

Information Technologies and Sciences Department

Botbeans

Pedro Miguel Aparício Dias

Master in Open Source Software

Supervisor:

Prof. Dr. Sancho Oliveira, Assistant Professor,
ISCTE-IUL

June 2011

 i

Abstract

Programming can be a daunting task from a beginner’s perspective. Since

earlier times of computer programming, tools have been designed and developed in

order to make programming friendlier to beginners. However the majority of these

tools target beginners that are already motivated and have an idea of what computer

programming is. This allows these tools to skip the initial requirements for learning

how to program since these beginners will compensate with their motivation and

effort. This thesis describes a learning tool called Botbeans. By using a new hybrid

visual programming language with a tangible interface, Botbeans creates a highly

motivating and collaboration friendly environment to present what is programming to

a user that never had previously contact with it. The design and implementation of

Botbeans are described and the results of some initial experiments with students are

analysis.

 iii

Resumo

Aprender a programar pode ser uma tarefa difícil e assustadora do ponto de

vista de um iniciante. Desde dos tempos iniciais da programação diversas ferramentas

foram desenvolvidas com o intuito de tornar a aprendizagem da programação mais

amigável a iniciantes. Algumas destas ferramentas têm como publico alvo iniciantes

já altamente motivados para a programação e já com uma ideia do que esta é e para

que serve. Isto permite a estas ferramentas saltar alguns dos pré-requisitos necessários

para começar a aprender a programar, visto que este tipo de iniciante irá compensar

com a sua motivação e empenho. Esta tese descreve uma ferramenta de aprendizagem

chamada Botbeans que utilizando uma linguagem gráfica híbrida e uma interface

tangível cria um ambiente altamente motivante para demonstrar o que é a

programação e para que serve a um utilizador que nunca teve contacto com esta. O

design e desenvolvimento do Botbeans são descritos ao longo da tese assim como os

testes inicias já efectuados.

 v

Table	
 of	
 Contents	

1	
 Introduction .. 1	

2	
 Motivation ... 5	

2.1	
 Learning process .. 5	

2.1.1	
 Active and passive learning .. 8	

2.1.1.1	
 Passive learning .. 8	

2.1.1.2	
 Active learning .. 9	

3	
 State of the art .. 11	

3.1	
 Tangible interfaces ... 11	

3.1.1	
 Collaboration catalyst ... 12	

3.2	
 Other educational tools to teach programming ... 12	

3.2.1	
 BlueJ ... 12	

3.2.2	
 Portugol ... 14	

3.2.3	
 Alice .. 15	

3.2.4	
 Greenfoot .. 16	

3.2.5	
 Scratch .. 17	

3.3	
 Graphical Programming ... 17	

3.3.1	
 Why graphical ... 18	

3.3.2	
 Graphical languages .. 18	

3.3.2.1	
 Representation types ... 19	

3.3.3	
 Other Graphical languages ... 21	

3.3.3.1	
 LabVIEW .. 21	

3.3.3.2	
 Microsoft Visual Programming Language .. 22	

3.3.3.3	
 Quartz Composer .. 23	

4	
 Botbeans .. 25	

4.1	
 Rich Client Platform development ... 25	

4.1.1	
 RCP's .. 25	

4.1.2	
 Advantages ... 26	

4.2	
 Architecture .. 27	

4.2.1	
 Modules .. 29	

4.2.1.1	
 Bot Blocks ... 30	

4.2.1.2	
 Bot Common ... 31	

4.2.1.3	
 Bot Control .. 32	

 vi

4.2.1.4	
 Bot Shapes .. 32	

4.2.1.5	
 External libraries wrappers ... 34	

4.3	
 Graphical language .. 35	

4.3.1	
 Hybrid solution ... 35	

4.3.2	
 Definition .. 36	

4.3.2.1	
 Control .. 37	

4.3.2.2	
 Logic ... 38	

4.3.2.3	
 Data ... 39	

4.3.2.4	
 Miscellaneous ... 39	

4.3.2.5	
 Sensors .. 40	

4.3.2.6	
 Node’s inputs and outputs ... 41	

4.3.2.7	
 Custom Blocks .. 41	

4.4	
 Tangible interface .. 42	

4.4.1	
 Points of interaction .. 43	

4.4.2	
 Robotic platform ... 44	

4.4.2.1	
 Robotic platform requisites ... 44	

4.5	
 Communications ... 45	

4.5.1	
 Communications architecture ... 45	

4.5.2	
 Protocol ... 46	

4.6	
 Examples ... 48	

4.6.1	
 Simple path finding algorithm .. 48	

4.6.2	
 Squares using custom blocks .. 49	

5	
 Results ... 51	

5.1	
 Tool Comparison .. 51	

5.2	
 Earlier tests ... 52	

5.2.1	
 Inquiry ... 53	

6	
 Conclusion .. 57	

6.1	
 Future work .. 58	

7	
 Bibliography ... 61	

8	
 Appendixes .. 65	

 vii

Table	
 of	
 figures	

Figure 1 Original Cone of learning .. 6	

Figure 2 Cone of Experience, incorrectly named Cone of Learning 6	

Figure 3 Cone versions .. 7	

Figure 4 BlueJ .. 13	

Figure 5 Portugol IDE .. 14	

Figure 6 Alice .. 15	

Figure 7 Greenfoot ... 16	

Figure 8 Scratch ... 17	

Figure 9 Diagrammatic Hello World ... 19	

Figure 11 LabVIEW .. 21	

Figure 12 Microsoft VPL ... 22	

Figure 13 Microsoft VPL's Node ... 23	

Figure 14 Modules architecture ... 29	

Figure 15 Bot Blocks module .. 30	

Figure 16 Bot Common module .. 31	

Figure 17 Bot Control module ... 32	

Figure 18 Bot shapes module ... 32	

Figure 19 Botbeans canvas .. 33	

Figure 20 Botbeans memory display ... 34	

Figure 21 Expression builder GUI ... 35	

Figure 22 Control time based nodes .. 37	

Figure 23 Control distance based nodes .. 37	

Figure 24 Decision node .. 38	

Figure 25 Union node .. 38	

Figure 26 Start and end nodes .. 39	

Figure 27 Variable node ... 39	

Figure 28 Sleep node ... 39	

Figure 29 Speaker node ... 40	

Figure 30 Distance sensor .. 40	

Figure 31 Direction sensor ... 40	

Figure 32 Sound sensor .. 40	

 viii

Figure 33 Botbeans custom blocks .. 42	

Figure 34 Gualdim ... 44	

Figure 35 Communications architecture .. 46	

Figure 36 Simple path finding algorithm ... 48	

Figure 37 Square custom block .. 49	

Figure 38 Usage of square custom block ... 50	

Figure 39 FCCT 2011 Students collaborating ... 53	

Figure 40 Botbeans setup entrance .. 65	

Figure 41 Botbeans setup ... 66	

Figure 42 Robot control component .. 66	

 ix

Table	
 of	
 tables	

Table 1 Quartz Composer data types ... 23	

Table 2 RCP comparison ... 26	

Table 3 Node's Categories ... 36	

Table 4 Botbeans's nodes ... 37	

Table 5 Nodes characteristics .. 41	

Table 6 Packet structure ... 46	

Table 7 Protocol operations ... 47	

Table 8 Tool Comparison .. 51	

 x

Introduction

 1

1 Introduction	

Learning how to program can be a difficult task for beginners, it requires

using multiple skills. In addition to learn the basic topics in programming and acquire

the needed abstract and algorithmic thinking a beginner needs to learn the syntax of

the programming language he’s using.

Each of one of these topics separated are easy to tackle, the problem is that

typically a beginner needs to tackle all of these topics simultaneously which can

overwhelm and discourage him, as said by (Kelleher & Pausch, 2005).

In order to overcome some of the previous obstacles in learning how to

program, researchers started developing graphical languages to remove some of the

obstacles, like language syntax, keeping the student focused in the algorithm and their

solutions. "Many graphical programming systems exist to break down the barriers to

computer programming, helping to reduce the threshold for beginners to learn how to

program and reap the benefits of programming" (Roque, 2007)

There are mainly two types of graphical representations for these visual

programming languages: node-based and block-based.

In block-based programming, users connect a group of blocks together like in

a puzzle, building their program this way. "In graphical block programming, users

manipulate and connect puzzle-piece objects to build their programs." (Roque, 2007).

The algorithm is validated by the structure of the language itself because only

complementary blocks (same shape) may connect to each other, not allowing an

invalid program to be built. (Roque, 2007). Besides shape, color is also used to

identify blocks, but usually it is used to represent the data or logic flow in the

algorithm.

Node-based visual languages allow the logic and data flow to be easily

identified, simultaneously allowing its users to easily associate each node to the

corresponded programming structure in a textual programming language (Smith,

2009). In node-based languages the number of outputs and inputs each node can have

Introduction

 2

are usually used to validate the algorithm during its implementation. Like block-based

languages this is used to reduce and/or eliminate implementation errors.

