se comportam no dia-a-dia.
- ✓ Asseguramos a confidencialidade e anonimato dos vossos dados.
- ✓ Uma vez que serão os primeiros a responder ao questionário, e que o mesmo foi traduzido (inglês-português), queremos ter a certeza que percebem as questões, ou seja, que traduzimos bem, que não houve alguma falha da nossa parte.
- ✓ Neste sentido, sempre que alguma questão esteja pouco compreensível deverão assinalar, mas só no fim do preenchimento é que serão clarificadas.
- ✓ Após a clarificação poderão responder às questões.
- ✓ Agradecemos que no final dobrem o questionário e coloquem na urna fechada

Adaptação e validação da "Boredom Proneness Scale"

ANEXO III. ANÁLISES DESCRITIVAS DAS VARIÁVEIS SOCIODEMOGRÁFICAS

Género

Statistics

Sexo

N	Valid	215
	Missing	0

Sexo

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	F	168	78,1	78,1	78,1
	M	47	21,9	21,9	100,0
	Total	215	100,0	100,0	

Idade

Statistics

Idade

N	Valid	213
	Missing	2
Mean		19,77
Std. D	eviation	1,691
Minin	num	18
Maxin	num	28

Idade

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	18	40	18,6	18,8	18,8
	19	82	38,1	38,5	57,3
	20	41	19,1	19,2	76,5
	21	24	11,2	11,3	87,8
	22	9	4,2	4,2	92,0
	23	7	3,3	3,3	95,3
	24	4	1,9	1,9	97,2
	25	5	2,3	2,3	99,5
	28	1	,5	,5	100,0
	Total	213	99,1	100,0	
Missing	System	2	,9		
Total		215	100,0		

Etnia

Statistics

Etnia

N	Valid	214
	Missing	1

Etnia

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	AFRICANA	8	3,7	3,7	3,7
	ASIATICA	1	,5	,5	4,2
	CAUCASIANA	203	94,4	94,9	99,1
	CIGANA	1	,5	,5	99,5
	LATINA	1	,5	,5	100,0
	Total	214	99,5	100,0	
Missing	999	1	,5		
Total		215	100,0		

Etnia Recodificada

rec_etnia

F	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	CAUCASIANA	203	94,4	94,9	94,9
	OUTRA	11	5,1	5,1	100,0
	Total	214	99,5	100,0	
Missing	System	1	,5		
Total		215	100,0		

Nacionalidade

Statistics

Nacionalidade

N	Valid	213
	Missing	2

Nacionalidade

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	ALEMA	1	,5	,5	,5
	AMERICANA	1	,5	,5	,9
	ANGOLANA	1	,5	,5	1,4
	BRASILEIRA	1	,5	,5	1,9
	CABO VERDEANA	1	,5	,5	2,3
	CABO VERDEANA / PORTUGUESA	1	,5	,5	2,8
	ESPANHOLA	2	,9	,9	3,8
	LUSO-BELGA	1	,5	,5	4,2
	PORTUGUESA	202	94,0	94,8	99,1
	PORTUGUESA / BRASILEIRA	1	,5	,5	99,5
	VENEZUELANA	1	,5	,5	100,0
	Total	213	99,1	100,0	
Missing	999	2	,9		
Total		215	100,0		

Nacionalidade Recodificada

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	PORTUGUESA	202	94,0	94,8	94,8
	OUTRA NACIONALIDADE	11	5,1	5,2	100,0
	Total	213	99,1	100,0	
Missing	System	2	,9		
Total		215	100,0		

Naturalidade

Statistics

Naturalidade

N	Valid	207
	Missing	8

Naturalidade

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	ABRANTES	2	,9	1,0	1,0
	ALCABIDECHE	2	,9	1,0	1,9
	ALCOCHETE	1	,5	,5	2,4
	ALEMANHA	1	,5	,5	2,9
	ALGES	1	,5	,5	3,4
	ALMADA	2	,9	1,0	4,3
	ALTO DO SEIXALINHO	1	,5	,5	4,8
	AMARANTE	1	,5	,5	5,3
	BARREIRO	4	1,9	1,9	7,2
	BEJA	2	,9	1,0	8,2
	BOSTON	1	,5	,5	8,7
	CABO VERDE	2	,9	1,0	9,7
	CADAVAL	1	,5	,5	10,1
	CALDAS DA RAINHA	7	3,3	3,4	13,5
	CANADA	1	,5	,5	14,0
	CARACAS	1	,5	,5	14,5
	CARTAXO	1	,5	,5	15,0
	CASCAIS	5	2,3	2,4	17,4
	CASTRO MARIM	1	,5	,5	17,9
	COIMBRA	2	,9	1,0	18,8
	COVILHA	1	,5	,5	19,3
	ELVAS	1	,5	,5	19,8
	ERICEIRA	1	,5	,5	20,3
	ESTORIL	1	,5	,5	20,8
	EVORA	4	1,9	1,9	22,7
	FARO	2	,9	1,0	23,7
	FATIMA	1	,5	,5	24,2
	FERREIRA DO ZEZERE	1	,5	,5	24,6
	FIGUEIRA DA FOZ	1	,5	,5	25,1
	FRIANDE	1	,5	,5	25,6
	FUNCHAL	4	1,9	1,9	27,5
	FUNDAO	1	,5	,5	28,0

GUIMARAES		_				
JOHANNESBURG		GAVIAO	1	,5	,5	28,5
LAMEGO		GUIMARAES	1	,5	,5	29,0
LEIRIA		JOHANNESBURG	1	,5	,5	29,5
LISBOA LOULE 2 9 1.0 67.1 LOURES 2 9 1.0 68.1 LUANDA 2 9 1.0 69.1 MACAU 1 5 5 5 69.6 MIRA-AMADORA MIRA-AMADORA MOCAMBIQUE 1 5 5 5 70.5 MOITA MONTARGIL 1 5 5 5 71.5 MOURA 1 5 5 5 72.5 NAZARE 1 5 5 5 72.5 NAZARE 1 5 5 72.9 NEW JERSEY 1 5 5 73.4 OURENSE 1 1 5 5 5 75.4 PAREDE 1 5 5 75.4 PAREDE 1 5 5 75.4 PONTA DELGADA 1 5 5 5 76.8 PORTALEGRE 1 5 5 76.8 PORTALEGRE 1 5 5 77.3 PORTIMAO 3 1,4 1,4 78.7 PRAGAL 1 5 5 5 77.2 QUELUZ 2 9 1.0 80.2 RIO DE JANEIRO S 10 A 1 1,5 5 5 77.3 S. SEBASTIAO DA PEDREIRA S AMORA CORREIA 1 5 5 5 83.1 SANTA CRUZ 1 5 5 5 83.1 SANTA CRUZ 1 5 5 5 83.1 SANTA CRUZ 1 5 5 5 83.1 SERTA 1 5 5 5 83.1 SETUBAL 3 1 5 5 5 83.4 SELEBANIA 1 5 5 5 83.1 SETUBAL 3 1 5 5 5 83.1 SETUBAL 3 1 5 5 5 93.7 SETUBAL 3 1 5 5 5 93.7 SETUBAL 3 1 5 5 5 93.7 SETUBAL 4 1 4 93.2 TOMAR 1 5 5 5 93.7 TORRES VEDRAS 6 2.8 2.9 96.6 VILLA FRANCA DE XIRA 4 1 1 5 5 5 93.7 TORRES VEDRAS 6 2.8 2.9 96.6 VINLA FRANCA DE XIRA 4 1 1 5 5 5 93.7 TORRES VEDRAS 6 2.8 2.9 96.6 VILLA FRANCA DE XIRA 4 1 1,5 5 5 93.7 TORRES VEDRAS 6 2.8 2.9 96.6 VILLA FRANCA DE XIRA 4 1 1,9 1,9 99.5 VILLA FRANCA DE XIRA 4 1,9 1,9 99.5		LAMEGO	1	,5	,5	30,0
LOULE		LEIRIA	4	1,9	1,9	31,9
LOURES		LISBOA	71	33,0	34,3	66,2
LUANDA 2 9 1,0 69,1		LOULE	2	,9	1,0	67,1
LUANDA		LOURES	2	,9	1,0	68,1
MACAU 1 .5 .5 69.6 MIRA-AMADORA 1 .5 .5 70.0 MOCAMBIQUE 1 .5 .5 70.5 MOITA 1 .5 .5 71.0 MONTARGIL 1 .5 .5 72.0 MUNSTER 1 .5 .5 72.5 MUNSTER 1 .5 .5 72.5 NAZARE 1 .5 .5 72.9 NEW JERSEY 1 .5 .5 72.9 OVAR 1 .5 .5 75.4		LUANDA	2		1,0	69,1
MIRA-AMADORA MOCAMBIQUE MOCAMBIQUE MOTA MOITA MISSING MOITA MISSING MORA MOCAMBIQUE MISSING MORA MOCAMBIQUE MISSING MISSING MISSING MOCAMBIQUE MISSING MISSING MISSING MOCAMBIQUE MISSING MISSIN		MACAU	1			69,6
MOÇAMBIQUE		MIRA-AMADORA	1			
MOITA		MOCAMBIQUE	1			
MONTARGIL			1			
MOURA 1 .5 .5 72.0 MUNSTER 1 .5 .5 .72.5 NAZARE 1 .5 .5 .72.9 NEW JERSEY 1 .5 .5 .73.4 OEIRAS 2 .9 .10 .74.4 OURENSE 1 .5 .5 .74.9 OVAR 1 .5 .5 .74.9 OVAR 1 .5 .5 .75.4 PAREDE 1 .5 .5 .75.8 PONTA DELGADA 1 .5 .5 .76.8 PORTALEGRE 1 .5 .5 .76.8 PORTIMAO 3 1.4 1.4 .78.7 PRAGAL 1 .5 .5 .79.2 QUELUZ 2 .9 1.0 80.2 RIO DE JANEIRO 1 .5 .5 80.7 S JOAO DA TALHA 1 .5 .5 80.7						
MUNSTER NAZARE NAZARE NAZARE NEW JERSEY NEW						
NAZARE 1 1 .5 .5 .72.9 NEW JERSEY 1 1 .5 .5 .5 .73.4 OEIRAS 2 .9 .9 .1,0 .74.4 OURENSE 1 .5 .5 .74.9 OVAR 1 .5 .5 .5 .75.4 PAREDE 1 .5 .5 .5 .75.8 PONFERRADA 1 .5 .5 .5 .76.8 PONTA DELGADA 1 .5 .5 .5 .76.8 PORTALEGRE 1 .5 .5 .5 .76.8 PORTIMAO 3 .1.4 .1.4 .78.7 PRAGAL 1 .5 .5 .5 .79.2 QUELUZ 2 .9 .9 .1.0 .80.2 RIO DE JANEIRO 1 .5 .5 .5 .80.7 S JOAO DA TALHA 1 .5 .5 .5 .81.2 S. SEBASTIAO DA PEDREIRA 3 .1.4 .1.4 .82.6 SAMORA CORREIA 1 .5 .5 .5 .83.1 SANTA CRUZ 1 .5 .5 .5 .83.1 SANTAREM 6 .2.8 .2.9 .86.5 SAO PAULO 1 .5 .5 .5 .87.0 SERTA 1 .5 .5 .87.0 SERTA 1 .5 .5 .5 .87.4 SESIMBRA 1 .5 .5 .5 .87.9 SETUBAL 7 .3.3 .3.4 .91.3 SINTRA 1 .5 .5 .5 .87.9 SETUBAL 7 .3.3 .3.4 .91.3 SINTRA 1 .5 .5 .5 .97.6 VILA FRANCA DE XIRA 4 .1 .5 .5 .5 .97.6 VILA FRANCA DE XIRA 4 .1 .9 .9 .9.5 VISEU 1 .5 .5 .5 .70.0 Missing 999 8 .3.7						
NEW JERSEY OEIRAS OEIRAS OURENSE 1						
OEIRAS 2 .9 1.0 74.4 OURENSE 1 .5 .5 74.9 OVAR 1 .5 .5 .75.4 PAREDE 1 .5 .5 .75.4 PAREDE 1 .5 .5 .75.4 PONFERRADA 1 .5 .5 .76.3 PONTA DELGADA 1 .5 .5 .76.3 PONTA LEGRE 1 .5 .5 .76.8 PORTIMAO 3 1.4 1.4 .78.7 PRAGAL 1 .5 .5 .79.2 QUELUZ 2 .9 1.0 .80.2 RIO DE JANEIRO 1 .5 .5 .80.7 S JOAO DA TALHA 1 .5 .5 .80.7 S SEBASTIAO DA PEDREIRA 3 1.4 1.4 .82.6 SANTAREM 6 2.8 2.9 .86.5 SAO PAULO 1 .5 .5 .87						
OURENSE 1						
OVAR PAREDE PAREDE PAREDE PONFERRADA PONTA DELGADA PONTA DELGADA PONTA DELGADA PORTALEGRE PORTIMAO PRAGAL QUELUZ QUELUZ RIO DE JANEIRO SI JOAO DA TALHA S. SEBASTIAO DA PEDREIRA SANTA CRUZ SANTAREM SANTA CRUZ SANTAREM SESIMBRA SISSIMBRA						
PAREDE						
PONFERRADA						
PONTA DELGADA PORTALEGRE PORTALEGRE PORTIMAO PORTIMAO PRAGAL PRAGAL PRAGAL PORTIMAO PRAGAL PR						
PORTALEGRE 1 5 5 77.3 PORTIMAO 3 1.4 1.4 78,7 PRAGAL 1 5 5 5 79.2 QUELUZ 2 9 9 1.0 80,2 RIO DE JANEIRO 1 5 5 5 80,7 S JOAO DA TALHA 1 5,5 5 81,2 S. SEBASTIAO DA PEDREIRA 3 1.4 1.4 82,6 SAMORA CORREIA 1 5,5 5 83,1 SANTA CRUZ 1 5,5 5 83,6 SANTAREM 6 2,8 2,9 86,5 SAO PAULO 1 5,5 5 87,0 SERTA 1 5,5 5 87,0 SERTA 1 5,5 5 87,4 SESIMBRA 1 5,5 5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 5,5 5 91,8 SUIÇA 3 1.4 1.4 93,2 TOMAR 1 5,5 5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 5,5 5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 5,5 5 97,6 Missing 999 8 3,7						
PORTIMAO PRAGAL PRAGAL QUELUZ QUELUZ PRIO DE JANEIRO S JOAO DA TALHA S. SEBASTIAO DA PEDREIRA SAMORA CORREIA SANTA CRUZ SANTAREM SAO PAULO SERTA SESIMBRA SINTRA SESIMBRA SINTRA SUIÇA TOMAR TORRES VEDRAS VENEZUELA VIANA DO CASTELO VILA FRANCA DE XIRA Missing Missing Missing 999 1,0 80,2 79,2 9,9 1,0 80,2 79,2 9,9 1,0 80,2 80,2 80,2 9 1,0 80,2 80,2 80,7 80,7 80,7 80,7 80,7 80,7 80,7 80,7						
PRAGAL QUELUZ QUELUZ RIO DE JANEIRO S JOAO DA TALHA S. SEBASTIAO DA PEDREIRA SAMORA CORREIA SANTA CRUZ SANTAREM SAO PAULO SERTA SESIMBRA SINTRA SETUBAL SINTRA SUIÇA TOMAR TORRES VEDRAS VENEZUELA VIANA DO CASTELO VILA FRANCA DE XIRA Missing Missing Missing PRAGAL 1						
QUELUZ 2 ,9 1,0 80,2 RIO DE JANEIRO 1 ,5 ,5 80,7 S JOAO DA TALHA 1 ,5 ,5 81,2 S. SEBASTIAO DA PEDREIRA 3 1,4 1,4 82,6 SAMORA CORREIA 1 ,5 ,5 83,1 SANTA CRUZ 1 ,5 ,5 83,6 SANTAREM 6 2,8 2,9 86,5 SAO PAULO 1 ,5 ,5 87,4 SESIMBRA 1 ,5 ,5 87,4 SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 1,9 99,5 </td <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td>			3			
RIO DE JANEIRO			1			
S JOAO DA TALHA S. SEBASTIAO DA PEDREIRA S. SEBASTIAO DA PEDREIRA SAMORA CORREIA SANTA CRUZ SANTA CRUZ SANTAREM SAO PAULO SERTA SESIMBRA SINTRA SESIMBRA SINTRA SUIÇA TOMAR TOMAR TORRES VEDRAS VENEZUELA VIANA DO CASTELO VILA FRANCA DE XIRA Missing Missing Missing 999 8 3,7 1,4 1,4 1,4 82,6 81,2 1,5 5,5 83,1 1,4 1,4 1,5 5,5 83,6 83,6 83,1 1,4 1,5 5,5 87,0 87,0 87,0 87,0 87,0 87,0 87,0 87,0		=	2			
S. SEBASTIAO DA PEDREIRA SAMORA CORREIA 1			1		,5	
SAMORA CORREIA 1 ,5 ,5 83,1 SANTA CRUZ 1 ,5 ,5 83,6 SANTAREM 6 2,8 2,9 86,5 SAO PAULO 1 ,5 ,5 87,0 SERTA 1 ,5 ,5 87,4 SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7		S JOAO DA TALHA	1	,5	,5	
SANTA CRUZ 1 ,5 ,5 83,6 SANTAREM 6 2,8 2,9 86,5 SAO PAULO 1 ,5 ,5 87,0 SERTA 1 ,5 ,5 87,9 SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7 100,0		S. SEBASTIAO DA PEDREIRA	3	1,4	1,4	82,6
SANTAREM 6 2,8 2,9 86,5 SAO PAULO 1 ,5 ,5 87,0 SERTA 1 ,5 ,5 87,4 SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Missing 999 8 3,7 100,0		SAMORA CORREIA	1	,5	,5	83,1
SAO PAULO 1 ,5 ,5 87,0 SERTA 1 ,5 ,5 87,4 SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Missing 999 8 3,7 100,0		SANTA CRUZ	1	,5	,5	83,6
SERTA 1 ,5 ,5 87,4 SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 5 100,0 Missing 999 8 3,7 100,0		SANTAREM	6	2,8	2,9	86,5
SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 Missing 999 8 3,7 100,0		SAO PAULO	1	,5	,5	87,0
SESIMBRA 1 ,5 ,5 87,9 SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 Missing 999 8 3,7 100,0		SERTA	1	,5	,5	87,4
SETUBAL 7 3,3 3,4 91,3 SINTRA 1 ,5 ,5 91,8 SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Missing 999 8 3,7 100,0		SESIMBRA	1			87,9
SINTRA SUIÇA SUIÇA TOMAR TORRES VEDRAS VENEZUELA VIANA DO CASTELO VILA FRANCA DE XIRA VISEU Total Missing 999 SINTRA 1		SETUBAL	7			91,3
SUIÇA 3 1,4 1,4 93,2 TOMAR 1 ,5 ,5 93,7 TORRES VEDRAS 6 2,8 2,9 96,6 VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7 100,0		SINTRA	1			
TOMAR TORRES VEDRAS TORRES VED			3			
TORRES VEDRAS VENEZUELA VIANA DO CASTELO VILA FRANCA DE XIRA VISEU Total Missing TORRES VEDRAS 6 2,8 2,9 96,6 75 97,1 75 97,6 1,5 1,5 1,9 1,9 1,9 1,9 99,5 100,0 100,0 100,0 100,0		•				
VENEZUELA 1 ,5 ,5 97,1 VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7			ŀ			
VIANA DO CASTELO 1 ,5 ,5 97,6 VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7						
VILA FRANCA DE XIRA 4 1,9 1,9 99,5 VISEU 1 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7						
VISEU 1 ,5 ,5 100,0 Total 207 96,3 100,0 Missing 999 8 3,7						
Total 207 96,3 100,0 Missing 999 8 3,7						
Missing 999 8 3,7						100,0
	Missing		,		100,0	
10tal 2151 100.01 I	Total		215	100,0		