Graphical languages have a scalability problem, if the problem requires a

complex solution it will take screen real estate and the solution will become harder to

understand. But since the main objective of these graphical languages is to teach/learn

programming this problem will not be a important factor in the real world. (Roque,

2007)

It has been proved that novice users learn more efficiently when they get

involved by designing and/or creating something. "Years of research have shown that

children learn best when actively involved in designing and creating their own

inventions." (Stern, 2007).

Tangible interfaces are known to involve more its user in the task he is trying

to accomplish (Horn, Solovey, Crouser, & Jacob, 2009), this is why it is not

surprising that much of the research conducted with tangible interfaces is in education

(O’Malley & Stanton Fraser, 2004) allowing the user to feel the knowledge source.

This type of interfaces allow students to touch/feel in the real world what they

are creating, letting them touch and experience the results of the application of their

existing knowledge (Jacob et al., 2008). Another big advantage of TUIs in education

is the collaboration characteristic in them. Very often the usage of TUIs ends up as a

catalytic for collaboration during the creation process, this is very important in

education because every participant ends up with a richer experience, since each one

will bring its own contribution to the table. (Horn et al., 2009).

The main objective of this thesis was to develop a learning tool that was able

to motivate and show to beginner that never had contact with programming what it is

while giving them the pre-requisites needed to learn programming, requisites like

reasoning and algorithmic thinking.

The learning tool developed is called Botbeans (Pedro Dias & Oliveira, 2010).

By using a new hybrid visual programming language and a tangible interface it gives

the pre-requisites needed to learn more advanced topics in programming in a

motivating environment from the user perspective.

An initial research was conducted about the human learning process. This

research allowed to understand how different learning methodologies, active and

Introduction

 3

passive learning, could affect the process of learning programming and which could

be the best to help solving the problem at hands. This research is described more in

detail in Chapter 2 of this thesis.

After the initial research in learning theory, in Chapter 3 is described the next

step which was the identification of other learning tools that try to aid in learning

programming each one had its own different approach, all these approaches were

studied while identifying their best characteristics.

The next obvious step was to develop a tool that implemented the strategy

defined by the previous research and studies, how this tool was designed and

implemented is described in Chapter 4. Each design decision was justified by all the

previously research, allowing to keep focus in the main problem.

Finally after a fully functional version was implemented (Pedro Dias &

Sancho Oliveira, 2011) initial tests conducted with Botbeans are described and

analyzed, identifying where they should be improved in order to allow a good

identification of possible improvements in Botbeans.

Motivation

 5

2 Motivation	

Younger students are very often scared from programming before they even

understand what it is or which purpose it serves, because of its complexity.

Learning how to program is complex, besides learning the syntax of the

language, the apprentice needs to gain additional skills, like abstract and algorithmic

thinking. Students that are naturally inclined to computers will make an effort and try

to overcome this extra complexity to learn how to program, but students that don’t

have this predisposition will probably not try, scared by the complexity of

programming.

There are multiple learning tools to help a student in the learning process of

programming. The majority of these tools try to simplify the process of learning of

how to program by removing complexity from the programming languages; each tool

has its own approach to accomplish this goal.

A lot of these tools focus in the implementation of the algorithm, the objective

of Botbeans is not to focus in the implementation of the algorithm but instead how to

develop the algorithm using abstract and algorithmic thinking. This is the first pre-

requisite for learning programming.

2.1 Learning process

The human learning process was always involved by some mystery, but there

is no doubt that there is a correlation between learning, knowledge and intelligence,

these three are interconnected in some way, their connection will be used in order to

find out how can the learning process be improved by a more active type of learning.

While studying the human learning process, educator Edgar Dale, developed

the “Cone of Learning” (Figure 1). It is a cone shaped graphic that shows that there is

a direct relation between active activities during the learning process and how easily

the knowledge gets absorbed and understood by its student.

Motivation

 6

Figure 1 Original Cone of learning

His initial model showed which indicators better represented the knowledge

retention. It can be seen from the cone that Edgar Dale believed that the more

active/hands on experiences have the power to behave as catalyst in knowledge

retention, while comparing them against more passive experiences. This was one of

the earlier studies focusing the importance of a more active type of learning, a type

that allows the student to interact with the knowledge’s source and even with the

knowledge itself.

Figure 2 Cone of Experience, incorrectly named Cone of Learning

Motivation

 7

Some years after Dale published his cone, a new version of the cone appeared,

there is no track of who developed this new cone called “Cone of Experience” (Figure

2). This new version is very controversial, since it features percentages spread along

the cone. This percentages were never justified and don’t have any scientific

background, there is even multiple versions with different percentages, passing by has

the original Dale’s cone (Figure 3).

Figure 3 Cone versions

An important factor while absorbing any type of knowledge is its retention

power, meaning how long will it stays active in the student mind. This of course is

much related to how often the student will use the new skill set he acquired from the

absorbed knowledge. This is also related with a more active approach in learning, as

Benjamin Franklin said, “Tell me, and I forget; teach me, and I may remember;

involve me, and I learn.” Or “I hear and I forget. I see and I remember. I do and I

understand” from Confucius.

One person can stay months studying something, but it’s only when he gets

actively involved in that something, that he truly understands how it works; some

researchers call it a type of reverse engineering.

Reading and writing are, nowadays, communication skills naturally acquired,

but they are an important type of skills, since these skills are used in the most typical

learning processes. But there are more communication skills that can and should be

used, like listening to a lecture or watching a movie, or even brainstorming an idea

Motivation

 8

with a group of people, these are all examples of a more active group of activities that

can improve the learning process.

There have been studies about how the human brain behaves during the

learning process. It has been proved that this process involves multiple mental

operations, which interconnect with senses as input. This process takes time and this

time changes from person to person and it directly depends on what is being learned.

2.1.1 Active and passive learning

In an educational sense, two types of learning process can be defined: passive

and active. Passive is when a student studies a subject without directly interacting

with the subject he is studying, it’s the most common type of learning. He will try to

retain knowledge about the subject without interacting with the knowledge source

using his senses. Active learning allows the student to interact with the knowledge

and its source and by using his senses.

2.1.1.1 Passive learning

Passive learning allows in a short time to retain a lot of information, but

although the information was retained does not mean it was understood or even

processed. From the teacher point of view it allows to have a more controlled learning

environment since all the factors can be previously predicted, this way unexpected

situations can be reduced to a minimum to the student and teacher.

There are also disadvantages in passive learning, the most important one is the

fact that there is no way to the teacher to know if the student understood or

assimilated the information he just absorbed, the opposite may also occur where the

student may not feel comfortable enough to report his doubts or problems about the

studied subject.

This problem may result in a complete demotivation from the student side,

leading the student to give up. Once this happened it’s hard to repair this situation

since the student already acquired “antibodies” to the subject he was studying and

from which he just gave up.

Motivation

 9

2.1.1.2 Active learning

In active learning the student gets actively involved in the learning process, he

is not a simple player, he is also the process and the process is he. This is positive

since the student will look at the subject he needs to study not like an obligation but

from a constructive perspective.

In order to absorb the knowledge he will need to create and it will be he’s

creation, something he will intellectually own, and this will boost student motivation.

Consequently students loose the fear of exposing their doubts and questions about the

subject, reducing the differences between students, since the ones with more

difficulties will reach out to the teacher to try to compensate their difficulties.

Like in passive learning not everything is good, active learning is more time

consuming while also asking more from the teacher. This isn’t always a bad thing, but

can be problem when a big number of students are involved, traditionally this type of

learning works better with a smaller class than passive learning.

Usually in passive learning the points of interaction are very limited in

number, like reading something or listening to a teacher explanation, this isn’t enough

in active learning. Active learning needs new methods of interaction between the

student and the target he’s studying, and all these methods need to actively involve

the student, things like public discussion of case studies for example.

Was the search for new types of interaction that brought the tangible interfaces

to the learning process, they are a tool that the teacher can use to motivate his students

by appealing to the student to use his senses in the process, involving him in the

studied subject.

State of the art

 11

3 State of the art

3.1 Tangible interfaces

Tangible interfaces are a new approach in education, they allow the student to

use his senses to interact with an object in the real world, and this object is usually

where the inputs and outputs of the used learning platform reside. They can use

different type of senses like vision, audition, or feel, this allow to grab the attention of

different types of students, since each human being uses and feels their senses

different from the other.

 Tangible interfaces can be included has a type of interface of ubiquitous

computing or ubicomp, this model was developed by Mark Weiser at Xerox Palo Alto

Research Center in 1988, and initially it had only three defined type of devices in

mind, in recent years ubicomp is usually associated with interfaces that allow the

computer to enter the human physical world instead of the opposite, usually an human

needed to enter the computer environment to use them (York & Pendharkar, 2004).

This type of model is perfect to use in programming learning, traditionally

students needed to enter the computer environment, which uses the keyboard and

mouse has input and the screen as output, to learn programming, but this requires that

the student first needs to understand the inputs and outputs of the system, or else he

will not understand if the output displayed on the screen is what he wanted or not.

With a tangible interface this problem can be improved, by using a TUI (tangible user

interface), new types of input are created and the old output is swapped with an output

that is in the physical human environment.

When using this type of interfaces in education some factors need to be

addressed, it’s through this interface that the student will express his thinking and

creativity, so it’s very important that the interface allows the student to express

himself and can never be an obstacle to his creativity.

State of the art

 12

In the end the student will feel useful and since he is using his creation to learn

he will have a feel of ownership and accomplishment, decreasing that initial feeling of

obligation and being forced to learn something.

3.1.1 Collaboration catalyst

How can an interface be a catalyst for collaboration? The best example

nowadays is the Internet. It is a catalyst for communication, before the Internet people

communicated a lot less, people they didn’t had this information highway at the reach

of their hands everywhere they go.

With a TUI, the tool gained multiple input points, but the important factor here

it’s not the number of input but the capability of using some of them in parallel by

multiple users at the same time. There are two main points of interaction: the

computer where the algorithm is going to be implemented and the TUI, which will be

the eyes and ears of the tool in the real world. This allows accommodating multiple

users in same experience.

3.2 Other educational tools to teach programming

3.2.1 BlueJ

The BlueJ tool was initially developed by a research project related to object-

oriented programming teaching and it’s currently maintained by La Trobe University

and University of Ken. Its aim is to help students who are new to object-oriented

programming and specifically new to Java (Xinogalos, Sartatzemi, Dagdilelis, &

Evangelidis, 2006; Xinogalos, Satratzemi, & Dagdilelis, 2007), although BlueJ gives

a good background for any object-oriented programming language; it was developed

with Java in mind.

State of the art

 13

Figure 4 BlueJ

Like many other tools for programming teaching it also supports a graphical

language, BlueJ’s graphical representation is very oriented for the object-oriented

paradigm, where each shape will represent a class and each will contain it’s attributes

and methods. Instead of a complex graphical representation, BlueJ developed a

system of dialog windows, where each problem is divided in smaller problems, which

is in favor of an object-oriented design.

BlueJ’s graphical representation can have similarities to the UML

representation, in particular to class diagrams. Each relation between classes is drawn

but using different types of connectors, each connector represents the type of relation

between the two classes it connects (extends, implements, etc.).

Another key feature of BlueJ is its capability of sharing projects in a central

repository, using this repository students can checkout, update and commit changes to

the different projects. This is very important because it allows the students to do

collaborative work and learn about version control systems without it’s usually

complexity.

Since BlueJ focus in some programming advanced topics, its target audience is

students that already have knowledge about the basic programming topics which now

jumping to more advanced topics.

State of the art

 14

3.2.2 Portugol

Portugol IDE is an environment for algorithm exploration designed for the

teaching of programming developed at Polytechnic of Tomar in 2005.

It uses a Portuguese lexicon-based language for encoding algorithms (Portugol

language) and a graphic language (flowchart). These languages have been defined in a

manner that allows their execution by a computer. Portugol’s flowcharts are a graphic

language consisting of parameterized geometric shapes and arrows representing the

flow of execution inside the implemented algorithm.

Figure 5 Portugol IDE

Portugol has a small set of instructions and operators with a flexible syntax.

Although its flowchart is executed through Portugol language, this process is

transparent to the student.

Initially this tool supported only the Portuguese language, but in future

versions it will support multiple languages, alloying its users to even add new

languages to the system.

The key feature of Portugol is its ability to keep the textual representation and

graphical representation synchronized (Manso, Marques, & P. Dias, 2010), allowing

the student to write his algorithm in one representation and with one click switch to

the other one.

All conversions needed to switch between representations are done

transparently to the user, avoiding overloading the user with unnecessary back end

information.

State of the art

 15

The student has the ability to choose between multiples modes of execution:

debug, run and stepped run. In debugging mode student can, pause and resume the

execution has they see fit; the node that is in execution is always highlighted. Stepped

run is similar to debug but execution automatically continues in a speed that the

student can choose, allowing him to easily reverse engineer an algorithm when

needed.

3.2.3 Alice

Alice main focus like BlueJ is object oriented programming, although Alice

does not feature a visual programming language it implemented a system that’s does

not requires its user to remember the language syntax, removing one of the problems

from textual programming languages.

Alice’s IDE features an interactive helping system, similar to the traditional

code completing solutions, allowing the user to see all the available options in each

instruction, allowing writing code without directly typing it or even knowing the

language syntax.

Figure 6 Alice

The main objective of Alice is computer animation, where the user has a group

of 3d models available to interact with using the Alice’s programming language.

State of the art

 16

These animations allow the users to easily understand the relationship between the

programming statements and the behavior of objects in their animations.

3.2.4 Greenfoot

Greenfoot like Alice and BlueJ focus in object oriented programming more

exactly in Java and features an IDE which fully supports the Java language. The key

features of Greenfoot are its capability of object interaction and visualization, it

supports a system for object interaction similar to BlueJ where the objects move and

interact in a 2D grid map, and users can program the behavior of the objects in the

grid.

Figure 7 Greenfoot

Each object can have a graphical representation in the grid, this way the user

sees his objects not in the usual abstract world but in a graphical world where the

objects can interact with each other.

Like other learning programming tools that focus in object oriented

programming, these require the student to have previous knowledge of the basic

control structures in programming.

State of the art

 17

3.2.5 Scratch

Scratch is a programming language and developing environment for teaching

and learning programming without any previous experience in the matter. The first

version was developed by the Lifelong Kindergarten group at the MIT Media Lab and

released to the public in 2007.

Figure 8 Scratch

Scratch’s IDE is divided in three main panes: palette, scripting area and the

stage. The palette and scripting area is where the algorithm implementation will

occur, since it uses the classical approach of visual languages, which is drag from the

palette, drop into the drawing area. In the stage pane is where the sprites will reside,

these sprites are a key feature in Scratch, allowing users to program these sprites

giving them a behavior.

 The visual programming language used by Scratch is a pure block based

language influenced by the StarLogo project.

3.3 Graphical Programming

In computing, a graphical or visual programming language is a programming

language that allows its users to implement algorithms by manipulating basic

State of the art

 18

programming elements graphically rather than by specifying them textually. There are

different types of graphical languages each one with its own characteristics and

purposes.

3.3.1 Why graphical

Textual representation is a lot more complex to human than a graphical

representation. This can be observed in the earlier development of a child, where if a

phrase is shown to a child, in order to that child be able to comprehend the meaning of

that phrase and the information within it, will need to have a few prerequisites like

knowing how to read, this by its own has requisites, like know the language in which

the phrase was written and the charset used by that language. But if a drawing with

the same meaning of the phrase was shown to the child, that will have a much higher

probability of being understood, since that child will not need to know how to read

and will not need to know a language or its charset to understand the message.

The same also happens with a programming language, programming

languages also have their own charset, syntax and dictionary. Without knowing these

first it’s very hard for a student to understand the algorithm implemented in a textual

programming language.

Using a graphical language to define an algorithm increases the probability of

success of a student understanding the algorithm behind it, although this is very

subjective since it highly depends on language’s definition. If the graphical language

has a complex definition the problems of a textual representation will also occur and

prerequisites will appear for the student. This must be avoided at all costs.

3.3.2 Graphical languages

There are different types of graphical languages, some focus their definition

around the different data types others in algorithm’s data flow or logic flow. The most

common representation is a diagrammatic representation, where a flowchart is usually

built by connecting different types of nodes, using arrows as connectors.

State of the art

 19

Each language will have different types of information within the flowchart.

For example in NXT-G two diagrams form the flowchart, one diagram represent the

logic flow and other the data flow, which interconnect at the nodes.

Diagrammatic representation in the format of a flowchart was one of the first

graphical representations of an algorithm, in nowadays is well known for its usage in

modeling languages like UML.

Recently a different type of representation is gaining points and users, this

new type of representation was developed in MIT for StarLogo TNG and after was

transformed in a framework by the name of OpenBlocks.

3.3.2.1 Representation types

3.3.2.1.1 Node / diagrammatic based

In node based visual languages, users have a set of nodes available, which

they can connect to achieve the desired result. Each node has properties and a specific

functionality that normally represents an operation, after applying the operation to the

input it will produce an output. The connections between the different nodes represent

the logic flow between them. The graph produced by all the nodes interconnected

represents the algorithm and provides the student with an overview of all the logic

flow inside their implementation.

Figure 9 Diagrammatic Hello World

This overview is one of the best advantages of node based visual languages

since it allows the user to quickly understand the logic and/or data flow inside his

implementation (Smith, 2009).

State of the art

 20

Using the memory display during execution, users can comprehend the impact

of each node by watching the data before and after each node affects it, allowing them

to divide one big problem into smaller problems that they can easily comprehend and

solve.

There is although a problem with this type of representation, usually logical

and mathematical expressions are displayed in a textual format as a property of a node

(Kelleher & Pausch, 2005), if the user has no problem comprehending the expressions

this will not be an obstacle although it creates a pre-requisite for its users.