Naturalidade Recodificada

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	GRANDE LISBOA	71	33,0	34,3	34,3
	OUTRA LOCALIDADE	136	63,3	65,7	100,0
	Total	207	96,3	100,0	
Missing	System	8	3,7		
Total		215	100,0		

Agregado Familiar

Statistics

Comkvive

N	Valid	213
	Missing	2

comkvive

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	COMPANHEIRO(A)	13	6,0	6,1	6,1
	OUTROS	18	8,4	8,5	14,6
	OUTROS FAMILIARES	11	5,1	5,2	19,7
	PAI E MAE	117	54,4	54,9	74,6
	SO PAI OU SO MAE	42	19,5	19,7	94,4
	SOZINHO(A)	12	5,6	5,6	100,0
	Total	213	99,1	100,0	
Missing	999	2	,9		
Total		215	100,0		

Irmãos

Statistics

irmaos_sn

N	Valid	215
	Missing	0

irmaos_sn

-	Frequency	Percen t	Valid Percent	Cumulative Percent
Valid NAO	35	16,3	16,3	16,3
SIM	180	83,7	83,7	100,0
Total	215	100,0	100,0	

Número de irmãos

Statistics

irmaos_nr

	_	
N	Valid	209
	Missing	6
Mean		1,31
Std. De	eviation	1,098
Minim	um	0
Maxim	um	7
1,14/1111	W111	

irmaos_nr

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	35	16,3	16,7	16,7
	1	114	53,0	54,5	71,3
	2	37	17,2	17,7	89,0
	3	13	6,0	6,2	95,2
	4	6	2,8	2,9	98,1
	5	2	,9	1,0	99,0
	6	1	,5	,5	99,5
	7	1	,5	,5	100,0
	Total	209	97,2	100,0	
Missing	System	6	2,8		
Total		215	100,0		

Estabelecimento Ensino

Statistics

estab_ensino

N	Valid	215
	Missing	0

estab_ensino

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	FPUL	101	47,0	47,0	47,0
	ISCTE	114	53,0	53,0	100,0
	Total	215	100,0	100,0	

Desempenho Escolar Statistics

desmp_escolar

N	Valid	212
	Missing	3

desmp_escolar

	-	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	10 A 13	16	7,4	7,5	7,5
	14 A 17	170	79,1	80,2	87,7
	18 A 20	26	12,1	12,3	100,0
	Total	212	98,6	100,0	
Missing	999	3	1,4		
Total		215	100,0		

Reprovações

Statistics

reprovou_sn

N	Valid	214
	Missing	1

$reprovou_sn$

	·=	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	NAO	183	85,1	85,5	85,5
	SIM	31	14,4	14,5	100,0
	Total	214	99,5	100,0	
Missing	999	1	,5		
Total		215	100,0		

Número de reprovações

Statistics

reprov_nr

N	Valid	215
	Missing	0
Mean		9,47
Std. D	eviation	96,110

reprov_nr

	=	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	183	85,1	85,1	85,1
	1	21	9,8	9,8	94,9
	2	9	4,2	4,2	99,1
	999	2	,9	,9	100,0
	Total	215	100,0	100,0	

Adaptação e validação da "Boredom Proneness Scale"

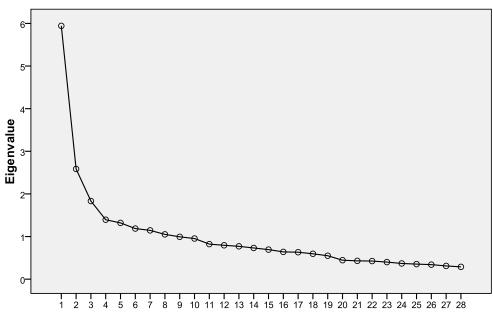
ANEXO IV. ANÁLISE FATORIAL DA BPS

1ª Análise Fatorial

Communalities

Communatives							
	Initial	Extraction					
bps_1i	1,000	,369					
BPS_2	1,000	,396					
BPS_3	1,000	,549					
BPS_4	1,000	,559					
BPS_5	1,000	,711					
BPS_6	1,000	,596					
bps_7i	1,000	,632					
bps_81	1,000	,565					
BPS_9	1,000	,472					
BPS_10	1,000	,654					
bps_11i	1,000	,657					
BPS_12	1,000	,520					
bps_13i	1,000	,633					
BPS_14	1,000	,620					
bps_15i	1,000	,609					
BPS_16	1,000	,669					
BPS_17	1,000	,706					
bps_18i	1,000	,652					
BPS_19	1,000	,554					
BPS_20	1,000	,535					
BPS_21	1,000	,636					
bps_22i	1,000	,626					
bps_23i	1,000	,646					
bps_24i	1,000	,708					
BPS_25	1,000	,529					
BPS_26	1,000	,598					
BPS_27	1,000	,580					
BPS_28	1,000	,478					

Extraction Method: Principal Component Analysis.


Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings ^a	
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	
1	5,943	21,224	21,224	5,943	21,224	21,224	3,708	
2	2,585	9,233	30,457	2,585	9,233	30,457	3,667	
3	1,833	6,547	37,004	1,833	6,547	37,004	3,162	
4	1,395	4,981	41,985	1,395	4,981	41,985	3,558	
5	1,320	4,714	46,699	1,320	4,714	46,699	2,502	
6	1,187	4,241	50,940	1,187	4,241	50,940	1,917	
7	1,145	4,088	55,027	1,145	4,088	55,027	2,706	
8	1,051	3,753	58,781	1,051	3,753	58,781	1,648	
9	,993	3,548	62,329					
10	,954	3,406	65,735					
11	,822	2,937	68,672					
12	,795	2,838	71,510					
13	,771	2,752	74,262					
14	,732	2,615	76,876					
15	,694	2,477	79,353					
16	,640	2,286	81,640					
17	,632	2,257	83,897					
18	,595	2,127	86,024					
19	,550	1,964	87,988					
20	,445	1,588	89,576					
21	,430	1,535	91,111					
22	,425	1,518	92,629					
23	,401	1,433	94,061					
24	,369	1,317	95,378					
25	,353	1,262	96,641					
26	,341	1,218	97,859					
27	,311	1,109	98,968					
28	,289	1,032	100,000					

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Scree Plot

Component Number

Component Matrix^a

	Component							
	1	2	3	4	5	6	7	8
BPS_10	,654	-,080	-,072	,319	,049	-,245	,044	-,220
BPS_16	,648	,184	-,346	-,215	-,044	,071	-,105	,174
BPS_12	,647	-,009	,057	-,135	,271	,075	-,001	-,042
BPS_14	,606	,121	-,108	-,352	,173	,079	-,206	,156
BPS_4	,584	-,041	-,019	,409	-,097	,069	-,172	,065
bps_11i	,571	,173	-,145	-,209	,264	-,005	-,011	-,407
BPS_25	,567	-,163	,035	-,246	-,257	-,138	-,159	-,098
BPS_20	,555	-,208	-,054	,097	,033	,372	,163	,076
BPS_21	,550	-,324	,024	-,054	,421	,056	,154	,146
BPS_9	,549	-,060	,033	,353	-,028	-,030	-,192	,058
BPS_5	,529	-,059	-,072	,511	-,242	,144	-,128	,256
bps_81	,525	,377	,113	-,094	-,293	-,198	-,011	,036
BPS_19	,511	-,262	-,077	-,086	,114	,343	,283	,016
BPS_26	,511	-,314	,070	-,058	-,349	-,139	,232	-,186
bps_13i	,496	,441	,101	-,210	-,078	-,212	-,286	-,069
BPS_3	,488	-,013	-,304	,139	,255	-,180	-,267	-,174
bps_1i	,435	-,094	,367	-,039	,070	-,086	,112	-,098
BPS_28	,419	-,175	-,217	,032	-,239	-,033	,401	,066
bps_23i	,175	,713	-,114	,080,	-,051	-,055	,212	,193
bps_22i	,069	,620	,271	,236	,163	-,058	,216	,174
bps_24i	,040	,508	-,112	,149	,007	,247	,445	-,393
bps_7i	,362	,494	-,233	-,277	-,270	,167	,078	,138
bps_15i	,148	,133	,659	-,096	-,150	,029	,049	-,316
BPS_17	,191	-,038	,576	-,063	-,351	,407	-,188	,083
bps_18i	,094	,431	,457	,138	,426	-,050	-,026	,210
BPS_2	,347	-,159	,360	,101	,175	,219	-,100	-,149
BPS_27	,303	-,212	,165	,123	-,058	-,564	,259	,109
BPS_6	,192	-,319	,259	-,362	,107	-,174	,242	,399

Extraction Method: Principal Component Analysis.

a. 8 components extracted.

Pattern Matrix^a

				Compo	nent			
	1	2	3	4	5	6	7	8
bps_7i	,805	,070	-,053	-,098	-,045	-,017	-,142	,171
BPS_16	,640	,211	,118	,210	-,231	-,081	-,104	-,090
bps_13i	,572	-,318	-,006	,349	,182	,108	,010	-,102
bps_81	,569	-,214	,098	,031	,184	,095	,246	,005
bps_23i	,522	-,075	,066	-,088	-,178	,440	,067	,283
BPS_14	,515	,277	-,050	,294	-,060	,041	-,187	-,230
BPS_25	,334	-,057	,028	,190	,206	-,329	,181	-,201
BPS_19	,001	,739	,011	,020	,047	-,093	-,038	,182
BPS_21	-,151	,672	,014	,211	-,105	,160	,126	-,127
BPS_20	,007	,632	,275	-,033	,070	-,038	-,088	,142
BPS_12	,132	,417	-,011	,366	,098	,115	-,024	,011
BPS_5	,072	,092	,838	-,159	-,042	,058	,031	-,083
BPS_4	,017	,068	,663	,115	,039	,051	,019	-,034
BPS_9	-,018	,020	,572	,170	,036	,087	,080,	-,107
bps_11i	,186	,201	-,226	,726	,059	-,071	-,096	,304
BPS_3	,002	-,032	,231	,691	-,272	-,057	-,022	-,042
BPS_10	-,118	,038	,344	,471	-,038	-,002	,351	,147
bps_15i	-,038	-,104	-,164	-,034	,797	,110	,094	,198
BPS_17	,151	,078	,226	-,454	,761	-,005	-,244	-,123
BPS_2	-,254	,286	,159	,164	,432	,107	-,137	,037
bps_1i	-,072	,189	-,030	,113	,354	,133	,262	,011
bps_18i	-,040	,062	,054	,027	,166	,790	-,024	-,051
bps_22i	,129	-,017	,097	-,124	,068	,717	,108	,244
BPS_27	-,122	-,091	,068	-,024	-,087	,126	,799	-,196
BPS_26	,060	,109	,036	,006	,239	-,355	,465	,084
BPS_28	,149	,314	,100	-,139	-,151	-,191	,392	,166
bps_24i	,050	,176	-,143	,146	,117	,133	-,113	,879
BPS_6	,081	,379	-,281	-,314	-,003	,144	,416	-,435

a. Rotation converged in 13 iterations.