3.3.2.1.2 Block based

Block-based languages are represented by

a construction made by grouping different blocks

together. Similar to node- based each block has its

own functionality and properties. In education this

representation is very often associated with the

creative process of children playing Legos.

This type of representation is very good for

expressions and data types, because each block

have a color and a shape and each shape

corresponds to a different data type, allowing a

natural differentiation of each data type by just

looking at the blocks (Roque, 2007).

Like a puzzle each block can only connect

to blocks with compatible shapes, validating

student’s construction at building time. Data type

identification and validation by block’s color and shape is a good improvement from

the textual representation in node-based, in terms of expressions.

Figure 10 Block based visual language

State of the art

 21

3.3.3 Other Graphical languages

3.3.3.1 LabVIEW

LabVIEW is usually associated with data acquisition, instrument control and

industrial automation; it is developed by National Instruments and had its first version

released in 1986 with support only for the Apple Macintosh.

Each LabVIEW program has three important components: Block diagram,

front panel and connector panel. Connector panel will represent the entry parameters

of the program, is used when this program is used as component in another program

like a subroutine or module. In the block diagram is where all the logic is

implemented by using a visual language called “G”. Finally the front panel is the

program’s frontend to the user, since LabVIEW is usually used in industrial

environment and instrument control, front panel resembles to a control panel from

which the user can control physical control points in the real world.

Figure 11 LabVIEW

G is a dataflow programming, where each node can execute as soon as all the

needed input is available; this is characteristic that defines the execution as data

State of the art

 22

driven. Since each node can be executed when his input data is available, this might

be the case for multiple nodes simultaneously, giving the language parallel execution

inherently by design.

LabVIEW is also used has a seed for other visual programming environments

and languages like Lego’s Mindstorms NXT NXT-G, which is heavily based in

LabVIEW. In NXT-G, since the target changed completely from industrial

environment to an educational and hobbyist environment, the GUI was re-designed to

be more users friendly and less powerful in order to reduce its complexity.

3.3.3.2 Microsoft Visual Programming Language

Like LabVIEW, Microsoft’s VPL is also a dataflow visual programming

language by definition and both share some similarities. The big difference between

these two dataflow languages are their target usage, VPL was specially designed for

the Microsoft Robotics Studio, although in the future it may have potential for other

usages, its current version comes bundled in the Robotics Studio and features

functionalities specific for robotic simulation and development.

Figure 12 Microsoft VPL

Since VPL is a dataflow language a node is executed when all the needed

input data is available to him. Nodes are connected to each other where each

connection represents the data flow between the two connected nodes. Each node may

have multiple input pins and multiple output pins. There are two types of output pins:

result output or notification output.

State of the art

 23

Figure 13 Microsoft VPL's Node

Result output pin is from where the processed is sent to the next connected

node after a specific incoming action occurred or received, notification output can

send data without the need of first received a specific event or data.

3.3.3.3 Quartz Composer

Quartz Composer is a node-based visual programming language provided

bundled with the Xcode development environment for processing and rendering

graphical data. This language has a very precise purpose which is manipulation of

graphical data.

All the available nodes and data types (Table 1) were designed for image

manipulation.

Table 1 Quartz Composer data types

Data type Description

Boolean Boolean value

Index Positive integer between 0 and 2147483647

Number Double precision floating point number

String Unicode string

Color RGBA or CMYK quartet, or a Gray scale value

Image 2D image of arbitrary (possibly infinite)

dimensions

Structure named or ordered collection of objects, including

State of the art

 24

nested structures

Virtual Polymorphic, any

Mesh collection of vertices, and per-vertex normals,

texture coordinates, and colors in 3-space

Interaction valueless type used to associate user input with

user-interactive elements of the composition

Quartz Composer is a language with a very well defined purpose. Its

characteristics need to be analyzed in its environment, which is image manipulation.

Taking this in account it’s a powerful language but lacking functionalities from a

complete generic visual programming language.

Botbeans

 25

4 Botbeans

Botbeans was developed using the Netbeans Platform, this platform is a rich

client platform developed by Sun now Oracle which is known as the core code-base

of the Netbeans IDE.

Using a modular architecture inherited from the platform allowed to achieve a

highly modular design where each one of the main functionalities was separated in

different modules allowing future growth. Scalability is important in a learning tool

since it allows involving its users into the development process of the application.

Group of users like schools can develop themselves new modules for the tool

allowing the tool to support new functionalities without affecting the core of the

application. This is why all the source-code is going to be made available to its users

licensed by the GNU General Public License making sure that it and all the derivative

work will always stays open.

4.1 Rich Client Platform development

A Rich Client Platform is a software development platform already with pre-

developed generic components. These components can and should be used during the

development of an application in order to cut development time and enrich the

application by using already powerful modules for specific functions.

The final application will inherit the platform’s characteristics, like portability,

installer, update manager and more. Each one of these characteristics is usually a

module or component that is available for the final developer.

4.1.1 RCP's

There are three main open-source RCP’s for Java: Spring, Netbeans and

Eclipse. Spring was never an option for Botbeans since Spring’s main focus is J2EE

development, leaving Eclipse and Netbeans as the two available options for Botbeans.

Botbeans

 26

Eclipse and Netbeans RCPs are very similar in many ways, but there are two

main differences related to the module system and user interface framework/toolkit

(Table 2).

Table 2 RCP comparison

 NetBeans RCP Eclipse RCP

UI Toolkit Swing SWT

UI Design Matisse GUI Builder Not supported

Module System OSGi or Netbeans module
system

OSGi

Eclipse uses SWT as the UI toolkit, SWT uses native bindings in order to look

and feel like a native application, but this causes a big problem. Using native bindings

requires SWT to have a native library for each target platform, the problem is that

some functions aren’t available on some platforms or may behave differently, this

means that a GUI that behave correctly in Windows may fail in Mac or Linux,

trashing Java’s philosophy of interoperability.

Netbeans’s own module system is a lot simpler when comparing it to OSGi

based system of Eclipse, although using Netbeans keeps the door open for future

OSGi usage since it also supports it.

Due to the SWT problems and not being a standard toolkit and the availability

of two different module systems in Netbeans RCP to choose from, the choice was in

favor of the last.

4.1.2 Advantages

The classroom environment is hazardous to any software because there is,

more than often, an intensive unpredicted use of it. Using an RCP solved some of the

potential stability problems related to this harsh environment, by using a RCP some of

the core code base has already been heavily tested by the platform developer, giving a

good base start for the final application.

A learning/teaching tool has to be good looking but simultaneously have a

simple GUI. Since the RCP already has a lot of the GUI related functionality

Botbeans

 27

implemented, functionalities like: drag and drop, window management, action engine

and others. This allowed during the development of Botbeans to focus the

development effort in key specific features of Botbeans since all the IDE standard

generic functionalities, like save and load system, were already semi-available in the

platform, allowing to end up with more functionality with less code.

As explained in the next chapter, modular architecture is a key feature in

Botbeans, modular design in inherent to the RCP concept so it was an obviously

choice to use an RCP as base to Botbeans.

4.2 Architecture

The main strategy while defining the architecture for Botbeans was a modular

design. From the beginning, since a RCP was used in the development and a modular

architecture is inherent to all RCP’s, modules handling was supported and essential

for the platform to work correctly.

The obvious next step was to define how to create added value with the

modular framework contained in the platform. Modularity is a key feature in a

learning tool, its important because the process of learning how to program is also a

modular process. It’s modular because it can be teach or learned in individual and

contained modules where each module has its own information and added value to the

final result which is learn how to program or acquire abstract/algorithmic thinking.

Each one of these modules can have requirements that usually are other

modules, this also happens in the learning process. For example it is hard for a student

to learn the concept of a structure without comprehending the concept of basic and

native data types, since these are the ones that together form a structure. This idea was

used in the development of the entire prototype where only the functionalities and

information that the student needs is shown, nothing more nothing less, avoiding

information overload that usually happens when a student uses an industrial

programming tool.

Another two important characteristics of using a modular design are error/bug

containment and mass selective updating of tool components.

Botbeans

 28

Error containment is important, a learning tool has one of the worst types of

users an application can have. Students give bad users because they are users without

any education in the application and more important in the applications operation

area, which is programming in this case.

Users of a programming learning tool will do things that their developers

never thought a user could or wanted to do. Besides all this characteristics about their

users, when a bug is found and an error occurs this error must be contained or else the

student will be distracted by it and more important the tool can lose credibility

resulting in a loss of confidence by the student and consequently in the tools results.

 For example when the student do an error in his programming he will have

always the hypotheses of a “tool bug”, when in reality it was an error in his

implementation, demoting him into digging and debugging his implementation and

from learning from his error without the teacher interaction, which had the potential to

be a lot more rewarding.