Structure Matrix

		Component						
	1	2	3	4	5	6	7	8
bps_7i	,746	,140	,136	,067	,012	,037	,037	,245
BPS_16	,711	,432	,355	,426	,017	-,079	,171	-,076
bps_81	,655	,074	,292	,295	,332	,125	,394	,066
bps_13i	,629	-,002	,183	,503	,351	,212	,190	-,089
BPS_14	,588	,474	,178	,509	,188	,058	,087	-,305
bps_23i	,523	-,112	,117	,003	-,152	,467	,074	,424
BPS_25	,438	,310	,272	,418	,406	-,320	,401	-,258
BPS_21	,105	,726	,200	,434	,145	,028	,318	-,316
BPS_19	,213	,719	,243	,229	,169	-,207	,225	-,017
BPS_20	,241	,658	,445	,223	,198	-,166	,194	-,005
BPS_5	,280	,297	,825	,153	,120	-,077	,226	,004
BPS_4	,271	,307	,723	,362	,222	-,040	,250	-,034
BPS_9	,225	,273	,629	,398	,234	,007	,274	-,114
bps_11i	,407	,351	,108	,708	,224	,002	,193	,087
BPS_3	,208	,214	,373	,665	-,028	-,040	,168	-,102
BPS_10	,230	,324	,549	,607	,202	-,064	,547	,062
BPS_12	,370	,562	,243	,569	,318	,080,	,255	-,175
bps_15i	,076	-,028	-,049	,104	,706	,151	,183	,039
BPS_17	,167	,154	,224	-,133	,679	-,035	-,068	-,194
BPS_2	-,027	,345	,243	,315	,485	,057	,069	-,171
bps_1i	,148	,337	,147	,334	,475	,082	,400	-,143
bps_18i	,063	-,016	-,014	,154	,206	,775	-,044	-,078
bps_22i	,213	-,130	,058	-,016	,049	,705	,058	,304
BPS_27	,047	,146	,159	,184	,117	,023	,714	-,149
BPS_26	,255	,376	,295	,239	,373	-,422	,626	-,005
BPS_28	,293	,415	,297	,063	-,019	-,299	,499	,163
bps_24i	,172	-,049	-,002	,007	-,042	,183	-,026	,778
BPS_6	,083	,431	-,188	-,023	,158	,034	,377	-,470

Component Correlation Matrix

Compone nt	1	2	3	4	5	6	7	8
1	1,000	,262	,283	,309	,191	,053	,259	,080,
2	,262	1,000	,274	,334	,225	-,170	,314	-,245
3	,283	,274	1,000	,289	,176	-,127	,253	,069
4	,309	,334	,289	1,000	,300	,063	,292	-,208
5	,191	,225	,176	,300	1,000	,013	,246	-,228
6	,053	-,170	-,127	,063	,013	1,000	-,116	,040
7	,259	,314	,253	,292	,246	-,116	1,000	-,001
8	,080	-,245	,069	-,208	-,228	,040	-,001	1,000

2ª Análise Fatorial (forçar 3 fatores)

Communalities

	Initial	
	Illiuai	Extraction
bps_1i	1,000	,332
BPS_2	1,000	,275
BPS_3	1,000	,331
BPS_4	1,000	,343
BPS_5	1,000	,289
BPS_6	1,000	,206
bps_7i	1,000	,429
bps_81	1,000	,430
BPS_9	1,000	,306
BPS_10	1,000	,439
bps_11i	1,000	,378
BPS_12	1,000	,422
bps_13i	1,000	,451
BPS_14	1,000	,393
bps_15i	1,000	,474
BPS_16	1,000	,574
BPS_17	1,000	,370
bps_18i	1,000	,404
BPS_19	1,000	,336
BPS_20	1,000	,354
BPS_21	1,000	,408
bps_22i	1,000	,463
bps_23i	1,000	,552
bps_24i	1,000	,272
BPS_25	1,000	,349
BPS_26	1,000	,364
BPS_27	1,000	,164
BPS_28	1,000	,253

Total Variance Explained

-		Initial Eigenva	ılues	Extraction	on Sums of Squar	ed Loadings	Rotation Sums of Squared Loadings ^a
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	5,943	21,224	21,224	5,943	21,224	21,224	5,752
2	2,585	9,233	30,457	2,585	9,233	30,457	2,981
3	1,833	6,547	37,004	1,833	6,547	37,004	2,287
4	1,395	4,981	41,985				
5	1,320	4,714	46,699				
6	1,187	4,241	50,940				
7	1,145	4,088	55,027				
8	1,051	3,753	58,781				
9	,993	3,548	62,329				
10	,954	3,406	65,735				
11	,822	2,937	68,672				
12	,795	2,838	71,510				
13	,771	2,752	74,262				
14	,732	2,615	76,876				
15	,694	2,477	79,353				
16	,640	2,286	81,640				
17	,632	2,257	83,897				
18	,595	2,127	86,024				
19	,550	1,964	87,988				
20	,445	1,588	89,576				
21	,430	1,535	91,111				
22	,425	1,518	92,629				
23	,401	1,433	94,061				
24	,369	1,317	95,378				
25	,353	1,262	96,641				
26	,341	1,218	97,859				
27	,311	1,109	98,968				
28	,289	1,032	100,000				

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Component Matrix^a

	Component					
	1	2	3			
BPS_10	,654	-,080	-,072			
BPS_16	,648	,184	-,346			
BPS_12	,647	-,009	,057			
BPS_14	,606	,121	-,108			
BPS_4	,584	-,041	-,019			
bps_11i	,571	,173	-,145			
BPS_25	,567	-,163	,035			
BPS_20	,555	-,208	-,054			
BPS_21	,550	-,324	,024			
BPS_9	,549	-,060	,033			
BPS_5	,529	-,059	-,072			
bps_81	,525	,377	,113			
BPS_19	,511	-,262	-,077			
BPS_26	,511	-,314	,070			
bps_13i	,496	,441	,101			
BPS_3	,488	-,013	-,304			
bps_1i	,435	-,094	,367			
BPS_28	,419	-,175	-,217			
BPS_27	,303	-,212	,165			
bps_23i	,175	,713	-,114			
bps_22i	,069	,620	,271			
bps_24i	,040	,508	-,112			
bps_7i	,362	,494	-,233			
BPS_6	,192	-,319	,259			
bps_15i	,148	,133	,659			
BPS_17	,191	-,038	,576			
bps_18i	,094	,431	,457			
BPS_2	,347	-,159	,360			

a. 3 components extracted.

Pattern Matrix^a

		Component	
	1	2	3
BPS_10	,650	,037	,025
BPS_16	,642	,311	-,253
BPS_21	,609	-,230	,108
BPS_20	,598	-,109	,030
BPS_19	,585	-,170	,000
BPS_12	,576	,101	,154
BPS_25	,564	-,065	,121
BPS_4	,555	,061	,069
BPS_26	,554	-,229	,148
BPS_3	,551	,085	-,234
BPS_14	,547	,232	-,018
BPS_5	,529	,036	,007
BPS_28	,516	-,093	-,156
BPS_9	,512	,034	,116
bps_11i	,509	,279	-,061
BPS_27	,297	-,166	,212
bps_23i	-,053	,748	-,091
bps_22i	-,244	,621	,281
bps_7i	,233	,567	-,182
bps_13i	,265	,524	,174
bps_24i	-,105	,519	-,109
bps_81	,310	,464	,191
BPS_6	,202	-,297	,291
bps_15i	-,129	,131	,685
BPS_17	-,002	-,030	,609
bps_18i	-,216	,429	,473
bps_1i	,310	-,034	,435
BPS_2	,255	-,114	,415

a. Rotation converged in 5 iterations.

Structure Matrix

		Component	
	1	2	3
BPS_10	,661	,153	,151
BPS_16	,649	,412	-,115
BPS_12	,623	,211	,269
BPS_21	,589	-,116	,211
BPS_20	,584	-,002	,137
BPS_14	,584	,327	,098
BPS_4	,579	,163	,177
BPS_25	,575	,041	,225
BPS_19	,555	-,066	,102
bps_11i	,547	,366	,050
BPS_26	,542	-,123	,241
BPS_9	,540	,131	,215
BPS_5	,536	,130	,109
BPS_3	,522	,170	-,125
BPS_28	,470	-,010	-,063
BPS_27	,308	-,103	,260
bps_23i	,062	,734	-,062
bps_7i	,299	,599	-,108
bps_22i	-,081	,593	,268
bps_13i	,391	,580	,252
bps_81	,428	,528	,274
bps_24i	-,034	,495	-,102
bps_15i	,025	,144	,668
BPS_17	,109	,002	,607
bps_1i	,386	,044	,492
BPS_2	,314	-,047	,457
bps_18i	-,051	,415	,455
BPS_6	,205	-,245	,314

Component Correlation Matrix

Compone nt	1	2	3
1	1,000	,177	,190
2	,177	1,000	,053
3	,190	,053	1,000

3ª Análise Fatorial (forçar 3 fatores, sem itens 6, 18, 27)

Communalities

	Initial	Extraction
bps_1i	1,000	,316
BPS_2	1,000	,279
BPS_3	1,000	,364
BPS_4	1,000	,358
BPS_5	1,000	,294
bps_7i	1,000	,447
bps_81	1,000	,492
BPS_9	1,000	,317
BPS_10	1,000	,436
bps_11i	1,000	,376
BPS_12	1,000	,420
bps_13i	1,000	,468
BPS_14	1,000	,403
bps_15i	1,000	,537
BPS_16	1,000	,568
BPS_17	1,000	,513
BPS_19	1,000	,348
BPS_20	1,000	,378
BPS_21	1,000	,421
bps_22i	1,000	,387
bps_23i	1,000	,575
bps_24i	1,000	,267
BPS_25	1,000	,341
BPS_26	1,000	,358
BPS_28	1,000	,227

Total Variance Explained

F			Total V	ariance Explai	incu		ī
Compon		Initial Eigenvalu	ies	Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings ^a
ent	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	5,837	23,349	23,349	5,837	23,349	23,349	5,630
2	2,358	9,434	32,783	2,358	9,434	32,783	3,118
3	1,693	6,771	39,554	1,693	6,771	39,554	2,120
4	1,314	5,254	44,809				
5	1,191	4,765	49,573				
6	1,140	4,559	54,132				
7	1,052	4,207	58,339				
8	,977	3,908	62,248				
9	,899	3,597	65,845				
10	,870	3,481	69,325				
11	,764	3,058	72,383				
12	,758	3,033	75,416				
13	,714	2,854	78,270				
14	,665	2,658	80,928				
15	,617	2,470	83,398				
16	,557	2,227	85,625				
17	,531	2,124	87,748				
18	,445	1,780	89,528				
19	,435	1,739	91,267				
20	,417	1,668	92,935				
21	,408	1,633	94,568				
22	,360	1,438	96,006				
23	,356	1,422	97,428				
24	,349	1,395	98,824				
25	,294	1,176	100,000				

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Component Matrix^a

		Component	
	1	2	3
BPS_16	,665	,219	-,278
BPS_12	,646	-,040	,021
BPS_10	,646	-,115	-,078
BPS_14	,615	,120	-,102
BPS_4	,593	-,080	,008
bps_11i	,578	,149	-,140
BPS_20	,564	-,232	-,074
BPS_9	,555	-,087	,041
BPS_21	,542	-,336	-,116
BPS_25	,540	-,190	,112
BPS_5	,532	-,104	-,022
bps_81	,531	,408	,210
bps_13i	,506	,433	,158
BPS_19	,505	-,285	-,107
BPS_3	,496	-,034	-,341
BPS_26	,490	-,310	,146
bps_1i	,431	-,119	,340
BPS_28	,418	-,123	-,192
BPS_2	,335	-,245	,326
bps_23i	,199	,728	-,073
bps_22i	,067	,563	,256
bps_7i	,384	,538	-,102
bps_24i	,080	,507	-,059
bps_15i	,135	,083	,715
BPS_17	,179	-,097	,687

a. 3 components extracted.

Pattern Matrix^a

	Component				
	1	2	3		
BPS_21	,678	-,232	-,026		
BPS_10	,654	,017	,009		
BPS_20	,634	-,119	,011		
BPS_19	,618	-,187	-,024		
BPS_16	,587	,350	-,218		
BPS_12	,584	,099	,103		
BPS_3	,578	,052	-,282		
BPS_4	,560	,046	,087		
BPS_5	,528	,007	,050		
BPS_25	,528	-,072	,194		
BPS_26	,526	-,202	,232		
BPS_14	,526	,249	-,038		
BPS_9	,518	,032	,115		
BPS_28	,497	-,047	-,134		
bps_11i	,494	,267	-,083		
bps_23i	-,135	,779	-,106		
bps_7i	,128	,623	-,099		
bps_22i	-,294	,602	,224		
bps_13i	,191	,558	,188		
bps_81	,207	,540	,246		
bps_24i	-,143	,530	-,089		
bps_15i	-,175	,153	,734		
BPS_17	-,042	-,021	,724		
bps_1i	,316	-,009	,406		
BPS_2	,294	-,159	,390		

a. Rotation converged in 5 iterations.

Structure Matrix

	Component				
	1	2	3		
BPS_10	,660	,199	,146		
BPS_16	,639	,501	-,077		
BPS_12	,633	,267	,230		
BPS_21	,609	-,045	,103		
BPS_20	,604	,058	,137		
BPS_4	,591	,206	,206		
BPS_14	,587	,393	,085		
BPS_19	,561	-,017	,094		
bps_11i	,551	,400	,034		
BPS_9	,551	,182	,225		
BPS_25	,548	,085	,299		
BPS_5	,540	,157	,160		
BPS_3	,534	,198	-,159		
BPS_26	,518	-,043	,330		
BPS_28	,456	,084	-,033		
bps_23i	,059	,736	-,092		
bps_7i	,280	,653	-,039		
bps_13i	,385	,621	,257		
bps_81	,408	,611	,318		
bps_22i	-,080	,532	,195		
bps_24i	-,015	,485	-,091		
BPS_17	,102	,006	,714		
bps_15i	,020	,144	,706		
bps_1i	,397	,101	,471		
BPS_2	,331	-,056	,443		

Component Correlation Matrix

Compone nt	1	2	3
1	1,000	,278	,208
2	,278	1,000	,054
3	,208	,054	1,000

4ª Análise Fatorial (forçar 3 fatores, sem itens 2, 6, 18, 27)

Communalities

	Initial	Extraction			
bps_1i	1,000	,307			
BPS_3	1,000	,369			
BPS_4	1,000	,361			
BPS_5	1,000	,296			
bps_7i	1,000	,438			
bps_81	1,000	,493			
BPS_9	1,000	,324			
BPS_10	1,000	,438			
bps_11i	1,000	,381			
BPS_12	1,000	,417			
bps_13i	1,000	,469			
BPS_14	1,000	,404			
bps_15i	1,000	,566			
BPS_16	1,000	,563			
BPS_17	1,000	,500			
BPS_19	1,000	,351			
BPS_20	1,000	,376			
BPS_21	1,000	,415			
bps_22i	1,000	,386			
bps_23i	1,000	,574			
bps_24i	1,000	,288			
BPS_25	1,000	,353			
BPS_26	1,000	,408			
BPS_28	1,000	,225			

Total Variance Explained

	Initial Eigenvalues		Extraction	on Sums of Squar	red Loadings	Rotation Sums of Squared Loadings ^a	
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	5,743	23,930	23,930	5,743	23,930	23,930	5,550
2	2,322	9,674	33,604	2,322	9,674	33,604	3,149
3	1,637	6,820	40,423	1,637	6,820	40,423	1,917
4	1,314	5,473	45,897				
5	1,167	4,862	50,759				
6	1,140	4,748	55,507				
7	1,035	4,312	59,819				
8	,957	3,989	63,809				
9	,884	3,684	67,492				
10	,801	3,337	70,830				
11	,762	3,174	74,004				
12	,714	2,973	76,977				
13	,670	2,791	79,768				
14	,621	2,587	82,356				
15	,581	2,419	84,775				
16	,531	2,212	86,987				
17	,466	1,940	88,927				
18	,445	1,854	90,781				
19	,430	1,793	92,574				
20	,409	1,706	94,280				
21	,371	1,548	95,828				
22	,358	1,493	97,321				
23	,349	1,453	98,774				
24	,294	1,226	100,000				

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Component Matrix^a

-	Component				
	1	2	3		
BPS_16	,675	,185	-,269		
BPS_10	,647	-,134	-,046		
BPS_12	,644	-,045	,020		
BPS_14	,619	,103	-,103		
BPS_4	,593	-,092	,030		
bps_11i	,581	,135	-,158		
BPS_20	,560	-,243	-,055		
BPS_9	,555	-,100	,073		
BPS_25	,537	-,198	,159		
BPS_21	,534	-,341	-,119		
bps_81	,534	,413	,196		
BPS_5	,532	-,116	,005		
bps_13i	,510	,434	,141		
BPS_19	,504	-,302	-,076		
BPS_3	,499	-,061	-,341		
BPS_26	,492	-,330	,238		
bps_1i	,423	-,100	,343		
BPS_28	,419	-,144	-,168		
bps_23i	,213	,718	-,115		
bps_22i	,072	,578	,214		
bps_7i	,397	,518	-,113		
bps_24i	,084	,514	-,130		
bps_15i	,129	,118	,731		
BPS_17	,164	-,050	,686		

a. 3 components extracted.

Pattern Matrix^a

	Component				
	1	2	3		
BPS_21	,682	-,222	-,075		
BPS_10	,657	,010	,011		
BPS_20	,639	-,120	-,007		
BPS_19	,625	-,192	-,034		
BPS_12	,591	,098	,079		
BPS_16	,571	,354	-,208		
BPS_4	,568	,038	,084		
BPS_3	,561	,067	-,299		
BPS_26	,551	-,238	,282		
BPS_25	,542	-,089	,208		
BPS_5	,533	,000	,052		
BPS_9	,528	,019	,124		
BPS_14	,523	,249	-,045		
BPS_28	,489	-,045	-,133		
bps_11i	,486	,276	-,105		
bps_23i	-,155	,786	-,088		
bps_7i	,112	,623	-,072		
bps_22i	-,290	,596	,230		
bps_13i	,193	,551	,194		
bps_24i	-,161	,550	-,117		
bps_81	,212	,532	,252		
bps_15i	-,128	,115	,753		
BPS_17	,002	-,047	,708		
bps_1i	,344	-,024	,385		

a. Rotation converged in 4 iterations.

Structure Matrix

	Component				
	1	2	3		
BPS_10	,662	,204	,126		
BPS_16	,639	,508	-,086		
BPS_12	,634	,277	,188		
BPS_21	,604	-,027	,029		
BPS_20	,603	,068	,096		
BPS_4	,594	,211	,185		
BPS_14	,588	,400	,062		
BPS_19	,562	-,010	,062		
BPS_9	,555	,183	,217		
BPS_25	,552	,084	,297		
bps_11i	,549	,412	-,003		
BPS_5	,542	,161	,145		
BPS_26	,530	-,057	,363		
BPS_3	,528	,212	-,198		
BPS_28	,453	,091	-,051		
bps_23i	,061	,735	-,064		
bps_7i	,283	,651	-,012		
bps_13i	,389	,621	,264		
bps_81	,412	,610	,324		
bps_22i	-,074	,526	,219		
bps_24i	-,019	,495	-,109		
bps_15i	,037	,126	,738		
BPS_17	,111	,000	,705		
bps_1i	,403	,102	,443		

Component Correlation Matrix

Componen t	1	2	3
1	1,000	,294	,174
2	,294	1,000	,065
3	,174	,065	1,000

5ª Análise Fatorial (forçar 3 fatores, sem itens 1, 2, 6, 18, 27)

Communalities

	Initial	Extraction
BPS_3	1,000	,369
BPS_4	1,000	,358
BPS_5	1,000	,298
bps_7i	1,000	,432
bps_81	1,000	,502
BPS_9	1,000	,331
BPS_10	1,000	,435
bps_11i	1,000	,380
BPS_12	1,000	,419
bps_13i	1,000	,467
BPS_14	1,000	,399
bps_15i	1,000	,553
BPS_16	1,000	,560
BPS_17	1,000	,525
BPS_19	1,000	,348
BPS_20	1,000	,383
BPS_21	1,000	,415
bps_22i	1,000	,381
bps_23i	1,000	,580
bps_24i	1,000	,299
BPS_25	1,000	,371
BPS_26	1,000	,428
BPS_28	1,000	,219

Total Variance Explained

Compon		Initial Eigenvalu	ies	Extracti	Extraction Sums of Squared Loadings		Rotation Sums of Squared Loadings ^a
ent	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	5,558	24,164	24,164	5,558	24,164	24,164	5,379
2	2,311	10,046	34,210	2,311	10,046	34,210	3,121
3	1,583	6,883	41,093	1,583	6,883	41,093	1,744
4	1,304	5,667	46,761				
5	1,135	4,933	51,694				
6	1,132	4,923	56,617				
7	1,036	4,504	61,121				
8	,965	4,196	65,317				
9	,862	3,746	69,062				
10	,789	3,430	72,493				
11	,708	3,079	75,571				
12	,672	2,923	78,495				
13	,623	2,708	81,203				
14	,585	2,542	83,745				
15	,539	2,344	86,089				
16	,478	2,076	88,165				
17	,448	1,947	90,112				
18	,438	1,902	92,014				
19	,423	1,837	93,851				
20	,391	1,702	95,553				
21	,365	1,586	97,140				
22	,363	1,577	98,717				
23	,295	1,283	100,000				

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Component Matrix^a

	Component				
	1	2	3		
BPS_16	,681	,172	-,257		
BPS_12	,645	-,052	,031		
BPS_10	,644	-,142	-,030		
BPS_14	,613	,101	-,117		
BPS_4	,589	-,091	,050		
bps_11i	,585	,123	-,149		
BPS_20	,564	-,253	-,018		
BPS_9	,552	-,110	,119		
BPS_25	,536	-,204	,205		
bps_81	,535	,403	,230		
BPS_5	,532	-,119	,037		
BPS_21	,525	-,343	-,147		
bps_13i	,509	,433	,141		
BPS_3	,505	-,069	-,332		
BPS_19	,499	-,302	-,084		
BPS_26	,487	-,334	,282		
BPS_28	,421	-,155	-,131		
bps_23i	,218	,716	-,142		
bps_22i	,071	,584	,187		
bps_24i	,088	,514	-,166		
bps_7i	,412	,506	-,076		
bps_15i	,115	,133	,722		
BPS_17	,152	-,039	,707		

a. 3 components extracted.

Pattern Matrix^a

	Component			
	1	2	3	
BPS_21	,677	-,217	-,128	
BPS_10	,656	,008	,006	
BPS_20	,643	-,125	,009	
BPS_19	,622	-,186	-,064	
BPS_12	,599	,096	,071	
BPS_4	,567	,041	,085	
BPS_26	,564	-,244	,303	
BPS_16	,562	,352	-,207	
BPS_25	,552	-,096	,234	
BPS_3	,546	,070	-,304	
BPS_5	,532	,001	,067	
BPS_9	,532	,010	,152	
BPS_14	,515	,254	-,074	
bps_11i	,484	,272	-,107	
BPS_28	,482	-,051	-,110	
bps_23i	-,161	,789	-,100	
bps_7i	,113	,616	-,030	
bps_22i	-,280	,599	,216	
bps_24i	-,166	,554	-,142	
bps_13i	,200	,551	,192	
bps_81	,224	,520	,282	
bps_15i	-,094	,115	,740	
BPS_17	,034	-,051	,720	

a. Rotation converged in 4 iterations.

Structure Matrix

	Component			
	1	2	3	
BPS_10	,660	,202	,098	
BPS_16	,637	,507	-,112	
BPS_12	,637	,276	,159	
BPS_20	,607	,065	,091	
BPS_21	,596	-,024	-,045	
BPS_4	,591	,213	,166	
BPS_14	,579	,401	,010	
BPS_19	,558	-,006	,012	
BPS_25	,557	,079	,305	
BPS_9	,556	,174	,226	
bps_11i	,549	,409	-,026	
BPS_5	,542	,161	,141	
BPS_26	,534	-,063	,369	
BPS_3	,524	,215	-,224	
BPS_28	,452	,086	-,046	
bps_23i	,057	,736	-,083	
bps_7i	,290	,648	,017	
bps_13i	,389	,619	,248	
bps_81	,417	,601	,340	
bps_22i	-,073	,528	,207	
bps_24i	-,022	,498	-,137	
bps_15i	,042	,125	,733	
BPS_17	,119	-,005	,723	

Component Correlation Matrix

Compone nt	1	2	3
1	1,000	,294	,139
2	,294	1,000	,051
3	,139	,051	1,000

6ª Análise Fatorial (forçar 2 fatores)

Communalities

Communancies						
	Initial	Extraction				
bps_1i	1,000	,198				
BPS_2	1,000	,146				
BPS_3	1,000	,238				
BPS_4	1,000	,343				
BPS_5	1,000	,284				
BPS_6	1,000	,139				
bps_7i	1,000	,375				
bps_81	1,000	,417				
BPS_9	1,000	,305				
BPS_10	1,000	,434				
bps_11i	1,000	,357				
BPS_12	1,000	,418				
bps_13i	1,000	,441				
BPS_14	1,000	,382				
bps_15i	1,000	,039				
BPS_16	1,000	,454				
BPS_17	1,000	,038				
bps_18i	1,000	,195				
BPS_19	1,000	,330				
BPS_20	1,000	,351				
BPS_21	1,000	,407				
bps_22i	1,000	,390				
bps_23i	1,000	,539				
bps_24i	1,000	,259				
BPS_25	1,000	,348				
BPS_26	1,000	,360				
BPS_27	1,000	,137				
BPS_28	1,000	,206				

Total Variance Explained

G		Initial Eigenvalu		Extracti	Extraction Sums of Squared Loadings		Rotation Sums of Squared Loadings ^a
Compon ent	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	5,943	21,224	21,224	5,943	21,224	21,224	5,811
2	2,585	9,233	30,457	2,585	9,233	30,457	3,338
3	1,833	6,547	37,004				
4	1,395	4,981	41,985				
5	1,320	4,714	46,699				
6	1,187	4,241	50,940				
7	1,145	4,088	55,027				
8	1,051	3,753	58,781				
9	,993	3,548	62,329				
10	,954	3,406	65,735				
11	,822	2,937	68,672				
12	,795	2,838	71,510				
13	,771	2,752	74,262				
14	,732	2,615	76,876				
15	,694	2,477	79,353				
16	,640	2,286	81,640				
17	,632	2,257	83,897				
18	,595	2,127	86,024				
19	,550	1,964	87,988				
20	,445	1,588	89,576				
21	,430	1,535	91,111				
22	,425	1,518	92,629				
23	,401	1,433	94,061				
24	,369	1,317	95,378				
25	,353	1,262	96,641				
26	,341	1,218	97,859				
27	,311	1,109	98,968				
28	,289	1,032	100,000				

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Component Matrix^a

	Component				
	1	2			
BPS_10	,654	-,080			
BPS_16	,648	,184			
BPS_12	,647	-,009			
BPS_14	,606	,121			
BPS_4	,584	-,041			
bps_11i	,571	,173			
BPS_25	,567	-,163			
BPS_20	,555	-,208			
BPS_21	,550	-,324			
BPS_9	,549	-,060			
BPS_5	,529	-,059			
bps_81	,525	,377			
BPS_19	,511	-,262			
BPS_26	,511	-,314			
bps_13i	,496	,441			
BPS_3	,488	-,013			
bps_1i	,435	-,094			
BPS_28	,419	-,175			
BPS_2	,347	-,159			
BPS_27	,303	-,212			
BPS_17	,191	-,038			
bps_15i	,148	,133			
bps_23i	,175	,713			
bps_22i	,069	,620			
bps_24i	,040	,508			
bps_7i	,362	,494			
bps_18i	,094	,431			
BPS_6	,192	-,319			

a. 2 components extracted.

Pattern Matrix^a

	Component			
	1	2		
BPS_21	,666	-,218		
BPS_10	,641	,053		
BPS_26	,625	-,216		
BPS_20	,613	-,098		
BPS_25	,602	-,049		
BPS_19	,600	-,163		
BPS_12	,599	,125		
BPS_4	,558	,079		
BPS_9	,535	,053		
BPS_5	,516	,049		
BPS_16	,506	,323		
BPS_14	,497	,250		
BPS_28	,472	-,093		
BPS_3	,455	,088		
bps_1i	,446	-,006		
bps_11i	,440	,296		
BPS_2	,398	-,091		
BPS_27	,384	-,155		
BPS_6	,334	-,287		
BPS_17	,194	6,055E-5		
bps_23i	-,192	,766		
bps_22i	-,243	,650		
bps_7i	,088	,581		
bps_13i	,238	,555		
bps_24i	-,215	,528		
bps_81	,296	,495		
bps_18i	-,127	,461		
bps_15i	,070	,167		

a. Rotation converged in 3 iterations.

Structure Matrix

_	Component			
	1	2		
BPS_10	,657	,239		
BPS_12	,636	,298		
BPS_21	,603	-,025		
BPS_16	,599	,469		
BPS_25	,588	,125		
BPS_20	,585	,080,		
BPS_4	,581	,240		
BPS_14	,570	,394		
BPS_26	,563	-,035		
BPS_19	,553	,011		
BPS_9	,550	,207		
BPS_5	,531	,199		
bps_11i	,526	,423		
BPS_3	,481	,219		
BPS_28	,445	,044		
bps_1i	,445	,123		
BPS_2	,372	,024		
BPS_27	,339	-,044		
BPS_6	,251	-,190		
BPS_17	,194	,056		
bps_23i	,030	,711		
bps_13i	,399	,624		
bps_7i	,256	,606		
bps_81	,440	,580		
bps_22i	-,055	,579		
bps_24i	-,062	,466		
bps_18i	,007	,425		
bps_15i	,118	,187		

Rotation Method: Promax with Kaiser

Normalization.