Botbeans

 29

4.2.1 Modules

Each key feature in Botbeans was implemented into a separated module: Bot

Blocks for expression builder, Bot Shapes main visual diagrammatic programming

language, Bot Control robot communication abstraction layer, Bot Common utilities

module and finally external libraries modules as libraries wrappers.

Figure 14 Modules architecture

Each module has his distinct function and they are only interconnected in the

form of library/module dependency between each other.

External	
 libraries	
 wrappers

Botbeans

Bot	

Common	

Bot	

Blocks	

Bot	

Control	

Bot	

Shapes	

Blue
cove

Botbeans

 30

4.2.1.1 Bot Blocks

In Open Blocks, the

language definition is defined in a

static XML file, this was problem

since the available blocks for the

expression builder depended on

the information the student already

had in his diagrammatic

implementation.

Figure 15 Bot Blocks module

For example, if a student used a variable named “a” in the diagrammatic

language, a block representing that variable needs to be made available inside the

expression builder in order for the student to be able to use it in his expressions. In

order to accomplish this the language definition loading system was modified in order

to allow to inject new definition, in addition to the definition are in the base XML file,

at running time.

Open Blocks relied on on-screen rendering for some parts of their frontend,

this was a problem for Botbeans since off-screen rendering is needed for some

functionalities, like open and save projects with both visual representations. A

rudimentary off-screen system was in order to be able to draw blocks representations

on Botbeans without the need to load the entire Open Blocks framework and GUI.

Unfortunately the Open Block’s source code was not refactored, all the source

code needed to be refactored into a organized hierarchy of packages to comply with

the platform, although all the existing author information was kept.

Botbeans

 31

4.2.1.2 Bot Common

Since there cannot be circular

dependency between modules in order to

avoid dependecy looping, the solution is to

incorporate all the common parts that

multiple modules need in one common

module. All the needed modules will then

use the comon module as dependecy,

improving the design and avoiding

depency loops as can be seen in Figure 14.

Figure 16 Bot Common module

In Botbeans this module contains utilities related to file operations that can be

used in other modules and more important data models for the visual language. These

models needed to circulate across the Bot Shapes and Bot Blocks modules since the

expressions built inside the expression builder need to be displayed in main visual

language inside the matching node.

Botbeans

 32

4.2.1.3 Bot Control

Figure 17 Bot Control module

All the communications architecture

described in the communications chapter was

implemented in this module. In current version

of Botbeans, only one robotic platform is

implemented, although it can support infinite

number of platforms. Support for more

platforms should be implemented in separate

modules using this module as dependency.

4.2.1.4 Bot Shapes

This block was the first to be

developed. It’s in it that all the

diagrammatic graphical language and its

palette was implemented using the

Netbeans’s visual library, which is one of

the dependencies for this module.

Since the diagrammatic graphical

language is the main language for

Botbeans, some of the core functions of

the IDE were also implemented in this

module by necessity. Functions like

dialogs and actions for the entire graphical

user interface

Figure 18 Bot shapes module

Execution is also included in this important module since it is also done on top

of the diagrammatic graphical language. This module is the core of Botbeans it will

need other modules as dependency, like it can be seen in Figure 14.

Botbeans

 33

4.2.1.4.1 Components

Figure 19 Botbeans canvas

ShapeTopComponent – This component is key for the diagrammatic visual

language, this is where all the language’s frontend is implemented. Frontend for a

visual language is not a completely brainless software component has in other

applications, it must accept events from the drag and drop system and render all the

visual nodes.

There can be more than one ShapeTopComponent instantiated at the same

time allowing opening multiple projects using a multi-tabbed interface. This

functionality is very important since it allows for the student to work in multiple

exercises inside the classroom.

The logic for the visual language is centralized in GraphSceneImpl, it is in

here that every action in the language (adding a connection, removing a node, etc.) is

validated and inserted into the according data models.

Botbeans

 34

Figure 20 Botbeans memory display

MemoryTopComponent –In earlier tests with Botbeans it was obvious there

was a problem with memory display, student couldn’t monitor the content of all the

different variables he was using in his algorithm.

Since the student is able to pause and resume the execution, by using this

component, he can monitor the contents of each variable. This component was

developed to support an infinite number of variables, when needed each variable’s

screen real state will be adjusted in order to accommodate an increased number of

variables.

4.2.1.5 External libraries wrappers

Netbeans rich client platform like almost all RCPs uses strict modular

development architecture; because of this they do not support a classic jar

dependency, supporting only modular dependency.

In order to work around this and at the same time comply with the

architecture, the official solution is to wrap the jar library in a wrapper module, which

will contain the library. This wrapper module makes the classes from the library

available at runtime to the module and modules that use this module.

The most important wrapper in Botbeans is the module wrapper for the

Bluecove library. Bluecove is a java Bluetooth implementation that interfaces with the

operating system’s Bluetooth stack. It is through this wrapper that Botbeans

communicates with robots that use Bluetooth.

Botbeans

 35

4.3 Graphical language

4.3.1 Hybrid solution

Previously we saw that in node based languages users have a good overview

of the flow of logic although they are usually forced to use textual mathematical and

logical expressions, in the other hand block based languages have a good data type

system which is based on block shapes avoiding expressions with a textual

representation.

A hybrid solution was developed in order to get the best of both worlds. In this

hybrid language all textual expressions in the diagrammatic language were swapped

by expressions built using the expression builder, which uses a block-based language.

Figure 21 Expression builder GUI

When a user double-clicks an expression the expression builder slides from

the left side of Botbeans’s main window (Figure 21) allowing the user to see his

algorithm in the diagrammatic form and at the same time build the wanted expression

using the block based language. When the user clicks the main diagrammatic drawing

area the expression builder transfer de expression to the diagram and closes by itself

in order to avoid information overload to the user.

Expression builder Main canvas

Botbeans

 36

4.3.2 Definition

Nodes were divided into multiple categories in order to keep the palette clean

and logically organized (Table 3). There are two main categories: “Control” for

output and “Sensors” for input, it is using the nodes inside these categories that the

user will be able to interact with the robotic platform.

Table 3 Node's Categories

Category Description

Control Nodes to trigger robot’s actuators making it move.

Sensors Sensor input, each sensor have his own node.

Logic Nodes that affect the logic flow in the algorithm. Ex: decision
and union nodes.

Data Variable definition and attribution.

Misc Timer, speaker and other miscellaneous nodes.

Custom blocks Custom blocks, implemented by the user.

These two main categories used to interact with the robot are not enough to

define a programming language, so all the basic control structures that affect the logic

flow are in the “Logic” category. Ex. decision, union, start and end nodes.

Data category is where the nodes related with data manipulation will reside, in

current version of Botbeans only one node exists since the same node is used for

variable definition and attribution.

Finally the miscellaneous nodes like: timer or sleep, speaker, auxiliary

actuator and other, are in the “Misc” category.

Botbeans

 37

Table 4 Botbeans's nodes

Nodes

4.3.2.1 Control

Figure 22 Control time based nodes

Figure 23 Control distance based nodes

Botbeans

 38

There are two types of control nodes: distance based and time based. The

control nodes with the clock icon are time based, what this means is that the robot will

move for a specified time. Distance based nodes will move for a specified distance.

4.3.2.2 Logic

Figure 24 Decision node

Decision node is the decision control

structure also known as “if” in almost all the

textual programming languages. This node will

obligatory need a logic expression to work, this

logic expression when double clicked will open

the expression builder in order for the user to be

able to edit it.

There are two types of outgoing

connections from this node, one if the expression

returns true and another if the expression return

false, only one connection will be executed since

the expression can’t be true and false at the same

time.

Union node is one of the simplest nodes

in the language, its objective is to keep the logic

flow organized and without any hack or

shortcuts. During the specification of the

language it was defined that to aggregate

multiple connections a special node was needed

in order to avoid connecting multiple

connections in every node, which could increase

the complexity if the problem was big enough.

Figure 25 Union node

Botbeans

 39

Figure 26 Start and end nodes

Start node define where the execution will start if

the user don’t specify a different starting point. User has

two types of execution normal and debug, in normal

mode the execution will always start in the “start node”

this is why this node is obligatory. In debug mode the

execution will start in the selected node allowing the

user to debug a specific part of his implementation. The

finish node is just for organization since the execution

will always end when it doesn’t have where to go.

4.3.2.3 Data

Variable node is a node that represents a variable in the

language; this node will have a name, which will be the

variable name, and a value, which will be attributed to the

variable with the node’s name. This node is used in variable

definition but also in attribution, since if the variable was never

used before Botbeans will implicitly define it in memory.
Figure 27 Variable node

4.3.2.4 Miscellaneous

Figure 28 Sleep node

Timer node is used when the user wants to provoke a

delay in the execution, when this node is executed the robot will

halt and wait the specified time, in milliseconds.

It is similar to the sleep function from other textual

programming languages.

Botbeans

 40

In order to give to users the possibility of using another

of their senses, audition, a node was implemented that allows the

robot to emit a sound.