Component Correlation Matrix

Component	1	2
1	1,000	,289
2	,289	1,000

Extraction Method: Principal Component

Rotation Method: Promax with Kaiser

Normalization.

7ª Análise Fatorial (forçar 2 fatores, sem itens 15 e 17)

Communalities

_	Communation					
	Initial	Extraction				
bps_1i	1,000	,159				
BPS_2	1,000	,144				
BPS_3	1,000	,254				
BPS_4	1,000	,342				
BPS_5	1,000	,286				
BPS_6	1,000	,140				
bps_7i	1,000	,390				
bps_81	1,000	,409				
BPS_9	1,000	,308				
BPS_10	1,000	,442				
bps_11i	1,000	,356				
BPS_12	1,000	,419				
bps_13i	1,000	,441				
BPS_14	1,000	,389				
BPS_16	1,000	,475				
bps_18i	1,000	,183				
BPS_19	1,000	,332				
BPS_20	1,000	,354				
BPS_21	1,000	,401				
bps_22i	1,000	,365				
bps_23i	1,000	,530				
bps_24i	1,000	,255				
BPS_25	1,000	,336				
BPS_26	1,000	,330				
BPS_27	1,000	,138				
BPS_28	1,000	,210				
Extraction Met	had Principal C					

Total Variance Explained

		Initial Eigenvalu	Total v	Extraction Sums of Squared Loadings		Rotation Sums of Squared Loadings ^a	
Compon ent	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	5,849	22,496	22,496	5,849	22,496	22,496	5,751
2	2,540	9,768	32,264	2,540	9,768	32,264	· ·
3	1,485	5,712	37,976	,	,	,	,
4	1,394	5,362	43,337				
5	1,287	4,948	48,285				
6	1,148	4,417	52,703				
7	1,021	3,928	56,631				
8	1,003	3,857	60,487				
9	,954	3,670	64,157				
10	,880	3,383	67,539				
11	,841	3,236	70,776				
12	,750	2,886	73,661				
13	,731	2,811	76,472				
14	,707	2,718	79,190				
15	,644	2,476	81,665				
16	,636	2,447	84,112				
17	,550	2,116	86,228				
18	,524	2,015	88,243				
19	,465	1,788	90,031				
20	,440	1,691	91,722				
21	,417	1,604	93,325				
22	,399	1,534	94,860				
23	,378	1,455	96,314				
24	,350	1,348	97,662				
25	,320	1,231	98,893				
26	,288	1,107	100,000				

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

 $Component\ Matrix^a$

	Component			
	1	2		
bps_1i	,388	-,093		
BPS_2	,343	-,161		
BPS_3	,504	-,016		
BPS_4	,583	-,044		
BPS_5	,531	-,058		
BPS_6	,182	-,328		
bps_7i	,367	,505		
bps_81	,521	,372		
BPS_9	,552	-,062		
BPS_10	,659	-,086		
bps_11i	,572	,169		
BPS_12	,647	-,011		
bps_13i	,497	,440		
BPS_14	,611	,126		
BPS_16	,660	,200		
bps_18i	,089	,419		
BPS_19	,514	-,260		
BPS_20	,559	-,204		
BPS_21	,542	-,328		
bps_22i	,072	,600		
bps_23i	,165	,709		
bps_24i	,035	,504		
BPS_25	,556	-,162		
BPS_26	,482	-,313		
BPS_27	,301	-,219		
BPS_28	,425	-,171		

a. 2 components extracted.

Pattern Matrix^a

	Component		
	1	2	
bps_1i	,406	-,026	
BPS_2	,395	-,104	
BPS_3	,478	,074	
BPS_4	,565	,059	
BPS_5	,523	,035	
BPS_6	,323	-,304	
bps_7i	,107	,585	
bps_81	,313	,476	
BPS_9	,544	,035	
BPS_10	,655	,029	
bps_11i	,455	,277	
BPS_12	,609	,105	
bps_13i	,258	,542	
BPS_14	,511	,240	
BPS_16	,523	,324	
bps_18i	-,113	,447	
BPS_19	,602	-,175	
BPS_20	,617	-,110	
BPS_21	,659	-,239	
bps_22i	-,213	,630	
bps_23i	-,177	,759	
bps_24i	-,202	,524	
BPS_25	,595	-,067	
BPS_26	,596	-,235	
BPS_27	,383	-,171	
BPS_28	,476	-,100	

Normalization.

a. Rotation converged in 3 iterations.

Structure Matrix

	Component		
	1	2	
bps_1i	,398	,090	
BPS_2	,366	,010	
BPS_3	,499	,212	
BPS_4	,582	,221	
BPS_5	,533	,185	
BPS_6	,236	-,212	
bps_7i	,275	,616	
bps_81	,449	,565	
BPS_9	,554	,192	
BPS_10	,664	,217	
bps_11i	,535	,407	
BPS_12	,639	,280	
bps_13i	,414	,616	
BPS_14	,580	,387	
BPS_16	,616	,474	
bps_18i	,015	,414	
BPS_19	,551	-,002	
BPS_20	,586	,067	
BPS_21	,590	-,050	
bps_22i	-,032	,569	
bps_23i	,041	,708	
bps_24i	-,052	,466	
BPS_25	,576	,104	
BPS_26	,529	-,064	
BPS_27	,334	-,061	
BPS_28	,448	,037	

Rotation Method: Promax with Kaiser Normalization.

Component Correlation Matrix

Compone nt	1	2
1	1,000	,287
2	,287	1,000

Extraction Method: Principal Component Analysis.

Rotation Method: Promax with Kaiser Normalization.

Adaptação e validação da "Boredom Proneness Scale"

ANEXO V. CONSISTÊNCIA INTERNA

Consistência Interna (1º fator)

Scale: ALL VARIABLES

Case Processing Summary

		N	%
Cases	Valid	201	93,5
	Excluded ^a	14	6,5
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,854	15

Item Statistics

	Mean	Std. Deviation	N
BPS_3	2,81	1,564	201
BPS_4	3,22	1,638	201
BPS_5	3,11	1,572	201
BPS_9	3,71	1,532	201
BPS_10	3,34	1,722	201
bps_11i	2,80	,895	201
BPS_12	2,60	1,360	201
BPS_14	2,25	1,375	201
BPS_16	2,72	1,579	201
BPS_19	3,25	1,726	201
BPS_20	4,69	1,617	201
BPS_21	4,00	1,787	201
BPS_25	2,71	1,542	201
BPS_26	3,47	1,640	201
BPS_28	2,69	1,574	201

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted	
BPS_3	44,57	158,357	,454	,847	
BPS_4	44,15	154,491	,528	,843	
BPS_5	44,26	157,493	,474	,846	
BPS_9	43,66	157,685	,485	,845	
BPS_10	44,03	151,069	,582	,839	
bps_11i	44,57	167,286	,458	,848	
BPS_12	44,77	157,557	,564	,842	
BPS_14	45,12	159,286	,505	,844	
BPS_16	44,66	154,417	,555	,841	
BPS_19	44,12	155,526	,469	,846	
BPS_20	42,69	154,546	,535	,842	
BPS_21	43,37	153,354	,500	,845	
BPS_25	44,67	158,993	,445	,847	
BPS_26	43,91	158,416	,426	,849	
BPS_28	44,69	160,716	,388,	,850	

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
47,37	178,685	13,367	15

Consistência Interna (2º fator)

Scale: ALL VARIABLES

Case Processing Summary

		N	%
Cases	Valid	210	97,7
	Excluded ^a	5	2,3
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,680,	6

Item Statistics

	Mean	Std. Deviation	N
bps_7i	2,97	1,526	210
bps_81	2,83	1,459	210
bps_13i	3,01	1,162	210
bps_22i	3,20	1,537	210
bps_23i	3,52	1,745	210
bps_24i	4,48	1,478	210

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
bps_7i	17,05	22,419	,428	,633
bps_81	17,18	22,589	,448	,626
bps_13i	17,00	24,962	,398	,647
bps_22i	16,81	23,138	,368	,654
bps_23i	16,49	19,734	,526	,594
bps_24i	15,53	24,288	,306	,673

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
20,01	30,933	5,562	6

Consistência Interna (3º fator)

Scale: ALL VARIABLES

Case Processing Summary

		., .	
	-	N	%
Cases	Valid	212	98,6
	Excluded ^a	3	1,4
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

iteliasine j statistics				
Cronbach's Alpha	N of Items			
,505	2			

Item Statistics

	Mean	Std. Deviation	N
bps_15i	4,40	1,891	212
BPS_17	4,17	1,809	212

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
bps_15i	4,17	3,273	,338	a .
BPS_17	4,40	3,577	,338	•

a. The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
8,57	9,166	3,027	2

Escala de Propensão para o Tédio

Case Processing Summary

cuse i rocessing summary			
		N	%
Cases	Valid	194	90,2
	Excluded ^a	21	9,8
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,833	26

Item Statistics

	Mean	Std. Deviation	N
bps_1i	3,45	1,520	194
BPS_2	4,74	1,492	194
BPS_3	2,80	1,562	194
BPS_4	3,22	1,624	194
BPS_5	3,10	1,576	194
BPS_6	3,11	1,786	194
bps_7i	2,97	1,535	194
bps_81	2,85	1,426	194
BPS_9	3,74	1,523	194
BPS_10	3,37	1,735	194
bps_11i	2,80	,891	194
BPS_12	2,60	1,356	194
bps_13i	3,02	1,160	194
BPS_14	2,24	1,368	194
BPS_16	2,72	1,582	194
bps_18i	3,09	1,488	194
BPS_19	3,24	1,717	194
BPS_20	4,72	1,621	194
BPS_21	4,04	1,789	194
bps_22i	3,18	1,524	194
bps_23i	3,49	1,698	194
bps_24i	4,50	1,462	194
BPS_25	2,71	1,551	194
BPS_26	3,49	1,645	194
BPS_27	4,00	1,821	194
BPS_28	2,71	1,573	194

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
l 1:				
bps_1i	82,44	294,382		,828
BPS_2	81,15	297,655	· ·	,830
BPS_3	83,09	290,831		,826
BPS_4	82,68	284,728		,822
BPS_5	82,79	287,481		,824
BPS_6	82,78	303,303		,838
bps_7i	82,92	295,185		,829
bps_81	83,04	288,786	,	,823
BPS_9	82,15	288,339		,824
BPS_10	82,52	278,147	,	,819
bps_11i	83,09	298,416	-	,826
BPS_12	83,29	286,644	,561	,821
bps_13i	82,87	295,294	,441	,826
BPS_14	83,65	288,403	,516	,822
BPS_16	83,17	281,821	,563	,820
bps_18i	82,80	305,796	,120	,836
BPS_19	82,65	287,004	,417	,825
BPS_20	81,17	285,790	,471	,823
BPS_21	81,85	283,610	,455	,824
bps_22i	82,72	306,152	,108	,837
bps_23i	82,40	300,667	,181	,835
bps_24i	81,39	309,545	,050	,838,
BPS_25	83,19	288,349	,446	,824
BPS_26	82,40	289,982		,827
BPS_27	81,89	294,885		
BPS_28	83,18		,349	,828

Mean	Variance	Std. Deviation	N of Items
85,89	314,232	17,727	26

Subescala de Estimulação Interna

Case Processing Summary

	_	N	%
Cases	Valid	198	92,1
	Excluded ^a	17	7,9
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,849	19

Item Statistics

	Mean	Std. Deviation	N
	Iviean	Stu. Deviation	
bps_1i	3,43	1,512	198
BPS_2	4,75	1,480	198
BPS_3	2,80	1,566	198
BPS_4	3,22	1,628	198
BPS_5	3,11	1,578	198
BPS_6	3,10	1,783	198
BPS_9	3,74	1,518	198
BPS_10	3,35	1,732	198
bps_11i	2,81	,890	198
BPS_12	2,61	1,365	198
BPS_14	2,25	1,368	198
BPS_16	2,73	1,585	198
BPS_19	3,25	1,732	198
BPS_20	4,71	1,613	198
BPS_21	4,03	1,785	198
BPS_25	2,69	1,542	198
BPS_26	3,47	1,645	198
BPS_27	3,98	1,830	198
BPS_28	2,71	1,576	198

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
bps_1i	59,31	224,115	,338	,846
BPS_2	58,00	226,010	,303	,847
BPS_3	59,94	219,606	,423	,843
BPS_4	59,53	214,789	,508	,839
BPS_5	59,64	217,988	,455	,841
BPS_6	59,65	228,250	,191	,854
BPS_9	59,01	218,046	,476	,840
BPS_10	59,40	209,134	,590	,835
bps_11i	59,93	229,168	,436	,844
BPS_12	60,14	217,052	,567	,837
BPS_14	60,50	219,784	,494	,840
BPS_16	60,02	215,193	,516	,838,
BPS_19	59,50	214,718	,473	,840
BPS_20	58,04	214,755	,515	,838,
BPS_21	58,72	210,326	,544	,837
BPS_25	60,06	217,667	,476	,840
BPS_26	59,28	216,821	,458	,841
BPS_27	58,77	222,301	,294	,849
BPS_28	60,04	220,516	,400	,844

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
62,75	241,702	15,547	19

Subescala de Estimulação Externa

Case Processing Summary

-	-	N	%
Cases	Valid	210	97,7
	Excluded ^a	5	2,3
	Total	215	100,0

a.Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,690	7

Item Statistics

	Mean	Std. Deviation	N
bps_7i	2,97	1,526	210
bps_81	2,83	1,459	210
bps_13i	3,01	1,162	210
bps_18i	3,06	1,476	210
bps_22i	3,20	1,537	210
bps_23i	3,52	1,745	210
bps_24i	4,48	1,478	210

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
bps_7i	20,10	29,386	,389	,659
bps_81	20,24	29,417	,417	,651
bps_13i	20,06	31,360	,418	,656
bps_18i	20,01	30,933	,306	,680
bps_22i	19,87	28,543	,441	,644
bps_23i	19,55	25,589	,539	,612
bps_24i	18,59	31,066	,297	,683

Mean	Variance	Std. Deviation	N of Items
23,07	38,143	6,176	7

Escala de Propensão para o Tédio (reteste)

Case Processing Summary

	-	N	%
Cases	Valid	54	94,7
	Excluded ^a	3	5,3
	Total	57	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,857	26

Item Statistics

-	Mean	Std. Deviation	N
bps_1i	3,1852	1,38828	54
BPS_2	4,3889	1,57116	54
BPS_3	3,4074	1,54820	54
BPS_4	2,9630	1,62484	54
BPS_5	3,3889	1,57116	54
BPS_6	3,1667	1,84032	54
bps_7i	3,0000	1,52958	54
bps_81	2,8333	1,27012	54
BPS_9	3,2963	1,28312	54
BPS_10	3,1667	1,51408	54
bps_11i	2,6296	1,12092	54
BPS_12	2,5741	1,23780	54
bps_13i	2,9259	1,13023	54
BPS_14	2,1852	1,28964	54
BPS_16	2,7593	1,50390	54
bps_18i	3,3704	1,69679	54
BPS_19	2,9630	1,52913	54
BPS_20	4,5926	1,44742	54
BPS_21	3,4074	1,47327	54
bps_22i	3,0000	1,33176	54
bps_23i	3,3889	1,52237	54
bps_24i	4,1667	1,62237	54
BPS_25	2,8704	1,36044	54
BPS_26	3,5370	1,58665	54
BPS_27	4,3704	1,58169	54
BPS_28	2,8889	1,38273	54

Item-Total Statistics

-	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
bps_1i	81,2407	292,262	,524	,848
BPS_2	80,0370	315,319	,022	,864
BPS_3	81,0185	299,830	,314	,855
BPS_4	81,4630	280,253	,664	,843
BPS_5	81,0370	286,263	,570	,846
BPS_6	81,2593	310,196	,084	,864
bps_7i	81,4259	296,966	,374	,853
bps_81	81,5926	290,020	,634	,846
BPS_9	81,1296	293,021	,555	,848
BPS_10	81,2593	284,611	,629	,845
bps_11i	81,7963	292,278	,666	,846
BPS_12	81,8519	289,525	,664	,845
bps_13i	81,5000	288,708	,757,	,844
BPS_14	82,2407	289,130	,644	,845
BPS_16	81,6667	286,528	,594	,846
bps_18i	81,0556	306,016	,171	,860
BPS_19	81,4630	294,782	,417	,851
BPS_20	79,8333	300,179	,334	,854
BPS_21	81,0185	289,754	,541	,848
bps_22i	81,4259	302,438	,320	,854
bps_23i	81,0370	296,451	,387	,852
bps_24i	80,2593	310,837	,097	,862
BPS_25	81,5556	295,082	,473	,850
BPS_26	80,8889	304,063		,858
BPS_27	80,0556	321,563	-,089	,868
BPS_28	81,5370	297,084	,421	,851

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
84,4259	319,042	17,86174	26

Subescala de Estimulação Interna (reteste)

Case Processing Summary

	_	N	%
Cases	Valid	55	96,5
	Excluded ^a	2	3,5
	Total	57	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items	
,850	19	

Item Statistics

-	Mean	Std. Deviation	N
bps_1i	3,1818	1,37559	55
BPS_2	4,4000	1,55873	55
BPS_3	3,3818	1,54549	55
BPS_4	2,9455	1,61496	55
BPS_5	3,3636	1,56777	55
BPS_6	3,1818	1,82666	55
BPS_9	3,3091	1,27472	55
BPS_10	3,1455	1,50823	55
bps_11i	2,6364	1,11162	55
BPS_12	2,5455	1,24452	55
BPS_14	2,1636	1,28760	55
BPS_16	2,7455	1,49342	55
BPS_19	2,9636	1,51491	55
BPS_20	4,6182	1,44646	55
BPS_21	3,4182	1,46175	55
BPS_25	2,8545	1,35289	55
BPS_26	3,5091	1,58550	55
BPS_27	4,3273	1,59924	55
BPS_28	2,9091	1,37804	55

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Cronbach's Alpha if Item Deleted
bps_1i	58,4182	190,581	,488	,841
BPS_2	57,2000	206,200	,053	,861
BPS_3	58,2182	195,026	,315	,849
BPS_4	58,6545	178,082	,704	,830
BPS_5	58,2364	183,110	,600	,836
BPS_6	58,4182	201,766	,114	,861
BPS_9	58,2909	189,432	,569	,839
BPS_10	58,4545	181,364	,674	,833
bps_11i	58,9636	192,776	,551	,840
BPS_12	59,0545	187,386	,648	,836
BPS_14	59,4364	186,436	,652	,835
BPS_16	58,8545	187,645	,517	,840
BPS_19	58,6364	189,606	,458	,843
BPS_20	56,9818	194,314	,362	,847
BPS_21	58,1818	182,707	,662	,834
BPS_25	58,7455	188,267	,564	,838
BPS_26	58,0909	193,418	,342	,848
BPS_27	57,2727	207,832	,014	,863
BPS_28	58,6909	192,440	,436	,844

Mean	Variance	Std. Deviation	N of Items
61,6000	211,022	14,52660	19

Subescala de Estimulação Externa (reteste)

Case Processing Summary

-	-	N	%
Cases	Valid	56	98,2
	Excluded ^a	1	1,8
	Total	57	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,824	7

Item Statistics

	Mean	Std. Deviation	N
bps_7i	3,0179	1,57816	56
bps_81	2,8214	1,28073	56
bps_13i	2,8750	1,14515	56
bps_18i	3,3750	1,66856	56
bps_22i	3,0000	1,36182	56
bps_23i	3,3929	1,56877	56
bps_24i	4,2500	1,65420	56

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
bps_7i	19,7143	36,281	,699	,777
bps_81	19,9107	40,083	,637	,792
bps_13i	19,8571	42,416	,558	,805
bps_18i	19,3571	39,506	,465	,820
bps_22i	19,7321	39,363	,634	,791
bps_23i	19,3393	35,465	,756	,766
bps_24i	18,4821	42,436	,319	,845

Mean	Variance	Std. Deviation	N of Items
22,7321	52,054	7,21486	7

Escala de Solidão

Case Processing Summary

		., .	
	-	N	%
Cases	Valid	147	68,4
	Excludeda	68	31,6
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,940	20

Item Statistics

	Mean	Std. Deviation	N
ls_1i	3,39	1,162	147
LS_2	3,25	1,374	147
LS_3	2,68	1,617	147
LS_4	3,18	1,566	147
ls_5i	2,65	1,587	147
ls_6i	3,16	1,317	147
LS_7	2,54	1,532	147
LS_8	3,14	1,490	147
ls_9i	2,69	1,292	147
ls_10i	2,80	1,253	147
LS_11	2,73	1,300	147
LS_12	2,50	1,445	147
LS_13	3,60	1,804	147
LS_14	2,86	1,533	147
ls_15i	3,28	1,547	147
ls_16i	3,35	1,625	147
LS_17	4,09	1,485	147
LS_18	3,32	1,535	147
ls_19i	2,54	1,454	147
ls_20i	2,51	1,362	147

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
ls_1i	56,88	380,327	,517	,939
LS_2	57,02	364,705	,733	,936
LS_3	57,59	356,216	,758	,935
LS_4	57,09	357,985	,754	,935
ls_5i	57,63	369,715	,538	,939
ls_6i	57,12	372,021	,617	,938
LS_7	57,73	359,049	,753	,935
LS_8	57,13	369,428	,584	,938
ls_9i	57,59	377,998	,506	,939
ls_10i	57,47	372,963	,631	,937
LS_11	57,54	365,839	,755	,935
LS_12	57,77	365,878	,672	,937
LS_13	56,67	353,304	,715	,936
LS_14	57,41	355,586	,815	,934
ls_15i	56,99	374,692	,467	,940
ls_16i	56,93	365,946	,587	,938
LS_17	56,18	384,384	,318	,943
LS_18	56,95	361,005	,715	,936
ls_19i	57,73	362,772	,726	,936
ls_20i	57,76	365,114	,733	,936

Mean	Variance	Std. Deviation	N of Items
60,27	405,090	20,127	20

Escala de Procura de Sensações

Case Processing Summary

	-	N	%
Cases	Valid	155	72,1
	Excluded ^a	60	27,9
	Total	215	100,0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items	
,502		4

Item Statistics

	Mean	Std. Deviation	N
T_BS	2,50	1,874	155
T_D	3,95	2,180	155
T_ES	6,45	1,687	155
T_TAS	6,68	2,316	155

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
T_BS	17,07	20,456	,144	,550
T_D	15,62	16,250	,308	,418
T_ES	13,12	16,745	,494	,279
T_TAS	12,89	15,852	,282	,449

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
19,57	26,416	5,140	4

Inventário de Depressão de Beck

Case Processing Summary

	-	N	%					
Cases	Valid	143	66,5					
	Excluded ^a	72	33,5					
	Total	215	100,0					

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
,869	21

Item Statistics

	Mean	Std. Deviation	N
BDI_1	,22	,495	143
BDI_2	,41	,632	143
BDI_3	,27	,447	143
BDI_4	,36	,600	143
BDI_5	,44	,526	143
BDI_6	,34	,770	143
BDI_7	,31	,642	143
BDI_8	,64	,706	143
BDI_9	,13	,398	143
BDI_10	,52	,918	143
BDI_11	,53	,739	143
BDI_12	,30	,531	143
BDI_13	,57	,783	143
BDI_14	,41	,988	143
BDI_15	,46	,637	143
BDI_16	,91	,731	143
BDI_17	,52	,690	143
BDI_18	,64	,754	143
BDI_19	,71	,747	143
BDI_20	,64	,745	143
BDI_21	,20	,493	143

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
BDI_1	9,34	51,844	,628	,860
BDI_2	9,15	53,253	,317	,868
BDI_3	9,29	53,051	,510	,863
BDI_4	9,20	52,454	,433	,864
BDI_5	9,12	53,458	,369	,866
BDI_6	9,22	51,185	,435	,864
BDI_7	9,25	50,993	,564	,860
BDI_8	8,92	50,528	,552	,860
BDI_9	9,43	53,458	,508	,864
BDI_10	9,04	49,111	,514	,862
BDI_11	9,03	50,746	,501	,862
BDI_12	9,26	52,672	,469	,864
BDI_13	8,99	49,711	,566	,859
BDI_14	9,15	52,647	,206	,877
BDI_15	9,10	50,413	,637	,858
BDI_16	8,65	51,088	,474	,863
BDI_17	9,03	50,964	,521	,861
BDI_18	8,92	51,655	,401	,866
BDI_19	8,85	51,244	,446	,864
BDI_20	8,92	49,584	,613	,858
BDI_21	9,36	54,557	,243	,869

Mean	Variance	Std. Deviation	N of Items		
9,56	56,572	7,521	21		

ANEXO VI. CORRELAÇÕES

Correlação entre a BPS, as suas subescalas em teste e reteste e Tédio Estado

·		T_BPS	T_BPS _EIN	T_BPS EEX	rt_T_BPS	rt_T_BPS EIN	rt_T_BPS EEX	T_SB
T_BPS	Pearson Correlation	1	,938	,504	,846	,748	,589	,725
	Sig. (2-tailed)		,000	,000	,000	,000	,000	,000
	N	215	215	215	57	57	57	155
T_BPS_EIN	Pearson Correlation	,938	1	,172	,794	,818	,309	,656
	Sig. (2-tailed)	,000		,011	,000	,000	,019	,000
	N	215	215	215	57	57	57	155
T_BPS_EEX	Pearson Correlation	,504	,172	1	,509	,220	,832	,409
	Sig. (2-tailed)	,000	,011		,000	,100	,000	,000
	N	215	215	215	57	57	57	155
rt_T_BPS	Pearson Correlation	,846	,794	,509	1	,924	,609	,402
	Sig. (2-tailed)	,000	,000	,000		,000	,000	,098
	N	57	57	57	57	57	57	18
rt_T_BPS_EI	Pearson Correlation	,748	,818	,220	,924	1	,261	,149
N	Sig. (2-tailed)	,000	,000	,100	,000		,050	,556
	N	57	57	57	57	57	57	18
rt_T_BPS_E	Pearson Correlation	,589	,309	,832	,609	,261	1	,662
EX	Sig. (2-tailed)	,000	,019	,000	,000	,050		,003
	N	57	57	57	57	57	57	18
T_SB	Pearson Correlation	,725	,656	,409	,402	,149	,662	1
	Sig. (2-tailed)	,000	,000	,000	,098	,556	,003	
	N	155	155	155	18	18	18	155

^{**.} Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Correlação entre a BPS, as suas subescalas, Tédio Estado, LS, SSS, as suas subescalas e a BDI

	-	T_BPS	T_BPS EIN	T_BPS EEX	T_SB	T LS	T_SSS	T BS	T D	T ES	T_TAS	T BDI
T_BPS	Pearson Correlation	1_DI 3	,938	,504	,725	,591	,239	,292	,198	,167	-,014	_
I_BI S	Sig. (2-tailed)	1	.000	.000	.000	.000		.000	.014	.038	.863	.000
	N (2-tailed)	215	215	215	155	155	155	155	155	155	155	,
T_BPS_	= '	.938	1	,172	.656	,612	,301	,358	.168	,247	,042	.467
I_BFS_ EIN	Sig. (2-tailed)	,938	1	,011	,000	,000	· ·	,338	,036	,002	,608	,407
	N	215	215	215	155	155	155	155	155	155	155	155
T_BPS_	Pearson Correlation	,504	,172	1	.409	,139	-,083	-,071	,142	-,154	-,149	,140
EEX	Sig. (2-tailed)	,000	,011	1	,409	.085	.305	,383	,078	,057	,065	,083
	N (2-tailed)	215	215	215	155	155	155	155	155	155	155	155
T_SB	Pearson Correlation	,725	,656	,409	133	,546	,035	,137	,043	,024	-,092	,411
1_5D	Sig. (2-tailed)	,000	,000	,000	1	,000		,090	.597	,024		,411
	N	155	155	155	155	155	155	155	155	155	155	
T_LS	Pearson Correlation	,591	,612	,139	.546	133	-,038	,137	-,150	.096	-,123	,496
1_LS	Sig. (2-tailed)	.000	,000	,085	,000	1	.641	,089	.062	,235	,126	
	N	155	155	155	155	155	155	155	155	155	155	155
T_SSS	Pearson Correlation	,239	.301	-,083	.035	-,038	1	,492	.666	,722	.669	,128
	Sig. (2-tailed)	,003	,000	,305	,669	,641		,000	,000	,000	.000	,113
	N	155	155	155	155	155	155	155	155	155	155	
T_BS	Pearson Correlation	,292	,358	-,071	,137	,137	,492	1	,176	,215	-,041	,110
	Sig. (2-tailed)	,000	,000	,383	,090	,089	,000		,028	,007	,616	,174
	N	155	155	155	155	155	155	155	155	155	155	155
T_D	Pearson Correlation	,198	,168	,142	,043	-,150	,666	,176	1	,264	,201	,038
	Sig. (2-tailed)	,014	,036	,078	,597	,062	,000	,028		,001	,012	,640
	N	155	155	155	155	155	155	155	155	155	155	155
T_ES	Pearson Correlation	,167	,247	-,154	,024	,096	,722	,215	,264	1	,451	,178
	Sig. (2-tailed)	,038	,002	,057	,766	,235	,000	,007	,001		,000	,027
	N	155	155	155	155	155	155	155	155	155	155	155
T_TAS	Pearson Correlation	-,014	,042	-,149	-,092	-,123	,669	-,041	,201	,451	1	,029
	Sig. (2-tailed)	,863	,608	,065	,257	,126	,000	,616	,012	,000		,719
	N	155	155	155	155	155	155	155	155	155	155	155
T_BDI	Pearson Correlation	,463	,467	,140	,411	,496	,128	,110	,038	,178	,029	1
	Sig. (2-tailed)	,000	,000	,083	,000	,000		,174	,640	,027	,719	
	N	155	155	155	155	155	155	155	155	155	155	155

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Correlação entre a BPS, e as suas subescalas (reteste), Tédio Estado, LS, SSS, as suas subescalas e a BDI