The speaker node has two parameters: duration and frequency

allowing the user to specify for how long the robot will emit the

sound in the specified frequency. The Robot will wait until the

sound finished being emitted and only then will send the

response to the control module, which will send the next

instruction.

Figure 29 Speaker
node

4.3.2.5 Sensors

This category is where all the nodes responsible for the input from the robot

are. All the sensor nodes work the same way in terms of functionality, the only thing

that changes between them is what each one returns.

Figure 30 Distance sensor

Saves in the specified variable an

integer with the distance read in

centimeters.

Returns to the specified variable

an integer with the direction in degrees.

Figure 31 Direction sensor

Figure 32 Sound sensor

Saves in the specified variable an

integer with the read sound level in

decibels.

Botbeans

 41

4.3.2.6 Node’s inputs and outputs

Table 5 Nodes characteristics

Node Nº Inputs Nº Outputs

Control nodes 1 1

Sensor nodes 1 1

Decision 1 2

Union 1+ 1

Start 0 1

End 1+ 0

Variable 1 1

Sleep 1 1

Speaker 1 1

Aux actuator 1 1

Custom blocks 1 1

Each node has a limited number of inputs and outputs (Table 5), when a user

tries to make a connection between two nodes, the current number of inputs and

outputs of the two nodes is verified if one of the limits has been reached it means the

connection is invalid and the user is doing a logic error. This is how the logic flow

inside the algorithm is validated at building time.

4.3.2.7 Custom Blocks

Custom blocks are nodes that contain multiple nodes inside them. Using

custom blocks the user can divide his problem into smaller problems and implement

the solution for each one of these problems separately. In the end to create the final

solution he will then just need to use the previous implemented modules of the

solution and integrate them all. This way the concept of subroutine or function is

given naturally to the user without extra complexity.

Botbeans

 42

Figure 33 Botbeans custom blocks

To create a custom block the user just need to give a name to the current

project he is working on, then this project will show in the palette of all the other

projects has a custom block in the “Custom blocks” category. User will then be able

to drag this block into his already existing implementation and use it like a function in

the typical programming languages, with the difference that these custom blocks don’t

have parameters nor return data.

4.4 Tangible interface

Tangible interfaces are very often associated with learning, since they can

boost the student interest, creativity and catalyze collaboration between multiple

agents of the learning process (Schneider, Jermann, Zufferey, & Dillenbourg, 2010).

The computer running Botbeans GUI will only have inputs, but while a user is

at the computer making adjustments, another user will naturally be at the robot

monitoring his behavior in the real environment, although the user at the computer is

able to see to robot of even hold it in his hands, he don’t need to lose focus by

multitasking between two points of interaction. The user that is monitoring and

relocating the robot will give his feedback and opinion on how to debug or fix the

problems that occur, and a brainstorm between these two users will naturally occur.

This collaboration advantage manifested clearly in the initial tests, where users

with different profiles or skills chose where they did want to focus, computer or robot,

this way they can exchange their skill set and knowledge between them, naturally

leveling them to the same level.

Botbeans

 43

4.4.1 Points of interaction

The initial idea of using a tangible interface in Botbeans was not only related

to motivation but also to increase the number of points of interaction with the learning

tool. Usually a programming learning tool is a one man experience, where a student

sits at a computer and starts experiencing it alone or with a colleague, but since the

computer only has one keyboard and one mouse it will end up in an uneven

experience in terms of acquired knowledge.

With the implementation of a tangible interface Botbeans gains another point

of interaction and this new poi has the potential to accommodate additionally more

users than a computer screen.

The tangible interface used Botbeans it’s in the shape of a robot, it’s through

this robot that the user outputs and inputs into his programming. Traditionally when

someone is programming it uses the screen has output and the keyboard or mouse has

input, for this to work the user needs to be able to understand the results that are being

displayed in the screen, which isn’t always simple for a beginner. Ex: A program

return 123, does 123 the correct answer or wrong one?

By using the robot has output the user will naturally know if his

implementation failed or not. Ex: Robot crashed, algorithm failed.

Botbeans

 44

4.4.2 Robotic platform

In current Botbeans’s version only

one robotic platform is supported, which is

the Lego Mindstorms NXT, although the

initial development and proof of concepts

were developed using a homebrew robotic

platform developed at Institute Polytechnic

of Tomar with the name Gualdim (Figure

34). This platform used Wi-Fi to

communicate with Botbeans and

subsequently to its communication layer,

after initial tests with students from high

school level, it was obvious that a more all

around and easy to acquire platform needed

to be supported by default.

Figure 34 Gualdim

Lego Mindstorms NXT was the winner by many reasons, one of the most

important was the fact that this was a platform already installed in many schools,

students already lost the initial fear of interacting with it or even breaking something

during their experience with it.

Another important fact is that by supporting a ready to run robotic platform,

the software problems are sealed from the hardware allowing Botbeans users to focus

where they want, hardware or software. Since Botbeans architecture was designed to

support infinite number of robotic platforms, there can be schools or users that will

develop a homebrew robotic platform using a simple microcontroller and some

actuators allowing a complete experience from the low level hardware to the high

level algorithm implementation in Botbeans.

4.4.2.1 Robotic platform requisites

• Microcontroller – where the control client will be implemented.

• Connectivity – connection to the computer running Botbeans.

Botbeans

 45

• 2+ actuators – Two actuators are needed for locomotion. Is advised to use

encoded or stepped actuators, since is desirable that the control client is able to

control the amplitude and/or speed of the actuator movement.

• 0+ Sensors – There are no obligatory sensors.

4.5 Communications

Since a robot was used as part of the tangible interface, Botbeans needed to

have a communication strategy and architecture. A few prerequisites were established

since the beginning, the tool needed to be able to support more robotic platforms in

the future without transmitting the complexity of this to the end user.

Since each robotic platform can have is own way of communicating, an

abstract layer between the core of the prototype and communications modules was

needed. This abstract layer allowed the system core to communicate in the same

format all the times independently of the robotic platform used, allowing to use

virtually any robotic platform without rewriting core code. This opens possibility to

homebrew robotic platforms and this by itself opens doors to teaching in other areas

like electronics and/or hardware, culminating in a multidisciplinary learning

experience and possibly collaboration between student from different backgrounds

and ages.

4.5.1 Communications architecture

The abstract communication layer was developed also as a module, which has

an internal server running. This server is the responsible for receiving the data from

the core of the application and relaying that data to the robot. This relaying process is

not a simple pass-by since this data needs to be translated and formatted according to

the robotic platform in use

Translation is needed in order to maintain a formatted data stream between the

application core and the control server independently of the robotic platform in use,

since the data stream is formatted according to the platform specification.

Botbeans

 46

Figure 35 Communications architecture

Each robotic platform needs to run a client in order to be compatible with

Botbeans, this client or “Control client” is the piece of software that implements the

Botbeans protocol on the robot. It will listen for orders sent from Botbeans and

answer accordingly to requests sent to it, ex. Sensor request.

This is why each robotic platform needs to have a different client

implementation, since this client is implemented in the robot in its supported

programming language in order to access all the actuators and sensors in the platform.

4.5.2 Protocol	

Table 6 Packet structure

Packet

Packet size Operation Data[0] Data[1] Data[n]

packet[0] packet[1] packet[2] packet[3] packet[n]

This packet structure (Table 6) is used for request messages, response

messages use the same structure but without the operation field. Responses do not

Robot

Botbeans

TCP	

Sockets

Control	
 Module

Core Control	
 Client

Bluetooth

Wifi

Robot

Control	
 Client

Botbeans

 47

need the operation field since the action that triggered the request will always wait for

the robot response, working in a request/response model.

Table 7 Protocol operations

Operation Description Parameters Return

1 Move distance. Speed, Distance 0 – failure, 1- success

2 Move timed. Speed, Time 0 – failure, 1- success

3 Rotate degrees. Speed, Degrees 0 – failure, 1- success

4 Rotate timed. Speed, Time 0 – failure, 1- success

15 Configuration Ports layout 0 – failure, 1- success

16 Request distance value. Distance in cms

17 Request compass value. Value in degrees

18 Play tone. Frequency,

Duration

0 – failure, 1- success

19 Request microphone value. Value in dbs

20 Move auxiliary motor. Speed, Degrees 0 – failure, 1- success

Each operation represents a function call in the robot’s control client where the

operation id (Table 7) is used to determine which function is being requested from the

control module. If new operations are implemented in the control module, they

obligatory will need to be implemented in the client or else there’s the risk of the

control module requesting a function that’s not supported by the control client.

Botbeans

 48

4.6 Examples	

During the earlier tests some examples were implemented in order to show the

potential of Botbeans in different scenarios. Two examples are here described: a

simple path finding algorithm and a square movement using custom blocks.

4.6.1 Simple	
 path	
 finding	
 algorithm	

This example was implemented in order to show a more advanced algorithm

implemented in Botbeans. This example was considered advanced not because of its

size, but instead because of the algorithm that is implemented which results in an

interesting robot behavior.