Correlations

RT BPS BPS BPS BPS ER SPS SPS					Correlati	OHS							
Sig. (2-tailed)			rt_T BPS	rt_T_ BPS_EIN	rt_T_ BPS_EEX		T LS	T SSS	T BS	T D	T ES	T TAS	T BDI
N	rt_T_BPS	Pearson Correlation	1	,924	,609	,402	,532	,294	,129	,488	,065	,164	,555
TT_BPS_ Pearson Correlation 9.24		Sig. (2-tailed)	l.	,000	,000	,098	,023	,237	,611	,040	,798	,517	,017
EIN Sig. (2-tailed) ,000 ,050 ,556 ,007 ,213 ,368 ,317 ,436 ,417 ,001 RT_TBPS_Pearson Correlation ,609 ,261 1 ,662 -1,141 ,002 -2,18 ,635 -304 -079 -342 EEX Sig. (2-tailed) ,000 ,050 ,003 ,576 ,995 ,385 ,005 ,220 ,755 ,164 N 57 57 757 18		N	57	57	57	18	18	18	18	18	18	18	18
N		Pearson Correlation	,924	1	,261	,149	,613	,308	,226	,250	,196	,204	,718
T_BPS_ Pearson Correlation Correlation	EIN	Sig. (2-tailed)	,000		,050	,556	,007	,213	,368	,317	,436	,417	,001
EEX Sig. (2-tailed) ,000 ,050 ,003 ,576 ,995 ,385 ,005 ,220 ,755 ,164 N 57 57 57 57 18		N	57	57	57	18	18	18	18	18	18	18	18
N	rt_T_BPS_	Pearson Correlation	,609	,261	1	,662	-,141	,002	-,218	,635	-,304	-,079	-,342
T_SB Pearson Correlation Sig. (2-tailed) 402 (0.98) 1,149 (0.662) 1 (0.546) 0.03 (0.00) 1,137 (0.43) 0,024 (0.257) 0,000 (0.669) 0,000 (0.669) 0,000 (0.597) 7,66 (0.257) 0,000 (0.669) 0,000 (0.597) 7,66 (0.257) 0,000 (0.597) 7,66 (0.257) 0,000 (0.669) 0,000 (0.597) 7,66 (0.257) 0,000 (0.669) 0,000 (0.597) 7,66 (0.725) 1,55 (0.55) 1,55 (0.55) 1,55 (0.55) 1,55 (0.55) 1,55 (0.560) 1,150 (0.00) 0,000 (0.641) 0,009 (0.62) 2,235 (0.25) 1,26 (0.00) 0,000 (0.641) 0,009 (0.62) 2,335 (0.25) 1,26 (0.00) 0,000 (0.00)	EEX	Sig. (2-tailed)	,000	,050		,003	,576	,995	,385	,005	,220	,755	,164
Sig. (2-tailed) .098 .556 .003 .000 .669 .090 .597 .766 .257 .000 N 18 18 18 155		N	57	57	57	18	18	18	18	18	18	18	18
N	T_SB	Pearson Correlation	,402	,149	,662	1	,546	,035	,137	,043	,024	-,092	,411
T_LS Pearson Correlation Sig. (2-tailed) .532 (0.00) .613 (0.00) .741 (0.00) .641 (0.08) (0.08) .7150 (0.09) .7123 (0.00) .7123 (0.00) .7123 (0.00) .7123 (0.00) .7123 (0.00) .7123 (0.00) .7123 (0.00) .7123 (0.00) .7125 (0.00) .7125 (0.00) .7125 (0.00) .7125 (0.00) .7125 (0.00) .7126 (0.00) .7125 (0.00) .7126 (0.00) .7125 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7127 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7126 (0.00) .7127 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00) .7128 (0.00)		Sig. (2-tailed)	,098	,556	,003		,000	,669	,090	,597	,766	,257	,000
Sig. (2-tailed) ,023 ,007 ,576 ,000 ,641 ,089 ,062 ,235 ,126 ,000 N 18 18 18 155		N	18	18	18	155	155	155	155	155	155	155	155
N	T_LS	Pearson Correlation	,532	,613	-,141	,546	1	-,038	,137	-,150	,096	-,123	,496
T_SSS Pearson Correlation Sig. (2-tailed) .294 .308 .002 .035 -,038 1 .492 .666 .722 .669 .128 Sig. (2-tailed) .237 .213 .995 .669 .641 .000 .000 .000 .000 .113 N 18 18 18 155		Sig. (2-tailed)	,023	,007	,576	,000		,641	,089	,062	,235	,126	,000
Sig. (2-tailed) ,237 ,213 ,995 ,669 ,641 ,000		N	18	18	18	155	155	155	155	155	155	155	155
N 18 18 18 155	T_SSS	Pearson Correlation	,294	,308	,002	,035	-,038	1	,492	,666	,722	,669	,128
T_BS Pearson Correlation Sig. (2-tailed) 1,129 2,26 -,218 1,37 1,37 492 1 1,76 2,15 -,041 1,10 N 18 18 18 155		Sig. (2-tailed)	,237	,213	,995	,669	,641		,000	,000	,000	,000	,113
Sig. (2-tailed) ,611 ,368 ,385 ,090 ,089 ,000 ,028 ,007 ,616 ,174 N 18 18 18 155		N		18	18	155	155	155	155	155	155	155	155
N 18 18 18 155	T_BS	Pearson Correlation	,129	,226	-,218	,137	,137	,492	1	,176	,215	-,041	,110
T_D Pearson Correlation ,488 ,250 ,635 ,043 -,150 ,666 ,176 1 ,264 ,201 ,038 Sig. (2-tailed) ,040 ,317 ,005 ,597 ,062 ,000 ,028 ,001 ,012 ,640 N 18 18 18 155		Sig. (2-tailed)	,611	,368	,385	,090	,089	,000		,028	,007	,616	,174
Sig. (2-tailed) ,040 ,317 ,005 ,597 ,062 ,000 ,028 ,001 ,012 ,640 N 18 18 18 155		N	18	18	18	155	155	155	155	155	155	155	155
N 18 18 18 155 157 178 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179	T_D	Pearson Correlation	,488	,250	,635	,043	-,150	,666	,176	1	,264	,201	,038
T_ES		Sig. (2-tailed)	,040	,317	,005	,597	,062	,000	,028		,001	,012	,640
Sig. (2-tailed) ,798 ,436 ,220 ,766 ,235 ,000 ,007 ,001 ,000 ,027 N 18 18 18 155		= ',	18	18	18	155	155	155			155	155	
N 18 18 18 155 155 155 155 155 155 155 15	T_ES	Pearson Correlation	,065	,196	-,304	,024	,096	,722	,215	,264	1	,451	,178
T_TAS Pearson Correlation		Sig. (2-tailed)	,798	,436	,220	,766	,235	,000	,007	,001		,000	,027
Sig. (2-tailed) ,517 ,417 ,755 ,257 ,126 ,000 ,616 ,012 ,000 ,719 N 18 18 18 155		N	18	18	18	155	155	155	155	155	155	155	155
N 18 18 18 15 155 155 155 155 155 155 155	T_TAS	Pearson Correlation		,204	-,079	-,092	-,123	,669	-,041	,		1	
T_BDI Pearson Correlation		Sig. (2-tailed)	,517	,417	,755	,257	,	,000	,616	,012	,000		,719
Sig. (2-tailed) ,017 ,001 ,164 ,000 ,000 ,113 ,174 ,640 ,027 ,719 N 18 18 18 155 155 155 155 155 155 155 155 155		- 1			18		155		155			155	155
N 18 18 18 155 155 155 155 155 155 155 15	T_BDI	Pearson Correlation	,555	,	-,342	,411	,496	,128	,110	,038	,178	,029	1
		Sig. (2-tailed)	,017	,001	,164	,000	,000	,113	,174	,640	,027	,719	
** Correlation is significant at the 0.01 level (2 toiled)			18		18	155	155	155	155	155	155	155	155

^{**.} Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Adaptação e validação da "Boredom Proneness Scale"

ANEXO VII. TESTES-T E ANOVAS DAS VARIÁVEIS SOCIODEMOGRÁFICAS

Género (Teste-T)

Group Statistics

	categoria género	N	Mean	Std. Deviation	Std. Error Mean
T_BPS	MASCULINO	47	3,4538	,6806	,0993
	FEMININO	168	3,2620	,6759	,0522

Independent Samples Test

		Levene for Equ Varia		t-test for Equality of Means						
									Interva	nfidence al of the erence
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
T_BPS	Equal variances assumed	,016	,898	1,717	213	,087	1,9181	1,1171	-2,8386	4,1199
	Equal variances not assumed			1,710	73,351	,091	1,9181	1,1214	-3,1674	4,1528

Idade (Anova)

Between-Subjects Factors

	=	N
rec_idade	1,00	40
	2,00	82
	3,00	91

Descriptive Statistics

Dependent Variable:T_BPS

rec_idade	Mean	Std. Deviation	N
1,00	3,3218	,6653	40
2,00	3,3309	,6735	82
3,00	3,2630	,6974	91
Total	3,3001	,6799	213

Tests of Between-Subjects Effects

Dependent Variable:T_BPS

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	,222ª	2	,111	,238	,788
Intercept	2040,475	1	2040,475	4382,199	,000
rec_idade	,222	2	,111	,238	,788
Error	97,782	210	,466		
Total	2417,772	213			
Corrected Total	98,004	212			

a. R Squared = ,002 (Adjusted R Squared = -,007)

Estimated Marginal Means

1. rec_idade

Dependent Variable:T_BPS

-			95% Confidence Interval				
rec_idade	Mean	Std. Error	Lower Bound	Upper Bound			
1,00	3,322	,108	3,109	3,534			
2,00	3,331	,075	3,182	3,479			
3,00	3,263	,072	3,122	3,404			

2. Grand Mean

Dependent Variable:T_BPS

		95% Confidence Interval				
Mean	Std. Error	Lower Bound	Upper Bound			
3,305	,050	3,207	3,404			

Post Hoc Tests

Multiple Comparisons

T_BPS Tukey HSD

(I)	I) (J) ec_ida rec_ida Mean Difference				95% Confide	ence Interval
rec_ida de	rec_ida de	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
1,00	2,00	-9,1037	,1316	,997	-3,1974	3,0154
	3,00	5,8783	,1295	,893	-2,4678	3,6435
2,00	1,00	9,1037	,1316	,997	-3,0154	3,1974
	3,00	6,7886	,1039	,791	-1,7736	3,1314
3,00	1,00	-5,8783	,1295	,893	-3,6435	2,4678
	2,00	-6,7886	,1039	,791	-3,1314	1,7736

Based on observed means.
The error term is Mean Square(Error) = ,466.

Homogeneous Subsets

T_BPS

Tukey HSDa,,v,,c

		Subset
rec_idade	N	1
3,00	91	3,2630
1,00	40	3,3218
2,00	82	3,3309
Sig.		,844

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = ,466.

- a. Uses Harmonic Mean Sample Size = 62,261.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = ,05.

Nacionalidade (Teste-T)

Group Statistics

<u> </u>	rec_nacionalidade		Mean	Std. Deviation	Std. Error Mean
T_BPS	PORTUGUESA	202	3,3147	,6887	,0485
	OUTRA NACIONALIDADE	11	3,0473	,4991	,1505

Independent Samples Test

					impies re	~ -			
	Levene's Equal Varia	ity of			t-te	st for Equalit	y of Means		
			95% Confide Interval of Difference				of the		
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
T_BPS Equal variances assumed	2,013	,157	1,268	211	,206	2,6738	2,1082	-1,482	6,8297
Equal variances not assumed			1,691	12,175	,116	2,6738	1,5810	-7,6555	6,1132

Naturalidade (Teste-T)

Group Statistics

	rec_naturalidade	N	Mean	Std. Deviation	Std. Error Mean
T_BPS	GRANDE LISBOA	71	3,2163	,6589	,07821
	OUTRA LOCALIDADE	136	3,3459	,6995	,05998

Independent Samples Test

		• •								
		Levene's Equali Varia	ty of			t-test f	for Equality	of Means		
									95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2- tailed)	Mean Differenc e	Std. Error Differenc e	Lower	Upper
T_BPS	Equal variances assumed	,322	,571	-1,291	205	,198	-1,2962	1,0043	-3,2763	6,8391
	Equal variances not assumed			-1,315	149,711	,190	-1,2962	9,8559	-3,2437	6,5130

Estabelecimento Ensino (Teste-T)

Group Statistics

	rec_estab .ensino	N	Mean	Std. Deviation	Std. Error Mean
T_BPS	ISCTE	114	3,2836	,6652	,0623
	FPUL	101	3,3269	,6990	,0696

Independent Samples Test

_	for Eq	e's Test uality of iances			t-tes	st for Equality	of Means		
								95% Confidence Interval of the Difference	
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
T_BPS Equal variances assumed	,004	,950	-,465	213	,642	-4,3334	9,3097	-2,2684	1,4017
Equal variances not assumed			-,464	206,946	,643	-4,3334	9,3377	-2,2743	1,4076

Etnia (Teste-T)

Group Statistics

F	rec_etnia	N	Mean	Std. Deviation	Std. Error Mean
T_BPS	CAUCASIANA	203	3,3060	,6876	,0483
	OUTRA	11	3,2436	,5795	,1747

Independent Samples Test

	-	Levene' for Equ of Vari	ality	lity					ns	
					95% Confidence Interval of the Difference					
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Lower	Upper
T_BPS	Equal variances assumed	,653	,420	,295	212	,768	6,2423	2,1141	-3,5431	4,7915
	Equal variances not assumed			,344	11,581	,737	6,2423	1,8127	-3,3412	4,5897

Composição do agregado familiar (Anova)

Between-Subjects Factors

_		Value Label	N
rec_comkvive	1,00	PAI E MAE	117
	2,00	SO PAI OU SO MAE	42
	3,00	OUTROS FAMILIARES	11
	4,00	COMPANHEIRO(A)	13
	5,00	SOZINHO(A)	12
	6,00	OUTROS	18

Descriptive Statistics

Dependent Variable:T_BPS

rec_comkvive	Mean	Std. Deviation	N				
PAI E MAE	3,2662	,67354	117				
SO PAI OU SO MAE	3,4257	,77316	42				
OUTROS FAMILIARES	3,3600	,50638	11				
COMPANHEIRO(A)	3,4700	,71855	13				
SOZINHO(A)	3,0783	,64720	12				
OUTROS	3,1667	,53530	18				
Total	3,2960	,67813	213				

Tests of Between-Subjects Effects

Dependent Variable:T_BPS

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2,119ª	5	,424	,920	,469
Intercept	1152,339	1	1152,339	2501,100	,000
rec_comkvive	2,119	5	,424	,920	,469
Error	95,372	207	,461		
Total	2411,388	213			
Corrected Total	97,490	212			

a. R Squared = ,022 (Adjusted R Squared = -,002)

Estimated Marginal Means

1. Grand Mean

Dependent Variable:T_BPS

		95% Confidence Interval		
Mean	Std. Error	Lower Bound	Upper Bound	
3,294	,066	3,165	3,424	

2. rec_comkvive

Dependent Variable:T_BPS

4							
			95% Confidence Interval				
rec_comkvive	Mean	Std. Error	Lower Bound	Upper Bound			
PAI E MAE	3,266	,063	3,143	3,390			
SO PAI OU SO MAE	3,426	,105	3,219	3,632			
OUTROS FAMILIARES	3,360	,205	2,957	3,763			
COMPANHEIRO(A)	3,470	,188	3,099	3,841			
SOZINHO(A)	3,078	,196	2,692	3,465			
OUTROS	3,167	,160	2,851	3,482			

Post Hoc Tests

Multiple Comparisons

T_BPS Tukey HSD

	-	Mean			95% Confide	ence Interval
(I) rec_comkvive	(J) rec_comkvive	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
PAI E MAE						
	SO PAI OU SO MAE	-,1595		,781	-,5107	,1918
	OUTROS FAMILIARES	-,0938		,998	-,7095	,5220
	COMPANHEIRO(A)	-,2038		,909	,	,3671
	SOZINHO(A)	,1879		,943		,7798
	OUTROS	,0996	,17186	,992	-,3948	,5939
SO PAI OU SO MAE						
WIAE	PAI E MAE	,1595		,781	-,1918	,5107
	OUTROS FAMILIARES	,0657	,22990	1,000		,7271
	COMPANHEIRO(A)	-,0443		1,000	-,6640	,5754
	SOZINHO(A) OUTROS	,3474 ,2590		,623 ,754	-,2817	,9865 ,8091
OLUTROG	OUTROS	,2390	,19122	,734	-,2910	,8091
OUTROS FAMILIARES	DALEMAE	0020	21406	000	5220	7.05
THINDII IICES	PAI E MAE SO PAI OU SO MAE	,0938 -,0657		,998 1.000	-,5220 -,7271	,7695 ,5956
	COMPANHEIRO(A)	-,0657 -,1100		,999	-,7271 -,9099	,5936
	SOZINHO(A)	,2817		,919		1.0967
	OUTROS	,1933		,976		,9406
COMPANHEIRO		,1555	,20>	,,,,	,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A)	PAI E MAE	,2038	,19844	,909	-,3671	,7746
	SO PAI OU SO MAE	,0443		1,000	-,5754	,6640
	OUTROS FAMILIARES	,1100		,999		,9099
	SOZINHO(A)	,3917		,702	-,3900	1,1733
	OUTROS	,3033	,24706	,823	-,4074	1,0140
SOZINHO(A)	•					
	PAI E MAE	-,1879	,20575	,943	-,7798	,4040
	SO PAI OU SO MAE	-,3474		,623	-,9865	,2917
	OUTROS FAMILIARES	-,2817	,28334	,919	-1,0967	,5334
	COMPANHEIRO(A)	-3917	,	,702		,3900
	OUTROS	-,0883	,25296	,999	-,8160	,6393
OUTROS						
	PAI E MAE	-,0996	,17186	,992	-,5939	,3948
	SO PAI OU SO MAE	-,2590		,754		,2910
	OUTROS FAMILIARES	-1933	,	,976		,5539
	COMPANHEIRO(A)	-,3033		,823	-1,0140	,4074
Rasad on observed	SOZINHO(A)	-,0883	,25296	,999	-,6393	,8160

Based on observed means.
The error term is Mean Square(Error) = ,461.

Homogeneous Subsets

		Subset
rec_comkvive	N	1
SOZINHO(A)	12	3,0783
OUTROS	18	3,1667
PAI E MAE	117	3,2662
OUTROS FAMILIARES	11	3,3600
SO PAI OU SO MAE	42	3,4257
COMPANHEIRO(A)	13	3,4700
Sig.		,523

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = ,461.

- a. Uses Harmonic Mean Sample Size = 17,695.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = ,05.

Número de Irmãos (Anova)

Between-Subjects Factors

		N
rec_irmaos.nr	,00	35
	1,00	114
	2,00	37
	3,00	23

Descriptive Statistics

Dependent Variable:T_BPS

rec_irmao s.nr	Mean	Std. Deviation	N
,00	3,177	,6757	35
1,00	3,3437	,6443	114
2,00	3,3035	,7411	37
3,00	3,3109	,69112	23
Total	3,3051	,6703	209

Tests of Between-Subjects Effects

Dependent Variable:T_BPS

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	,744ª	3	,248	,548	,650
Intercept	1599,777	1	1599,777	3537,191	,000
rec_irmaos.nr	,744	3	,248	,548	,650
Error	92,716	205	,452		
Total	2376,471	209			
Corrected Total	93,460				

a. R Squared = ,008 (Adjusted R Squared = -,007)

Estimated Marginal Means

1. Grand Mean

Dependent Variable:T_BPS

		95% Confidence Interval		
Mean	Std. Error	Lower Bound Upper Bound		
3,284	,055	3,175	3,393	

2. rec_irmaos.nr

Dependent Variable:T_BPS

rec irmao			95% Confide	ence Interval
s.nr	Mean	Std. Error	Lower Bound	Upper Bound
,00	3,177	,114	2,953	3,401
1,00	3,344	,063	3,219	3,468
2,00 3,00	3,304	,111	3,086	3,521
3,00	3,311	,140	3,034	3,587

Post Hoc Tests

Multiple Comparisons

T_BPS Tukey HSD

	(J) .				95% Confide	ence Interval
(I) rec_irmaos.nr	rec_ir maos. nr	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
,00	1,00	-1,6654	,1299	,576	-5,0317	1,7009
i	2,00	-1,2637	,1586	,856	-5,3711	2,8437
i	3,00	-1,3373	,1805	,880	-6,0131	3,3386
1,00	,00	1,6654	,1299	,576	-1,7008	5,0317
1	2,00	4,0171	,1272	,989	-2,8942	3,6976
	3,00	3,2815	,1537	,997	-3,6537	4,3099
2,00	,00	1,2637	,1586	,856	-2,8437	5,3711
1	1,00	-4,0171	,1272	,989	-3,6976	2,8942
	3,00	-7,3561	,1786	1,000	-4,6990	4,5518
3,00	,00	1,3373	,1805	,880	-3,3385	6,0131
1	1,00	-3,2815	,1537	,997	-4,3099	3,6537
1	2,00	7,3561	,1786	1,000	-4,5518	4,6990

Based on observed means.
The error term is Mean Square(Error) = ,452.

Homogeneous Subsets

T_BPS

Tukey HSD^{a,,v,,c}

		Subset
rec_irmao s.nr	N	1
,00	35	3,1771
2,00	37	3,3035
3,00	23	3,3109
1,00	114	3,3437
Sig.		,710

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = ,452.

- a. Uses Harmonic Mean Sample Size = 37,089.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = 0.05.

Desempenho Escolar

Univariate Analysis of Variance

Between-Subjects Factors

	_	N
rec_desmp_escolar	10 A 13	16
	14 A 17	170
	18 A 20	26

Descriptive Statistics

Dependent Variable:T_BPS

rec_desmp_ escolar	Mean	Std. Deviation	N
10 A 13	3,4988	,62896	16
14 A 17	3,3398	,68449	170
18 A 20	2,9519	,57910	26
Total	3,3042	,67993	212

Tests of Between-Subjects Effects

Dependent Variable:T_BPS

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	4,048ª	2	2,024	4,524	,012
Intercept	897,139	1	897,139	2005,411	,000
rec_desmp_escolar	4,048	2	2,024	4,524	,012
Error	93,498	209	,447		
Total	2412,170	212			
Corrected Total	97,546	211			

a. R Squared = ,041 (Adjusted R Squared = ,032)

Estimated Marginal Means

1. Grand Mean

Dependent Variable:T_BPS

		95% Confidence Interval		
Mean	Std. Error	Lower Bound	Upper Bound	
3,263	,073	3,120	3,407	

2. desmp_escolar

Dependent Variable:T_BPS

rec_desmp_			95% Confide	ence Interval
escolar	Mean	Std. Error	Lower Bound	Upper Bound
10 A 13	3,499	,167	3,169	3,828
14 A 17	3,340	,051	3,239	3,441
18 A 20	2,952	,131	2,693	3,211

Post Hoc Tests desmp_escolar

Multiple Comparisons

T_BPS Tukey HSD

(I)	(I)	M			95% Confid	ence Interval
desmp_escol ar	(J) desmp_escolar	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
10 A 13	14 A 17	,1589	,17490	,635	-,2939	,5718
	18 A 20	,5468*	,21252	,029	-,0452	1,0485
14 A 17	10 A 13	-,1589	,17490	,635	-,5718	,2539
	18 A 20	,3879*	,14085	,018	,0554	,7204
18 A 20	10 A 13	-,5468	,21252	,029	-1,0485	-,0452
	14 A 17	-,3879*	,14085	,018	-,7204	-,0554

Based on observed means.
The error term is Mean Square(Error) = ,447.

Homogeneous Subsets

T_BPS

Tukey HSDa,,v,,c

desmp_escol		Subset		
ar	N	1	2	
18 A 20	26	2,9519		
14 A 17	170	3,3398	3,3398	
10 A 13	16		3,4988	
Sig.		,078	,647	

Means for groups in homogeneous subsets are displayed.

Based on observed means.

Reprovações (Teste-T)

Group Statistics

	rec_repr ovou_sn	N	Mean	Std. Deviation	Std. Error Mean
T_BPS	SIM	31	3,5655	,7896	,1418
	NAO	183	3,2563	,6519	,0482

^{*.} The mean difference is significant at the ,05 level.

The error term is Mean Square(Error) = ,447.

a. Uses Harmonic Mean Sample Size = 28,078.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = ,05.

Independent Samples Test

		Levene's Equal Varia		t-test for Equality of Means						
									95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Differenc e	Std. Error Differenc e	Lower	Upper
T_BP S	Equal variances assumed	2,022	,157	2,365	212	,019	,	,	,0515015 92923588	· ·
	Equal variances not assumed			2,064	37,246	,046	,	· /	,0057787 05008050	,

Número de Reprovações (Anova)

Between-Subjects Factors

=	=	N
reprov_nr	0	183
	1	21
	2	9

Descriptive Statistics

Dependent Variable:T_BPS

reprov_nr	Mean	Std. Deviation	N	
0	3,2563	,6519	183	
1	3,5910	,7618	21	
2	3,6111	,8783	9	
Total	3,3043	,6803	213	

Tests of Between-Subjects Effects

Dependent Variable:T_BPS

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2,995°	2	1,497	3,306	,039
Intercept	666,143	1	666,143	1470,641	,000
reprov_nr	2,995	2	1,497	3,306	,039
Error	95,122	210	,453		
Total	2423,696	213			
Corrected Total	98,116	212			

a. R Squared = ,031 (Adjusted R Squared = ,021)

Estimated Marginal Means

1. Grand Mean

Dependent Variable:T_BPS

		95% Confidence Interval			
Mean	Std. Error	Lower Bound	Upper Bound		
3,486	,091	3,307	3,665		

2. reprov_nr

Dependent Variable:T_BPS

reprov_n			95% Confidence Interval		
r	Mean	Std. Error	Lower Bound	Upper Bound	
0	3,256	,050	3,158	3,354	
1	3,591	,147	3,301	3,880	
2	3,611	,224	3,169	4,053	

Post Hoc Tests

reprov_nr

Multiple Comparisons

T_BPS Tukey HSD

(I)	(J)	Moon Difference (I			95% Confidence Interval		
re nr	prov_ reprov nr	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
0	1	-,3347	,1550	,081	-,7007	,0313	
	2	-,3548	,2298	,273	-,8972	,1876	
1	0	,3347	,1550	,081	-,0313	,7007	
	2	-,0201	,2681	,997	-,6531	,6127	
2	0	,3548	,2298	,273	-,1876	,8972	
	1	,0201	,2681	,997	-,6128	,6531	

Homogeneous Subsets

T_BPS

Tukey HSDa,,v,,c

		Subset		
reprov_nr	N	1		
0	183	3,2563		
1	21	3,5910		
2	9	3,6111		
Sig.		,251		

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = ,453.

- a. Uses Harmonic Mean Sample Size = 18,271.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = ,05.

Based on observed means. The error term is Mean Square(Error) = ,453.

T-Test face ao ponto médio (BPS)

One-Sample Statistics

	N Mean		Std. Deviation	Std. Error Mean	
T_BPS	215	3,30395348837209	,680034838081204	,046377991021410	

One-Sample Test

		Test Value = 4							
					95% Confidence Interval of the Difference				
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper			
T_BPS	-15,008	214	,000	-6,9605	-7,8746	-6,0463			

T-Test face ao ponto médio (subescala estim. interna)

One-Sample Statistics

	N Mean		Std. Deviation	Std. Error Mean	
T_BPS_EIN	215	3,30683720930232	,816590384803130	,055691002010175	

One-Sample Test

		Test Value = 4							
					95% Confidence Interval of the Difference				
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper			
T_BPS_EIN	-12,447	214	,000	-6,9316	-8,0294	-5,8339			

T-Test face ao ponto médio (subescala estim. externa)

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
T_BPS_EEX	215	3,29906976744186	,885925288387845	,060419603187426

One-Sample Test

		Test Value = 4							
					95% Confidence Differ				
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper			
T_BPS_EEX	-11,601	214	,000	-7,009	-8,2002	-5,8184			

T-Test face ao ponto médio (LS)

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean	
T_LS	155	3,019	1,0004	,0804	

One-Sample Test

F	Test Value = 4							
					95% Confidence Interval of the Difference			
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper		
T_LS	-12,208	154	,000	-,9810	-1,140	-,822		

T-Teste face ao ponto médio (SSS)

One-Sample Statistics

	N Mean		Std. Deviation	Std. Error Mean
T_SSS	155	19,5677419	5,13963382	,41282532

One-Sample Test

		Test Value = 20.5						
		ı			95% Confidence Interval of the Difference			
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper		
T_SSS	-2,258	154	,025	-,9323	-1,7478	-,1167		

T-Teste face ao ponto médio (subescala suscetibilidade para o tédio)

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
T_BS	155	2,4967742	1,87386050	,15051210

One-Sample Test

		Test Value = 5.5							
					95% Confidence Interval of the Difference				
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper			
T_BS	-19,953	154	,000,	-3,0032	-3,3006	-2,7059			

T-Test face ao ponto médio (subescala desinibição)

One-Sample Statistics

	N Mean		Std. Deviation	Std. Error Mean
T_D	155	3,9483871	2,17957922	,17506802

One-Sample Test

		Test Value = 5.5							
					95% Confidence Interval of the Difference				
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper			
T_D	-8,863	154	,000,	-1,5516	-1,8975	-1,2058			

T-Test face ao ponto médio (subescala procura de experiência)

One-Sample Statistics

-	N	Mean	Std. Deviation	Std. Error Mean
T_ES	155	6,4451613	1,68700894	,13550382

One-Sample Test

		Test Value = 5.5							
					95% Confidence Interval of the Difference				
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper			
T_ES	6,975	154	,000	,9452	,6775	1,2128			

T-Test face ao ponto médio (subescala procura de emoção e aventura)

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
T_TAS	155	6,6774194	2,31577168	,18600726

One-Sample Test

	Test Value = 5.5					
					95% Confidence Interval of the Difference	
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
T_TAS	6,330	154	,000,	1,1774	,8010	1,5449

T-Test face ao ponto de corte 9 (BDI)

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean	
T_BDI	155	9,56	7,506	,603	

One-Sample Test

	Test Value = 9					
					95% Confidence Interval of the Difference	
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
T_BDI	,931	154	,353	,561	-,63	1,75