Figure 36 Simple path finding algorithm

In this example the distance from the distance sensor is read to the variable “a”

if it is greater than 20 centimeters then the robot will move forward else if the counter

variable has an even number the robot will turn right 90 degree else it turns left.

Finally the counter variable is incremented and distance sensor read again.

This results in a behavior where the robot will try to find a new direction if an

obstacle is detected closer than 20 centimeters.

Botbeans

 49

4.6.2 Squares	
 using	
 custom	
 blocks	

The objective of this example was to demonstrate the usage of custom blocks.

The initial problem was how to build an algorithm that allowed the robot to move in

squares and then move two squares. A custom block for the square movement was

created (Figure 37), which was then used in the main project in order to move the

robot in two squares.

Figure 37 Square custom block

This algorithm (Figure 37) makes the robot move in a square. An custom

block was created from this project since it have the project name field on the top

right corner defined, creating a custom block called “square” which can be used in

other projects.

In the next project (Figure 38) it can be seen the “square” custom block being

used in a simple example, this custom block was dragged from the custom blocks

category.

Botbeans

 50

Figure 38 Usage of square custom block

This project (Figure 38) uses the, previously created, square custom block

(Figure 37). When executing this project the robot will move forward 10 centimeters,

draw two squares with his movement and finally move backward.

Results

 51

5 Results

5.1 Tool Comparison

This tool comparison was made in order to evaluate the key features of which

one of the learning tools in Table 8. A learning tool is completely different from an

industrial development tool, having more functionalities can be a good thing but also

a bad thing if the user don’t use all these functionalities and ends up with an interface

overloaded.

Table 8 Tool Comparison

Tool
Name

Graphical Language Textual Language
Correlation

between
languages

Object
Oriented Diagrammatic

representation
Block

representation Static Dynamic

BlueJ x

x

x x

Portugol x

x x

Alice x

x

x x

Scratch

x

x

Greenfoot x

x

x x

NXT-G x

Botbeans x x

The key features analyzed in this comparison were: presence of graphical

language, presence of textual language, correlation between languages and if it is

object oriented.

If the tool featured a graphical language the type of visual representation used

was verified, diagrammatic or block base presentation. Like in visual programming

Results

 52

languages, textual programming languages has two main types of syntax: static and

dynamic.

Textual programming languages that feature a static syntax have a fixed

syntax where the representation of each programming structure never changes, in

languages with a dynamic syntax each programming structure textual representation

may dynamically change.

The only tool that featured a dynamic textual language was Portugol since it

allows its users to adjust the language syntax to their mother language. For example if

a user with English has his mother language uses a decision control structure will type

an “if”, if a Portuguese user uses the same structure will need to type “se” which is

“if” translated to Portuguese.

Since the main objective of Botbeans is to help users that never experienced

programming, this fact can be observed in the comparison table (Table 8), textual

language was removed and the best features of both graphical languages types were

merged into one hybrid graphical language. Botbeans doesn’t need have correlation

between textual and graphical languages since it does not feature a textual language.

5.2 Earlier tests

In 2010 during the “Festa da Ciência, Cultura e Tecnologia”, an annual

science fair at Institute Polytechnic of Tomar, an experience was built (Figure 39

FCCT 2011 Students collaborating) where some of the students visiting the science

fair were invited in trying to play with Botbeans.

The experience consisted in a table where the robot moved and a laptop

projecting the Botbeans GUI to the wall in front of the table, students could interact

with the robot directly or by change the layout in table by moving the available

obstacles around. A keyboard and mouse was on top of the table in order to interact

with Botbeans GUI, creating to main points of interaction: robot and computer GUI.

Results

 53

Figure 39 FCCT 2011 Students collaborating

An immediate collaborative behavior was evident between the visitors. Very

often when a student started executing the algorithm that he had just implemented,

another student entered the scene giving suggestions to his colleague on how to

improve the algorithm or try something different. The robot was the big motivator

since during the execution one of the students was positioning/monitoring the robot

and the other one were at the computer.

In 2011, the experience was again displayed at FCCT with a new version of

Botbeans. This year an inquiry was made for the teachers that accompanied the

students in the experience.

5.2.1 Inquiry

12	

3	

0	

5	

10	

15	

Yes	
 No	

Is	
 your	
 teaching	
 area	
 related	
 to	
 technology?	

Results

 54

Each group of students was accompanied by one of their teacher, in the end of

the experience the inquiry was given to the teacher while the students were freely

playing with Botbeans.

A total of fifteen groups attended the experience during the three days,

although it was a small and generic inquiry since not all the teachers taught topics

related to computing, the results say that from the teacher’s point of view the tool has

a lot of potential in motivating students to this topic.

0	
 1	

14	

0	

5	

10	

15	

Low	
 Average	
 High	

Do	
 you	
 think	
 this	
 experience	
 has	
 the	
 potential	
 to	

motivate	
 /	
 cativate	
 students?	

1	

3	

11	

0	

5	

10	

15	

Low	
 Average	
 High	

Do	
 you	
 think	
 the	
 learning	
 from	
 this	
 experience	
 is	

important	
 for	
 the	
 students?	

1	

5	

8	

1	

0	

2	

4	

6	

8	

10	

InsuGicient	
 SuGicient	
 Good	
 Very	
 Good	

Characterize	
 your	
 students	
 participation	
 in	
 the	
 experience	

Results

 55

Participation was where the results were less positive. It some groups of

students that attended the experience was hard to convince them to give the first step

and embrace the experience hands on, some students were afraid that something

would break in their hands other just afraid of doing something wrong and older

students could see it since the experience was in an open space.

If the experience was in an environment that the student was already familiar

with, like in their school with their own teachers. The no longer had strange subjects

and/or objects in the experience allowing the students to relax and feel more

confortable.

Conclusion

 57

6 Conclusion

The main goal of Botbeans is to decrease the learning curve of computer

programming. It helps people that never had any previously contact with

programming to acquire the needed background to progress in more advanced topics.

Reaching to advanced programming topics like being object oriented was

never the objective of Botbeans, these topics require previously knowledge in basic

programing topics, like control structures and data types, in order to fully understand

the concept of objects. Since Botbeans is designed to be an introduction to user’s first

contact with programming it will focus on algorithms and abstract thinking rather than

implementation. This is the philosophy behind Botbeans.

If Botbeans featured a textual language it could help the jump from Botbeans

to another industrial programming language, but it would drastically increase the

complexity for users without any previously experience, instead Botbeans approach is

to train the user’s algorithmic and abstract thinking, leaving the

syntax/implementation/programming training to the next level learning tools.

The development of a new hybrid visual language allowed removing almost

all the textual representation from the programming language, removing one of the

biggest problems for beginners. As the initial research in visual programming

languages revealed, block representation is more intuitive for the user allowing him to

easily understand the mathematical and logical expressions, which are key in

computer programming.

On the other side keeping a diagrammatic, node-based visual programming

language allows Botbeans to easily represent the logic and data flow inside an

algorithm to the user, enabling him to easier comprehend the basic control structures

in programming.

Developing Botbeans on top of a rich client platform allowed with less time to

end up with more functionality and more important with a modular architecture

inherited from the platform.

Conclusion

 58

After the initial tests with real subjects one factor was clearly obvious, which

is the environment where Botbeans is used can alter the user experience. In order to

have a complete experience users must feel comfortable with the environment where

they are experiencing, this is more important in Botbeans than in other learning tool

because of the tangible characteristic of Botbeans.

Incorporating a tangible component into the user experience allows Botbeans

to bring the user experience to the real world, consequently bringing the

characteristics of the real world into the user experience. This is why is advised that

the user already is comfortable with his surroundings.

From the initial tests, Botbeans has a lot of potential in lowering the threshold

from learning computer programming. It allows presenting what is programming

while simultaneously keeping users motivation high.

A motivated user will more easily make an effort to pass the difficulties

associated with gaining the pre-requisites or basic topics needed for programming.

6.1 Future work

Like everything related to computing nowadays Botbeans is not a finished

product and there are still things to improve and research. Although the initial tests

have given positive results, these tests revealed that the environment where the tool is

experienced might influence the results. In order to validate this theory, future tests

should be conducted in friendlier and known environments to the subjects and for a

longer period.

Evaluating and quantifying the success of a learning process can be a daunting

task, each group of subjects experience the task of learning a new topic in different

ways and more importantly experience it at different speeds. In order to avoid this

heterogeneous characteristic future tests should take in account the subject’s

knowledge about the topic previously and after tests.

Measuring the knowledge acquired during the experience will allow better

evaluation of results. In order to accomplish this each subject should do a generic test

that doesn’t request any specific pre-requisite about the target topic and finally a test

Conclusion

 59

after the experience is done. Comparing these two results should give a better answer

about how did the experience affected the subject’s knowledge about the target topic.

From the implementation point of view there are still possible improvements,

memory display still needs some research on how to show in an interactive and casual

format the data contained in memory. Current memory display although simple and

without any interface complexity may have scalability problems if a big quantity of

variables are used.

Botbeans in order to be friendly with e-learning methodologies needs to be

able to integrate with existing systems like Moodle. Integrating Botbeans with other

infrastructure learning tools opens possibilities to increase its collaborative

characteristic by using a system of problems and solutions repositories, these

repositories could allow its users to collaborate between each other or just share ideas

and solutions and/or exercises.

Like in any other piece of software evolution never stops since software needs

to follow its users and their needs, which will change from time to time. Botbeans will

also need to be maintained and improved in order to be an updated and functional

learning tool.

Bibliography

 61

7 Bibliography

Dias, Pedro, & Oliveira, S. (2010). Botbeans: a new educational visual programming

tool with tangible results. ACM SIGDOC European Chapter/ Eurosigdoc

Workshop on Open Source and Design of Communication, OSDOC ’10 (pp.

43–44). New York, NY, USA: ACM. doi:10.1145/1936755.1936768

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. K. (2009). Comparing the

use of tangible and graphical programming languages for informal science

education. Proceedings of the 27th international conference on Human factors

in computing systems, CHI ’09 (pp. 975–984). New York, NY, USA: ACM.

doi:10.1145/1518701.1518851

Jacob, R. J. K., Girouard, A., Hirshfield, L. M., Horn, M. S., Shaer, O., Solovey, E.

T., & Zigelbaum, J. (2008). Reality-based interaction: a framework for post-

WIMP interfaces. Proceeding of the twenty-sixth annual SIGCHI conference

on Human factors in computing systems, CHI ’08 (pp. 201–210). New York,

NY, USA: ACM. doi:10.1145/1357054.1357089

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A

taxonomy of programming environments and languages for novice

programmers. ACM Computing Surveys (CSUR), 37, 83–137.

doi:10.1145/1089733.1089734

Manso, A., Marques, C. G., & Dias, P. (2010). Portugol IDE v3.x: A new

environment to teach and learn computer programming. Education

Engineering (EDUCON), 2010 IEEE (pp. 1007-1010). Presented at the

Bibliography

 62

Education Engineering (EDUCON), 2010 IEEE.

doi:10.1109/EDUCON.2010.5492469

O’Malley, C., & Stanton Fraser, D. (2004). Literature Review in Learning with

Tangible Technologies. Retrieved February 2, 2011, from http://hal.archives-

ouvertes.fr/hal-00190328/en/

Pedro Dias, & Sancho Oliveira. (2011). Meet and greet programming using graphical

languages and tangible interfaces. Information Systems and Technologies

(CISTI), 2011. Presented at the Information Systems and Technologies

(CISTI), 2011.

Roque, R. V. (2007). OpenBlocks  : an extendable framework for graphical block

programming systems. Thesis, . Retrieved January 11, 2011, from

http://mit.dspace.org/handle/1721.1/41550

Schneider, B., Jermann, P., Zufferey, G., & Dillenbourg, P. (2010). Benefits of a

Tangible Interface for Collaborative Learning and Interaction. Learning

Technologies, IEEE Transactions on, PP(99), 1. doi:10.1109/TLT.2010.36

Smith, B. J. (2009). Conceptual graphs as a visual programming language for teaching

programming. Visual Languages and Human-Centric Computing, 2009.

VL/HCC 2009. IEEE Symposium on (pp. 258-259). Presented at the Visual

Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE

Symposium on. doi:10.1109/VLHCC.2009.5295242

Stern, T. I. (Tamara I. (2007). NetScratch  : a networked programming environment

for children. Thesis, . Retrieved February 2, 2011, from

http://dspace.mit.edu/handle/1721.1/41677

Bibliography

 63

Xinogalos, S., Sartatzemi, M., Dagdilelis, V., & Evangelidis, G. (2006). Teaching

OOP with BlueJ: A Case Study. Advanced Learning Technologies, 2006. Sixth

International Conference on (pp. 944-946). Presented at the Advanced

Learning Technologies, 2006. Sixth International Conference on.

doi:10.1109/ICALT.2006.1652599

Xinogalos, S., Satratzemi, M., & Dagdilelis, V. (2007). Re-designing an OOP course

based on BlueJ. Advanced Learning Technologies, 2007. ICALT 2007. Seventh

IEEE International Conference on (pp. 660-664). Presented at the Advanced

Learning Technologies, 2007. ICALT 2007. Seventh IEEE International

Conference on. doi:10.1109/ICALT.2007.214

York, J., & Pendharkar, P. C. (2004). Human-computer interaction issues for mobile

computing in a variable work context. International Journal of Human-

Computer Studies, 60(5-6), 771-797. doi:16/j.ijhcs.2003.07.004

Appendixes

 65

8 Appendixes

Installation	
 process	

Botbeans has two different options to install and run it: installation package or

JNLP (Java Network launching Protocol). JNLP allows running the application

automatically from a browser link pointing to a JNLP file, which will install the

application as a web start application.

Installation packages are the more typical process of installing an application

in a computer system, but in this case the user has to choose the right package for the

operating system he is using.

Figure 40 Botbeans setup entrance

Appendixes

 66

Figure 41 Botbeans setup

The installer (Figure 41) comes from the used rich client platform. This gives

one big advantage since Netbeans Platform installer supports Windows, Linux and

MacOSX allowing an easy installation in three main platforms.

Figure 42 Robot control component

Appendixes

 67

If a robot isn’t configured the robot control component will open (Figure 42),

this component will detect the available robots and display them in a combo box in

order for the user to choose to which one he wants to connect.

If only one robot is detected, Botbeans will connect to it by default without

showing the control component. After a connection is made, every thing is ready to

execute an algorithm.

Appendixes

 69

Curriculum	
 vitae	

Europass
Curriculum

Vitae

Personal
information

First name(s) /
Surname(s)

Aparício Dias, Pedro MIguel

Address(es) Rua Nossa Sra. das Graças Nº98, 2200-156 Abrantes (Portugal)

Telephone(s) 912857824

E-mail petermdias@gmail.com

Nationality Portuguese

Date of birth 1985/05/16

Linkedin http://pt.linkedin.com/in/pedromdias

Website http://www.pedromdias.com

Gender Male

Work experience

Dates 01/09/2008 →

Occupation or position
held

Equiparado a Assistente do 1º Triénio (Teaching assistant)

Main activities and
responsibilities

Teaching programming related classes (Introduction to Programming, OOP,
Distributed Systems) in the computer science department;
Administrator of department infrastructure (Xen Server, LAMP, SVN, Untangle,…)
Maintainer and developer of Portugol IDE;

Name and address of
employer

Instituto Politécnico de Tomar
(Portugal)

Type of business or
sector

Education

Dates 01/08/2010 - 01/01/2011

Occupation or position
held

Senior Programmer

Main activities and
responsibilities

.NET C#, PHP, Java, MySQL, MS SQL
Linux systems administrator.
Open-source software integrator.

Appendixes

 70

Name and address of
employer

RISA Consulting
(Portugal)

Type of business or
sector

Consulting

Dates 01/03/2011 →

Occupation or position
held

Part-time Software Developer

Main activities and
responsibilities

Software development;

Name and address of
employer

LoveMachine, Inc
San Francisco, USA

Type of business or
sector

Software Development

Main activities and
responsibilities

PHP, jQuery, MySQL, Titanium SDK, APIs Consumption

Education and
training

Dates 20/09/2003 - 24/07/2008

Title of qualification
awarded

Computer science bachelor degree.

Name and type of
organisation providing
education and training

Instituto Politécnico de Tomar, Escola Superior de Tecnologia de Tomar

Level in national or
international
classification

Bachelor degree.

Other language(s)

Self-assessment Understanding Speaking Writing
European level (*) Listening Reading Spoken

interaction
Spoken production

English C2
Advanced

user
C2

Advanced
user

C1
Advanced

user
B2

Independent
user

C1
Advanced

user

 (*)Common European Framework of Reference for Languages

Scientific
publications

Pedro Dias, & Sancho Oliveira. (2011). Meet and greet programming using
graphical languages and tangible interfaces. Information Systems and Technologies
(CISTI), 2011. Presented at the Information Systems and Technologies (CISTI
2011), Braga, Portugal, June 2011.

P. Dias and S. Oliveira, “Botbeans: a new educational visual programming tool with
tangible results,” ACM SIGDOC European Chapter/ Eurosigdoc Workshop on Open
Source and Design of Communication, Lisbon, Portugal: ACM, 2010, pp. 43–44.

A. Manso, P. Dias, C. Marques, Ensino e aprendizagem de algoritmia com a
ferramenta Portugol IDE - Published in XI International Conference on Engineering
and Technology Education - Ilhéus bahia, Brazil, 7-10 March 2010.

Appendixes

 71

A. Manso, C. Marques, P. Dias - Portugol IDE v3.x- A new environment to teach and
learn computer programming - IEEE Engineering Education 2010, Madrid, Spain ,
14-16 April 2010.

Technical
publications

http://netbeans.dzone.com/nb-simplified-ide-for-learning-to-program

Appendixes

 72

